最小二乘法在系统辨识中的应用

最小二乘法在系统辨识中的应用
最小二乘法在系统辨识中的应用

最小二乘法在系统辨识中的应用

王文进

控制科学与控制工程学院 控制理论与控制工程专业 2009010211

摘要:在实际的工程中,经常要对一个系统建立数学模型。很多时候,要面对一个未知的系统,对于这些未知系统,我们所知道的仅仅是它们的一些输入输出数据,我们要根据这些测量的输入输出数据,建立系统的数学模型。由此诞生了系统辨识这门科学,系统辨识就是研究怎样利用对未知系统的输入输出数据建立描述系统的数学模型的科学。系统辨识在工程中的应用非常广泛,系统辨识的方法有很多种,最小二乘法是一种应用及其广泛的系统辨识方法。本文主要讲述了最小二乘估计在系统辨识中的应用。

首先,为了便于介绍,用一个最基本的单输入单输出模型来引入系统辨识中的最小二乘估计。

例如:y = ax + ε (1)

其中:y 、x 可测,ε为不可测的干扰项,a 未知参数。通过 N 次实验,得到测量数据 y k 和x k ,其中k=1、2、3、…,我们所需要做的就是通过这N 次实验得到的数据,来确定未知参数a 。在忽略不可测干扰项的前提下,基本的思想就是要使观测点y k 和由式(1)确定的估计点y 的差的平方和达到最小。用公式表达出来就是要使J 最小:

确定未知参数a 的具体方法就是令:? J / ? a = 0 , 导出 a

通过上面最基本的单输入单输出模型,我们对系统辨识中的最小二乘法有了初步的了解,

21

()min

N

k k k J y ax ==-=∑1

2()0

N

k

k

k k J x y

ax a =?=--=?∑121

N

k

k

k N k

k x

y a x

===

∑∑

但在实际的工程中,系统一般为多输入系统,下面就用一个实际的例子来分析。在接下来的表述中,为了便于区分,向量均用带下划线的字母表示。

水泥在凝固过程中,由于发生了一系列的化学反应,会释放出一定的热量。若水泥成分及其组成比例不同,释放的热量也会不同。

水泥凝固放热量与水泥成分的关系模型如下:

y = a0+ a1x1+…+ a n x n + ε

其中,y为水泥凝固时的放热量(卡/克);x1~x2为水泥的几种成分。

引入参数向量:θ = [ a0,a1,…,a n ]T

经过N次试验,得出N个方程:y k = ?k Tθ + εk ; k=1、2…、N

其中:?k = [ 1,x1,x2,…,x N ]T

方程组可用矩阵表示为:y = Φθ + ε

其中:y = [ y1,y2,…,y N ] Tε = [ ε1,ε2,…,εN ] T

估计准则:

1

111

1222

1

1...

1...

.........

1...

T

n

T

n

T

N nN

N

x x

x x

x x

?

?

?

??

????

????

??

Φ==??

????

????

????

??

2

1

()

N

T

k k

k

J y?θ

=

=-

11 11

() ()...()*..

T

T T

N N

y

J y y

?θ?θ

??

-

????

=--????

??

=(y - Φ θ)T ( y - Φ θ)

J = y T y + θT ΦT Φ θ - y T Φ θ - θT ΦT y

= y T y + θT ΦT Φ θ - 2 θT ΦT y

假设:(ΦT Φ)满秩,由

根据矩阵值函数对矩阵变量的导数和数量函数对矩阵变量的导数可以得出以下两个公式:

有:

所以:

解出参数估计向量:

θ Ls =(ΦT Φ)-1 ΦT y

至此,水泥的凝固放热量与水泥的成分关系模型即建立起来了。

总结:在本文中,主要用到了矩阵里的最小二乘法思想,在具体求解过程中,还用到了矩

J

θ?=?A x A x T =??)

(Ax x

Ax x T 2)

(=??θθ

θθΦΦ=?ΦΦ?T T

T 2)

(y

y T T T

ΦΦ=??θ

θ)

(y

y y y J T T T T

T T T ΦΦΦΦΦΦ22)2(-=-+??=??θθθθθ

θ

阵值函数对矩阵变量的求导和数量函数对矩阵变量的求导。虽然最小二乘问题在本学期所学的矩阵论里不是作为重点来讲,但最小二乘法在工程中的作用却是难以估计的。有统计史家这样评价,“最小二乘法之于统计学,犹如微积分之于数学”。在任何工程项目中,系统的线性模型永远是一个无法回避的问题,而正是最小二乘法误差分析的研究促进了线性理论模型的发展。

最小二乘法及其应用..

最小二乘法及其应用 1. 引言 最小二乘法在19世纪初发明后,很快得到欧洲一些国家的天文学家和测地学家的广泛关注。据不完全统计,自1805年至1864年的60年间,有关最小二乘法的研究论文达256篇,一些百科全书包括1837年出版的大不列颠百科全书第7版,亦收入有关方法的介绍。同时,误差的分布是“正态”的,也立刻得到天文学家的关注及大量经验的支持。如贝塞尔( F. W. Bessel, 1784—1846)对几百颗星球作了三组观测,并比较了按照正态规律在给定范围内的理论误差值和实际值,对比表明它们非常接近一致。拉普拉斯在1810年也给出了正态规律的一个新的理论推导并写入其《分析概论》中。正态分布作为一种统计模型,在19世纪极为流行,一些学者甚至把19世纪的数理统计学称为正态分布的统治时代。在其影响下,最小二乘法也脱出测量数据意义之外而发展成为一个包罗极大,应用及其广泛的统计模型。到20世纪正态小样本理论充分发展后,高斯研究成果的影响更加显著。最小二乘法不仅是19世纪最重要的统计方法,而且还可以称为数理统计学之灵魂。相关回归分析、方差分析和线性模型理论等数理统计学的几大分支都以最小二乘法为理论基础。正如美国统计学家斯蒂格勒( S. M. Stigler)所说,“最小二乘法之于数理统计学犹如微积分之于数学”。最小二乘法是参数回归的最基本得方法所以研究最小二乘法原理及其应用对于统计的学习有很重要的意义。 2. 最小二乘法 所谓最小二乘法就是:选择参数10,b b ,使得全部观测的残差平方和最小. 用数学公式表示为: 21022)()(m in i i i i i x b b Y Y Y e --=-=∑∑∑∧ 为了说明这个方法,先解释一下最小二乘原理,以一元线性回归方程为例. i i i x B B Y μ++=10 (一元线性回归方程)

最小二乘法在系统辨识中的应用

最小二乘法在系统辨识中的应用 王文进 控制科学与控制工程学院 控制理论与控制工程专业 2009010211 摘要:在实际的工程中,经常要对一个系统建立数学模型。很多时候,要面对一个未知的系统,对于这些未知系统,我们所知道的仅仅是它们的一些输入输出数据,我们要根据这些测量的输入输出数据,建立系统的数学模型。由此诞生了系统辨识这门科学,系统辨识就是研究怎样利用对未知系统的输入输出数据建立描述系统的数学模型的科学。系统辨识在工程中的应用非常广泛,系统辨识的方法有很多种,最小二乘法是一种应用及其广泛的系统辨识方法。本文主要讲述了最小二乘估计在系统辨识中的应用。 首先,为了便于介绍,用一个最基本的单输入单输出模型来引入系统辨识中的最小二乘估计。 例如:y = ax + (1) 其中:y、x 可测,为不可测的干扰项,a未知参数。通过N 次实验,得到测量数据y k和x k ,其中k=1、2、3、…,我们所需要做的就是通过这N次实验得到的数据,来确定未知参数a 。在忽略不可测干扰项的前提下,基本的思想就是要使观测点y k和由式(1)确定的估计点y的差的平方和达到最小。用公式表达出来就是要使J最小: 确定未知参数a的具体方法就是令: J a = 0 , 导出 a 通过上面最基本的单输入单输出模型,我们对系统辨识中的最小二乘法有了初步的了解,但在实际的工程中,系统一般为多输入系统,下面就用一个实际的例子来分析。在接下来的表述中,为了便于区分,向量均用带下划线的字母表示。 水泥在凝固过程中,由于发生了一系列的化学反应,会释放出一定的热量。若水泥成分及其组成比例不同,释放的热量也会不同。 水泥凝固放热量与水泥成分的关系模型如下: y = a0+ a1x1+…+ a n x n + 其中,y为水泥凝固时的放热量(卡/克);x1~x2为水泥的几种成分。

系统辨识最小二乘Matlab仿真

系统辨识和最小二乘参数估计Matlab仿真 一、系统辨识 在控制系统的分析中,首先要建立系统的数学模型,控制系统的数学模型是定量描述系统或过程内部物理量(或变量)之间关系的数学表达式。 一般来说,建立控制系统数学模型有两种基本方法: (1)机理建模(白箱模型):即根据系统内在运行机制、物料和能量守恒等物理学、化学规律建立系统的数学模型,一般步骤如下: Step1:根据系统工作原理及其在控制系统中的作用,确定输入和输出; Step2:根据物料和能量守恒等关系列写基本方程式; Step3:消去中间量; Step4:获得系统模型; (2)实验法建模(黑箱模型):即对于机理尚不清楚或机理过于复杂的系统,可以人为的对其施加某种测试信号,并记录其输出响应,或者记录正常运行时的输入输出数据,然后利用这些输入输出数据确定系统模型结构和参数。 多年来,系统辨识已经发展为一门独立学科分支,通过系统辨识建立一个对象的数学模型,通常包括两方面的工作:一是模型结构的确定(模型的类型、阶次),二是模型参数估计。 根据时间是否连续,参数模型又可以分为连续时间系统模型和离散时间系统参数模型,这两类模型均可采用输入输出模型和状态空间模型描述,离散系统采用差分方程描述,以单输入单输出(SISO)离散系统参数模型为例。 1.确定性模型 SISO系统确定性模型可表示为: u(k)和y(k)分别为输入和输出,d为纯延时。 2.随机性模型 如果受到随机扰动,则式子可写为: 为系统随机扰动,其结构如图:

系统辨识的一般步骤如图: 从图中可以看出,利用辨识的方法建立系统数学模型,从实验设计到模型获得,需要这些步骤。 二、最小二乘参数估计 1.批处理最小二乘 考虑以下CAR模型:

最小二乘法及其应用

最小二乘法及其应用 最小二乘法是一个比较古老的方法,早在十八世纪,就由高斯首先创立并成功地应用于天文观测和大地的测量工作中。此后,近三百年来,它已被广泛应用于科学实验与工程技术中。随着现代电子计算机的普及与发展,这个古老的方法更加显示出其强大的生命力。 最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可以用于曲线拟合,其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。 最小二乘法拟合曲线的基本原理是:成对等精度地测得一组数据x,只(i=l,2,…,n),试找出一条最佳的拟合曲线,使得这条拟合曲线上的各点的值与测量值的差的平方和在所有拟合曲线中最小。所谓“拟合”,即不要求所作的曲线完全通过所有的数据点,只要求所得的曲线能反映数据的基本趋势。曲线拟合的几何解释是:求一条曲线,使数据点均在离此曲线的上方或下方不远处。 用最小二乘法拟合的曲线较为精确,接近于实际曲线。因而,最小二乘法拟合曲线在实际生活和科学研究中有着重要的意义,并渗透到各个领域,在物理、气象、化学、医学等方面有着广泛的应用。例如,在物理方面,我们通常通过实验测得数据,然后根据这些实验数据拟合曲线,从而总结出某种现象的规律或者变化趋势,进而采取相应的措施避免或加强其变化程度。这对于指导我们了解物理现象,并深刻理解物理知识是非常有帮助的。又如,在气象方面,在温室效应的研究中,科学家们通过对1860年到1980年的11个地球平均温度增加值的分析,利用最小二乘法进行曲线拟合,通过精确计算,建立了地球平均温度增加值与时间之间的函数关系。从而得出在2080年左右,地球的平均温度会比1980年上升约6℃,从而会引起诸如冰川后退、海平面上升等一系列严重的环境问题。到时极地冰盖就会融化,从而引起大量的洪水泛滥和大片的陆地被淹没,这一认识对进行环境质量评价和提出保护地球的措施具有重要的理论意义。

系统辨识-最小二乘法MATLAB仿真

《系统辨识》基于MATLAB的最小二乘法(一阶)的仿真 clc clear % ①白噪声的生成过程如下:e=randn(1,500); e=e/std(e); e=e-mean(e); A=0; %白噪声的均值为0 B=sqrt(0.1); %白噪声的方差为0.1 e=A+B*e; %绘制白噪声图 k=1:500; subplot(4,1,1) %画四行一列图形窗口中的第一个图形 plot(k,e,'r'); xlabel('k'), ylabel('e');title('(0,1)均匀分布的随机序列') % ②生成M序列的过程如下:X1=1;X2=0;X3=1;X4=0; %移位寄存器输入Xi初始状态(0101), Yi寄存器的各级输出 m=500; %M序列的总长度 for i=1:m Y4=X4; Y3=X3; Y2=X2; Y1=X1; X4=Y3; X3=Y2; X2=Y1; X1=xor(Y3,Y4); %异或运算 if Y4==0 U(i)=-1; else U(i)=Y4; end end M=U; u=U; %绘制M序列图? i1=i k=1:1:i1; subplot(4,1,2) %画四行一列图形窗口中的第二个图形 plot(k,U,k,U,'rx') stem(M) xlabel('k') ylabel('M序列') title('移位寄存器产生的M序列') % ③参数估计的过程如下: %绘制参数估计的相关图形 z=zeros(1,500); %定义输出观测值的长度 for k=2:500 z(k)=0.9*z(k-1)+u(k-1)+e(k);%用理想输出值作为观测值 end subplot(4,1,3) %画四行一列图形窗口中的第三个图形 i=1:1:500; %横坐标的范围从1到500,步长为1 plot(i,z) %图形的横坐标是采样时刻i,纵坐标是输出观测值Z, 图形格式为连续曲线

系统辨识

一、 最小二乘法(LS ) 辨识系统Z(K+2)=1.5*Z(K+1)-0.7*Z(k)+u(K+1)+0.5*u(k)+v(k) 辨识参数 L T L L T L LS y X X X 1)(-Λ =θ 其中 MAT 程序 >> x=[0 1 0 1 1 0 1 1 1]; >> n=403; >> M=[]; >> for i=1:n temp=xor(x(4),x(9)); M(i)=x(9); for j=9:-1:2 x(j)=x(j-1); end x(1)=temp; end >> v=randn(1,400); >> z=[]; >> z(1)=-1; >> z(2)=0; >> for i=3:402 z(i)=1.5*z(i-1)-0.7*z(i-2)+M(i-1)+0.5*M(i-2)+v(i-2); end >> H=zeros(400,4); >> for i=1:400 H(i,1)=-z(i+1); H(i,2)=-z(i); H(i,3)=M(i+1); H(i,4)=M(i); end >> Estimate=inv(H'*H)*H'*(z(3:402))' 辨识参数为: Estimate = -1.4916

1.0364 0.4268 >> 二、最小二乘递推法(RLS) 辨识Z(K+2)=1.5*Z(K+1)-0.7*Z(k)+u(K+1)+0.5*u(k)+v(k) 递推公式: 其中: MATLAB程序: >> x=[0 1 0 1 1 0 1 1 1]; n=403; M=[]; for i=1:n temp=xor(x(4),x(9)); M(i)=x(9); for j=9:-1:2 x(j)=x(j-1); end x(1)=temp; end v=randn(1,400); z=[]; z(1)=-1; z(2)=0; for i=3:402 z(i)=1.5*z(i-1)-0.7*z(i-2)+M(i-1)+0.5*M(i-2)+v(i-2); end P=100*eye(4); Pstore=zeros(4,401); >> Pstore(:,1)=[P(1,1),P(2,2),P(3,3),P(4,4)]; >> Theta=zeros(4,401); Theta(:,1)=[3;3;3;3]; >> K=[10;10;10;10];

最小二乘法的原理及其应用

最小二乘法的原理及其应用 一、研究背景 在科学研究中,为了揭示某些相关量之间的关系,找出其规律,往往需要做数据拟合,其常用方法一般有传统的插值法、最佳一致逼近多项式、最佳平方逼近、最小二乘拟合、三角函数逼近、帕德(Pade)逼近等,以及现代的神经网络逼近、模糊逼近、支持向量机函数逼近、小波理论等。 其中,最小二乘法是一种最基本、最重要的计算技巧与方法。它在建模中有着广泛的应用,用这一理论解决讨论问题简明、清晰,特别在大量数据分析的研究中具有十分重要的作用和地位。随着最小二乘理论不断的完善,其基本理论与应用已经成为一个不容忽视的研究课题。本文着重讨论最小二乘法在化学生产以及系统识别中的应用。 二、最小二乘法的原理 人们对由某一变量t或多个变量t1…..tn 构成的相关变量y感兴趣。如弹簧的形变与所用的力相关,一个企业的盈利与其营业额,投资收益和原始资本有关。为了得到这些变量同y之间的关系,便用不相关变量去构建y,使用如下函数模型 , q个相关变量或p个附加的相关变量去拟和。 通常人们将一个可能的、对不相关变量t的构成都无困难的函数类型充作函数模型(如抛物线函数或指数函数)。参数x是为了使所选择的函数模型同观测值y相匹配。(如在测量弹簧形变时,必须将所用的力与弹簧的膨胀系数联系起来)。其目标是合适地选择参数,使函数模型最好的拟合观测值。一般情况下,观测值远多于所选择的参数。 其次的问题是怎样判断不同拟合的质量。高斯和勒让德的方法是,假设测量误差的平均值为0。令每一个测量误差对应一个变量并与其它测量误差不相关(随机无关)。人们假设,在测量误差中绝对不含系统误差,它们应该是纯偶然误差,围绕真值波动。除此之外,测量误差符合正态分布,这保证了偏差值在最后的结果y上忽略不计。 确定拟合的标准应该被重视,并小心选择,较大误差的测量值应被赋予较小的权。并建立如下规则:被选择的参数,应该使算出的函数曲线与观测值之差的平方和最小。用函数表示为:

系统辨识最小二乘参数估计matlab

最小二乘参数估计 摘要: 最小二乘的一次性完成辨识算法(也称批处理算法),他的特点是直接利用已经获得的所有(一批)观测数据进行运算处理。这种算法在使用时,占用内存大,离线辨识,观测被辨识对象获得的新数据往往是逐次补充到观测数据集合中去的。在应用一次完成算法时,如果要求在每次新增观测数据后,接着就估计出系统模型的参数,则需要每次新增数据后要重新求解矩阵方程()Z l T l l T l ΦΦΦ-∧=1θ。 最小二乘辩识方法在系统辩识领域中先应用上已相当普及,方法上相当完善,可以有效的用于系统的状态估计,参数估计以及自适应控制及其他方面。 关键词: 最小二乘(Least-squares ),系统辨识(System Identification ) 目录: 1.目的 (1) 2.设备 (1) 3引言 (1) 3.1 课题背景 (1) 4数学模型的结构辨识 (2) 5 程序 (3) 5.1 M 序列子函数 ................................................................................. 错误!未定义书签。 5.2主程序............................................................................................... 错误!未定义书签。 6实验结果: ................................................................................................................................... 3 7参考文献: ................................................................................................. 错误!未定义书签。 1.目的 1.1掌握系统辨识的理论、方法及应用 1.2熟练Matlab 下最小二乘法编程 1.3掌握M 序列产生方法 2.设备 PC 机1台(含Matlab 软件) 3引言 3.1 课题背景 最小二乘理论是有高斯(K.F.Gauss )在1795年提出:“未知量的最大可能值是这样一个数值,它使各次实际观测值和计算值之间的差值的平方乘以度量其精度的数值以后的和最小。”这就是最小二乘法的最早思想。 最小二乘辨识方法提供一个估算方法,使之能得到一个在最小方差意义上与实验数据最

最小二乘法原理及应用【文献综述】

毕业论文文献综述 信息与计算科学 最小二乘法的原理及应用 一、国内外状况 国际统计学会第56届大会于2007年8月22-29日在美丽的大西洋海滨城市、葡萄牙首都里斯本如期召开。应大会组委会的邀请,以会长李德水为团长的中国统计学会代表团一行29人注册参加了这次大会。北京市统计学会、山东省统计学会,分别组团参加了这次大会。中国统计界(不含港澳台地区)共有58名代表参加了这次盛会。本届大会的特邀论文会议共涉及94个主题,每个主题一般至少有3-5位代表做学术演讲和讨论。通过对大会论文按研究内容进行归纳,特邀论文大致可以分为四类:即数理统计,经济、社会统计和官方统计,统计教育和统计应用。 数理统计方面。数理统计作为统计科学的一个重要部分,特别是随机过程和回归分析依然展现着古老理论的活力,一直受到统计界的重视并吸引着众多的研究者。本届大会也不例外。 二、进展情况 数理统计学19世纪的数理统计学史, 就是最小二乘法向各个应用领域拓展的历史席卷了统计大部分应用的几个分支——相关回归分析, 方差分析和线性模型理论等, 其灵魂都在于最小二乘法; 不少近代的统计学研究是在此法的基础上衍生出来, 作为其进一步发展或纠正其不足之处而采取的对策, 这包括回归分析中一系列修正最小二乘法而导致的估计方法。 数理统计学的发展大致可分 3 个时期。① 20 世纪以前。这个时期又可分成两段,大致上可以把高斯和勒让德关于最小二乘法用于观测数据的误差分析的工作作为分界线,前段属萌芽时期,基本上没有超出描述性统计量的范围。后一阶段可算作是数理统计学的幼年阶段。首先,强调了推断的地位,而摆脱了单纯描述的性质。由于高斯等的工作揭示了最小二乘法的重要性,学者们普遍认为,在实际问题中遇见的几乎所有的连续变量,都可以满意地用最小二乘法来刻画。这种观点使关于最小二乘法得到了深入的发展,②20世纪初到第二次世界大战结束。这是数理统计学蓬勃发展达到成熟的时期。许多重要的基本观点和方法,以及数理统计学的主要分支学科,都是在这个时期建立和发展起来的。这个时期的成就,包含了至今仍在广泛使用的大多数统计方法。在其发展中,以英国统计学家、生物学家费希尔为代表的英国学派起了主导作用。③战后时期。这一时期中,数理统计学在应用和理论两方面继续获得很大的进展。

2003版系统辨识最小二乘法大作业

西北工业大学系统辩识大作业 题目:最小二乘法系统辨识

一、 问题重述: 用递推最小二乘法、加权最小二乘法、遗忘因子法、增广最小二乘法、广义最小二乘法、辅助变量法辨识如下模型的参数 离散化有 z^4 - 3.935 z^3 + 5.806 z^2 - 3.807 z + 0.9362 ---------------------------------------------- = z^4 - 3.808 z^3 + 5.434 z^2 - 3.445 z + 0.8187 噪声的成形滤波器 离散化有 4.004e-010 z^3 + 4.232e-009 z^2 + 4.066e-009 z + 3.551e-010 ----------------------------------------------------------------------------- = z^4 - 3.808 z^3 + 5.434 z^2 - 3.445 z + 0.8187 采样时间0.01s 要求:1.用Matlab 写出程序代码; 2.画出实际模型和辨识得到模型的误差曲线; 3.画出递推算法迭代时各辨识参数的变化曲线; 最小二乘法: 在系统辨识领域中 ,最小二乘法是一种得到广泛应用的估计方法 ,可用于动态 ,静态 , 线性 ,非线性系统。在使用最小二乘法进行参数估计时 ,为了实现实时控制 ,必须优化成参数递推算法 ,即最小二乘递推算法。这种辨识方法主要用于在线辨识。MATLAB 是一套高性能数字计算和可视化软件 ,它集成概念设计 ,算法开发 ,建模仿真 ,实时实现于一体 ,构成了一个使用方便、界面友好的用户环境 ,其强大的扩展功能为各领域的应用提供了基础。对 4324326.51411.5320120232320 Y s s s s G U s s s s ++++== ++++432 120120232320 E N W s s s s == ++++

最小二乘法原理及其简单应用_邹乐强

科技信息 SCIENCE &TECHNOLOGY INFORMATION 2010年第23期y (%) 1.000.90.90.810.60.560.35x (%) 3.6 3.7 3.8 3.9 4.0 4.1 4.2 最小二乘法原理及其简单应用 邹乐强 (河南工程技术学校河南 焦作 454000) 【摘要】最小二乘法是从误差拟合角度对回归模型进行参数估计或系统辨识,并在参数估计、系统辨识以及预测、预报等众多领域中得到极为广泛的应用。然而,最小二乘法因其抽象、难懂常常被大家所忽视。本文就最小二乘法的引入,原理的证明,简单的应用进行归纳和总结,使读者对最小二乘法有更为清晰、系统、全面地认识。 【关键词】最小二乘法;回归模型;参数估计;系统辨识最小二乘法作为一种传统的参数估计方法,早已经被大家所了解。然而大多同学对最小二乘法的认识都比较模糊,仅仅把最小二乘法理解为简单的线性参数估计。事实上,最小二乘法在参数估计、系统辨识以及预测、预报等众多领域都有着广泛的应用。本文就最小二乘法的引入、最小二乘法原理的简单证明、最小二乘法在线性参数估计、欧氏空间、多项式拟合以及经济领域的模型参数估计等应用方面进行具体的阐释。本文的一些理论建立在学习过高等代数、数值分析及了解简单的经济计量学的基础上。本文的理论简明易懂,仅对现实中常见的问题用最小二乘法理论结合阐释。 1问题的引入 例 已知某种材料在生产过程中的废品率y 与某种化学成分x 有关。下列表中记载了某工厂生产中y 与相应的x 的几次数值: 我们想找出y 对x 的一个近似公式。 解把表中数值划出图来看,发现它的变化趋势近于一条直线。因此我们决定选取x 的一次式ax+b 来表达。当然最好能选到适当的a ,b 使下面的等式 3.6a+b -1.00=03.7a+b -0.9=03.8a+b -0.9=03.9a+b -0.81=0 4.0a+b -0.60=04.1a+b -0.56=04.2a+b -0.35=0 都成立。实际上是不可能的,任何a ,b 代入上面各式都会发生误差。于是想找a ,b 使上面各式的误差的平方和最小,即找到a ,b 使 (3.6a+b -1.00)2+(3.7a+b -0.9)2+(3.8a+b -0.9)2+(3.9a+b -0.81)2+(4.0a+b -0.60)2+(4.1a+b -0.56)2+(4.2a+b -0.35)2 最小。这里讨论的是误差的平方即二乘方,故称为最小二乘法。现在转向为一般的最小二乘法问题: 实系数线性方程组 a 11x 1+a 12x 2+…+a 1n x n - b 1=0 a 21x 1+a 22x 2+…+a 2n x n - b 2=0………… a m 1x 1 +a m 2x 2+…+a mn x n -b m = 1.1 可能无解。即任何一组实数x 1,x 2,……,x s 都可能使 m i =1 Σ(a i 1x 1+a i 2x 2+…+a in x n -b i )2 (*) 不等于零。 我们设法找到实数组x 0 1,x 0 2,…,x 0 s 使最小,这样的x 0 1,x 0 2,…,x 0 s 称为方程组的最小二乘解。这样问题就叫最小二乘法问题。 [1] 2 最小二乘法原理的证明 2.1 最小二乘法原理的初等证明 定理:X =(x 1,x 2,……x n )T 是矛盾方程组(1.1)的最小二乘解的充要条件是X 是方程组 (m i =1Σa 2 i 1)x 1+ m i =1Σa i 1a i 211x 2+…+ m i =j Σa i 1a in 11x n =m i =1 Σa i 1b i m i =1Σa i 2a i 1 1 1x 1+ m i =1Σa 2 i 2 11x 2+…+m i =1Σa i 2a in 11x n = m i =1Σa i 2b i m i =1 Σa in a i 11 1x 1+m i =1Σa in a i 211x 2+…+ m i =1 Σa 2 in 11x n = m i =1 Σa in b i 2.2 的解[2] 证明:设Y = m i =1Σ b i -n k =1 Σa ik x k 11 2 2.3 把Y 整理为关于x j (1≦j ≦n)的二次函数得 Y = m i =1 Σa 2ij 1 1x 2 j +2m i =1 Σ(a j (a i 1x 1+…+a i ,j -1x j -1+a i ,j +1x j +1+…+a 1n x n b j ))x j +m i =1 Σ(a i 1x 1+…+a i ,j -1x j -1+a i ,j +1x j +1+…+a in x n -b j )2 j=1,2,3,……,n 必要性:设X =(x 1,x 2,……,x n )T 是方程组⑴的最小二乘解,由定义1知⑴式中Y 有最小值,且X 是最小值点。由二次函数的性质得知二次函数 m i =1 Σa 2ij 〉0(j=1,2,……,n ),故a ij 不全部为零(与A 列满秩的假设一 致),且X 满足: X = m i =1 Σ[a ij (a i 1x 1 +…+a i ,j -1x i,j -1 +a i ,j +1x i,j +1+…+a in x n -b n )] m i =1 Σa ij (j=1,2,……,n) 2.4 化简得: m i =1 Σa ij a i 111x 1+m i =1Σa ij a i 211x 2+…+ m i =1Σa ij a i,j-111x j -1+ m i =1 Σa 2 ij 11x j + m i =1Σa ij a i,j+111x j +1+…+m i =1Σa ij a in 1 1x n =m i =1 Σa ij b i (j=1,2,…n) 这就是方程组⑵。不难看出方程组⑵的系数矩阵为A T A (A T 表示A 的转置矩阵),由A 列满秩知|A T A |≠0,故⑵有唯一解。必要性得证。 充分性:设X 是方程组(2)2.2的解,由x j (j =1,2,...,n )满足方程组2.2,也就是满足⑷式,再由于A 列满秩,a ij (i =1,2,...,m )不全为零,故⑶中二次项系数 m i =1 Σa 2 ij >0,因此,⑷中式Y 有最小值且最小值点为X =(x 1 , x 2,...,x n ),所以X 是方程组⑴的最小二乘解。 2.2利用欧氏空间证明最小二乘法下面我们利用欧氏空间的概念来表达最小二乘法,并给出最小二乘解所满足的代数条件。令 A = a 11a 12…a 1n a 21a 22 …a 2n … ……… a m 1 a m 2… a mn ≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠B = b 1b 2… b m ≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠ X = x 1x 2… x m ≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠ Y =n j =1Σa 1j x 1n j =1Σa 2j x 2n j =1 Σa mj x m ≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠ ≠ ≠≠≠≠ ≠ ≠≠≠≠≠ ≠≠ ≠ =AX 2.5 ○职校论坛○ 282

系统辨识之最小二乘法

方法一、最小二乘一次性算法: 首先对最小二乘法的一次性辨识算法做简要介绍如下: 过程的黑箱模型如图所示: 其中u(k)和z(k)分别是过程的输入输出,)(1-z G 描述输入输出关系的模型,成为过程模型。 过程的输入输出关系可以描述成以下最小二乘格式: )()()(k n k h k z T +=θ (1) 其中z(k)为系统输出,θ是待辨识的参数,h(k)是观测数据向量,n(k) 是均值为0的随机噪声。 利用数据序列{z (k )}和{h (k )}极小化下列准则函数: ∑=-=L k T k h k z J 12])()([)(θθ (2) 使J 最小的θ的估计值^ θ,成为最小二乘估计值。 具体的对于时不变SISO 动态过程的数学模型为 )()()()()(11k n k u z B k z z A +=-- (3) 应该利用过程的输入、输出数据确定)(1-z A 和 )(1-Z B 的系数。 对于求解θ的估计值^θ,一般对模型的阶次 a n , b n 已定,且b a n n >;其次将(3)模 型写成最小二乘格式 )()()(k n k h k z T +=θ (4) 式中 ?????=------=T n n T b a b a b b b a a a n k u k u n k z k z k h ],,,,,,,[)](,),1(),(,),1([)(2121 θ (5)

L k ,,2,1 = 因此结合式(4)(5)可以得到一个线性方程组 L L L n H Z +=θ (6) 其中 ???==T L T L L n n n n L z z z z )](),2(),1([)](),2(),1([ (7) 对此可以分析得出,L H 矩阵的行数为),max(b a n n L -,列数b a n n +。 在过程的输入为2n 阶次,噪声为方差为1,均值为0的随机序列,数据长度)(b a n n L +>的情况下,取加权矩阵L Λ为正定的单位矩阵I ,可以得出: L T L L T L z H H H 1^ )(-=θ (8) 其次,利用在Matlab 中编写M 文件,实现上述算法。 此次算法的实现,采用6阶M 序作为过程黑箱的输入;噪声采用方差为1,均值为0的随机数序列;黑箱模型假设为:y(k)-1.5y(k-1)+0.7y(k-2)=2u(k-1)+0.5u(k-2),则系统输出为Z(k)-1.5Z(k-1)+0.7Z(k-2)=2U(k-1)+0.5U(k-2)+n (k );模型的阶次2,2==b a n n ;数据长度取L=200。 程序清单如下见附录:最小二乘一次性算法Matlab 程序 运行结果如下: 图1 最小二乘一次性算法参数真值与估计值 其中re 为真值,ans 为估计值^ θ 结果发现辨识出的参数与真值之间存在细微误差,这是由于系统噪声以及数据长度L 的限制引起的,最小二乘辨识法是一种无偏估计方法。 方法二、最小二乘递推算法: 最小二乘一次性算法计算量大,并且浪费存储空间,不利于在线应用,由此引出最小

系统辨识最小二乘法大作业 (2)

系统辨识大作业 最小二乘法及其相关估值方法应用 学院:自动化学院 学号: 姓名:日期:

基于最小二乘法的多种系统辨识方法研究 一、实验原理 1.最小二乘法 在系统辨识中用得最广泛的估计方法是最小二乘法(LS)。 设单输入-单输出线性定长系统的差分方程为 (5.1.1) 式中:为随机干扰;为理论上的输出值。只有通过观测才能得到,在观测过程中往往附加有随机干扰。的观测值可表示为 (5.1.2) 式中:为随机干扰。由式(5.1.2)得 (5.1.3) 将式(5.1.3)带入式(5.1.1)得 (5.1.4) 我们可能不知道的统计特性,在这种情况下,往往把看做均值为0的白噪声。 设 (5.1.5) 则式(5.1.4)可写成 (5.1.6) 在观测时也有测量误差,系统内部也可能有噪声,应当考虑它们的影响。因此假定不仅包含了的测量误差,而且包含了的测量误差和系统内部噪声。假定是不相关随机序列(实际上是相关随机序列)。 现分别测出个随机输入值,则可写成个方程,即 上述个方程可写成向量-矩阵形式 (5.1.7) 设 则式(5.1.7)可写为

(5.1.8) 式中:为维输出向量;为维噪声向量;为维参数向量;为测量矩阵。因此式(5.1.8)是一个含有个未知参数,由个方程组成的联立方程组。如果,方程数少于未知数数目,则方程组的解是不定的,不能唯一地确定参数向量。如果,方程组正好与未知数数目相等,当噪声时,就能准确地解出 (5.1.9) 如果噪声,则 (5.1.10) 从上式可以看出噪声对参数估计是有影响的,为了尽量较小噪声对估值的影响。在给定输出向量和测量矩阵的条件下求系统参数的估值,这就是系统辨识问题。可用最小二乘法来求的估值,以下讨论最小二乘法估计。 2.最小二乘法估计算法 设表示的最优估值,表示的最优估值,则有 (5.1.11) 写出式(5.1.11)的某一行,则有 (5.1.12) 设表示与之差,即 - (5.1.13)式中 成为残差。把分别代入式(5.1.13)可得残差。设 则有 (5.1.14) 最小二乘估计要求残差的平方和为最小,即按照指数函数 (5.1.15) 为最小来确定估值。求对的偏导数并令其等于0可得 (5.1.16) (5.1.17)

系统辨识—最小二乘法

最小二乘法参数辨识 1 引言 系统辨识是根据系统的输入输出时间函数来确定描述系统行为的数学模型。现代控制理论中的一个分支。通过辨识建立数学模型的目的是估计表征系统行为的重要参数,建立一个能模仿真实系统行为的模型,用当前可测量的系统的输入和输出预测系统输出的未来演变,以及设计控制器。对系统进行分析的主要问题是根据输入时间函数和系统的特性来确定输出信号。对系统进行控制的主要问题是根据系统的特性设计控制输入,使输出满足预先规定的要求。而系统辨识所研究的问题恰好是这些问题的逆问题。通常,预先给定一个模型类μ={M}(即给定一类已知结构的模型),一类输入信号u和等价准则J=L(y,yM)(一般情况下,J是误差函数,是过程输出y和模型输出yM的一个泛函);然后选择使误差函数J达到最小的模型,作为辨识所要求的结果。系统辨识包括两个方面:结构辨识和参数估计。在实际的辨识过程中,随着使用的方法不同,结构辨识和参数估计这两个方面并不是截然分开的,而是可以交织在一起进行的。 2 系统辨识的目的 在提出和解决一个辨识问题时,明确最终使用模型的目的是至关重要的。它对模型类(模型结构)、输入信号和等价准则的选择都有很大的影响。通过辨识建立数学模型通常有四个目的。 ①估计具有特定物理意义的参数有些表征系统行为的重要参数是难以直接测量的,例如在生理、生态、环境、经济等系统中就常有这种情况。这就需要通过能观测到的输入输出数据,用辨识的方法去估计那些参数。 ②仿真仿真的核心是要建立一个能模仿真实系统行为的模型。用于系统分析的仿真模型要求能真实反映系统的特性。用于系统设计的仿真,则强调设计参数能正确地符合它本身的物理意义。 ③预测这是辨识的一个重要应用方面,其目的是用迄今为止系统的可测量的输入和输出去预测系统输出的未来的演变。例如最常见的气象预报,洪水预报,其他如太阳黑子预报,市场价格的预测,河流污染物含量的预测等。预测模型辨识的等价准则主要是使预测误差平方和最小。只要预测误差小就是好的预测模型,对模型的结构及参数则很少再有其他要求。这时辨识的准则和模型应用的目的是一致的,因此可以得到较好的预测模型。 ④控制为了设计控制系统就需要知道描述系统动态特性的数学模型,建立这些模型的目的在于设计控制器。建立什么样的模型合适,取决于设计的方法和准备采用的控制策略。 3 系统辨识的方法 经典方法: 经典的系统辨识方法的发展已经比较成熟和完善,他包括阶跃响应法、脉冲

最小二乘法在经济预测中的应用

编号(学号):12914008 优化理论课程论文 ( 08 级 1班) 题目:最小二乘法在经济预测中的应用 学院:理学院 专业:信息与计算科学 姓名:刘天政 指导教师:张永祥 完成日期: 2011 年 12 月 18 日

最小二乘法在经济预测中的应用 摘要:由于经济发展呈现一种鹏飞的状态及其可能的动荡会引起严重的后果,使得经济预测成为了一个必然产物,预测会使人们在将来经济上可能出现的波动有所准备降低损失或增加收益.本文选择了经济预测中的其中一种方法最小二乘法的基本原理,并且利用了线性回归预测模型.同时对相关系数和标准偏差进行检验.最后给出了利用最小二乘法进行经济预测的实例.实现对产品生产的预测让各方面对产品的产量有个简单的了解. 关键词:最小二乘法;线性回归;产品生产预测 一.引言 随着改革开放的步伐带动各地的经济发展状态呈现一片大好的形势,由于地域人文不同各地经济特色也各显风骚.本文以某县为例,该县是全国经济百强县之一,全县大都以染料、纺织和布匹等生产加工为主.笔者了解到支撑该县经济支柱的大部分是以生产加工上述产品的中小企业甚至家庭型企业.由于他们规模不是很大,因此相应的各技术部门没有很好的配备,所以进行生产管理的方式没有像大型企业那样规范,他们产品的年产量往往根据企业主近几年摸爬滚打中积累起来对市场的判断来制订的,而没有进行科学的经济预测,这常常导致大量产品销售不够或大量产品积压在家,给企业带来严重影响. 经济预测是进行经济决策活动的一个重要组成部分.在实际经济活动中,预测的结果可以揭示经济现象在未来时期发展变化的情况和发现经济发展过程中存在的问题,从而为进行决策、制订计划、提高经济管理水平以及获取较好的经济效益提供了科学依据.运用定量预测模型进行预测的方法有很多,依据笔者对许多家庭型企业的了解及对企业主知识层次的分析,本文介绍的最小二乘法在经济预测中的应用方法简单明了,比较适合这些企业在进行预测产品产量时参考,从而能够避免盲目的生产和经营,尽可能地为企业获得最大利润.

基于最小二乘法的系统参数辨识

基于最小二乘法的系统参数辨识 吴令红,熊晓燕,张涛 太原理工大学机械电子研究所,太原 (030024) E-mail lhwu0818@https://www.360docs.net/doc/aa1176620.html, 摘要:系统辨识是自动控制学科的一个重要分支,由于其特殊作用,已经广泛应用于各种领域,尤其是复杂系统或参数不容易确定的系统的建模。过去,系统辨识主要用于线性系统的建模,经过多年的研究,已经形成成熟的理论。但随着社会、科学的发展,非线性系统越来越受到人们的关注,其控制与模型之间的矛盾越来越明显,因而非线性系统的辨识问题也越来越受到重视,其辨识理论不断发展和完善本。文重点介绍了系统参数辨识中最小二乘法的基本原理,并通过悬臂梁模型的辨识实例,具体说明了基于最小二乘法参数辨识在Matlab 中的实现方法。结果表明基于最小二乘法具有算法简单、精度较高等优点。 关键词:系统辨识;参数辨识;滑动平均模型(ARX);最小二乘法;Matlab 中图分类号:TH-9 1. 引言 所谓辨识就是通过测取研究对象在人为输入作用下的输出响应,或正常运行时的输入输出数据记录,加以必要的数据处理和数学计算,估计出对象的数学模型。这是因为对象的动态特性被认为必然表现在它的变化着的输入输出数据之中,辨识只不过是利用数学的方法从数据序列中提炼出对象的数学模型而已[1]。 最小二乘法是系统参数辨识中最基本最常用的方法。最小二乘法因其算法简单、理论成熟和通用性强而广泛应用于系统参数辨识中。本文基于悬臂梁的实测数据,介绍了最小二乘法的参数辨识在Matlab中的实现。 2. 系统辨识 一般而言,建立系统的数学模型有两种方法:激励分析法和系统辨识法。前者是按照系统所遵循的物化(或社会、经济等)规律分析推导出模型。后者则是从实际系统运行和实验数据处理获得模型。如图1所示,系统辨识就是从系统的输入输出数据测算系统数学模型的理论和方法。更进一步的定义是L.A.Zadeh曾经与1962年给出的,即“系统辨识是在输入和输出的基础上,从系统的一类系统范围内,确立一个与所实验系统等价的系统”。另外,系统辨识还应该具有3个基本要素,即模型类、数据和准则[5]。被辨识系统模型根据模型形式可分为参数模型和非参数模型两大类。所谓参数模型是指微分方程、差分方程、状态方程等形式的数学模型;而非参数模型是指频率响应、脉冲响应、传递函数等隐含参数的数学模型。在辨识工程中,模型的确定主要根据经验对实际对象的特性进行一定程度上的假设,如对象的模型是线性的还是非线性的、是参数模型还是非参数模型等。在模型确定之后,就可以根据对象的输入输出数据,按照一定的辨识算法确定模型的参数[4]。 y 图1 被研究的动态系统

基于最小二乘法的系统辨识的设计与开发(整理版)

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 基于最小二乘法的系统辨识的设计与开发(整理版)课程(论文)题目: 基于最小二乘法的系统辨识摘要: 最小二乘法是一种经典的数据处理方法。 最小二乘的一次性完成辨识算法(也称批处理算法),他的特点是直接利用已经获得的所有(一批)观测数据进行运算处理。 在系统辨识领域中, 最小二乘法是一种得到广泛应用的估计方法, 可用于动态系统, 静态系统, 线性系统, 非线性系统。 在随机的环境下,利用最小二乘法时,并不要求观测数据提供其概率统计方面的信息,而其估计结果,却有相当好的统计特性。 关键词: 最小二乘法;系统辨识;参数估计 1 引言最小二乘理论是有高斯( K.F.Gauss)在 1795 年提出: 未知量的最大可能值是这样一个数值,它使各次实际观测值和计算值之间的差值的平方乘以度量其精度的数值以后的和最小。 这就是最小二乘法的最早思想。 最小二乘辨识方法提供一个估算方法,使之能得到一个在最小方差意义上与实验数据最好拟合的数学模型。 递推最小二乘法是在最小二乘法得到的观测数据的基础上,用新引入的数据对上一次估计的结果进行修正递推出下一个参数估计值,直到估计值达到满意的精确度为止。 1 / 10

对工程实践中测得的数据进行理论分析,用恰当的函数去模拟数据原型是一类十分重要的问题,最常用的逼近原则是让实测数据和估计数据之间的距离平方和最小,这即是最小二乘法。 最小二乘法是一种经典的数据处理方法。 在随机的环境下,利用最小二乘法时,并不要求观测数据提供其概率统计方面的信息,而其估计结果,却有相当好的统计特性。 2 最小二乘法的系统辨识设单输入单输出线性定常系统的差分方程为: 1),()()() 1()(01knkubkubnkxakxakxnn ( 1)上式中: )(ku为输入信号;)(kx为理论上的输出值。 )(kx只有通过观测才能得到,在观测过程中往往附加有随机干扰。 )(kx的观测值)(ky可表示为 ( 2)将式( 2)代入式( 1)得 1()()() 1()(101kubkubnkyakyakyn (3) 我们可能不知道)(kn的统计特性,在这种情况下,往往把)(kn看做均值为 0 的白噪声。 设 ( 4)则式( 3)可以写成 (5) 在测量)(ku时也有测量误差,系统内部也可能有噪声,应当

相关文档
最新文档