偏微分方程理论学习总结

偏微分方程理论学习总结
偏微分方程理论学习总结

偏微分方程理论学习总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

偏微分方程理论学习总结

院系:理学院

班级:19 班

学号:2014081034

偏微分方程理论学习总结

偏微分方程这一门学科在我脑海中的印象不是很深,本科时学的是常微分方程,在课堂上听到老师提起过偏微分方程,因此,在研究生阶段选课时就选了这门课,以前不了解偏微分,再选了这门课之后对偏微分也算有一定的了解,接下来我想就我这学期学习了这门课做一个简单的总结。

下面就来介绍有关偏微分方程的发展简介:

谈到偏微分方程,我们就会想到本科时学的常微分方程,而偏微分方程的发展没有常微分方程的发展早,所以要谈偏微分方程就先来谈一下常微分方程。

十七世纪微积分创立之后,常微分方程理论立刻就发展起来,当时应用常微分方程解决几何与理学中的新问题,结果是在天体理学中不仅能得到并解释早已知晓的那些事实,而且得到了新的发现(例如,海王星的发现就是在对微分方程分析的基础上作出的)。

而偏微分方程的研究要晚的多,对物理学中出现的偏微分方程研究在十八世纪中叶导致了分析学的一个新的分支——数学物理方程的建立。

J.达朗贝尔(D’Alembert)(1717-1783)、L.欧拉(Euler)(1707-1783)、D.伯努利(Bernoulli)(1700-1782)、J.拉格朗日(Lagrange)(1736-1813)、P.拉普拉斯(Laplace) (1749-1827)、S.泊松(Poisson)(1781-1840)、J.傅里叶(Fourier)(1768-1830)等人的工作为这一学科分支奠定了基础,它们在考察具体的数学物理问题中,所提出

的思想与方法,竟适用于众多类型的微分方程,成为十九世纪末偏微分方程一般理论发展的基础。

十九世纪,偏微分方程发展的序幕是由法国数学家傅里叶拉开的,他于1822年发表的《热的解析理论》是数学史上的经典文献之一。而十九世纪偏微分方程的另一个重要发现是围绕着位势方程来进行的,这方面的代表人物格林(G.Green)是一位磨坊工出身、自学成才的英国数学家,位势方程也称为拉普拉斯方程:

2222220V V V

V x y z

????=++=???

偏微分方程是储存自然信息的载体,自然现象的深层次性质可以通过数学手段从方程中推导出来,而本学期学习的偏微分方程理论的第一篇就介绍了线性椭圆形方程,椭圆形方程它的方法是先验估计加泛函分析手段,在线性椭圆形这一块以6章来详细介绍线性椭圆形方程,在这一篇中讲到了很多内容和知识点,下面我就来介绍一些关于线性椭圆形方程的一些定理及应用

在第一章预备知识这一块主要学习了若干技巧和一些重要的不等式,若干技巧分单位分解定理、齐次化边界条件、振动方法等

单位分解定理:(设12,,...,k ΩΩΩ是开集组,K 是紧集,满足1

k

j j K ?=?

,则

存在函数0

()j j C ?+∞∈Ω,使得0j ?≥,1

1k

j j ?=≤∑,且在K 的领域内1

1k

j j ?==∑)、;

接下来介绍一些重要的不等式: 一、基本不等式 (1) Cauchy 不等式

对任意的,0a b ≥,有

22

22

a b ab ≤+

(2) 带ε的Cauchy 不等式

对任意的,0a b >和0ε>,有

2

2

22a b ab εε

≤+

(3) Jensen 不等式

设:R R ?→是下凸的,则

11(())(())b b

a a

f t dt f t dt b a b a ??≤--?? 对有限区间[,]a b 及可积函数:[,]f a b R →均成立 (4) Youn

g 不等式

对任意,0a b ≥,1,p q <<∞,

11

1p q

+=,有 p q

a b ab p q

≤+

(5) 带ε的Young 不等式

对任意,0a b ≥和0ε>,1,p q <<∞,

11

1p q +=,有 p

q p q

a b ab p

q

εε-≤

+

(6) Holder 不等式

p

p L

L uvdx u

v Ω

≤?

, 1,p q ≤≤∞,111p

q

+=

(7)一般的Holder 不等式

1

2

121

2

......p p p k

k k

L L L u u u dx u u u Ω

≤?

111...1k

p p ++=

(7’) Minkowski 不等式

设1,p q ≤≤∞,,()p f g L ∈Ω,则()p f g L +∈Ω,使

()

()

()

p p p L L L f g

f

g

ΩΩΩ+≤+

(8) 几何与算术平均不等式

对任意12,,...,0k a a a ≥,有

11212...(...)k k

k a a a a a a k

++≤

(9) p L 空间的内插不等式

1r

s

t

a a L

L

L

u

u

u

-≤, s r t ≤≤,11a a

r s t

-=+

二、内插不等式 (1) (Green 恒等式)

2

u

u udx u dx u

ds n

Ω

Ω

??=-?+??

?? 记号

()

()()()()i i x x u x u x n x u x n x n

?=?=?为u 在点x 的外法向导数。 (2) (内插不等式)

设2p ≤<∞,u 是光滑函数,在?Ω上,0u =,则

2121

,1

()

()()i i j p

s

n

n

r

p

r

s x x x i i j u dx C u dx u dx Ω

Ω

Ω

==≤∑∑???

其中C 是仅依赖于p 的常数,且211p r s

=+ 三、Sobolev 不等式

设0():p L

n n u W R R R ∈→,则对1P n ≤<,有

111

()

()n n i

n

p

p p p x R

R

i u

dx C u dx *

*

=≤∑??

其中C 仅依赖于p 及n

偏微分方程数值解期末试题及标准答案

偏微分方程数值解试题(06B ) 参考答案与评分标准 信息与计算科学专业 一(10分)、设矩阵A 对称,定义)(),(),(2 1)(n R x x b x Ax x J ∈-=,)()(0x x J λλ?+=.若0)0('=?,则称称0x 是)(x J 的驻点(或稳定点).矩阵A 对称(不必正定),求证0x 是)(x J 的驻点的充要条件是:0x 是方程组 b Ax =的解 解: 设n R x ∈0是)(x J 的驻点,对于任意的n R x ∈,令 ),(2),()()()(2 000x Ax x b Ax x J x x J λλλλ?+-+=+=, (3分) 0)0('=?,即对于任意的n R x ∈,0),(0=-x b Ax ,特别取b Ax x -=0,则有0||||),(2000=-=--b Ax b Ax b Ax ,得到b Ax =0. (3分) 反之,若n R x ∈0满足b Ax =0,则对于任意的x ,)(),(2 1)0()1()(00x J x Ax x x J >+==+??,因此0x 是)(x J 的最小值点. (4分) 评分标准:)(λ?的展开式3分, 每问3分,推理逻辑性1分 二(10分)、 对于两点边值问题:?????==∈=+-=0 )(,0)(),()('b u a u b a x f qu dx du p dx d Lu 其中]),([,0]),,([,0)(min )(]),,([0min ],[1b a H f q b a C q p x p x p b a C p b a x ∈≥∈>=≥∈∈ 建立与上述两点边值问题等价的变分问题的两种形式:求泛函极小的Ritz 形式和Galerkin 形式的变分方程。 解: 设}0)(),,(|{11=∈=a u b a H u u H E 为求解函数空间,检验函数空间.取),(1b a H v E ∈,乘方程两端,积分应用分部积分得到 (3分) )().(),(v f fvdx dx quv dx dv dx du p v u a b a b a ==+=??,),(1 b a H v E ∈? 即变分问题的Galerkin 形式. (3分)

偏微分方程数值解试题及答案

偏微分方程数值解试题(06B) 参考答案与评分标准 信息与计算科学专业 一(10分)、设矩阵A 对称,定义)(),(),(2 1 )(n R x x b x Ax x J ∈-= ,)()(0x x J λλ?+=.若0)0('=?,则称称0x 是)(x J 的驻点(或稳定点).矩阵A 对称(不必正定),求证0x 是)(x J 的驻点的充要条件是:0x 是方程组 b Ax =的解 解: 设n R x ∈0是)(x J 的驻点,对于任意的n R x ∈,令 ),(2 ),()()()(2 000x Ax x b Ax x J x x J λλλλ?+ -+=+=, (3分) 0)0('=?,即对于任意的n R x ∈,0),(0=-x b Ax ,特别取b Ax x -=0,则有 0||||),(2000=-=--b Ax b Ax b Ax ,得到b Ax =0. (3分) 反之,若 n R x ∈0满足 b Ax =0,则对于任意的 x ,)(),(2 1 )0()1()(00x J x Ax x x J >+ ==+??,因此0x 是)(x J 的最小值点. (4分) 评分标准:)(λ?的展开式3分, 每问3分,推理逻辑性1分 二(10分)、 对于两点边值问题:????? ==∈=+-=0 )(,0)() ,()(' b u a u b a x f qu dx du p dx d Lu 其中]),([,0]),,([,0)(min )(]),,([0min ] ,[1b a H f q b a C q p x p x p b a C p b a x ∈≥∈>=≥∈∈ 建立与上述两点边值问题等价的变分问题的两种形式:求泛函极小的Ritz 形式和 Galerkin 形式的变分方程。 解: 设}0)(),,(|{11 =∈=a u b a H u u H E 为求解函数空间,检验函数空间.取),(1 b a H v E ∈,乘方程两端,积分应用分部积分得到 (3分) )().(),(v f fvdx dx quv dx dv dx du p v u a b a b a ==+=??,),(1 b a H v E ∈? 即变分问题的Galerkin 形式. (3分) 令?-+=-=b a dx fu qu dx du p u f u u a u J ])([21),(),(21)(22,则变分问题的Ritz 形式

偏微分方程理论的归纳与总结

偏微分方程基本理论的归纳与总结 偏微分方程是储存自然信息的载体,自然现象的深层次性质可以通过数学手段从方程中推导出来.最为一种语言,微分方程在表达自然定律方面比文字具有更强的优越性.微分方程是一个庞大的体系,它的基本问题就是解的存在性和唯一性.该学科的主要特征是不存在一种可以统一处理大多数偏微分方程的适定性问题的普适的方法和理论.这是与常微分方程有显著差异的地方.这种特性使得我们将方程分为许多种不同类型,这种分类的依据主要来自数学与自然现象这两个方面.从数学的角度,方程的类型一般总是对应于一些普遍的理论和工具.换句话讲,如果能建立一个普遍性的方法统一处理一大类方程问题,那么这个类型就被划分出来.而从自然现象的角度,我们又可以根据不同的运动类型以及性质将方程进行分类.当然这两种方式常常不能截然区分,通常它们是相互关联的,这就造成方程的概念有许多重叠现象. 根据数学的特征,偏微分方程主要被分为五大类,它们是: (1)线性与拟微分方程,研究这类方程的主要工具是Fourier分析方法; (2)椭圆型方程,它的方法是先验估计+泛函分析手段; (3)抛物型方程,主要是Galerkin方法,算子半群,及正则性估计; (4)双曲型方程,对应于Galerkin方法; (5)一阶偏微分方程,主要工具是数学分析方法. 从自然界的运动类型出发,偏微分方程可分为如下几大类: (1)稳态方程(非时间演化方程); (2)耗散型演化方程,这类方程描述了时间演化过程中伴有能量损耗与补充的自然运动.相变与混沌是它们的主要内容; (3)保守系统,如具有势能的波方程.该系统控制的运动是与外界隔离的,及无能量输入,也无能量损耗.行波现象与周期运动是它们的主要特征; (4)守恒律系统,这类方程是一阶偏微分方程组,它们与保守系统具有类似的性质,可视为物质流的守恒.激波行为是由守恒律系统来控制. 下面具体来介绍三类经典方程: 三类典型方程:椭圆型方程,抛物型方程,双曲型方程,即偏微分方程模型的建立,解问题的解法以及三类典型方程的基本理论. 关于三类典型方程定解问题的解题方法,它们主要是分离变量法、积分变换法、特征线法、球面平均法、降维法和Green 函数方法. 关于三类典型方程的基本理论——极值原理和能量估计,并由此给出了解的唯一性和稳定性的相关结论. 具体来说,关于二阶线性椭圆形方程,我们研究它的古典解和弱解.前者主要介绍了基本解、调和函数的基本性质、Green 函数、极值原理、最大模估计、能量方法和变分原理;而后者的研究则需要知道Sobolev空间的相关知识再加以研究;关于二阶线性抛物型方程,主要研究它的Fourier 变换、特殊的求解方法、基本解、方程式和方程组的最大值原理以及最大模估计、带有非经典边界条件和非局部项的方程式的最大值原理及能量方法;关于二阶线性双曲型方程,主要研究初值问题的求解方法、初值问题的能量不等式与解的适定性、以及混合问题的能量模估计与解的适定性. 椭圆、抛物和双曲这三类线性偏微分方程解的适定性问题,它们分别以拉普拉斯方程、热传导方程和波动方程作为代表.具体地说,对于某些规则的求解区域试图求出满足特定线性偏微分方程和定解条件的具体解,这就决定了存在性问题;再利用方程本身所具有的特殊性质,将证明所求解是唯一的,也就解决了唯一性问题;关于连续依赖性问题,需要在不同函数空

偏微分方程数值解试题06B答案

专业班级 姓名 学号 开课系室数学与计算科学学院 考试日期

偏微分方程数值解试卷 一(15分)、(1)简述用差分方法求解抛物型方程初边值问题的数值解的一般步骤.(2)写出近似一阶偏导数 n m x u |??的三种有限差分逼近及其误差阶,写出近似 n m x u |22 ??的差分逼近及其误差阶. 评分标准: (1) 7分,三个离散4分,其他步骤3分 (2) 8分,每个格式及误差2分。 二(15分)、(1)以抛物型方程的差分格式为例,解释差分格式的相容性,稳定性和收敛性概念,分析相容性,稳定性和收敛性与误差的关系,简述 Lax 等价性定理。(2) 简述差分格式稳定性分析的Fourier 级数法(或称为Neumann Von 方法,分离变量法)的一般步骤。 (1)8分,解释概念6分,等价关系2分 (2)7分,典型波2分,放大因子与条件3分,其他2分 三(20分)、对于边值问题 ?? ???=?=∈=??+???0 |) 1,0()1,0(),(,92 222G u G y x y u x u (1)建立该边值问题的五点差分格式(五点棱形格式又称正五点格式),推导截 断误差的阶。 (2)取3/1=h ,求边值问题的数值解(写出对应的方程组的矩阵形式并求解) (3)就取5/1=h 的情况写出对应方程组的系数矩阵(用分块矩阵表示)。 解:(1)7分,离过程与格式

第二页(共五页) 四(20分)、对于初边值问题??? ????≤≤==<<=≤<<

偏微分方程数值解复习题(2011硕士)

偏微分方程数值解期末复习(2011硕士) 一、考题类型 本次试卷共六道题目,题型及其所占比例分别为: 填空题20%;计算题80% 二、按章节复习内容 第一章 知识点:Euler法、向前差商、向后差商、中心差商、局部截断误差、整体截断误差、相容性、收敛性、阶、稳定性、显格式、隐格式、线性多步法、第一特征多项式、第二特征多项式、稳定多项式、绝对稳定等; 要求: 会辨认差分格式, 判断线性多步法的误差和阶; 第二章 知识点:矩形网格、(正则,非正则)内点、边界点、偏向前(向后,中心)差商、五点差分格式、增设虚点法、积分插值法、线性椭圆型差分格式、极值原理、比较定理、五点差分格式的相容收敛和、稳定性等; 要求: 建立椭圆型方程边值问题的差分格式, 极值原理; 第四章 知识点:最简显格式、最简隐格式、CN格式、双层加权格式、Richardson 格式、网格比、传播因子法(分离变量法) 、传播因子、传播矩阵、谱半径、von Neumann条件、跳点格式、ADI格式、线性椭圆型差分格式、极值原理、比较定理、五点差分格式的相容收敛和稳定性等; 要求: 建立抛物型方程边值问题的差分格式, 计算局部截断误差; 第五章 知识点:左偏心格式、右偏心格式、中心格式、LF格式、LW格式、Wendroff 格式、跳蛙格式、特征线、CFL条件等; 要求: 建立双曲型方程边值问题的差分格式, 计算局部截断误差; 第七章 要求: 会用线性元(线性基)建立常微分方程边值问题的有限元格式

三 练习题 1、 已知显格式21131()22 n n n n u u h f f +++-=-,试证明格式是相容的,并求它的阶。 P39+P41 2、用Taylor 展开原理构造一元函数一阶导数和二阶导数的数值微分公式。 提示:向前、向后和中心差商与一阶导数间关系,二阶中心差商与二阶导数 之间的关系 课件 3、用数值微分方法或数值积分方法建立椭圆型方程 2222(,),(,),u u f x y x y x y ??--=?∈Ω?? :01,01x y Ω≤≤≤≤ 内点差分格式。 P75+课件 4、构造椭圆型方程边值问题的差分格式. P101 (4)题 5、构建一维热传导方程220,(0)u u Lu a a t x ??=-=>??的数值差分格式(显隐格式等)。 参考P132-135相关知识点 6、设有逼近热传导方程22(0)u u Lu a f a const t x ??≡-==>??的带权双层格式 ()()1111111122(1)2k k j j k k k k k k j j j j j j u u a u u u u u u h θθτ++++-+-+-??=-++--+?? 其中[0,1]θ∈,试求其截断误差。并证明当2 1212h a θτ=-时,截断误差的阶最 高阶为24()O h τ+。 P135+P165+课件 7、传播因子法证明抛物型方程22(0)u u Lu a f a const t x ??≡-==>??的最简显隐和六点CN 格式稳定性。 P156+课件 8、对一阶常系数双曲型方程的初边值问题 0,0,0,0,(,0)(),0,(0,)(),0, u u a t T x a t x u x x x u t t t T φψ???+=<≤<<∞>?????=≤<∞??=≤≤?

偏微分方程与特征线

偏微分方程与特征线 1函数空间的矢量场 给定一个矢量场i x i v ?=)(x v ,就在空间定义了曲线簇。比如,经过0x 点的积分曲线就可以描述为下列常微分方程的初值问题 )(x i i v x = ,n i ,...,1= 0)0(x x = 这些积分曲线就构成了曲线簇。如果形式地写出这个曲线来就是 x vt x t v t v vt t x t x t x x t x )exp(...)! 3!21(...!3!2)(33223 2=++++=++++= 此处x 是0时刻位置,v 是作用于x 的微分算符。 这些曲线,将空间点分成了类,也就是说每条曲线上的点属于一类。曲线集合的维数是n-1维。 矢量场的可积性 那么给定两个矢量场,就会产生两簇曲线,这两簇曲线能否组成面簇呢?我们先 看看从一点出发的曲线是否在一个曲面上的条件:从x 点出发的依此沿两簇直线运动的点若能回到来,就可以认为可以组成面。即 x x vd uc vb ua =)exp()exp()exp()(exp 如果a,b,c,d 都是1级以上的小量,这个表达式有二级以上的精度,就可以找到这样的a,b,c,d,使得方程精确满足。 按照各级展开,有 一级 0a 1111=+=+d b c 二级 v d b u c a vu uv b a )()()(222211+++=- … 由此,得到条件 v u vu uv v u βα+=-=],[

这就是两个矢量能够构成2维子空间(曲面)的条件,著名的Frobenius 定理。 n 个矢量积分形成n 维积分只空间的条件是,任意两个矢量的对易可以写成这n 个矢量组合。 可以按照下图进行直观理解 给定m 个矢量场,他们线性组合能够形成新的矢量场。组成的矢量场空间一般称为分布。 },{是任意函数i i i i a v a ∑=? 这个分布中任意两个矢量场对易仍然在这个分布之内,这样满足Frobenius 定理的分布称为闭分布, ????],[ 他们积分可以给出m 维积分子流形。 单参数李群 一个矢量场可以构造单参数李群,一个闭分布可以构造李群。 我们先看一下单参数李群的表现,它将1维参数空间(物理上经常是时间),映射为群空间。群元素可以形式地写为算符形式 )exp(vt g t = 在表示空间中也可以写为函数变换 ),(t x x g t ?= 这个函数变换是常微分方程的初值问题的解 x x t x v t x t ==?)0,() ,(),(??? 当然这个函数满足如下关系

偏微分方程数值解(试题)

偏微分方程数值解试题 1、考虑一维的抛物型方程: 2200, [0,], 0t T (,), (,)(,0)() x x u u x t x u x t u u x t u u x x ππνπ?==??=∈≤≤??=== (1)导出时间离散是一阶向前Euler 格式,空间离散是二阶精度的差分格式; (2)讨论(1)中导出的格式的稳定性; (3)若时间离散为二阶精度的蛙跳格式, 11 2n n n t t u u u t t +-=?-= ?? 空间离散是二阶精度的中心差分,问所导出的格式稳定吗?为什么? 2、考虑Poission 方程 2(,)1, (,)0, in AB and AD (,)0, in BC and CD u x y x y u n u x y -?=∈Ω ?=?= 其中Ω是图1中的梯形。 使用差分方法来离散该方程。由于梯形的对称性,可以考虑梯形的一半,如图2, 图2 从物理空间到计算区域的几何变换 图1 梯形

为了求解本问题,采用如下方法:将Ω的一半投影到正方形区域?Ω ,然后在?Ω上使用差分方法来离散该方程。在计算区域?Ω 上用N N ?个网格点,空间步长为1/(1)N ξη?=?=-。 (1)引入一个映射T 将原区域Ω(带有坐标,x y )变换到单位正方形?Ω(带有坐标,ξη)。 同时导出在新区域上的方程和边界条件。 (2)在变换区域,使用泰勒展开导出各导数项在区域内部和边界点上的差分格式。 3、对线性对流方程0 constant >0u u a a t x ??+=??,其一阶迎风有限体积法离散格式为 1?n j u +=?n j u a t x ?-?(?n j u 1?n j u --) (1)写出0a <时的一阶迎风有限体积法的离散格式; (2)写出a 为任意符号的常数的一阶迎风有限体积法的守恒形式。 (3)使用0 u u u t x ??+=??说明一阶迎风有限体积法不是熵保持的格式。 4、对一维Poission 方程 , (0,1) (0)(1)0 x xx u xe x u u ?-=∈? ==? 将[]01,分成(1)n +等分,写出用中心差分离散上述方程的差分格式,并问: (1)该差分格式与原微分方程相容吗?为什么? (2)该差分格式稳定吗?为什么? (3)该差分格式是否收敛到原微分方程的解?为什么? (4)取(1)6n +=,写出该差分格式的矩阵表示。 5、叙述二重网格方法的执行过程,并对一维常微分方程边值问题 2 25, (0,1) (0)(1)0 xx u x x x u u πππ?-=∈? ==?(sin(5)+9sin(15)) 给出限制算子和延拓算子矩阵(以细网格h :7n =,粗网格2h :3n =为例)。 6、对一阶波动方程 01(,0)sin(), (0,1)2(0,)(1,)u u t x u x x x u t u t π???+=???? ? =∈?? =??? (1)写出用中心差分进行空间离散,用一阶向后Euler 进行时间离散的差分格式;

(高等数学) 偏微分方程

第十四章 偏微分方程 物理、力学、工程技术和其他自然科学经常提出大量的偏微分方程问题.由于实践的需要和一些数学学科(如泛函分析,计算技术)的发展,促进了偏微分方程理论的发展,使它形成一门内容十分丰富的数学学科. 本章主要介绍一阶偏微分方程、线性方程组及二阶线性偏微分方程的理论.在二阶方程中,叙述了极值原理、能量积分及惟一性定理.阐明了一些解的性质和物理意义,介绍典型椭圆型、双曲型、抛物型方程的常用解法:分离变量法,基本解,格林方法,黎曼方法,势位方法及积分变换法.最后,扼要地介绍了有实用意义的数值解法:差分方法和变分方法. §1 偏微分方程的一般概念与定解问题 [偏微分方程及其阶数] 一个包含未知函数的偏导数的等式称为偏微分方程.如果等式不止一个,就称为偏微分方程组.出现在方程或方程组中的最高阶偏导数的阶数称为方程或方程组的阶数. [方程的解与积分曲面] 设函数u 在区域D 内具有方程中所出现的各阶的连续偏导数,如果将u 代入方程后,能使它在区域D 内成为恒等式,就称u 为方程在区域D 中的解,或称正规解. ),,,(21n x x x u u = 在n +1维空间),,,,(21n x x x u 中是一曲面,称它为方程的积分曲面. [齐次线性偏微分方程与非齐次线性偏微分方程] 对于未知函数和它的各阶偏导数都是线性的方程称为线性偏微分方程.如 ()()()()y x f u y x c y u y x b x u y x a ,,,,=+??+?? 就是线性方程.在线性方程中,不含未知函数及其偏导数的项称为自由项,如上式的f (x,y ).若自由项不为零,称方程为非齐次的.若自由项为零,则称方程为齐次的. [拟线性方程与半线性方程] 如果一个方程,对于未知函数的最高阶偏导数是线性的,称它为拟线性方程.如 ()()()()()()0,,,,,,,,,,,,22222122211=+??+??+??+???+??u y x c y u u y x b x u u y x a y u u y x a y x u u y x a x u u y x a 就是拟线性方程,在拟线性方程中,由最高阶偏导数所组成的部分称为方程的主部.上面方程的主部为 ()()()22222122211,,,,,,y u u y x a y x u u y x a x u u y x a ??+???+?? 如果方程的主部的各项系数不含未知函数,就称它为半线性方程.如 ()()()()0,,,,,,2222=??+??+??+??y y u y x d x y u y x c y u y x b x u y x a 就是半线性方程. [非线性方程] 不是线性也不是拟线性的方程称为非线性方程.如 1)()1(222=??+??+y u x u u 就是一阶非线性偏微分方程. [定解条件] 给定一个方程,一般只能描写某种运动的一般规律,还不能确定具体的运动状态,所以把这个方程称为泛定方程.如果附加一些条件(如已知开始运动的情况或在边界上受到外界的约束)后,就能完全确定具体运动状态,称这样的条件为定解条件.表示开始情况的附加条件称为初始条件,表示在边界上受到约束的条件称为边界条件. [定解问题] 给定了泛定方程(在区域D 内)和相应的定解条件的数学物理问题称为定解问题.根据不同定解条件,定解问题分为三类.

偏微分方程数值解(试题)

1 / 7 偏微分方程数值解试题 1、考虑一维的抛物型方程: 2200, [0, ], 0t T (,), (,)(,0)() x x u u x t x u x t u u x t u u x x ππνπ?==??=∈≤≤??=== (1)导出时间离散是一阶向前Euler 格式,空间离散是二阶精度的差分格式; (2)讨论(1)中导出的格式的稳定性; (3)若时间离散为二阶精度的蛙跳格式, 11 2n n n t t u u u t t +-=?-=?? 空间离散是二阶精度的中心差分,问所导出的格式稳定吗?为什么? 2、考虑Poission 方程 2(,)1, (,)0, in AB and AD (,)0, in BC and CD u x y x y u n u x y -?=∈Ω ?=?= 其中Ω是图1中的梯形。 使用差分方法来离散该方程。由于梯形的对称性,可以考虑梯形的一半,如图2, 图2 从物理空间到计算区域的几何变换 图1 梯形

2 / 7 为了求解本问题,采用如下方法:将Ω的一半投影到正方形区域?Ω ,然后在?Ω上使用差分方法来离散该方程。在计算区域?Ω 上用N N ?个网格点,空间步长为1/(1)N ξη?=?=-。 (1)引入一个映射T 将原区域Ω(带有坐标,x y )变换到单位正方形?Ω(带有坐标,ξη)。 同时导出在新区域上的方程和边界条件。 (2)在变换区域,使用泰勒展开导出各导数项在区域内部和边界点上的差分格式。 3、对线性对流方程 0 constant >0u u a a t x ??+=??,其一阶迎风有限体积法离散格式为 1?n j u +=?n j u a t x ?-?(?n j u 1?n j u --) (1)写出0a <时的一阶迎风有限体积法的离散格式; (2)写出a 为任意符号的常数的一阶迎风有限体积法的守恒形式。 (3)使用0 u u u t x ??+=??说明一阶迎风有限体积法不是熵保持的格式。 4、对一维Poission 方程 , (0,1)(0)(1)0 x xx u xe x u u ?-=∈?==? 将[]01,分成(1)n +等分,写出用中心差分离散上述方程的差分格式,并问: (1)该差分格式与原微分方程相容吗?为什么? (2)该差分格式稳定吗?为什么? (3)该差分格式是否收敛到原微分方程的解?为什么? (4)取(1)6n +=,写出该差分格式的矩阵表示。 5、叙述二重网格方法的执行过程,并对一维常微分方程边值问题 225, (0,1)(0)(1)0 xx u x x x u u πππ?-=∈?==?(sin(5)+9sin(15)) 给出限制算子和延拓算子矩阵(以细网格h :7n =,粗网格2h :3n =为例)。 6、对一阶波动方程 1(,0)sin(), (0,1)2(0,)(1,)u u t x u x x x u t u t π???+=?????=∈??=??? (1)写出用中心差分进行空间离散,用一阶向后Euler 进行时间离散的差分格式;

偏微分方程课程大纲

《偏微分方程》课程大纲 一、课程简介 教学目标: “偏微分方程”是重要的数学基础课程,它在数学的其它分支和自然科学与工程技术中的广泛应用是众所周知的。本课程将尽可能地结合物理背景,系统地对几类典型方程数学结构、求解方法、解的性质以及物理意义进行详细阐述,为学生日后的学习和工作打下坚实的基础,提供强有力的工具,并为进一步了解和应用现代偏微分方程的有关内容提供重要帮助。 主要内容: 1. 了解几类典型方程及其定解条件的物理背景 2.掌握方程的分类及其化简方法 3. 熟练掌握各类方程的求解方法(包括具有普适性的方法,如分离变量法,Fourier变换法和 Green函数法等,以及针对某类方程的特定方法,如特征线法) 4. 会用一些基本方法(如能量积分法、极值原理等)讨论解的性质并掌握解的重要性质 二、教学内容(其中带*的部分可能随堂调整) 第一章引论 主要内容: 1、偏微分方程简介 a)偏微分方程的历史、现状和用途 b)什么是偏微分方程?介绍有关偏微分方程基本概念和研究内容 c)例子:简单而多样的例子帮助学生初步了解偏微分方程 2、二阶线性偏微分方程的分类和特征理论 a)两个自变量的二阶线性偏微分方程的分类与化简,椭圆型、双曲型和抛物型的 标准形式与典型例子,混合型方程 b)多个自变量的二阶线性偏微分方程方程的分类及其例子 c)二阶线性方程的特征理论* 3、四类典型方程的数学模型:包括波动方程、热传导方程、调和方程、和一阶方程 4、其他预备知识:线性方程的叠加原理、Sturm-Liouville原理* 重点与难点:通过化标准型将二阶方程进行分类、特征的概念(这是偏微分方程中最基本也是最重要的概念)、各类方程及其定解条件的物理意义 第二章波动方程 主要内容: 1、弦振动方程Cauchy问题的存在性:D’Alembert求解公式,传播波,依赖区域、决 定区域和影响区域,特征线法(行波法)的其他应用和例子,Duhamel齐次化原理 及其物理解释 2、弦振动方程初边值问题的存在性:分离变量法求解齐次问题及解的存在性讨论,分 离变量法求解的物理意义,多种边界条件的例子,非齐次方程的情形,非齐次边界 条件的情形,高维波动方程分离变量法的例子 3、高维波动方程Cauchy问题的求解:三维波动方程的球平均法,二维波动方程的降 维法

偏微分方程数值解例题答案

二、改进的Euler 方法 梯形方法的迭代公式(1.10)比Euler 方法精度高,但其计算较复杂,在应用公式(1.10)进行计算时,每迭代一次,都要重新计算函数),(y x f 的值,且还要判断何时可以终止或转下一步计算.为了控制计算量和简化计算法,通常只迭代一次就转入下一步计算.具体地说,我们先用Euler 公式求得一个初步的近似值1+n y ,称之为预测值,然后用公式(1.10)作一次迭代得1+n y ,即将1+n y 校正一次.这样建立的预测-校正方法称为改进的Euler 方法: 预测: ),,(1n n n n y x hf y y +=+ 校正 : )].,(),([2 111+++++=n n n n n n y x f y x f h y y (1.15) 这个计算公式也可以表示为 11(,), (,), 1(). 2p n n n c n n p n p c y y hf x y y y hf x y y y y ++?=+??=+?? ?=+??? 例1 取步长0.1h =,分别用Euler 方法及改进的Euler 方法求解初值问题 d (1),01, d (0) 1. y y xy x x y ?=-+≤≤???=? 解 这个初值问题的准确解为()1(21)x y x e x =--. 根据题设知 ).1(),(xy y y x f +-= (1) Euler 方法的计算式为 )],1([1.01n n n n n y x y y y +?-=+ 由1)0(0==y y , 得 ,9.0)]101(1[1.011=?+??-=y ,8019.0)]9.01.01(9.0[1.09.02=?+??-=y 这样继续计算下去,其结果列于表9.1. (2) 改进的Euler 方法的计算式为 110.1[(1)],0.1[(1)], 1(), 2p n n n n c n p n p n p c y y y x y y y y x y y y y ++?=-?+?=-?+??? ?=+??? 由1)0(0==y y ,得

偏微分方程数值解试题参考答案

偏微分方程数值解 一(10分)、设矩阵A 对称正定,定义)(),(),(2 1 )(n R x x b x Ax x J ∈-= ,证明下列两个问题等价:(1)求n R x ∈0使)(min )(0x J x J n R x ∈=;(2)求下列方程组的解:b Ax = 解: 设n R x ∈0是)(x J 的最小值点,对于任意的n R x ∈,令 ),(2 ),()()()(2 000x Ax x b Ax x J x x J λλλλ?+ -+=+=, (3分) 因此0=λ是)(λ?的极小值点,0)0('=?,即对于任意的n R x ∈,0),(0=-x b Ax ,特别取b Ax x -=0,则有0||||),(2000=-=--b Ax b Ax b Ax ,得到b Ax =0. (3分) 反之,若 n R x ∈0满足 b Ax =0,则对于任意的x , )(),(2 1 )0()1()(00x J x Ax x x J >+ ==+??,因此0x 是)(x J 的最小值点. (4分) 评分标准:)(λ?的表示式3分, 每问3分,推理逻辑性1分 二(10分)、对于两点边值问题:????? ==∈=+-=0 )(,0)() ,()(b u a u b a x f qu dx du p dx d Lu 其中]),([,0]),,([,0)(min )(]),,([0min ] ,[1b a H f q b a C q p x p x p b a C p b a x ∈≥∈>=≥∈∈ 建立与上述两点边值问题等价的变分问题的两种形式:求泛函极小的Ritz 形式和 Galerkin 形式的变分方程。 解: 设}0)()(),,(|{11 0==∈=b u a u b a H u u H 为求解函数空间,检验函数空间.取),(10b a H v ∈,乘方程两端,积分应用分部积分得到 (3分) )().(),(v f fvdx dx quv dx dv dx du p v u a b a b a ==+=??,),(10 b a H v ∈? 即变分问题的Galerkin 形式. (3分)

偏微分方程数值解试题参考答案

x ∈R n 2 ( Ax, x) , J ( x + x) = ? (1) = ? (0) + ( Ax, x) > J ( x ) ,因此 x 是 J ( x ) 的最小值点. (4 分) 2 二(10 分)、对于两点边值问题: ? dx dx a(u , v) = ?b ( p . + q u v)dx = ?b fvdx = f (v) , ? v ∈ H 1 (a , b ) dx dx a a 偏微分方程数值解 一(10 分)、设矩阵 A 对称正定,定义 J ( x ) = 1 ( Ax , x ) - (b , x ) ( x ∈ R n ) ,证明下 2 列两个问题等价:(1)求 x ∈ R n 使 J ( x ) = min J ( x ) ;(2)求下列方程组的解:Ax = b 解: 设 x ∈ R n 是 J ( x ) 的最小值点,对于任意的 x ∈ R n ,令 ?(λ) = J ( x + λx) = J ( x ) + λ( Ax - b , x) + λ2 (3 分) 因此 λ = 0 是 ?(λ) 的极小值点 , ? ' (0) = 0 ,即对于任意的 x ∈ R n , ( Ax - b , x) = 0 ,特 0 别取 x = Ax - b ,则有 ( Ax - b , Ax - b ) =|| Ax - b || 2 = 0 ,得到 Ax = b . (3 分) 0 0 反 之 , 若 x ∈ R n 满 足 Ax = b , 则 对 于 任 意 的 x , 1 0 0 0 评分标准: ?(λ) 的表示式 3 分, 每问 3 分,推理逻辑性 1 分 ? d du ?Lu = - ( p ) + qu = f x ∈ (a, b ) ?? u (a) = 0, u (b ) = 0 其中 p ∈ C 1 ([a , b ]), p ( x ) ≥ min p ( x ) = p x ∈[a,b ] min > 0, q ∈ C ([a , b ]), q ≥ 0, f ∈ H 0 ([a , b ]) 建立与上述两点边值问题等价的变分问题的两种形式:求泛函极小的 Ritz 形式和 Galerkin 形式的变分方程。 解 : 设 H 1 = {u | u ∈ H 1 (a , b ), u (a ) = u (b ) = 0} 为求解函数空间 , 检验函数空间 . 取 v ∈ H 1 (a, b ) ,乘方程两端,积分应用分部积分得到 (3 分) du dv 即变分问题的 Galerkin 形式. (3 分)

偏微分方程数值习题解答

李微分方程数值解习题解答 1-1 如果0)0(' =?,则称0x 是)(x J 的 驻点(或稳定点).矩阵A 对称(不必正定),求证0x 是)(x J 的驻点的充要条件是:0x 是方程组 b Ax =的解 证明:由)(λ?的定义与内积的性线性性质,得 ),()),((2 1 )()(0000x x b x x x x A x x J λλλλλ?+-++=+= ),(2 ),()(2 00x Ax x b Ax x J λλ+ -+= ),(),()(0'x Ax x b Ax λλ?+-= 必要性:由0)0(' =?,得,对于任何n R x ∈,有 0),(0=-x b Ax , 由线性代数结论知, b Ax b Ax ==-00,0 充分性: 由b Ax =0,对于任何n R x ∈, 0|),(),()0(00'=+-==λλ?x Ax x b Ax

即0x 是)(x J 的驻点. §1-2 补充: 证明)(x f 的不同的广义导数几乎处处相等. 证明:设)(2I L f ∈,)(,221I L g g ∈为)(x f 的广义导数,由广义导数的定义可知,对于任意 )()(0I C x ∞∈?,有 ??-=b a b a dx x x f dx x x g )()()()(' 1?? ??-=b a b a dx x x f dx x x g )()()()('2?? 两式相减,得到 )(0)()(021I C x g g b a ∞ ∈?=-??? 由变分基本引理,21g g -几乎处处为零,即21,g g 几乎处处相等. 补充:证明),(v u a 的连续性条件(1.2.21) 证明: 设'|)(|,|)(|M x q M x p ≤≤,由Schwarz 不等式

第一章 偏微分方程和一阶线性偏微分方程解

第一章 偏微分方程和一阶线性偏微分方程解 本章介绍典型的几个偏微分方程。给出了最简单的偏微分方程(一阶线性偏微分方程)解的特征线方法。 典型的偏微分方程:扩散方程t xx u ku =,t u k u =?;波动方程2tt xx u c u =,2tt u c u =?。这是本课程讨论的主要两类方程。 偏微分方程的各类边值条件也是本章讨论的一个重点。 §1.1 一维空间中的偏微分方程 例1 (刚性污染流的方程) 假设均匀直线管道中的水流含污染物质的线密度是(,)u x t (即x 处在时刻t 的污染物的密度) 。如果流速是c ,问题:(,)u x t 满足什么样的方程? 解 如图,在[,]x x x +?内的流体,经过时间t ?,一定处于[,]x c t x x c t +?+?+?。所含污染物应相同,即 (,)(,)x x x x c t x x c t u t d u t t d ξξξξ+?+?+?+?= +?? ? , 由此 (,)(,)u x t u x c t t t =+?+?, 从而, 0t x u cu +=。 【End 】 可见偏微分方程是一个至少为两元的函数及其偏导数所满足的方程。 例2 (扩散方程) 假设水流静止,在t ?时间内,流经x 处的污染物质(不计高阶无穷小)与该处浓度的方向导数(浓度变化)成正比,比例系数为k : ()x u dm t k dt ku dt x ?==?, 所以,在时间段12[,]t t 内,通过12[,]x x 的污染物为 2 1 2 1 [(,)(,)]t x x t k u x t u x t dt -?。 在时刻1t 和2t ,在12[,]x x 内的污染物分别为2 1 1(,)x x u x t dx ?和2 1 2(,)x x u x t dx ? ,由物质守恒定律 2 2 2 1 1 1 2 1 2 1 (,)(,)[(,)(,)]x x t x x x x t u x t dx u x t dx k u x t u x t dt -=-??? 由1t ,2t 的任意性,

偏微分方程理论学习中国科学技术大学

偏微分方程理论学习 一. 偏微分方程发展简介 1. 常微分方程 十七世纪微积分创立之后,常微分方程理论立刻就发展起来,当时应用常微分方程,解决几何与理学中的新问题。结果是在天体理学中不仅能得到并解释早先已经知晓的那些事实,而且得到了性的发现(例如,海王星的发现就是在对微分方程分析的基础上作出的)。 2. 偏微分方程 偏微分方程的研究要晚得多,对物理学中出现的偏微分方程研究在十八世纪中叶导致了分析学的一个新的分支------数学物理方程的建立。 J.达朗贝尔(D’Alembert )(1717-1783)、L.欧拉(Euler )(1707-1783)、D.伯努利(Bernoulli )(1700-1782)、J.拉格朗日(Lagrange )(1736-1813)、P.拉普拉斯(Laplace )(1749-1827)、S.泊松(Poisson )(1781-1840)、J.傅里叶(Fourier )(1768-1830)等人的工作为这一学科分支奠定了基础。它们在考察具体的数学物理问题中,所提出的思想与方法,竟适用于众多类型的微分方程,成为十九世纪末偏微分方程一般理论发展的基础。 十九世纪,偏微分方程发展的序幕是由法国数学家傅里叶拉开的,他于1822年发表的《热的解析理论》是数学史上的经典文献之一。傅里叶研究的主要是吸热或放热物体内部任何点处的温度随空间和时间的变化规律。在对物体的物理性状作出一定的限制(如均匀、各向同性)后,他根据物理原理推导出了三维空间的热传导方程 其中k 是一个参数,其值依赖于物体的质料。傅里叶当时解决的是如下特殊的热传导问题:设所考虑的物体为两端保持在温度0度、表面绝热且无热流通过的柱轴。在此情形下求解上述热传导方程,因为柱轴只涉及一维空间,所以这个问题也就是求解偏微分方程 ??? ????<<=>==??=??,0),()0,(,0,0),(,0),0(T T 222l x x f x T t t l T t T x k x , 其中后面两项分别是边界条件和初始条件。傅里叶为解这个方程用了分离变量法,他得到满足方程和边界条件的级数解为 为了满足初始条件,必须有

偏微分方程理论的归纳与总结

偏微分方程理论的归纳与 总结 Prepared on 22 November 2020

偏微分方程基本理论的归纳与总结 偏微分方程是储存自然信息的载体,自然现象的深层次性质可以通过数学手段从方程中推导出来.最为一种语言,微分方程在表达自然定律方面比文字具有更强的优越性.微分方程是一个庞大的体系,它的基本问题就是解的存在性和唯一性.该学科的主要特征是不存在一种可以统一处理大多数偏微分方程的适定性问题的普适的方法和理论.这是与常微分方程有显着差异的地方.这种特性使得我们将方程分为许多种不同类型,这种分类的依据主要来自数学与自然现象这两个方面.从数学的角度,方程的类型一般总是对应于一些普遍的理论和工具.换句话讲,如果能建立一个普遍性的方法统一处理一大类方程问题,那么这个类型就被划分出来.而从自然现象的角度,我们又可以根据不同的运动类型以及性质将方程进行分类.当然这两种方式常常不能截然区分,通常它们是相互关联的,这就造成方程的概念有许多重叠现象. 根据数学的特征,偏微分方程主要被分为五大类,它们是: (1)线性与拟微分方程,研究这类方程的主要工具是Fourier分析方法; (2)椭圆型方程,它的方法是先验估计+泛函分析手段; (3)抛物型方程,主要是Galerkin方法,算子半群,及正则性估计; (4)双曲型方程,对应于Galerkin方法; (5)一阶偏微分方程,主要工具是数学分析方法. 从自然界的运动类型出发,偏微分方程可分为如下几大类: (1)稳态方程(非时间演化方程);

(2)耗散型演化方程,这类方程描述了时间演化过程中伴有能量损耗与补充的自然运动.相变与混沌是它们的主要内容; (3)保守系统,如具有势能的波方程.该系统控制的运动是与外界隔离的,及无能量输入,也无能量损耗.行波现象与周期运动是它们的主要特征; (4)守恒律系统,这类方程是一阶偏微分方程组,它们与保守系统具有类似的性质,可视为物质流的守恒.激波行为是由守恒律系统来控制. 下面具体来介绍三类经典方程: 三类典型方程:椭圆型方程,抛物型方程,双曲型方程,即偏微分方程模型的建立,解问题的解法以及三类典型方程的基本理论. 关于三类典型方程定解问题的解题方法,它们主要是分离变量法、积分变换法、特征线法、球面平均法、降维法和Green函数方法. 关于三类典型方程的基本理论——极值原理和能量估计,并由此给出了解的唯一性和稳定性的相关结论. 具体来说,关于二阶线性椭圆形方程,我们研究它的古典解和弱解.前者主要介绍了基本解、调和函数的基本性质、Green函数、极值原理、最大模估计、能量方法和变分原理;而后者的研究则需要知道Sobolev空间的相关知识再加以研究;关于二阶线性抛物型方程,主要研究它的Fourier变换、特殊的求解方法、基本解、方程式和方程组的最大值原理以及最大模估计、带有非经典边界条件和非局部项的方程式的最大值原理及能量方法;关于二阶线性双曲型方程,主要研究初值问题的求解方法、初值问题的能量不等式与解的适定性、以及混合问题的能量模估计与解的适定性.

相关文档
最新文档