小鼠及人胚胎干细胞向神经细胞的分化

小鼠及人胚胎干细胞向神经细胞的分化
小鼠及人胚胎干细胞向神经细胞的分化

胚胎干细胞的体外诱导分化模型

胚胎干细胞的体外诱导分化模型马宗源 李祺福(厦门大学生命科学学院福建厦门361005) 胚胎干细胞是具有全能性及无限制的自我更新与分化能力的一类特殊的细胞群体,它能通过祖细胞为中介,分化为各种类型的体细胞,可重演体内干细胞的分化过程。自80年代从小鼠囊胚的内细胞团分离到胚胎干细胞并建系到现在已建立了神经细胞、肌肉细胞、上皮细胞、造血细胞等体外分化体系。将胚胎干细胞体外分化成为可利用的分化模型,无论从组织结构、细胞及分子水平都体现了体内分化过程的体外重演,再加上胚胎干细胞系具有体系简单,影响因子少,可控制,便于研究等特点,因此可用于研究早期胚胎发育和细胞分化调控;可成为器官移植和修复器官的细胞来源;还可用于新型药物筛选。 1 胚胎干细胞的生物学特性 胚胎干细胞具有与早期胚胎相似的结构特征,具有较高的核质比和整倍体核型。体外培养的细胞紧密堆积,呈克隆状生长,具有发育分化的多潜能性和无限制的自我更新能力,碱性磷酸酶染色呈阳性,具有高的端粒酶活性,早期胚胎细胞均表达胚胎阶段特异性抗原SSEA-1、SSEA-3、SSEA-4、T RA-1-81、T R A-1-60等;表达种系转录因子OCT-4,并且可将O CT-4基因作为细胞多能性的一个标志;白介素6型细胞因子家族参与维持调节胚胎干细胞未分化状态。 胚胎干细胞建系的过程中要解决的问题在于体外不断增殖的过程中保持未分化的状态,但是细胞如何维持其未分化状态的机理并不清楚。研究发现主要是通过膜上的特异受体蛋白gp130来发挥作用,细胞因子受体蛋白g p130可激活JA N U S、酪氨酸激酶,JA K-ST A T、M EK/M A P K等信号途径,而JAK/ST A T3和M EK/ ERK信号途径则处于相对平衡的状态。另外,一些未知的膜结合分子也参与胚胎干细胞的增殖与分化。分离纯化及鉴定调节细胞的自我更新及分化的未知分子已成为研究的热点。 2 胚胎干细胞为基础的分化模型 胚胎干细胞要维持其未分化的状态,需要在胚胎饲养层中加入分化抑制因子。一旦改变了维持胚胎干细胞未分化状态的条件,胚胎干细胞首先形成胚胎小体,胚胎小体有外中内三胚层,继续分化可形成多种类型的细胞。在体外分化培养时,可自发形成有节律性跳动的心肌细胞,同时还形成骨骼肌、神经细胞、上皮细胞等。由于体外胚胎细胞可重演体内胚胎细胞的发育过程,并且基因的表达时相与体内的胚胎发育过程是相似的,在这一过程中加入外源的诱导分化因子并与相关的调控基因结合,可使胚胎干细胞分化为各种类型的细胞。现在已初步建立了神经细胞、肌肉细胞、上皮细胞和造血细胞等体外分化模型。 2.1 神经细胞 体外培养胚胎干细胞可模拟从未定型细胞向功能性神经元转化的过程,并且其基因的表达时相与体内的胚胎发育过程相似。在分化的早期表达N FL、N F M基因,后期则表达N eur ocan基因。维甲酸及神经生长因子可诱导胚胎干细胞定向分化为神经细胞,是常用的诱导分化物,它能上调神经元特异基因的表达,同时下调中胚层基因的表达。将神经元特异的SOX2基因转进胚胎干细胞,再经维甲酸诱导,可表达90%以上的具有神经元标志的神经细胞。可能是外源基因和维甲酸同时拮抗分化抑制因子的作用,阻碍细胞向其他的方向分化,迫使其向神经元的方向分化。维甲酸能诱导胚胎干细胞分化为C-氨基丁酸能和多巴胺能神经元,而维甲酸分别结合无血清培养基和含胎牛血清的培养基培养胚胎干细胞后发现,采用无血清培养时,几乎检测不到分化的多巴胺能神经元的存在;但在有血清培养时,却能检测到大量的多巴胺神经元。这暗示血清中的某些未知的因子和维甲酸共同起到定向诱导分化 化为特定组织细胞,将这些细胞回输体内,从而达到长期治疗的目的。干细胞的医学应用还包括体外克隆人体器官,然而这比体内移植干细胞要复杂的多。相信随着研究的不断深入,来自人体干细胞的器官应用于临床治疗已为期不远。干细胞研究与应用不仅在疾病治疗方面有着极其诱人的前景,而且将对克隆动物,转基因动物生产,发育生物学,新药物的开发与药效、毒性评估等领域产生极其重要的影响。 参考文献  1 Th omson J A,Itsk ovitz-Eldor J os eph,Shapiro S S,et al. Em bryonic s tem cell lin es d erived from human b las tocysts.S cience,1998,282:1145—1147.  2 Sh amb lott M J,Axelman J,W ang S,et al.Derivation of Plurip otent stem cells from cultured human primordial germ cell.Proc Natl Acad S ci U SA,1998,95:13726—13731.  3 Jack son K A,M i T,Goodell M A.Hematopoietic potential of s tem cells isolated from murie s keletal mus cle.Proc Natl Acad Sci USA,1999,96:14482— 14486.  4 裴雪涛.干细胞研究现状与展望.高技术通讯,2001, (6):93—95. (BH)

关于神经干细胞

.关于神经干细胞 定义是一类具有多向分化潜能, 能够自我复制, 在特定诱因下, 能够向神经元或神经胶质细胞分化的未分化细胞的总称。它是神经系统形成和发育的源泉。其主要功能是参与神经系统损伤修复或细胞凋亡的更新。 特点⑴自我更新:神经干细胞具有对称分裂及不对称分裂两种方式,从而保持干细胞库稳定。对称分裂由一个神经干细胞产生两个神经干细胞;在特定诱因下进行非对称分裂,会产生神经干细胞和神经胶质细胞(astrocyte,oligodendrocyte)。⑵多向分化潜能:神经干细胞可以向神经元、星形胶质细胞和少突胶质细胞分化,其分化与局部微环境(niche)密切相关。⑶低免疫源性:神经干细胞是未分化的原始细胞,不表达成熟的细胞抗原,可以不被免疫系统识别。⑷良好的组织融合性:可以与宿主(即接受神经干细胞移植的患者)的神经组织良好融合,并在宿主体内长期存活。 发现时间1992年,Reynodls等从成年小鼠脑纹状体中分离出能在体外不断分裂增殖,且具有多种分化潜能的细胞群,并正式提出了神经干细胞的概念,从而打破了认为神经细胞不能再生的传统理论。 产生区域神经干细胞主要产生于脑室周围的室管膜下区(SVZ,subvetricular zone)和海马齿状回的颗粒下区(SGZ,subgranular zone)。成人大脑中每天有3万个神经干细胞产生,按照从脑室周围的室管膜下区(SVZ)通过侧迁移流RMS(rostral migratory)最后到达嗅球 OB(olfactory bulb) 的方向移动。增殖时间为12~28天/代。 2.治疗机理与应用领域

神经干细胞的治疗机理 ⑴患病部位组织损伤后释放各种趋化因子,可以吸引神经干细胞聚集到损伤部位,并在局部微环境的作用下分化为不同种类的细胞,修复及补充损伤的神经细胞。 ⑵由于缺血、缺氧导致的血管内皮细胞、胶质细胞的损伤,使局部通透性增加,另外在多种黏附分子的作用下,神经干细胞可以透过血脑屏障,高浓度的聚集在损伤部位。 ⑶神经干细胞可以分泌多种神经营养因子,刺激原有神经元和神经胶质细胞,促进损伤细胞的修复。 ⑷神经干细胞可以增强神经突触之间的联系,建立新的神经环路,降低脑部氧化性压力。 神经干细胞的应用领域 神经干细胞主要应用于治疗中枢神经系统疾病,包括脑部和脊髓损伤的治疗。面前可以治疗的疾病包括脑瘫,脑膜炎后遗症, 脑发育不良脑, 中风(脑出血,脑梗塞)及后遗症, 脑外伤及脊髓损伤, 运动神经元病, 肌萎缩性侧索硬化症(ALS), 帕金森病, 脑萎缩, 共济失调, 癫痫, 多系统萎缩症(MSA), 老年性痴呆及血管性痴呆, 各种舞蹈症, 急性感染性多发性神经根炎(格林巴利氏病), 神经性耳聋, 面瘫及各类周围神经病。 目前有许多研究结果证明神经干细胞的分化潜能不仅仅局限于所属组织,在特定环境(niche)中,在一些细胞因子和蛋白的作用下,可以跨过神经系统而分化成其他类型的组织细胞,即具有横向分化潜能。如神经干细胞可被诱导分化为肌细胞和造血前体细胞。这无疑在理论上扩大了神经干细胞在今后的应用范围,使得更多用现今医学手段无法治愈的患者看到希望。 3.本公司的神经干细胞

小鼠胚胎干细胞培养

以下培养针对于小鼠的R1胚胎干细胞系,其它胚胎干细胞的培养可以参考。不过人的胚胎干细胞培养不可以采用下面的protocol,需要用专用的protocol和培养基。 一般培养--维持ES细胞处于未分化状态 ES细胞培养用含有LIF(白血病抑制因子)和Feed细胞的培养基(高糖)来阻止细胞的分化。为细胞提供包被有0.1%明胶的平板作为粘附细胞的基质。建议每2-3天从达到80%-90%融合的平板按1:8的比率传代细胞一次,细胞传代以后,在将细胞接种在0.1%明胶包被的培养皿之前,通过预先将细胞接种在没有经过包被的组织培养板2个小时,使分化细胞粘附,从而将分化和未分化细胞分开。将细胞全程置于37℃,5%CO2,100%湿度条件下培养。如果在Feed细胞,那么就需要采用MMC进行处理,抑制Feed细胞增殖,但仍然能保持其分泌LIF因子的活性。下文中暂不提及Feed细胞。Feed细胞可以来源于STO细胞或原代胚胎成纤维细胞。 培养基 ES: 配制一20×不含DMEM,HS,LIF的溶液(该溶液也能用于EB培养基--见下文)。分装在50ml 离心管中,(稀释为2×,每管42ml),贮存在-20℃。通过将21ml该溶液,HS和LIF加入450ml DMEM中制备培养基,0.22 μm滤膜过滤。贮存于4℃,时间不要超过2周。 贮存液 DMEM(高糖) 马血清(HS) L-谷氨酰胺(200mM) MEM NEAA(10mM) HEPES(1M) β-巯基乙醇(55Mm) PEST LIF 复苏细胞 细胞被冻存在10%二甲基亚砜(DMSO)中防止结晶的形成,结晶的形成会损害细胞。然而,二甲基亚砜对细胞有毒性,快速的进行细胞复苏是很重要的。 步骤: 1.从液氮中取出一管细胞; 2.将冻存管置于37℃水浴中2分钟(或放到管内溶液恰好完全溶解); 3.将细胞转移到一15ml Falcon管中; 4.加入5ml ES培养基(用培养基冲洗冻存管); 5.离心3分钟; 6.弃上清,用2ml ES培养基重悬细胞,至少吹打10次; 7.接种在明胶包被(见下文)的6孔或6cm组织培养皿; 8.孵育。 冻存细胞 冻存液

小鼠胚胎干细胞mES小鼠iPS培养Protocol

小鼠胚胎干细胞(mES细胞)、小鼠iPS细胞培养Protocol MEF细胞铺制: 1. 在T25培养瓶中加入0.2%明胶,摇匀后覆盖底面即可,于37℃细胞培养箱至 少放置15 min以上。 2. 吸除0.2%明胶,加入事先水浴加热至37℃的MEF完全培养液。一般地,一 个T25培养瓶中加入5 ml MEF完全培养液。 3. 按实验需要:小鼠胚胎干细胞使用KM-r P3 MEF或CF-1 P3 MEF;小鼠iPS 使用ICR-r P3 MEF,复苏MEF细胞若干支。将冻存管从液氮中取出,置于37℃水浴中使之迅速融解,取出后拿到超净台内用75%酒精擦拭冻存管旋口处及外壁,防止污染。 4. 将冻存管内细胞悬液转移至含2 ml MEF完全培养液的15 ml离心管内,以 1000 rpm,离心5 min,离心后将上清液吸除,另加入新鲜的MEF完全培养液1 ml,重悬后按照一个T25培养瓶铺1?106的MEF细胞,平均加入到T25培养瓶中,轻轻摇匀后置于37℃细胞培养箱。24 h以后可以传入小鼠胚胎干细胞或小鼠iPS细胞。 5. 复苏或传代小鼠胚胎干细胞或小鼠iPS细胞前,将T25培养瓶中的MEF完全 培养液吸除,加入2 ml小鼠胚胎干细胞、小鼠iPS细胞完全培养液轻轻冲洗一遍后吸除,加入新鲜的小鼠胚胎干细胞、小鼠iPS细胞完全培养液待用。 复苏: 1. 将小鼠胚胎干细胞、小鼠iPS细胞冻存管从液氮中取出,置于37℃水浴中使 之迅速融解,取出后拿到超净台内用75%酒精擦拭冻存管旋口处及外壁,防止污染。 2. 将冻存管内细胞悬液转移至含3-4 ml小鼠胚胎干细胞、小鼠iPS细胞完全培 养液的15 ml离心管内,以1000 rpm,离心5 min。 3. 离心后将上清液吸除,另加入新鲜的小鼠胚胎干细胞、小鼠iPS细胞完全培 养液2 ml,吹打悬浮。 4. 重复吹打,制成单细胞悬液,尽量避免气泡。 5. 转移至1个已经铺好MEF细胞的T25培养瓶中培养。 6. 每天更换小鼠胚胎干细胞、小鼠iPS细胞完全培养液。 传代: 1.一般在复苏后第2-3天传代,视克隆大小和密度而定。 2.吸除废液。 3.用PBS(不含钙镁离子)轻轻冲洗一遍。

胚胎干细胞体外诱导分化综述

胚胎干细胞体外诱导分化综述 摘要:由于胚胎干细胞具有自我更新、高度增值和多向分化的潜能,因此,自20世纪90年代开始,对胚胎干细胞的研究成为生物学领域和医药工程领域研究的一个焦点。本文从胚胎干细胞的分离、体外诱导胚胎干细胞的原理和定向分化的机制、胚胎干细胞体外诱导的方法、定向分化的细胞、应用前景和研究存在的问题对胚胎干细胞进行综述。 关键词:胚胎干细胞;体外培养;诱导分化;应用 干细胞是一种具有多分化潜能和自我更新功能的早期未分化细胞。在特定条件下,它可以 分化成不同的功能细胞,形成多种组织和器官,它包括胚胎干细胞和成体干细胞。前者指早期胚胎的多能干细胞,后者是存在于胎儿和成体不同的组织内的多潜能干细胞这些细胞具有自我复制能力,并产生不同种类的具有特定表型和功能的成熟细胞的能力,能够维持机体功能的稳定,发挥生理性的细胞更新和修复组织损伤作用[4,9,10]。 胚胎干细胞(embryonic stem cell,ESC)是从着床前胚胎内内细胞团(inner cell mass,ICM)或原始生殖细胞经体外分化抑制培养分离的一种全能性细胞[1]。它能在体外长期不断自我更新,并保持多向分化潜能,可以分化为内、中、外三个胚层的几乎所有类型细胞。自1981年Evans和Kauffman[2,8]用不同的方法首次成功分离得到小鼠胚胎干细胞以来,小鼠胚胎干细胞成为近20年来人们用来研究发育分化、基因表达调控、基因治疗等最理想的模型,并且有大量研究表明小鼠胚胎干细胞可以在体外被诱导分化为绝大多数类型的成体细胞.1998年Thomson等首次成功分离并建立人胚胎干细胞系。自此,人胚胎干细胞不但提供了一个研究人类自身发育分化的良好机会,而且如果人胚胎干细胞能像小鼠胚胎干细胞一样可以在体外诱导形成各种成体细胞,那么利用这些诱导分化形成的成熟细胞将有可能进行细胞和组织替代治疗, 包括糖尿病、帕金森病、早老性痴呆、心血管疾病和肿瘤等多种目前临床上难以治愈的疾病。 1 胚胎干细胞的分离 自Thomson成功分离并建立人胚胎干细胞系后,多年以来,人们研究出很多胚胎干细胞的 分离方法,在这里主要介绍三种: 1.1 分离自胚胎内细胞团 内细胞团又称胚细胞(embryoblast),是一团于哺乳动物初期胚胎中的一个细胞团块。从早期胚胎内细胞团(inner cell mass,ICM)分离是获得胚胎干细胞的主要途径。由于不同动物的胚胎发育存在差异,因此应注意取材时间。可通过免疫外科手术法、机械剥离法、组织培 养法等方法除去胚胎滋养层细胞获得囊胚内细胞团(ICM)细胞进行体外分化抑制培养。 1.2分离自原始生殖细胞

小鼠胚胎干细胞的培养

小鼠胚胎干细胞分化为精子细胞的研究进展 郑晨光生科091 学号090304109 (河北科技大学生物科学与工程学院石家庄050018) 摘要:胚胎干细胞(ESCs) 是一种具有分化发育为三个胚层组织细胞潜能的全能性细胞, 哺乳动物的精子起源于原始生殖细胞(PGCs), ESCs 可分化为PGCs, 并进一步分化为精子细胞。通过在培养基中添加诱导分化因子(如维甲酸等) 或与希望诱导分化的目的细胞(如Sertoli细胞等) 共培养, 并通过鉴别ESCs分化为生殖细胞的各阶段特异性基因标志物 c-kit、VASA、DAZL、fragilis、miwi、mil1和mil2等, 获取不同阶段的生殖细胞。鼠的ESCs 已诱导出了不成熟的精子细胞, 但到目前为止尚无成熟精子培养成功, 且诱导分化的效率很低。 关键字:小鼠;胚胎干细胞;精子 胚胎干细胞是由哺乳动物早期胚胎分离克隆的一类未分化二倍体细胞, 能在体外增殖, 并能保持未分化状态。在一定条件下可以分化为包括生殖细胞在内的三个胚层的所有细胞类型。目前, 已从ESCs 诱导出神经细胞、心肌细胞、肝细胞、骨细胞、胰岛素分泌细胞等。小鼠胚胎干细胞体外已成功诱导分化为精子细胞和卵母细胞, 人胚胎干细胞理论上也具备分化为生殖细胞的潜能。2003 年5 月Hubner 等成功将鼠胚胎干细胞体外分化为生殖系统的卵母细胞,并在Science 上报道了该成果。近来有实验室从小鼠ESCs体外分化产生雄性原始生殖细胞, 孵育分化后注入到卵母细胞可发育成囊胚, 且检验为正常的二倍体核型。本文从小鼠胚胎干细胞定向分化为精子细胞的基因标记和方法学2 个方面, 对ESCs 向精子细胞分化的最新研究进展作一综述。 1 原始生殖细胞的发育 雌、雄鼠合笼至母鼠见阴栓后(days post-coitum,dpc) 7 d ,鼠胚胎中出现原始生殖细胞(primordiralgerm cells, PGCs), 经过增殖, 移行到生殖嵴, 并继续分化为生殖干细胞(germ stem cells, GSCs), 这些细胞是精子和卵子发生的基础。大部分研究者都认为, PGCs 是生殖细胞最初的形式,小鼠胚胎在三个胚层形成时, PGCs同时出现。PGCs 从性腺原条移行到尿囊再移行到近端内胚层中, dpc 7 d 后在中胚层远端可观察到PGCs, dpc 8 d移行到尿囊再到原肠, 这被称为移行期PGCs, 在dpc 9.5-11.0 d , 移行至生殖嵴, 这一阶段被称为移行后期PGCs, 当PGCs 分化为生殖母细胞时, 睾丸或卵巢的结构就已经确立。对于雄性小鼠, 生殖母细胞一直停留在有丝分裂期直到出生后2 d , 然后到达输精管基底膜或者停留在管腔中退化, 那些存活下来的细胞则继续分化为GSCs, 经过多细胞分化阶段, 分化为精母细胞, 精母细胞减数分裂为精子细胞, 后者最终分化为精子。也就是说, 在雄性胚胎中生殖细胞要经历移行前期P G C s 、移行期PGCs、移行后PGCs 、生殖母细胞、A 型精原细胞、GSCs 和减数分裂前生殖细胞, 才形成成熟的精子。在这段复杂漫长的变化中, 有多种不同的特异基因的表达。 2 生殖细胞分化的基因标记 PGCs的很多标志物在未分化的ESCs 上也有表达, 摆在研究者面前的挑战就是如何区分这2种细胞。且ESCs 在分化为PGCs 的过程中, 各个阶段 的基因标记也不同。ESCs的分化依赖于特异基因表达, 在生殖细胞分化中起关键作用的基因有c - k i t 、V A S A 、DAZL、fragilis、miwi、mil1和mil2等, 这些基因的表达有阶段特异性, 即在生殖细胞的不同发育阶段, 它们分别稳定地表达, 从而成为原始生殖细

小鼠胚胎干细胞培养实验步骤

细胞的原代培养 点击次数:540 作者:佚名发表于:2009-03-06 16:26转载请注明来自丁香园 一、原代细胞培养原理 原代细胞培养是将机体内的某组织取出,分散成单细胞,在人工条件下培养使其生存并不断生长、繁殖的方法。借助这种方法可以观察细胞的分裂繁殖、细胞的接触抑制以及细胞的衰老、死亡等生命现象。 ? 幼稚状态的组织和细胞,如:动物的胚胎、幼仔的脏器等更容易进行原代培养 ? 掌握无菌操作技术 ? 了解小鼠解剖操作技术 ? 了解原代细胞培养的一般方法与步骤 ?了解培养细胞的消化分散 ? 了解倒置显微镜的使用 二、实验材料 ? 实验动物:孕鼠或新生小鼠 ? 液体:细胞生长液(内含20%小牛血清) 0.25%胰蛋白酶 平衡盐溶液 70%乙醇 ?器材:灭菌镊子、剪刀若干把 灭菌培养皿、细胞培养瓶、小瓶、烧杯若干个 吸管若干支 酒精灯 原代细胞培养方法 三、胰酶消化法 (1)胰酶消化法操作步骤——取材 a. 用颈椎脱位法使孕鼠迅速死亡。

b. 把整个孕鼠浸入盛有75%乙醇的烧杯中数秒钟消毒,取出后放在大平皿中携入超净台。 c. 用无菌的镊子和剪子在前腿下作一腹部水平切口,用无菌镊子将皮肤扯向后腿。 d. 用另一无菌的剪刀和镊子切开腹部,取出含有胚胎的子宫,置于无菌的培养皿上。 e. 剔除胚胎周围的包膜(若胚胎较大,应剪去头、爪),将胚胎放于无菌的含有平衡盐溶液的培养皿中。 f. 漂洗胚胎,去掉平衡盐溶液。继续用平衡盐溶液漂洗胚胎直至清洗液清亮为止。 (2)胰酶消化法操作步骤——切割 a. 将部分胚胎转移至一个无菌小瓶中,用平衡盐溶液漂洗。 b. 然后用眼科手术剪刀小心地绞碎胚胎,直到成1mm3左右的小块,再用平衡盐溶液清洗,洗到组织块发白为止。 c. 静置,使组织块自然沉淀到管底,弃去上清。 (3)胰酶消化法操作步骤——消化、接种培养 a. 视组织块量加入5-6倍的0.25%胰酶液,37℃中消化20-40分钟,每隔5分钟振荡一次,或用吸管吹打一次,使细胞分离。 b. 加入3-5ml细胞生长液以终止胰酶消化作用(或加入胰酶抑制剂)。 c. 静置5-10分钟,使未分散的组织块下沉,取悬液加入到离心管中。 d. 1000rpm,离心10分钟,弃上清液。 e. 加入平衡盐溶液5ml,冲散细胞,再离心一次,弃上清液。 f. 加入细胞生长液l-2ml(视细胞量),血球计数板计数。 e. 将细胞调整到5×105/ml左右,转移至25ml细胞培养瓶中,37℃下培养。 (4)胰酶消化法操作步骤——消化、接种培养

小鼠胚胎干细胞培养体系的建立

第19卷第2期 江西农业大学学报 V o l.19,N o.2 1997年6月 A cta A gricu ltu rae U n iversitatis J iangx ien sis June,1997 α 小鼠胚胎干细胞培养体系的建立 汪河海1 刘红林2 范必勤1 钟 卉3 丁家桐4 (1 江苏农科院牧医所,南京 210014;2 南京农业大学动物科技学院,南京 210059;3 南京铁道医学院,南京 210009;4 扬州大学农学院动物科学系 225009) 摘 要 通过探讨影响小鼠胎儿成纤维细胞饲养层制备及胚胎干细胞体外培养的若干因素,建立了小鼠胚胎干细胞体外培养体系,并建成小鼠ES细胞系。 关键词:小鼠;胚胎干细胞;培养体系;ES细胞系 中图分类号:S865.1 胚胎干细胞又称ES细胞(Em b ryon ic Stem Cells)。其特点是在体外特定的培养条件下能保持其只生长、不分化的增殖状态,并具早期胚胎细胞发育的全能性。哺乳动物的ES细胞系自Evan s和Kaufm an(1981)首次建立以来[1],引起人们高度的重视,并被广泛地用于动物发育遗传学的基础理论研究和转基因动物的生产实践。但ES细胞系要在体外克隆成功,必须有成纤维细胞或STO细胞饲养层的支持[2],为建立有效的哺乳动物ES细胞体外培养体系,本文就影响小鼠胎儿成纤维细胞饲养层制备及胚胎干细胞体外培养的若干因素做初步探讨,为今后进一步开展研究奠定基础。 1 材料和方法 111 动物准备 选3~4月龄的性成熟的昆明鼠,母鼠自然发情或超排后与公鼠交配,第2天早晨检查阴道栓,见栓查为发情受精。妊娠至一定日龄后取其胚胎或胎儿用于分离囊胚内细胞团细胞或制备胎儿成纤维细胞饲养层。 112 溶液的配制 按日本学者管原七郎的配方配制D PB S液,胰蛋白酶溶液、DM E M液及ES细胞培养液(配方略)。 113 胎儿成纤维细胞饲养层的制备 α

胚胎干细胞的定向诱导分化及应用前景

龙源期刊网 https://www.360docs.net/doc/a99738592.html, 胚胎干细胞的定向诱导分化及应用前景 作者:王士珍李雪甫陈培 来源:《科技视界》2012年第23期 【摘要】胚胎干细胞(embryonic stem cell, ES细胞)主要来自于胚胎发育早期囊胚中内细胞群(inner cell mass, ICM), 具有无限增殖、自我更新和多向分化的特性。理论上可以诱导分化为机体中200多种细胞,可作为细胞移植、组织替代, 甚至器官克隆的细胞供体,为将来治疗人类诸多难治性疾病提供细胞来源。本文简述了胚胎干细胞的诱导分化方法、定向分化的一些细胞种类以及应用前景。 【关键词】胚胎干细胞;诱导;分化 ES细胞是由囊胚的内细胞群或胎儿的原始生殖细胞(Primordial germ cells,PGCs)经体外抑制分化培养而获得的一种具有多向分化潜能的细胞。英国剑桥大学的Evans等[1]于1981年首次建立了小鼠胚胎干细胞系。Thomson等[2]于1998年利用临床上体外受精的胚胎,采用免疫法分离出内细胞群,首次成功分离出人胚胎干细胞系。同年,Sham blott等[2]以STO作为饲养层首次建立了人胚胎生殖细胞(hEGC)系。一般情况下,可将胚胎干细胞和胚胎生殖细胞统称 为胚胎干细胞。饲养层或白血病抑制因子(LIF)是ES细胞体外培养过程中保持未分化状态的必要条件。当培养条件有轻微改变时,例如在培养液中添加某些诱导分化因子(维甲酸RA、DMSO等),ES细胞就会发生分化;另外,如果把脱离饲养层的ES细胞进行悬浮培养,会发育成大小不一的拟胚体(embryoid boby, EB),然后可诱导EB向不同类型细胞分化。至今,已从ES细胞诱导分化出心肌细胞、骨细胞、软骨细胞、肝细胞、造血细胞、脂肪细胞、胰岛素细胞、神经细胞、内皮细胞等。这些诱导后的细胞有望为器官移植、损伤器官的修复提供原材料,具有十分广阔的临床应用前景。所以,近年来有关胚胎干细胞的定向分化研究已成为全世界研究的热点。 1诱导ES细胞定向分化的方法 目前,通常针对人们设想要得到的终末靶细胞,而采用不同的诱导分化方法,使ES细胞最终定向分化为目的细胞。最常用的诱导方法一般包括以下四种:化学试剂诱导法、细胞因子诱导法、共培养诱导法以及转基因诱导法等。 1.1化学试剂诱导法 维甲酸(retinoic acid,RA)是体内维生素A的代谢中间产物,主要影响骨的生长和促进上皮细胞增生、分化、角质溶解等代谢作用。Schuldiner等[3]用一定浓度的RA(10-6M)诱导人ES细胞向神经细胞分化。实验证实:产生的神经细胞比未用RA处理的对照组增加了22%。目前,RA诱导ES细胞分化为神经细胞的机制还没有完全弄清楚。一般认为RA进入细胞后,最先与细胞质中维甲酸结合蛋白 (cellular RA binding protein,CRABP)形成复合物,然

胚胎干细胞的定向诱导分化及应用前景

胚胎干细胞的定向诱导分化及应用前景 【摘要】胚胎干细胞(embryonic stem cell, ES细胞)主要来自于胚胎发育早期囊胚中内细胞群(inner cell mass, ICM), 具有无限增殖、自我更新和多向分化的特性。理论上可以诱导分化为机体中200多种细胞,可作为细胞移植、组织替代, 甚至器官克隆的细胞供体,为将来治疗人类诸多难治性疾病提供细胞来源。本文简述了胚胎干细胞的诱导分化方法、定向分化的一些细胞种类以及应用前景。 【关键词】胚胎干细胞;诱导;分化 ES细胞是由囊胚的内细胞群或胎儿的原始生殖细胞(Primordial germ cells,PGCs)经体外抑制分化培养而获得的一种具有多向分化潜能的细胞。英国剑桥大学的Evans等[1]于1981年首次建立了小鼠胚胎干细胞系。Thomson等[2]于1998年利用临床上体外受精的胚胎,采用免疫法分离出内细胞群,首次成功分离出人胚胎干细胞系。同年,Sham blott等[2]以STO作为饲养层首次建立了人胚胎生殖细胞(hEGC)系。一般情况下,可将胚胎干细胞和胚胎生殖细胞统称为胚胎干细胞。饲养层或白血病抑制因子(LIF)是ES细胞体外培养过程中保持未分化状态的必要条件。当培养条件有轻微改变时,例如在培养液中添加某些诱导分化因子(维甲酸RA、DMSO等),ES细胞就会发生分化;另外,如果把脱离饲养层的ES细胞进行悬浮培养,会发育成大小不一的拟胚体(embryoid boby, EB),然后可诱导EB向不同类型细胞分化。至今,已从ES细胞诱导分化出心肌细胞、骨细胞、软骨细胞、肝细胞、造血细胞、脂肪细胞、胰岛素细胞、神经细胞、内皮细胞等。这些诱导后的细胞有望为器官移植、损伤器官的修复提供原材料,具有十分广阔的临床应用前景。所以,近年来有关胚胎干细胞的定向分化研究已成为全世界研究的热点。 1诱导ES细胞定向分化的方法 目前,通常针对人们设想要得到的终末靶细胞,而采用不同的诱导分化方法,使ES细胞最终定向分化为目的细胞。最常用的诱导方法一般包括以下四种:化学试剂诱导法、细胞因子诱导法、共培养诱导法以及转基因诱导法等。 1.1化学试剂诱导法 维甲酸(retinoic acid,RA)是体内维生素A的代谢中间产物,主要影响骨的生长和促进上皮细胞增生、分化、角质溶解等代谢作用。Schuldiner等[3]用一定浓度的RA(10-6M)诱导人ES细胞向神经细胞分化。实验证实:产生的神经细胞比未用RA处理的对照组增加了22%。目前,RA诱导ES细胞分化为神经细胞的机制还没有完全弄清楚。一般认为RA进入细胞后,最先与细胞质中维甲酸结合蛋白(cellular RA binding protein,CRABP)形成复合物,然后复合物进入细胞核内,与染色质上的受体结合,从而调控一系列基因的表达,使细胞的表型发生转变。二甲基亚砜(DMSO)是一种含硫的有机化合物,不仅能用于细胞的常规冻存,而且还是一种常用的细胞分化诱导剂,能够诱导ES细胞分化为骨骼肌细胞、心肌细胞等,其作用机制主要是影响c-myc基因表达,降低细胞的内源性聚腺苷二磷酸核苷表达水平。也有研究证明,DMSO能使细胞内储存的钙释放出来,而细胞内钙离子浓度升高在诱导细胞分化中可能起着重要作用。除了RA、DMSO外,还有β-磷酸甘油、维生素C(VC)、地塞米松、维生素K3(VK3)以及2,5-羟基维生素D3等化学试剂,也能诱导ES细胞定向分化为特定类型细

石墨烯加速神经干细胞成熟和分化

启示神经与基于BSC疗法的导电材料的接口:通过偶合石墨烯加速神经干细胞的生物电功能开发 为了管理在组织工程细胞特异性行为神经修复和再生,更好地理解材料- 细胞相互作用,尤其是生物电功能的,极其important.Graphene已报道是用作支架的潜在候选和神经interfacingmaterial.However,石墨烯这些导电性基板细胞膜的生物电演变在很大程度上仍然没有进行过。在这项研究中,我们使用了神经干细胞(NSC)模型,探讨膜生物电属性E包括增殖和分化conditions.We下休息膜电位和动作电位E和细胞行为上的石墨烯薄膜中使用的组合可能发生的变化 单细胞电生理记录和传统的细胞生物学技术。石墨烯不影响基本膜电参数(电容和输入电阻),但搁在石墨烯衬底细胞膜电位分别更强烈增殖和分化的条件下为负。此外,神经干细胞及其对石墨烯基片表现出的后代与对照相比,在开发过程中增加的动作电位的射击。但是,石墨烯只有轻微影响电动刻画ofmature NSC后代。石墨烯基片上的被动和主动的生物电特性Themodulation伴随着增强NSC分化。此外,棘密度,突触 突触蛋白表达和在.Modeling石墨组所有activitywere增加上导电的石墨烯衬底电场表明由该负电的细胞膜产生的电场大于上即控制它的石墨烯衬底高得多,这可以解释观察到的 通过耦合石墨烯的生物电的发展变化。我们的研究结果表明石墨烯是能够加速在开发过程中的NSC成熟,特别是在生物电发展方面。我们的发现提供对导电材料在调谐膜中的作用的基本理解石墨烯模型中的生物电性能,为未来的发展研究铺平道路方法和材料形成在基于NSC的治疗的可控通道中的膜性质。 石墨烯,碳原子的2维单层,由于材料的独特的电,机械和热特性,一直在纳米技术的最前沿。它最近被认为是一个有前途的候选人制造超快纳米电子器件,透明电极,纳米复合材料和生物医学材料[3]。 它已经用于多种生物医学应用,包括细胞成像和药物递送[4],生物分析[5],干细胞研究[6,7],甚至光热疗法治疗肿瘤 [8]。最近,我们和其他团体发现使用石墨烯作为神经接口材料的可能性,因为它可以促进人类成神经细胞瘤(SH-SY5Y)细胞培养[9],PC-12细胞[10],海马原代培养神经元[11]和直接NSC分化神经元[12,13],促进神经干细胞分化成石墨烯纳米网半导体神经元和形成神经元纤维[14,15]。此外,越来越多的研究表明石墨烯表现出操纵茎的命运的潜在能力细胞。例如,石墨烯基材料能够诱导NSC分化成神经元谱系[7,16],控制甚至加速间充质细胞的分化干细胞[6,17e22],并调节其他类型的行为干细胞,包括多能干细胞和胚胎干细胞[23e25]。这些开创性的研究清楚地证明了在细胞治疗中基于石墨烯的材料的巨大潜力。然而,改变细胞行为背后的基础机制,例如增强的分化和促进的细胞增长,仍然很大程度上未知。 细胞功能和细胞之间的强连接膜的生物电性质启发我们调查石墨烯是否可以调节NSC发育和成熟的子代通过影响其生物电特性细胞。在这项工作中,我们研究了石墨烯的影响在NSC 发育期间电生理状态的成熟,包括被动和主动生物电特性和随后的NSC命运的选择。 2。材料和方法2.1。石墨烯膜制备 根据先前公布的CVD方法[26]合成石墨烯样品。简言之,将薄铜箔(5cm×5cm)加热至1000℃并在H 2和Ar气体下退火20分钟,随后暴露于H 2和CH 4下5分钟。然后在H 2和Ar气下将膜从1000℃冷却至室温。通过在硝酸铁水溶液中蚀刻从铜箔上除去石墨烯膜。在铜膜溶解之后,使TCPS基板与石墨烯膜接触,并将其从溶液中拉出以制造石墨烯/ TCPS基板。

神经干细胞综述

神经干细胞综述 长期以来 ,人们一直认为 ,成年哺乳动物脑内神经细胞不具备更新能力 ,一旦受损乃至死亡 ,不能再生 ,这种观点使人们对帕金森病、多发性硬化及脑脊髓损伤的治疗受到了很大的限制。虽然传统的药物及手术取得了一定的进展 ,但是仍不能达到满意的效果。近年来 ,生物医学技术迅猛发展 ,神经生物学的重要进展之一是发现神经干细胞的存在 ,特别是成体脑内神经干细胞的分离和鉴定具有划时代意义。本文对神经干细胞的特点、分布、分化机制及应用等研究进展做一综述。 1 神经干细胞的特点 神经干细胞的特点如下:①神经干细胞可以分化。②通过分裂产生相同的神经干细胞来维持自身的存在 , 同时 ,也能产生子细胞并进一步分化成各种成熟细胞。干细胞可连续分裂几代 ,也可在较长时间内处于静止状态。③神经干细胞通过两种方式生长 ,一种是对称分裂 ,形成两个相同的神经干细胞 ;另一种是非对称分裂 , 由于细胞质中的调节分化蛋白不均匀的分配 ,使得一个子细胞不可逆的走向分化的终端而成为功能专一的分化 细胞 ,另一个子细胞则保持亲代的特征 ,仍作为神经干细胞保留下来。分化细胞的数目受分化前干细胞的数目和分裂次数控制。 2 神经干细胞与其它类型干细胞的关系 按分化潜能的大小 ,干细胞基本上可分为 3种类型 :第一类是全能干细胞 ,它具有形成完整个体的分化潜能 ,具有与早期胚胎细胞相似的形态特征和很强的分化能力 ,可以无限增殖并分化成全身 2 0 0多种细胞组织的潜能 ,进一步形成机体的所有组织、器官进而形成个体 ;第二类是多能干细胞 ,这种干细胞也具有分化多种细胞组织的潜能 ,但却失去了发育成完整个体的能力 ,发育潜能受到一定的限制 ;第三类是单能干细胞 ,如神经 干细胞等 ,这种细胞只能向一种类型或密切相关的两种类型的细胞分化。然而横向分化的发现 ,使这个观点受到了挑战 ,神经干细胞可以分化成造血细胞。总之 ,生命体通过干细胞的分裂来实现细胞的更新及保证持续生长。随着基因工程、胚胎工程、细胞工程及组织工程等各种生物技术的快速发展 ,按照一定的目的 ,在体外人工分离、培养干细胞 ,利用干细胞构建各种细胞、组织及器官作为移植来源 ,将成为干细胞应用的主要方向。 3 神经干细胞的分布 神经管形成以前 ,在整个神经板检测到神经干细胞的选择性标记物神经巢蛋白 (nestin),是细胞的骨架蛋白。构成小鼠神经板的细胞 ,具有高效形成神经球的能力。但目前尚不能肯定神经板与神经干细胞是否具有相同的诱导机制。神经管形成后 ,神经干细胞位于神经管的脑室壁周边。关于成脑神经干细胞的分布 ,研究显示成年嗅球、皮层、室管膜层或者室管膜下层、纹状体、海马的齿状回颗粒细胞下层等脑组织中分布着神经干细胞。研究发现脊髓、隔区也分离出神经干细胞 ,这些研究表明 ,神经干细胞广泛存在于神经系统。在中央管周围的神经干细胞培养后亦可形成神经球并产生神经元。脊髓损伤时 ,来自于神经干细胞的神经元新生受到抑制 ,而神经胶质细胞明显增多 ,其机制可能与生成神经元的微环境有关。

C57胚胎小鼠神经干细胞的分离、培养与鉴定

-C57胚胎小鼠神经干细胞的分离、培养与鉴定 广东学药学院 报ournJa lfoGuang dngo ParmhceutiaalcUn ievrsty i unJ 2.14, 030(3) C 7 5胚小胎神经鼠干胞的分离、培细与养定 鉴 12 万丽 1 易,林,桦贝伟 剑( 1 广.药学院东中医药研究 / 广东省院代性谢病疾中医防 治药重实点室验,家国中医药理局管脂高血调肝降脂症重研点 究室/ 国家中药管理医局代谢脂级实三室验,东广广 5州10006 ;.2中大学山生科命学院干学胞研究细室,广广州东510 006)培 养神经干胞细(NSCs )并,对其行进鉴定方。采法用动手 法胰蛋白酶消化及法摘:要的体外分目离分离、鼠脑细胞胎,用化的无优血清NS C 培s养基行进养培。细胞疫免光荧检法测N CSs特异性标记子 3 d分左获右得大未分量化巢呈悬浮状生的长表的达结。果分离脑的细体胞培外养48 h已部分大壁贴神,经干胞细团第 3 代时,。少很见到贴细壁胞,几乎是神全球,经

神经球周围在存较多刺微。细表胞达一中种间丝蛋白,即巢 蛋白(nes ti)n 。论结成功分、离鉴定出C57小鼠 NSsC, 并在体外可件条进下行传扩增培代养。关键词:C 57 胎小胚;鼠经干细胞;神胞细培;养蛋巢白中分图类:号R392 文献 志标码 A:d i: 10.o396 9 j/.sin.1s060873.8214003.0.22878 (3 214)0 00354340 章文编号:0016 -Is laoion,t culurtean d iedtifnciaitnoo f eunalrste mcel sl rfmoC5 e7bmyorin mccieW N Ai1L, IYHual n2 ,iBEI W iejia1n 1.(uGnagdogn TMCKey L abratory ofroM taboelc iisDaees,s Ky eLbarotorayo Modfluaintg Lievrt oTrat HepeyripemlaiS ATM, anC Ldeev 3l Labraotroyo f Liid Mpteboaism SAlTM,CIn stiute oftChinese edMciinla Sicneec,GsuagnongdPha racemtucail UinvesrtyiGuan,gzohu5 1006,0hCin;a 2.St m eCle Rlseeacrh Depratmne,t choSlo o fifL Sceeicens, uS nYtasn Ueinersivyt, Guagnzhou, 50006,1China) bsArtatc:Obejtivc Toei slotae cu,turl aned deitnfiy hte eunarlste m cllse( SCN )s. Meth od NSsCs for mftal eimce ewe irsloteda bydi sesticon ad nnzeyatmi dcgiestoin a,n ductlrude ni he opttima slreufreem SCN mdeimu. he Tpesifcicb ioamker orf

胚胎干细胞

1. 干细胞(stem cell): 干细胞是一类具有自我更新和分化潜能的细胞。 2.干细胞分类 (1)胚胎干细胞:指胚胎早期的干细胞。这类干细胞分化潜能宽,具有分化为机体任何组织细胞的能力。如囊胚期内细胞团的细胞。 (2)成体干细胞:指成体各组织器官中的干细胞,成体干细胞具有自我更新能力,但分化潜能窄,只能分化为相应(或相邻)组织器官组成的细胞。如神经干细胞,表皮干细胞。 第一节干细胞生物学 1. 组织自体稳定性: 特定组织通过使自身细胞死亡和增生的方式保持组织细胞数量动态平衡的特征称组织自稳定性。 2. 干细胞是个体发育和组织再生的基础。 一、干细胞的形态和生化特征 1.干细胞的形态特征 ①干细胞形态共性:细胞呈圆形或卵圆形,体积小,核质比大,增殖力强。 ②干细胞的固定组织位置:有的干细胞有固定存在部位与方式。如表皮干细胞与其周围的子细胞形成增殖结构单元。但许多组织的干细胞没有这种分布特点。 2.干细胞的生化特性 ①端粒酶活性高:如造血干细胞具癌细胞的端粒酶活性,增殖能力强。随着增殖与分化,端粒酶活性下降。 ②蛋白标志分子:不同干细胞有各异的蛋白质标志分子,可作为确定干细胞位置、分离提纯干细胞的标志。如:巢素蛋白—神经干细胞;角蛋白15—表皮干细胞。 二、干细胞的增殖特征 (一)增殖缓慢性 1.干细胞增殖速度慢:细胞动力学研究表明,干细胞的增殖速度较慢,组织中快速分裂的细胞是过渡放大细胞。 如小肠干细胞的分裂速度(Tc=11小时)比过渡放大细胞(Tc≥24小时)慢一倍。 2.过渡放大细胞: 过渡放大细胞是介于干细胞和分化细胞之间的过渡细胞,过渡放大细胞经若干次分裂产生分化细胞。 通过这种方式,机体可用较少干细胞获得较多分化细胞。 3.干细胞增殖缓慢的意义: (1)利于干细胞对外界信号作出反应,以决定细胞的发展方向—增殖或分化。 (2)减少基因突变的危险。增殖缓慢使干细胞有时间发现并纠正处于增殖周期过程中的错误。(二)干细胞的自稳定性 1.自稳定性: 自稳定性是干细胞的基本特征之一。指干细胞可在个体生命过程中自我更新并维持其自身数目恒定。 干细胞的自稳定性是区别肿瘤细胞的本质特征。 干细胞通过其特有的分裂方式维持自稳定性。 2.干细胞的分裂方式 ①干细胞有对称与不对称两种分裂方式。 不对称分裂的结果使两个子细胞一个成为功能专一的分化细胞;另一个保持干细胞的特征。 3. 不对称分裂发生原因:

神经干细胞(NSC) 标记物

神经干细胞是指具有分化为神经元细胞、星形胶质细胞、少突胶质细胞的能力,能自我更新并足以提供大量脑组织细胞的细胞。神经干细胞的标记物,包括Nestin、PSA-NCAM、p75神经营养R(NTR) 、Mu-sashi1等。 ①Nestin Nestin是一种中间丝蛋白Ⅵ,它主要表达在中枢神经系统干细胞,在几乎所有成熟CNS细胞上均不表达。Nestin作为标记物已经广泛应用在识别神经系统发育中和体外细胞培养中的CNS干细胞。然而Nestin在CNS 干细胞生物学上的作用尚不明确。Nestin在体外并不形成中间丝。它的短暂表达已经证明是神经分化途径的关键一步。Nestin 有时也在非神经干细胞群表达,例如胰岛祖细胞及造血祖细胞。 ②PSA-NCAM(唾液酸-神经细胞粘附分子) 脑的神经细胞粘附分子(NCAM) 亚型的调节性表达是神经发育过程的关键所在。NCAM的胚胎型(PSA-NCAM) 主要在发育中的神经系统表达。PSA-NCAM可能同突触的重排和可塑性相关。在成年人PSA-NCAM 表达被限制在维持可塑性的地区。高表达PSA-NCAM 的神经元-限制性前体可以自我更新和分化为多种神经细胞表型。PSA-NCAM+新生脑前体细胞被限制在向神经胶质方向发展,甲状腺激素可以调控其向少突神经胶质细胞发展。唾液酸变性作用极大地降低了NCAM粘附性,因此,也有人认为PSA-NCAM是作为单一的抗粘附分子来调节大脑可塑性发展中的细胞-细胞相互作用。越来越多的证据表明,PSA-NCAM 和一些信号分子相互作用,在脑的发育中起指导性作用。 ③p75神经营养R(NTR) p75NTR也称作低亲合力神经生长因子(NGF)受体,是属于肿瘤坏死因子受体超家族的一类跨膜蛋白。它同等地结合NGF、BDNF、NT23和NT4(低亲合力) 。当被Trk活化时,p75NTR 增加对神经亲和力的反应。在神经系统发育过程中TrkC受体和p75NTR 起着重要作用。根据细胞表面表达p75NTR,现在已分离出神经脊干细胞(NCSCs)。新近从周围神经组织中分离的p75NTR+ NCSCs可以在体外和体内自我更新和形成神经元和神经胶质。另外,神经上皮来源的p75NTR+ 细胞也可以在细胞培养时分化为神经元、平滑肌和schwann 细胞。p75NTR也可以用作标记物来识别间充质前体以及肝脏的星形细胞。 ④Musashi1 Musashi1是一种进化保守的RNA-结合蛋白,在维持干细胞状态、分化和肿瘤发生方面起着重要作用。Musashi1 选择性地表达在神经前体细胞上,包括神经干细胞上。在神经系统外,Musashi1还是肠干细胞的选择性标记。这些组织干细胞或未成熟细胞Musashi1的表达,表明Musashi1在转录后基因调节阶段维持这些细胞未分化状态起重要作用。Musashi1在体内的一个靶分子是m-NumbmRNA,m-Numb在神经分化上起重要作用。用突变的方法研究证明,Musashi1通过转录抑制m-Numb的合成。因为Numb是进化保守的细胞内Notch 拮抗剂,以推测Musashi1 是Notch1 信号通路的正调节因子。Musashi1过度表达通过依赖RBP2Jk的旁路激活Notch1,而Notch信号途径功能为诱导哺乳动物神经干细胞自我更新。通过musashi1-P-小鼠培养脑细胞的Musashi蛋白产物反义去除研究,发现这些基因在维持神经干细胞未分化状态起着重要的作用。Musashi抑制m-Numb转录的分子机制尚待进一步研究。Musashi1有可能除转录调控外还参与其他调控途径。另外,Musashi1还表达在一些脑肿瘤的特殊类型(这些肿瘤可能起源自非成熟脑细胞),并且表达水平和肿瘤的恶性程度及增殖能力相关。 这些干细胞标记目前在实验室和临床广泛使用,在干细胞的进一步研究中也可能扮演重要角色。然而,干细胞标记的使用也存在着一些局限性。例如还需要寻找单一的、特异的识别多能干细胞的标记物。随着越来越多的新类型干细胞的发现,也需要有更精确的工具来满足研究的需要。在可预见的未来,干细胞标记将继续在干细胞寻找及其生物学特性分析中

相关文档
最新文档