圆切线长定理及弦切角练习题

切线长定理及弦切角练习题

(一)填空

1.已知:如图7-143,直线BC切⊙O于B点,AB=AC,AD=BD,那么∠A=____.

2.已知:如图7-144,直线DC与⊙O相切于点C,AB为⊙O直径,AD⊥DC于D,∠DAC=28°侧∠CAB=____ .

3.已知:直线AB与圆O切于B点,割线ACD与⊙O交于C和D

4.已知:如图7-145,PA切⊙O于点A,割线PBC交⊙O于B和C两点,∠P=15°,∠ABC=47°,则∠C= ____.

5.已知:如图7-146,三角形ABC的∠C=90°,内切圆O与△ABC的三边分别切于D,E,F三点,∠DFE=56°,那么∠B=____.

6.已知:如图 7-147,△ABC内接于⊙O,DC切⊙O于C点,∠1=∠2,则△ABC为____ 三角形.

7.已知:如图7-148,圆O为△ABC外接圆,AB为直径,DC切⊙O于C点,∠A=36°,那么∠ACD=____.

(二)选择

8.已知:△ABC内接于⊙O,∠ABC=25°,∠ACB= 75°,过A点作⊙O的切线交BC的延长线于P,则∠APB等于

[ ]

A.62.5°;B.55°;C.50°;D.40°.

9.已知:如图 7-149,PA,PB切⊙O于A,B两点,AC为直径,则图中与∠PAB相等的角的个数为

[ ]

A.1 个;B.2个;C.4个;D.5个.

10.已知如图7-150,四边形ABCD为圆内接四边形,AB是直径,MN切⊙O于C点,∠BCM=38°,那么∠ABC的度数是

[ ]

A.38°;B.52°;C.68°;D.42°.

11.已知如图7-151,PA切⊙O于点A,PCB交⊙O于C,B两点,且 PCB过点 O,AE⊥BP交⊙O于E,则图中与∠CAP相等的角的个数是

[ ]

A.1个;B.2个;C.3个;D.4个.

(三)计算

12.已知:如图7-152,PT与⊙O切于C,AB为直径,∠BAC=60°,AD为⊙O一弦.求∠ADC与∠PCA的度数.

13.已知:如图7-153,PA切⊙O于A,PO交⊙O于B,C,PD平分∠APC.求∠ADP的度数.

14.已知:如图7-154,⊙O的半径OA⊥OB,过A点的直线交OB于P,交⊙O于Q,过Q引⊙O的切线交OB延长线于C,且PQ=QC.求∠A的度数.

15.已知:如图7-155,⊙O内接四边形ABCD,MN切⊙O于C,∠BCM=38°,AB为⊙O 直径.求∠ADC的度数.

16.已知:如图7-156,PA,PC切⊙O于A,C两点,B点

17.已知:如图 7-157,AC为⊙O的弦,PA切⊙O于点A,PC过O点与⊙O交于B,∠C=33°.求∠P的度数.

18.已知:如图7-158,四边形ABCD内接于⊙O,EF切⊙O

19.已知 BA是⊙O的弦,TA切⊙O于点A,∠BAT= 100°,点M在圆周上但与A,B不重合,求∠AMB的度数.

20.已知:如图7-159,PA切圆于A,BC为圆直径,∠BAD=∠P,PA=15cm,PB=5cm.求BD的长.

21.已知:如图7-160,AC是⊙O直径,PA⊥AC于A,PB切⊙O于B,BE⊥AC于E.若AE=6cm,EC=2cm,求BD的长.

22.已知:如图7-161所示,P为⊙O外一点,PA切⊙O于A,从PA中点M引⊙O割线MNB,∠PNA=138°.求∠PBA的度数.

23.已知:如图7-162,DC切⊙O于C,DA交⊙O于P和B两点,AC交⊙O于Q,PQ为⊙O直径交BC于E,∠BAC=17°,∠D=45°.求∠PQC与∠PEC的度数.

24.已知:如图 7-163,QA切⊙O于点A,QB交⊙O于B

25.已知:如图7-164,QA切⊙O于A,QB交⊙O于B和C

26.已知:在图7-165中,PA切⊙O于A,AD平分∠BAC,PE平分∠APB,AD=4cm,PA=6cm.求EP的长.

27.已知;如图7-166,PA为△ABC外接圆的切线,A 为切点,DE∥AC, PE=PD.AB=7cm,AD=2cm.求DE的长.

28.已知:如图 7-167,BC是⊙O的直径,DA切⊙O于A,DA=DE.求∠BAE的度数.

29.已知:如图 7-168,AB为⊙O直径,CD切⊙O于CAE∠CD于E,交BC于F,AF=BF.求∠A的度数.

30.已知:如图7-169,PA,PB分别切⊙O于A,B,PCD为割线交⊙O于C,D.若 AC=3cm,AD=5cm,BC= 2cm,求DB的长.

ABCD的顶点A,D,C在圆O上,AB的延长线与⊙O交于M,

31.已知:如图7-170,

CB的延长线与⊙O交于点N,PD切⊙O于D,∠ADP=35°,∠ADC=108°.求∠M的度数.

32.已知:如图7-171,PQ为⊙O直径,DC切⊙O于C,DP交⊙O于B,交CQ延长线于A,∠D=45°,∠PEC=39°.求∠A的度数.

33.已知:如图 7-172,△ABC内接于⊙O,EA切⊙O于A,过B作BD∥AE交AC延长线于D.若AC=4cm,CD= 3cm,求AB的长.

34.已知:如图7-173,△ABC内接于圆,FB切圆于B,CF⊥BF于F交圆于 E,∠1=∠2.求∠1的度数.

35.已知:如图7-174,PC为⊙O直径,MN切⊙O于A,PB⊥MN于B.若PC=5cm,PA=2cm.求PB的长.

36.已知:如图7-175,AD为⊙O直径,CBE,CD分别切⊙

37.已知:如图7-176,圆内接四边形ABCD的AB边经过圆心,AD,BC的延长线相交于E,过C点的切线CF⊥AE于F.求证:

(1)△ABE为等腰三角形;

(2)若 BC=1cm,AB=3cm,求EF的长.

38.已知:如图7-177,AB,AC切⊙O于B,C,OA交⊙O于F,E,交BC于D.

(1)求证:E为△ABC内心;

(2)若∠BAC=60°,AB=a,求OB与OD的长.

(四)证明

39.已知:在△ABC中,∠C=90°,以C为圆心作圆切AB边于F点,AD,BC分别与⊙C 切于D,E两点.求证:AD∥BE.

40.已知:PA,PB与⊙O分别切于A,B两点,延长OB到C,

41.已知:⊙O与∠A的两边分别相切于D,E.在线段AD,AE(或在它们的延长线)上各取一点B,C,使DB=EC.求证:OA⊥BC.

⊥EC于H,AO交BC于D.求证:

BC·AH=AD·CE.

*43.已知:如图7-178,MN切⊙O于A,弦BC交OA于E,过C点引BC的垂线交MN于D.求:AB∥DE.

44.已知:如图7-179,OA是⊙O半径,B是OA延长线上一点,BC切⊙O于C,CD⊥OA 于D.求证:CA平分∠BCD.

45.已知:如图7-180,BC是⊙O直径,EF切⊙O于A点,AD⊥BC于D.求证:AB平分∠DAE,AC平分∠DAF.

46.已知:如图7-181,在△ABC中,AB=AC,∠C= 2∠A,以 AB为弦的圆 O与 BC切干点 B,与 AC交于 D点.求证:AD=DB=BC.

47.已知:如图7-182,过△ADG的顶点A作直线与DG的延长线相交于C,过G作△ADG 的外接圆的切线二等分线段AC于E.求证:AG2=DG·CG.

48.已知:如图7-183,PA,PB分别切⊙O于A,B两点,PCD为割线.求证:AC·BD=BC·AD.

BC=BA,连结AC交圆于点E.求证:四边形ABDE是平行四边形.

50.已知:如图7-185,∠1=∠2,⊙O过A,D两点且交AB,AC于E,F,BC切⊙O于D.求证:EF∥BC.

51.已知:如图7-186,AB是半圆直径,EC切半圆于点C,BE⊥CE交AC于F.求证:AB=BF.

52.已知:如图7-187,AB为半圆直径,PA⊥AB,PC切半圆于C点,CD⊥AB于D交PB 于M.求证:CM=MD.

(五)作图

53.求作以已知线段AB为弦,所含圆周角为已知锐角∠α(见图7-188)的弧(不写作法,写出已知、求作,答出所求).

54.求作一个以α为一边,所对角为∠α,此边上高为h的三角形.

55.求作一个以a为一边,m为此边上中线,所对角为∠α的三角形(不写作法,答出所求).

切线长定理及弦切角练习题(答案)

(一)填空

1.36° 2.28° 3.50° 4.32°

5.22° 6.等腰 7.54°

(二)选择

8.C 9.D 10.B 11.C

(三)计算

12.30°,30°.

13.45°.提示:连接AB交PD于E.只需证明∠ADE=∠AED,证明时利用三角形外角定理及弦切角定理.

14.30°.提示:因为PQ=QC,所以∠QCP=∠QPC.连接OQ,则知∠POQ与∠QCP互余.又∠OAQ=∠OQA与∠QPC互余,所以∠POQ=∠OAQ=∠OQA.而它们的和为90°(因为∠

AOC=90°).所以∠OAQ=30°

16.67.5°.提示:解法一连接AC,则∠PAC=∠PCA.又∠P=45°,所以∠PAC=∠

PCA=67.5°.从而∠B=∠PAC=67.5°.

解法二连接OA,OC,则∠AOC=180°-∠P=135°,所以

17.24°.提示:连接OA,则∠POA=66°.

18.60°.提示:连接BD,则∠ADB=40°,∠DBC=20°.设∠ABD=∠BDC(因为AB//CD)=x°,则因∠B+∠D=180°,所以2x°+60°=180°,x°=60°,从而∠ADE=∠ABD=60°.

19.100°或80°.提示: M可在弦AB对的两弧的每一个上.

从而

22.42°.提示:∠ABM=∠NAM.于是显然△ABM∽△NAM,

NMP,所以△PMB∽△NMP,从而∠PBM=∠NPM.再由∠ABM=∠NAM,就有

∠PBA=∠PBM+∠NAM=∠NPM+∠NAM

=180°-∠PNA=42°.

23.28°,39°.提示:连接PC.

24.41°.提示:求出∠QAC和∠ACB的度数.

25.100°.

以DB=9.因为2DP2=2×9,由此得DP2=9.又DP>0,所以DP=3,从而,DE=2×3=6(cm).

28.45°.提示:连接AC.由于DA=DE,所以∠ABE+∠BAE=∠AED=∠EAD=∠CAD+∠CAE,但∠ABE=∠CAD,所以∠BAE=∠CAE.由于∠BAE+∠CAE=90°,所以∠BAE=45°.

29.60°.提示:解法一连接AC,则AC⊥BC.又AF⊥CE,所以∠ACE=∠F.又DC切⊙O于C,所以∠ACE=∠B.所以∠F=∠B.因为AF=BF,所以∠BAF=∠B=∠F.所以∠BAF=60°.

31.37°.提示:连接AC,则∠M=∠ACN=∠CAD.

32.17°.提示:连接PC,则∠QPC+∠PBC=90°.

45°=∠D=(∠BPQ+∠QPC)∠DCP

=(∠BPQ+∠QPC)-∠PBC

=[∠BPQ+(90°-∠PBC)]-∠PBC.

所以

2∠PBC-∠BPQ=45°.

(1)

∠PBC+∠BPQ=39°,

(2)

从而∠PBC=28°,∠BPQ=11°.于是∠A=∠PBC-∠BPQ=17°.

34.30°.提示:连接BE,由∠1=∠2,可推出∠EBF=∠ECB=∠EBC,而这三个角的和为90°,所以每个角为30°.

36.60°.提示:连接OB,则OB⊥CE,从而∠C=∠BOE= 60°.

37.(1)提示:连接OC,则∠E=∠OCB=∠OBC=∠CDE,所以△ABE为等腰三角形.

38.(1)提示:连接BE.只需证明∠ABE=∠DBE.

(四)证明

39.提示:AC,BC各平分∠A,∠B.设法证出∠A+∠B=180°.

40.提示:连接OP,设法证出∠BPC=∠BPO.

42.提示:在△BCE和△DAH中,∠BCE=∠DAH(它们都与∠DCH互补).又A,D,C,H 共圆,所以∠CEB=∠ACB=∠AHD,从而△BCE∽△DAH.这就得所要证明的比例式.

43.提示:连接AC.先证明A,E,C,D四点共圆.由此得∠ADE=(∠ACE=)∠MAB,所以AB//DE.

44.提示:证法一延长AO交⊙O于点E,连接EC,则∠BCA=∠E,且∠ACD=∠E.所以∠BCA=∠ACD.

证法二连接OA,则∠BCA与∠OCA互余;又∠ACD与∠OAC互余,而∠OCA=∠OAC,所以∠BCA=∠ACD.

46.提示:由已知得∠A=36°,∠B=∠C=72°,∠DBC=∠A=36°,所以∠ABD=36°,从而AD=BD.又∠C=∠CDB=72°,所以BD=BC.

47.提示:过A作CD的平行线交BC于H,则AH=CG.然后证

AG2=DG·AH=DG·CG.

49.提示:因为BC=BA,所以∠A=(∠C=)∠D;又∠CED=∠DBF(BF是AB的延长线),所以它们的补角∠DEA=∠ABD.从而四边形ABDE是平行四边形.

50.提示:连接DE,则∠BDE=∠1=∠2=∠FED.所以EF//BC.

51.提示:连接BC,则∠ACB=90°=∠FCB.因为CE⊥BE,所以∠F=∠ECB.因为EC切半圆于C,所以∠ECB=∠A,所以∠A=∠F,因此AB=BF.

52.提示:连接AC,BC并延长BC交AP延长线于点N.首先

所以CM=MD.

切线长定理典型练习题

切线长定理典型练习题 一、填空题 1、如图AB 为⊙O 的直径,CA 切⊙O 于点A ,CD=1cm ,DB=3cm ,则AB=______cm 。 2、已知三角形的三边分别为 3、 4、5,则这个三角形的内切圆半径是 。 3、三角形的周长是12,面积是18,那么这个三角形的内切圆半径是 。 二、选择题 1、△ABC 内接于圆O ,AD ⊥BC 于D 交⊙O 于E ,若BD=8cm , CD=4cm ,DE=2cm ,则△ABC 的面积等于( ) A.248cm B.296cm C.2108cm D.232cm 2、正方形的外接圆与内切圆的周长比为( ) A. 1:2 B. 2:1 C. 4:1 D. 3:1 3、在三角形内,与三角形三条边距离相等的点,是这个三角形的 ( ) A.三条中线的交点, B.三条角平分线的交点, C.三条高的交点, D.三边的垂直平分线的交点。 4、△ABC 中,内切圆I 和边BC 、CA 、AB 分别相切于点D 、E 、F ,则∠FDE 与∠A 的关系 是 ( ) A. ∠FDE=21∠A B . ∠FDE+21∠A=180° C . ∠FDE+2 1∠A=90° D . 无法确定 三、解答题: 1、如图,AB 、CD 分别与半圆O 切于点A 、D ,BC 切⊙O 于点E ,若AB =4,CD =9,求⊙O 的半径。 2、等腰三角形的腰长为13cm ,底边长为10 cm ,求它的内切圆的半径。 3、如图,在△ABC 中,∠C=90°,以BC 上一点O 为圆心,以OB 为半径的圆交AB 于点M ,交BC 于点N 。 (1)求证:B A ·BM=BC ·BN ; (2)如果CM 是⊙O 的切线,N 为OC 的中点。当AC=3时,求AB 的值。

切线的判定与性质、切线长定理练习题

切线的判定与性质、切线长定理 1.如图,AB为⊙O的直径,CE切⊙O于点C,CD⊥AB,D为垂足,AB=12㎝,∠B =300,则∠ECB=,CD=。 2.如图,CA为⊙O的切线,切点为A。点B在⊙O上,如果∠CAB=550,那么∠AOB 等于。 3.如图,P是⊙O外一点,PA、PB分别和⊙O相切于点A、B,C是⌒ AB上任意一点,过C作⊙O的切线分别交PA、PB于点D、E,(1)若PA=12,则△PDE的周长为____; (2)若△PDE的周长为12,则PA长为;(3)若∠P=40°,则∠DOE=____度。 (1题图) (2题图) (3题图) 4.下列说法:①与圆有公共点的直线是圆的切线;②垂直与圆的半径的直线是切线;③与 圆心的距离等于半径的直线是切线;④过圆直径的端点,垂直于该直径的直线的是切线。 其中正确命题有() A.①②B.②③C.③④D.①④ 5.如图,AB、AC与⊙O相切与B、C,∠A=500,点P是圆上异于B、C的一动点,则 ∠BPC的度数是。 6.如图,已知△ABC的内切圆⊙O与各边相切于点D、E、F,则点O是△DEF的 ( ) A.三条中线的交点B.三条高的交点 C.三条角平分线的交点D.三条边的垂直平分线的交点 7.如图,⊙O分别与△ABC的边BC、CA、AB相切于D、E、F,∠A=800,则∠EDF =。 (5题图)(6题图)(7题图) 8.点O是△ABC的内心,∠BAO=200,∠AOC=1300,则∠ACB=。 9.已知:Rt△ABC中,∠C=900,AC=4,BC=3,则△ABC内切圆的半径 为。

10.若直角三角形斜边长为10㎝,其内切圆半径为2㎝,则它的周长为。 11.如图,BA与⊙O相切于B,OA与⊙O 相交于E,若AB=5,EA=1,则⊙O的半 径为。 12.如图,在△ABC中,I是内心,∠BIC=1300,则∠A的度数是。 13.如图,△ABC的内切圆⊙O与各边相切于点D、E、F,若∠FOD=∠EOD=1350,则 △ABC是() A.等腰三角形; B.等边三角形; C.直角三角形; D. 等腰直角三角形; (11题图)(12题图)(13题图) 14.如果两圆的半径分别为6cm和4cm,圆心距为8cm,那么这两个圆的位置关系是() A. 外离 B. 外切 C. 相交 D. 内切 15.若已知Rt△ABC中,斜边为26cm,内切圆的半径为4cm,那么它的两条直角边的长分 别为()cm A、7、27 B、8、26 C、16、18 D、24、104 16.已知两圆的半径分别是方程0 2 3 2= + -x x的两根,圆心距为3,则两圆的位置关系是__________. 17.两圆半径分别为5cm和4cm,公共弦长为6cm,则两圆的圆心距等于()cm。 A. 7 4+ B. 7 4- C. 7 4+或7 4- D. 41 18.从圆外一点向半径为9的圆作切线,已知切线长为18,?从这点到圆的最短距离为 (). A.3 9B.()13 9-C.()1 5 9-D.9 19.如图,AB为⊙O的直径,BC是圆的切线,切点为 B,OC平行于弦AD,求证:DC 是⊙O的切线。

《切线性质与判定》练习题

《切线性质与判定》练习题 一.选择题(共12小题) 1.如图,AB是⊙O的弦,PA是⊙O的切线,若∠PAB=40°,则∠AOB=() A.80° B.60° C.40° D.20° 2.如图,AB、AC是⊙O的两条弦,∠A=35°,过C点的切线与OB的延长线交于点D,则∠D的度数为() A.20° B.30° C.35° D.40° 第1题图第2题图第3题图 3.如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=25°,则∠D等于()A.20° B.30° C.40° D.50° 4.如图,PA、PB切⊙O于A、B两点,∠APB=80°,C是⊙O上不同于A、B的任一点,则∠ACB等于() A.80° B.50°或130° C.100° D.40° 第4题图第5题图第6题图 5.如图,在平面直角坐标系中,点在第一象限,⊙P与x轴相切于点Q,与y轴交于M(2,0),N(0,8)两点,则点P的坐标是() A.(5,3) B.(3,5)C.(5,4)D.(4,5) 6.如图,PC是⊙O的切线,切点为C,割线PAB过圆心O,交⊙O于点A、B,PC=2,PA=1,则PB的长为() A.5 B.4 C.3 D.2 7.如图,在同心圆中,大圆的弦AB切小圆于点C,AB=8,则圆环的面积是() A.8 B.16 C.16π D.8π 8.如图,PA、PB、CD是⊙O的切线,切点分别是A、B、E,CD分别交PA、PB于C、D两点,若∠APB=60°,则∠COD的度数() A.50° B.60° C.70° D.75° 9.如图,AB是⊙O的直径,下列条件中不能判定直线AT是⊙O的切线的是() A.AB=4,AT=3,BT=5 B.∠B=45°,AB=A T C.∠B=55°,∠TAC=55° D.∠A TC=∠B 第7题图第8题图第9题图 11.如图,AB是⊙O的直径,⊙O交BC的中点于D,DE⊥AC于点E,连接AD,则下列结论正确的个数是() ①AD⊥BC;②∠EDA=∠B;③OA=AC;④DE是⊙O的切线.

切线长定理—知识讲解

切线长定理—知识讲解 【学习目标】 1.了解切线长定义,掌握切线长定理; 2.了解圆外切四边形定义及性质; 3. 利用切线长定理解决相关的计算和证明. 【要点梳理】 要点一、切线长定理 1.切线长: 经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长. 要点诠释: 切线长是指圆外一点和切点之间的线段的长,不是“切线的长”的简称.切线是直线,而非线段. 2.切线长定理: 从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角. 要点诠释: 切线长定理包含两个结论:线段相等和角相等. 要点二、圆外切四边形的性质 1.圆外切四边形 四边形的四条边都与同一个圆相切,那这个四边形叫做圆的外切四边形. 2.圆外切四边形性质 圆外切四边形的两组对边之和相等. 【典型例题】 类型一、切线长定理 1.(2015秋?湛江校级月考)已知PA、PB分别切⊙O于A、B,E为劣弧AB上一点,过E点的切线交PA于C、交PB于D. (1)若PA=6,求△PCD的周长. (2)若∠P=50°求∠DOC. 【答案与解析】 解:(1)连接OE, ∵P A、PB与圆O相切, ∴PA=PB=6, 同理可得:AC=CE,BD=DE, △PCD的周长=PC+PD+CD=PC+PD+CE+DE=PA+PB=12;

(2)∵PA PB与圆O相切, ∴∠OAP=∠OBP=90°∠P=50°, ∴∠AOB=360°﹣90°﹣90°﹣50°=130°, 在Rt△AOC和Rt△EOC中, , ∴Rt△AOC≌Rt△EOC(HL), ∴∠AOC=∠COE, 同理:∠DOE=∠BOD, ∴∠COD=∠AOB=65°. 【总结升华】本题考查的是切线长定理和全等三角形的判定和性质,掌握切线长定理是解题的关键. 2.如图,△ABC中,∠ACB=90°,以AC为直径的⊙O交AB于D,E为BC中点. 求证:DE是⊙O切线. 【答案与解析】 连结OD、CD,AC是直径,∴OA=OC=OD,∴∠OCD=∠ODC, ∠ADC=90°,∴△CDB是直角三角形. ∵E是BC的中点,∴DE=EB=EC,∴∠ECD=∠EDC,∠ECD+∠OCD=90°, ∴∠EDC+∠ODC=90°,即OD⊥ED, ∴DE是⊙O切线. 【总结升华】自然连接OD,可证OD⊥DE. 举一反三: 【变式】已知:如图,⊙O为ABC ?的外接圆,BC为⊙O的直径,作射线BF,使得BA平分CBF ∠,过点A作AD BF ⊥于点D.求证:DA为⊙O的切线. F C F C 【答案】连接AO. ∵ AO BO =,∴ 23 ∠=∠.

E_切线长定理练习题

切线长定理练习题 一、选择题 1.下列说法中,不正确的是( ) A.三角形的内心是三角形三条内角平分线的交点 B.锐角三角形、直角三角形、钝角三角形的内心都在三角形内部 C.垂直于半径的直线是圆的切线 D.三角形的内心到三角形的三边的距离相等 2.给出下列说法: ①任意一个三角形一定有一个外接圆,并且只有一个外接圆; ②任意一个圆一定有一个内接三角形,并且只有一个内接三角形; ③任意一个三角形一定有一个内切圆,并且只有一个内切圆; ④任意一个圆一定有一个外切三角形,并且只有一个外切三角形. 其中正确的有( ) A.1个B.2个C.3个D.4个 3.一个直角三角形的斜边长为8,内切圆半径为1,则这个三角形的周长等于( ) A.21 B.20 C.19 D.18 4. 如图,PA、PB分别切⊙O于点A、B,AC是⊙O的直径,连结AB、BC、OP, 则与∠PAB相等的角(不包括∠PAB本身)有( ) A.1个B.2个C.3个D.4个 4题图5题图6题图 5.如图,已知△ABC的内切圆⊙O与各边相切于点D、E、F,则点O是△DEF的( ) A.三条中线的交点B.三条高的交点 C.三条角平分线的交点D.三条边的垂直平分线的交点 6.一个直角三角形的斜边长为8,内切圆半径为1,则这个三角形的周长等于( ) A.21 B.20 C.19 D.18 二、填空题

6.如图,⊙I 是△ABC 的内切圆,切点分别为点D 、E 、F ,若∠DEF=52o , 则∠A 的度为________. 6题图 7题图 8题图 7.如图,一圆内切于四边形ABCD ,且AB=16,CD=10,则四边形ABCD 的周长为________. 8.如图,已知⊙O 是△ABC 的内切圆,∠BAC=50o ,则∠BOC 为____________度. 三、解答题 9. 如图,AE 、AD 、BC 分别切⊙O 于点E 、D 、F ,若AD=20,求△ABC 的周长. 10. 如图,PA 、PB 是⊙O 的两条切线,切点分别为点A 、B ,若直径AC= 12,∠P=60o ,求弦AB 的长. 11. 如图,PA 、PB 是⊙O 的切线,A 、B 为切点,∠OAB =30°. (1)求∠APB 的度数; (2)当OA =3时,求AP 的长. 12.已知:如图,⊙O 内切于△ABC ,∠BOC =105°,∠ACB =90°,AB =20cm .求BC 、 AC 的长.

切线长定理及其应用

切线长定理及其应用 一、基础知识总结 1.内切圆和内心 定义: 与三角形各边都相切的圆叫做三角形的内切圆.内切圆的圆心是三角形三条角平分 线的交点,叫做三角形的内心. 总结:判断一个多边形是否有内切圆,就是判断能否找到一个点到各边距离都 相等。 2.直角三角形的内切圆半径与三边关系 (1)一个基本图形; (2)两个结论: 1)四边形OECF 是正方形 2)r=(a+b-c)∕2或r=ab ∕(a+b+c) (3)两个方法 代数法(方程思想);面积法 3.切线长定义:过圆外一点作圆的切线,该点和切点之间的线段长叫做切线长。 4.切线长定理: 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的交角。 二、典型例题解析 【例1】如图△ABC 的内切圆⊙O 与BC 、CA 、AB 分别相交于点D 、E 、F ,且AB=9 cm,BC=14 cm ,CA=13 cm ,求AF 、BD 、CE 的长 D E F O C B A 112 12902 a b c A B C A B C S s r p a b c p C r a b c ?∠∠∠==++∠=?=+-设、、分别为中、、的对边,面积为,则内切圆半径(),其中(); (),则()

【例2】如图,已知⊙O是△ABC的内切圆,切点为D、 E、F,如果AE=1, CD=2,BF=3,且△ABC的面积为6.求内切圆的半径r. 【例3】如图,以等腰ABC ?中的腰A B为直径作⊙O,交底边BC于点D.过点D作⊥,垂足为E. D E A C (I)求证:D E为⊙O的切线; (II)若⊙O的半径为5,60 ∠= ,求D E的长. B A C 【例4】如上图等边三角形的面积为S,⊙O是它的外接圆,点P是⌒BC的中点.(1)试判断过C所作的⊙O的切线与直线AB是否相交,并证明你的结论;(2)设直线 CP与AB相交于点D,过点B作BE⊥CD垂足为E,证明BE是⊙O的切线,并求△ BDE的面积.

圆的知识点总结及典型例题.

圆的知识点总结 (一)圆的有关性质 [知识归纳] 1. 圆的有关概念: 圆、圆心、半径、圆的内部、圆的外部、同心圆、等圆; 弦、直径、弦心距、弧、半圆、优弧、劣弧、等弧、弓形、弓形的高; 圆的内接三角形、三角形的外接圆、三角形的外心、圆内接多边形、多边形的外接圆;圆心角、圆周角、圆内接四边形的外角。 2. 圆的对称性 圆是轴对称图形,经过圆心的每一条直线都是它的对称轴,圆有无数条对称轴; 圆是以圆心为对称中心的中心对称图形; 圆具有旋转不变性。 3. 圆的确定 不在同一条直线上的三点确定一个圆。 4. 垂直于弦的直径 垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧; 推论1 (1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。 垂径定理及推论1 可理解为一个圆和一条直线具备下面五个条件中的任意两个,就 可推出另外三个:①过圆心;②垂直于弦;③平分弦(不是直径); ④平分弦所对的优弧;⑤平分弦所对的劣弧。 1

推论2圆的两条平行弦所夹的弧相等。 5. 圆心角、弧、弦、弦心距之间的关系 定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等;所对的弦的弦心距相等。 推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。 此定理和推论可以理解成:在同圆或等圆中,满足下面四个条件中的任何一个就能推出另外三个:①两个圆心角相等;②两个圆心角所对的弧相等;③两个圆 心角或两条弧所对的弦相等;④两条弦的弦心距相等。 圆心角的度数等于它所对的弧的度数。 6. 圆周角 定理一条弧所对的圆周角等于它所对的圆心角的一半; 推论1同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等; 推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径; 推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。 圆周角的度数等于它所对的弧的度数的一半。 7. 圆内接四边形的性质 圆内接四边形的对角互补,并且任何一个外角都等于它的内对角。 ※8. 轨迹 轨迹符合某一条件的所有的点组成的图形,叫做符合这个条件的点的轨迹。 (1)平面内,到一定点的距离等于定长的点的轨迹,是以这个定点为圆心,定长为半径的圆; (2)平面内,和已知线段两个端点的距离相等的点的轨迹,是这条线段的垂直平分线; (3)平面内,到已知角两边的距离相等的点的轨迹,是这个角的平分线。 [例题分析] 例1. 已知:如图1,在⊙O中,半径OM⊥弦AB于点N。 图1 ①若AB =,ON=1,求MN的长; ②若半径OM=R,∠AOB=120°,求MN的长。 解:①∵AB =,半径OM⊥AB,∴AN=BN = ∵ON=1,由勾股定理得OA=2 ∴MN=OM-ON=OA-ON=1 ②∵半径OM⊥AB,且∠AOB=120°∴∠AOM=60° 2

(完整)初三数学有关圆的经典例题

初三数学 有关圆的经典例题 1. 在半径为的⊙中,弦、的长分别为和,求∠的度数。132O AB AC BAC 分析:根据题意,需要自己画出图形进行解答,在画图时要注意AB 与AC 有不同的位置关系。 解:由题意画图,分AB 、AC 在圆心O 的同侧、异侧两种情况讨论, 当AB 、AC 在圆心O 的异侧时,如下图所示, 过O 作OD ⊥AB 于D ,过O 作OE ⊥AC 于E , ∵,,∴,AB AC AD AE = == = 32322 2 ∵,∴∠,OA OAD AD OA == =132 cos cos ∠OAE AE OA = = 22 ∴∠OAD=30°,∠OAE=45°,故∠BAC=75°, 当AB 、AC 在圆心O 同侧时,如下图所示, 同理可知∠OAD=30°,∠OAE=45°, ∴∠BAC=15° 点拨:本题易出现只画出一种情况,而出现漏解的错误。 例2. 如图:△ABC 的顶点A 、B 在⊙O 上,⊙O 的半径为R ,⊙O 与AC 交于D , 如果点既是的中点,又是边的中点,D AB AC ? (1)求证:△ABC 是直角三角形; ()22 求的值AD BC 分 析 : ()1由为的中点,联想到垂径定理的推论,连结交于,D AB OD AB F ? 则AF=FB ,OD ⊥AB ,可证DF 是△ABC 的中位线;

(2)延长DO 交⊙O 于E ,连接AE ,由于∠DAE=90°,DE ⊥AB ,∴△ADF ∽△,可得·,而,,故可求DAE AD DF DE DF BC DE R AD BC 2 2 122=== 解:(1)证明,作直径DE 交AB 于F ,交圆于E ∵为的中点,∴⊥,D AB AB DE AF FB ? = 又∵AD=DC ∴∥,DF BC DF BC = 12 ∴AB ⊥BC ,∴△ABC 是直角三角形。 (2)解:连结AE ∵DE 是⊙O 的直径 ∴∠DAE=90° 而AB ⊥DE ,∴△ADF ∽△EDA ∴ ,即·AD DE DF AD AD DE DF ==2 ∵,DE R DF BC ==21 2 ∴·,故AD BC R AD BC R 2 2 == 例3. 如图,在⊙O 中,AB=2CD ,那么( ) A A B CD B AB CD ..?>? ?

切线长定理、弦切角定理、切割线定理、相交弦定理

切线长定理、弦切角定理、切割线定理、相交弦定理 以及与圆有关的比例线段 [学习目标] 1.切线长概念 切线长是在经过圆外一点的圆的切线上,这点和切点之间的线段的长度,“切线长”是切线上一条线段的长,具有数量的特征,而“切线”是一条直线,它不可以度量长度。(PA 长) 2.切线长定理 对于切线长定理,应明确(1)若已知圆的两条切线相交,则切线长相等;(2)若已知两条切线平行,则圆上两个切点的连线为直径;(3)经过圆外一点引圆的两条切线,连结两个切点可得到一个等腰三角形;(4)经过圆外一点引圆的两条切线,切线的夹角与过切点的两个半径的夹角互补;(5)圆外一点与圆心的连线,平分过这点向圆引的两条切线所夹的角。 3.弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角。 直线AB 切⊙O 于P ,PC 、PD 为弦,图中几个弦切角呢?(四个) 4.弦切角定理:弦切角等于其所夹的弧所对的圆周角。 5.弄清和圆有关的角:圆周角,圆心角,弦切角,圆内角,圆外角。 6.遇到圆的切线,可联想“角”弦切角,“线”切线的性质定理及切线长定理。 7.与圆有关的比例线段 定理 图形 已知 结论 证法 相交弦定理 ⊙O 中,AB 、CD 为弦,交于P. PA·PB=PC·PD . 连结AC 、BD ,证:△APC∽△DPB . 相交弦定理的推论 ⊙O 中,AB 为直径,CD⊥AB 于P. PC 2 =PA·PB . (特殊情况) 用相交弦定理.

切割线定理 ⊙O 中,PT 切⊙O 于T ,割线PB 交⊙O 于A PT 2 =PA·PB 连结TA 、TB ,证:△PTB∽△PAT 切割线定理推论 PB 、PD 为⊙O 的两条割线,交⊙O 于A 、C PA·PB=PC·PD 过P 作PT 切⊙O 于T ,用两次切割线定理 (记忆的方法方法) 圆幂定理 ⊙O 中,割线PB 交⊙O 于A ,CD 为弦 P'C·P'D =r 2 -OP'2 PA·PB=OP 2-r 2 r 为⊙O 的半径 延长P'O 交⊙O 于M ,延 长OP'交⊙O 于N ,用相交 弦定理证;过P 作切线用切割线定理勾股定理证 8.圆幂定理:过一定点P 向⊙O 作任一直线,交⊙O 于两点,则自定点P 到两交点的两条线段之积为常数||(R 为圆半径),因为叫做点对于⊙O 的幂,所以将上述定理统称为圆幂定理。 【典型例题】 例1.如图1,正方形ABCD 的边长为1,以BC 为直径。在正方形内作半圆O ,过A 作半圆切线,切点为F ,交CD 于E ,求DE :AE 的值。 图1 解:由切线长定理知:AF =AB =1,EF =CE 设CE 为x ,在Rt△ADE 中,由勾股定理 ∴, ,

切线长定理练习题

切线长定理练习题 一、填空 1.已知:如图7-143,直线BC切⊙O于B点,AB=AC,AD=BD,那么∠A=____.2.已知:如图7-144,直线DC与⊙O相切于点C,AB为⊙O直径,AD⊥DC于D,∠DAC=28°侧∠CAB=____ . 3.已知:直线AB与圆O切于B点,割线ACD与⊙O交于C和 D 4.已知:如图7-145,PA切⊙O于点A,割线PBC交⊙O于B和C两点,∠P=15∠ABC=47°,则∠C= ____. 5.已知:如图7-146,三角形ABC的∠C=90°,内切圆O与△ABC的三边分别切于D,E,F三点,∠DFE=56°,那么∠B=____. 6.已知:如图7-147,△ABC内接于⊙O,DC切⊙O于C点,∠1=∠2,则△ABC为____ 三角形. 7.已知:如图7-148,圆O为△ABC外接圆,AB为直径,DC切⊙O于C点,∠A=36°,那么∠ACD=____. 8.一个边长为4cm的等边三角形ABC与⊙O等高,如图放置,⊙O与BC相切于点C,⊙O与AC 相交于点E,则CE 的长为_________cm. 9.如图,⊙O 的半径为3,P是CB 延长线上一点,PO=5,PA 切⊙O于A点,则PA=_________.10.如图,AB是⊙O的直径,BD,CD分别是过⊙O上点B,C的切线,且∠BDC=110°.连接AC,则∠A的度数是_________°. 11.如图,AB是⊙O的直径,点C在AB的延长线上,CD切⊙O于点D,连接AD.若∠A=25°,则∠C=_________度. (9题)(10题)(11题) 12.如图,两圆圆心相同,大圆的弦AB与小圆相切,AB=8,则图中阴影部分的面积是 _________.(结果保留π) 13. 如图,⊙I ABC △的内切圆,点D E ,分别为边AB AC ,上的点,且DE为⊙I的切线,若ABC △的周长为21,BC边的长为6,则ADE △的周长为 14 已知:PA、PB分别切⊙O于点A和B,C为弧AB上一点,过C与⊙O相切的直线分别交PA、PB于点D和E,若PA=2cm,∠APB=60° 则(1)△PDE的周长= (2)∠DOE= . 二、选择 1.下列说法正确的是() A.相切两圆的连心线经过切点B.长度相等的两条弧是等弧 C.平分弦的直径垂直于弦D.相等的圆心角所对的弦相等 2.如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心.若∠B=25°,则∠C的大小等于() A.20°B.25°C.40°D.50°

初中数学:切线长定理练习题

初中数学:切线长定理练习题 一、选择题 1.如图K-27-1,PA,PB分别切⊙O于点A,B,PA=10,CD切⊙O于点E,与PA,PB 分别交于C,D两点,则△PCD的周长是( ) 图K-27-1 A.10 B.18 C.20 D.22 2.如图K-27-2,若△ABC的三边长分别为AB=9,BC=5,CA=6,△ABC的内切圆⊙O 与AB,BC,AC分别切于点D,E,F,则AF的长为() 图K-27-2 A.5 B.10 C.7.5 D.4 3.已知⊙O的半径是4,P是⊙O外一点,且PO=8,从点P引⊙O的两条切线,切点分别是A,B,则AB的长为() A.4 B.4 2 C.4 3 D.2 3 4.如图K-27-3,PA切⊙O于点A,PB切⊙O于点B,OP交⊙O于点C,下列结论中,错误的是( ) 图K-27-3 A.∠1=∠2 B.PA=PB C.AB⊥OP D.PA2=PC·PO 5.如图K-27-4,AB为半圆O的直径,AD,BC分别切⊙O于A,B两点,CD切⊙O于点

E,连接OD,OC.下列结论:①∠DOC=90°;②AD+BC=CD;③S ∶S△BOC=AD2∶AO2;④OD∶ △AOD OC=DE∶EC;⑤OD2=DE·CD.其中正确的有( ) 图K-27-4 A.2个 B.3个 C.4个 D.5个 二、填空题 6.如图K-27-5,四边形ABCD是⊙O的外切四边形,且AB=10,CD=12,则四边形ABCD 的周长为________. 图K-27-5 7.如图K-27-6所示,在Rt△ABC中,∠C=90°,AC长为8,BC长为15,则△ABC的内切圆⊙O的直径是________. 图K-27-6 8.如图K-27-7,P是⊙O的直径AB的延长线上的一点,PC,PD分别切⊙O于点C,D.若PA=6,⊙O的半径为2,则∠CPD=________°. 图K-27-7 9.如图K-27-8所示,已知PA,PB,EF分别切⊙O于点A,B,D,若PA=15 cm,则△PEF的周长是________ cm;若∠P=50°,则∠EOF=________°.

切线长定理和三角形地内切圆练习题

第3课时切线长定理和三角形的切圆 知识点 1 切线长定理 1.如图24-2-34,PA切⊙O于点A,PB切⊙O于点B,OP交⊙O于点C,下列结论中,错误的是( ) 图24-2-34 A.∠1=∠2 B.PA=PB C.AB⊥OP D.∠PAB=2∠1 2.如图24-2-35所示,从⊙O外一点P引⊙O的两条切线PA,PB,切点分别为A,B.如果∠APB=60°,PA=8,那么弦AB的长是( ) 图24-2-35 A.4 B.8 C.4 3 D.8 3 3.如图24-2-36,PA,PB分别与⊙O相切于A,B两点,若∠C=65°,则∠P的度数为( ) 图24-2-36 A.50° B.65° C.100° D.130°

4.如图24-2-37,PA,PB是⊙O的两条切线,A,B是切点,若∠APB=60°,PO=2,则⊙O的半径等于________. 图24-2-37 知识点 2 三角形的切圆 5.2017·如图24-2-38,⊙O是△ABC的切圆,则点O是△ABC的( ) 图24-2-38 A.三条边的垂直平分线的交点 B.三条角平分线的交点 C.三条中线的交点 D.三条高的交点 6.如图24-2-39,点O是△ABC的切圆的圆心,若∠BAC=80°,则∠BOC的度数为( ) 图24-2-39 A.130° B.120° C.100° D.90° 7.如图24-2-40,△ABC的切圆⊙O与BC,CA,AB分别相切于点D,E,F,且AB=18 cm,BC=28 cm,CA=26 cm,求AF,BD,CE的长.

图24-2-40 8.如图24-2-41所示,O是△ABC的心,过点O作EF∥AB,与AC,BC分别交于点E,F,则( ) 图24-2-41 A.EF>AE+BF B.EF<AE+BF C.EF=AE+BF D.EF≤AE+BF 9.2016·《九章算术》是数学思想之源,该书中记载:“今有勾八步,股一十五步,问勾中容圆径几何.”其意思为:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形切圆的直径是多少步.”该问题的答案是________步. 10.如图24-2-42,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G三点,过点D作⊙O的切线交BC于点M,切点为N,则DM的长为________.

新人教版九年级上册数学[切线长定理—知识点整理及重点题型梳理](提高)

新人教版九年级上册初中数学 重难点有效突破 知识点梳理及重点题型巩固练习 切线长定理—知识讲解(提高) 【学习目标】 1.了解切线长定义;理解切线的判定和性质;理解三角形的内切圆及内心的定义; 2.掌握切线长定理;利用切线长定理解决相关的计算和证明. 【要点梳理】 要点一、切线的判定定理和性质定理 1.切线的判定定理: 经过半径的外端并且垂直于这条半径的直线是圆的切线. 要点诠释: 切线的判定方法: (1)定义:直线和圆有唯一公共点时,这条直线就是圆的切线; (2)定理:和圆心的距离等于半径的直线是圆的切线; (3)判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线.(切线的判定定理中强调两点:一是直线与圆有一个交点,二是直线与过交点的半径垂直,缺一不可). 2.切线的性质定理: 圆的切线垂直于过切点的半径. 要点诠释: 切线的性质: (1)切线和圆只有一个公共点; (2)切线和圆心的距离等于圆的半径; (3)切线垂直于过切点的半径; (4)经过圆心垂直于切线的直线必过切点; (5)经过切点垂直于切线的直线必过圆心. 要点二、切线长定理 1.切线长: 经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长. 要点诠释: 切线长是指圆外一点和切点之间的线段的长,不是“切线的长”的简称.切线是直线,而非线段. 2.切线长定理: 从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角. 要点诠释: 切线长定理包含两个结论:线段相等和角相等. 3.圆外切四边形的性质:

圆外切四边形的两组对边之和相等. 要点三、三角形的内切圆 1.三角形的内切圆: 与三角形各边都相切的圆叫做三角形的内切圆. 2.三角形的内心: 三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心. 要点诠释: (1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形; (2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径). 【典型例题】 类型一、切线长定理 1.如图,等腰三角形ABC中,6 AC BC ==,8 AB=.以BC为直径作⊙O交AB于点D,交AC 于点G,DF AC ⊥,垂足为F,交CB的延长线于点E.求证:直线EF是⊙O的切线. 【答案与解析】 如图,连结OD、CD,则90 BDC ∠=?. ∴CD AB ⊥. ∵ AC BC =,∴AD BD =. ∴D是AB的中点. ∵O是BC的中点,

中考专题――切线长定理及弦切角定理

中考复习专题——切线长定理与弦切角定理 【知识要点】 切线长定理:过圆外一点P做该圆的两条切线,切点为A、B。AB交PO于点C,则有如下结论: PA=PB PO⊥AB,且PO平分AB APO BPO OAC OBC ∠=∠=∠=∠;AOP BOP CAP CBP ∠=∠=∠=∠ 弦切角定理:弦切角(切线与圆的夹角)等于它所夹的弧所对的圆周角 推论:若两弦切角所夹的弧相等,则这两个弦切角也相等 【典型例题】 【例1】如图1,AB,AC是⊙O的两条切线,切点分别为B、C、D是优弧BC上的点,已知∠BAC=800,那么∠BDC =______. 图1 图2 图3 举一反三: 1.如图2,AB是⊙ O的弦,AD是⊙ O的切线,C为AB上任一点,∠ACB=1080,那么∠BAD =______. 2.如图3,PA,PB切⊙ O于A,B两点,AC⊥PB,且与⊙ O相交于D,若∠DBC=220,则∠APB=________.【例2】如图,已知圆上的弧AC BD =,过C点的圆的切线与BA的延长线交于E点,证明: (1)∠ACE=∠BCD; (2)BC2=BE×CD. 举一反三: 1.如图,AB是圆O的直径,D为圆O上一点,过D作圆O的切线交 AB的延长线于点C,若DA=DC,求证:AB=2BC. C B O A D C B A D P O

P B A O 【例3】已知:如图 7-149,PA ,PB 切⊙O 于A ,B 两点,AC 为直径,则图中与∠PAB 相等的角的个数为 A . 1 个; B .2个; C .4个; D .5个. 【例4】如图,AE 、AD 、BC 分别切⊙O 于点E 、D 、F ,若AD=20,求△ABC 的周长. 举一反三: 1. 如图,PA 、PB 是⊙O 的切线,A 、B 为切点,∠OAB =30°. (1)求∠APB 的度数; (2)当OA =3时,求AP 的长. 2.已知:如图,⊙O 内切于△ABC ,∠BOC=105°,∠ACB=90°,AB=20cm .求BC 、AC 的长. 3.已知:如图,△ABC 三边BC=a ,CA=b ,AB=c ,它的内切圆O 的半径长为r .求△ABC 的面积S .

切线长定理练习题

切线长定理练习题 1. 如图,已知为的角平分线,=,,以为圆心,为半径的圆分别交 ,于点,,连接并延长交于点. (1)求证:是的切线;(2)求的值. (3)若的半径为,求的值. 2. 如图,直线、、分别与相切于、、,且,,.求: (1)的度数;(2)的长;(3)的半径. 3. 如图,的直径,和是它的两条切线,切于,交于,交于.设 ,.(1)求证:.(2)探究与的函数关系. 4. 如图,,是的切线,、为切点,是的直径,. (1)求的度数;(2)当时,求的长. 5. 已知,如图,、是得切线,、是切点,过上的任意一点作的切线与、 分别交于点、。(1)连接和,若,求的度数. (2)若,求的周长. 6. 如图,边长为的正方形的边是的直径,是的切线,为 切点,点在上,是的弦,求的面积. 7. 如图,是的直径,,连接,分别过、作圆的切线,两切线交于点,若 已知的半径为,求的周长. 8. 如图,是的直径,点在上,是的中点,交的切线于点. (1)判断直线和的位置关系,并证明你的结论; (2)若,的半径为,求线段的长.

参考答案与试题解析 2019年3月19日初中数学 一、解答题(本题共计 8 小题,每题 10 分,共计80分) 1. 【答案】 证明:作于. ∵平分,,, ∴=, ∴是的切线. ∵=, ∴可以假设=,=,则=, ∵=, ∴, ∴是的切线,∵是的切线, ∴==,=,设=, ∴=, 在中,=, ∴, ∴, 连接, ∵是直径, ∴=, ∴=,=, ∴=, ∵=, ∴==, ∴=, ∵=, ∴, ∴=, ∵=, ∴=, ∴=,=,=, ∴=,∴=, ∴==, ∴. 【解析】 (1)作于.只要证明=即可; (2)假设=,=,则=,因为是的切线,是的切线,推出==,=,设=,推出=,在中,=,求出与关系即可解决问题; (3)想办法求出、即可解决问题; 2. 【答案】 解:(1)连接;根据切线长定理得:,,,;∵, ∴, ∴, ∴; (2)由(1)知,. ∵,, ∴由勾股定理得到:, ∴. (3)∵, ∴. 【解析】 (1)根据切线的性质得到平分,平分,,再根据平行线的性质得 ,则有,即; (2)由勾股定理可求得的长,进而由切线长定理即可得到的长; (3)最后由三角形面积公式即可求得的长. 3. 【答案】 (1)证明:∵和是的两条切线, ∴, , ∴.

切线长定理—知识讲解(提高)

切线长定理—知识讲解(提高) 责编:康红梅 【学习目标】 1.了解切线长定义;理解三角形的内切圆及内心的定义; 2.掌握切线长定理;利用切线长定理解决相关的计算和证明. 【要点梳理】 要点一、切线长定理 1.切线长: 经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长. 要点诠释: 切线长是指圆外一点和切点之间的线段的长,不是“切线的长”的简称.切线是直线,而非线段. 2.切线长定理: 从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角. 要点诠释: 切线长定理包含两个结论:线段相等和角相等. 3.圆外切四边形的性质: 圆外切四边形的两组对边之和相等. 要点二、三角形的内切圆 1.三角形的内切圆: 与三角形各边都相切的圆叫做三角形的内切圆. 这个三角形叫作圆的外切三角形. 2.三角形的内心: 三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心.三角形的内心是这个三角形的三条角平分线的交点. 要点诠释: (1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形; (2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).

【典型例题】 类型一、切线长定理 1.(2015?常德)已知如图,以Rt△ABC 的AC 边为直径作⊙O 交斜边AB 于点E ,连接EO 并延长交BC 的延长线于点D ,点F 为BC 的中点,连接EF . (1 )求证:EF 是⊙O 的切线; (2)若⊙O 的半径为3,∠EAC=60°,求AD 的长. 【答案与解析】 证明:(1)如图1,连接FO , ∵F 为BC 的中点,AO=CO , ∴OF∥AB, ∵AC 是⊙O 的直径, ∴CE⊥AE, ∵OF∥AB, ∴OF⊥CE, ∴OF 所在直线垂直平分CE , ∴FC=FE,OE=OC , ∴∠FEC=∠FCE,∠0EC=∠0CE, ∵∠ACB=90°, 即:∠0CE+∠FCE=90°, ∴∠0EC+∠FEC=90°, 即:∠FEO=90°, ∴FE 为⊙O 的切线; (2)如图2,∵⊙O 的半径为3, ∴AO=CO=EO=3, ∵∠EAC=60°,OA=OE , ∴∠EOA=60°, ∴∠COD=∠EOA=60°, ∵在Rt△OCD 中,∠COD=60°,OC=3, ∴CD=, ∵在Rt△ACD 中,∠ACD=90°,

中考数学专题练习圆的切线长定理(含解析)

2019 中考数学专题练习-圆的 切线长定理(含解析) 、单选题 1.如图,△ ABC是一张周长为17cm 的三角形的纸片,BC=5cm ,△O是它的内切圆,小明准备用剪刀在△O的右侧沿着与△O相切的任意一条直线MN 剪下△ AMN,则剪下的三角形的 变化 2.下列说法正确的是() A.过任意一点总可以作圆的两条切线 C. 过圆外一点所画的圆的两条切线长相等大于圆的 半径 3.如图,PA,PB 切△O于A,B 两点, CD 切△O于点E,交PA,PB 于C,D.若△O 56 周长为( A. 12cm C. 6cm D. 随直线MN 的变化而 径为1,△ PCD的周长等于2 ,则线段AB 的长是() ABCD 的四条边都相切,且AB=16,CD=10, 则四边形ABCD 的周长为() B. 52 C. 54 D. B. 圆的切线长就是圆的切线的长度 D. 过圆外一点所画的圆的切线长一 的半

5.如图,PA,PB,CD 与△O相切于点为A,B,E,若PA=7,则△ PCD的周长为()

A.8 B. 18 C. 16 D. 14 7. 如图,四边形 ABCD 中,AD 平行 BC ,△ ABC=90°,AD=2 ,AB=6 ,以 AB 为直径的半 △O 切 CD 于点 E ,F 为弧 BE 上一动点, 过 F 点的直线 MN 为半 △O 的切线, MN 交 BC 于 M , 8. 圆外切等腰梯 形的一腰长是 8,则这个等腰梯形的上底与下底长的和为( ) A. 4 B. 8 C. 12 D. 16 9. 如图, △ ABC 是一张三角形的纸片, △O 是它的内切圆,点 D 是其中的一个切点,已知 AD=10cm , 小明准备用剪刀沿着与 △O 相切的任意一条直线 MN 剪下一块三角形 (△ AMN ),则剪下的 △AMN 的周长为( ) A. 7 D. 10 B. 14 C. 10.5 交 CD 于 N ,则 △ MCN 的周长为( A. 9 B. 10 C. 3 D. 2 6.如图, 的周长是

九年级切线长定理练习题精选

应用圆的切线定理 一、选择题 1.下列说法中,不正确的是 ( ) A.三角形的内心是三角形三条内角平分线的交点 B.锐角三角形、直角三角形、钝角三角形的内心都在三角形内部C.垂直于半径的直线是圆的切线 D.三角形的内心到三角形的三边的距离相等 2.给出下列说法: ①任意一个三角形一定有一个外接圆,并且只有一个外接圆; ②任意一个圆一定有一个内接三角形,并且只有一个内接三角形; ③任意一个三角形一定有一个内切圆,并且只有一个内切圆; ④任意一个圆一定有一个外切三角形,并且只有一个外切三角形.其中正确的有 ( ) A.1个B.2个C.3个D.4个3.一个直角三角形的斜边长为8,内切圆半径为1,则这个三角形的周长等于( ) A.21 B.20 C.19 D.18 4. 如图,PA、PB分别切⊙O于点A、B,AC是⊙O的直径,连结AB、 BC、OP, 则与∠PAB相等的角(不包括∠PAB本身)有 ( ) A.1个B.2个C.3个D.4个 4题图5题图6题图 5.如图,已知△ABC的内切圆⊙O与各边相切于点D、E、F,则点O是△DEF的( ) A.三条中线的交点B.三条高的交点 C.三条角平分线的交点D.三条边的垂直平分线的交点 6.一个直角三角形的斜边长为8,内切圆半径为1,则这个三角形的周长等于( )

P B A O A .21 B .20 C .19 D .18 二、填空题 6.如图,⊙I 是△ABC 的内切圆,切点分别为点D 、E 、F ,若∠DEF=52o , 则∠A 的度为________. 6题图 7题图 8题图 7.如图,一圆内切于四边形ABCD ,且AB=16,CD=10,则四边形 ABCD 的周长为________. 8.如图,已知⊙O 是△ABC 的内切圆,∠BAC=50o ,则∠BOC 为 ____________度. 三、解答题 9. 如图,AE 、AD 、BC 分别切⊙O 于点E 、D 、F ,若AD=20,求△ ABC 的周长. 10. 如图,PA 、PB 是⊙O 的两条切线,切点分别为点A 、B ,若直径AC= 12,∠P=60o ,求弦AB 的长. 11. 如图,PA 、PB 是⊙O 的切线,A 、B 为切点,∠OAB =30°. (1)求∠APB 的度数; (2)当OA =3时,求AP 的长.

相关文档
最新文档