高中物理竞赛辅导讲义-第10篇-电磁感应

高中物理竞赛辅导讲义-第10篇-电磁感应
高中物理竞赛辅导讲义-第10篇-电磁感应

高中物理电磁感应讲义

高中物理电磁感应讲义 一、电磁感应现象 1、电磁感应现象与感应电流 . (1)利用磁场产生电流的现象,叫做电磁感应现象。 (2)由电磁感应现象产生的电流,叫做感应电流。 二、产生感应电流的条件 1、产生感应电流的条件:闭合电路 .......。 ....中磁通量发生变化 2、产生感应电流的方法 . (1)磁铁运动。 (2)闭合电路一部分运动。 (3)磁场强度B变化或有效面积S变化。 注:第(1)(2)种方法产生的电流叫“动生电流”,第(3)种方法产生的电流叫“感生电流”。不管是动生电流还是感生电流,我们都统称为“感应电流”。 3、对“磁通量变化”需注意的两点 . (1)磁通量有正负之分,求磁通量时要按代数和(标量计算法则)的方法求总的磁通量(穿过平面的磁感线的净条数)。 (2)“运动不一定切割,切割不一定生电”。导体切割磁感线,不是在导体中产生感应电流的充要条件,归根结底还要看穿过闭合电路的磁通量是否发生变化。 4、分析是否产生感应电流的思路方法 . (1)判断是否产生感应电流,关键是抓住两个条件: ①回路是闭合导体回路。 ②穿过闭合回路的磁通量发生变化。 注意:第②点强调的是磁通量“变化”,如果穿过闭合导体回路的磁通量很大但不变化,那么不论低通量有多大,也不会产生感应电流。 (2)分析磁通量是否变化时,既要弄清楚磁场的磁感线分布,又要注意引起磁通量变化的三种情况: ①穿过闭合回路的磁场的磁感应强度B发生变化。 ②闭合回路的面积S发生变化。 ③磁感应强度B和面积S的夹角发生变化。 三、感应电流的方向 1、楞次定律. (1)内容:感应电流具有这样的方向,即感应电流的磁场总是要阻碍引起感应电流的磁通量的变化。 ①凡是由磁通量的增加引起的感应电流,它所激发的磁场阻碍原来磁通量的增加。 ②凡是由磁通量的减少引起的感应电流,它所激发的磁场阻碍原来磁通量的减少。 (2)楞次定律的因果关系: 闭合导体电路中磁通量的变化是产生感应电流的原因,而感应电流的磁场的出现是感应电流存在的结果,简要地说,只有当闭合电路中的磁通量发生变化时,才会有感应电流的磁场出现。

高中物理竞赛辅导(2)

高中物理竞赛辅导(2) 静力学力和运动 共点力的平衡 n个力同时作用在物体上,若各力的作用线相交于一点,则称为 共点力,如图1所示。 作用在刚体上的力可沿作用线前、后滑移而不改变其力 学效应。当刚体受共点力作用时,可把这些力沿各自的作用 线滑移,使都交于一点,于是刚体在共点力作用下处于平衡 状态的条件是:合力为零。 (1) 用分量式表示: (2) [例1]半径为R的刚性球固定在水 平桌面上,有一质量为M的圆环状均匀 弹性细绳圈,原长为,绳 圈的弹性系数为k。将圈从球的正上方 轻放到球上,并用手扶着绳圈使其保持 水平,最后停留在平衡位置。考虑重力, 不计摩擦。①设平衡时绳圈长 ,求k值。②若 ,求绳圈的平衡位置。

分析:设平衡时绳圈位于球面上相应于θ角的纬线上。在绳圈上任取一小元段, 长为,质量为,今将这元段作为隔离体,侧视图和俯视图分别由图示(a)和(b)表示。 元段受到三个力作用:重力方向竖直向下;球面的支力N方向沿半径R 指向球外;两端张力,张力的合力为 位于绳圈平面内,指向绳圈中心。这三个力都在经 线所在平面内,如图示(c)所示。将它们沿经线的切向和法向分 解,则切向力决定绳圈沿球面的运动。 解:(1)由力图(c)知:合张力沿经线切向分力为: 重力沿径线切向分力为: (2-2) 当绳圈在球面上平衡时,即切向合力为零。 (2-3) 由以上三式得 (2-4) 式中

由题设:。把这些数据代入(2-4)式得。于是。 (2)若时,C=2,而。此时(2-4)式变成 tgθ=2sinθ-1, 即 sinθ+cosθ=sin2θ, 平方后得。 在的范围内,上式无解,即此时在球面上不存在平衡位置。这时由于k值太小,绳圈在重力作用下,套过球体落在桌面上。 [例2]四个相同的球静止在光滑的球形碗内,它们的中心同在一水平面内,今以另一相同的球放以四球之上。若碗的半径大于球的半径k倍时,则四球将互相分离。试求k值。 分析:设每个球的质量为m,半径为r ,下面四个球的相互作用力为N,如图示(a)所示。 又设球形碗的半径为R,O' 为球形碗的球心,过下面四球的 球心联成的正方形的一条对角线 AB作铅直剖面。如图3(b)所示。 当系统平衡时,每个球所受的合 力为零。由于所有的接触都是光 滑的,所以作用在每一个球上的 力必通过该球球心。 上面的一个球在平衡时,其 重力与下面四个球对它的支力相平衡。由于分布是对称的,它们之间的相互作用力N, 大小相等以表示,方向均与铅垂线成角。

(新)高中物理9电磁感应中的动力学问题讲义新人教版选修3-2

第9点电磁感应中的动力学问题 电磁感应和力学问题的综合,其联系桥梁是磁场对感应电流的安培力,因为感应电流与导体运动的加速度有相互制约的关系,这类问题中的导体一般不是做匀变速运动,而是经历一个动态变化过程,再趋于一个稳定状态,故解这类问题时正确的进行动态分析,确定最终状态是解题的关键. 1.受力情况、运动情况的动态分析及思考路线 导体受力运动产生感应电动势→感应电流→通电导体受安培力→合力变化→加速度变化→速度变化→感应电动势变化→……周而复始地循环,直至最终达到稳定状态,此时加速度为零,而导体通过加速达到最大速度做匀速直线运动或通过减速达到稳定速度做匀速直线运动.2.解决此类问题的基本思路 解决电磁感应中的动力学问题的一般思路是“先电后力”. (1)“源”的分析——分析出电路中由电磁感应所产生的电源,求出电源参数E和r; (2)“路”的分析——分析电路结构,弄清串、并联关系,求出相关部分的电流大小,以便求解安培力; (3)“力”的分析——分析研究对象(常是金属杆、导体线圈等)的受力情况,尤其注意其所受的安培力; (4)“运动”状态的分析——根据力和运动的关系,判断出正确的运动模型.

3.两种状态处理 (1)导体处于平衡态——静止状态或匀速直线运动状态. 处理方法:根据平衡条件(合外力等于零),列式分析. (2)导体处于非平衡态——加速度不为零. 处理方法:根据牛顿第二定律进行动态分析或结合功能关系分析. 4.电磁感应中的动力学临界问题 (1)解决这类问题的关键是通过运动状态的分析寻找过程中的临界状态,如由速度、加速度求最大值或最小值的条件. (2)基本思路 注意当导体切割磁感线运动存在临界条件时: (1)若导体初速度等于临界速度,导体匀速切割磁感线; (2)若导体初速度大于临界速度,导体先减速,后匀速运动; (3)若导体初速度小于临界速度,导体先加速,后匀速运动. 对点例题如图1甲所示,水平面上两根足够长的金属导轨平行固定放置,间距为L,一端通过导线与阻值为R的电阻连接;导轨上放一质量为m的金属杆,金属杆与导轨的电阻忽略不计;匀强磁场垂直水平面向里,用与导轨平行的恒定拉力F作用在金属杆上,杆最终将做匀速运动.当改变拉力的大小时,相对应的匀速运动速度v也会变化,v和F的关系如图乙所示(重力加速度g取10 m/s2).问: 图1 (1)金属杆在做匀速运动之前做什么运动?

高中物理竞赛辅导讲义-7.1简谐振动

7.1简谐振动 一、简谐运动的定义 1、平衡位置:物体受合力为0的位置 2、回复力F :物体受到的合力,由于其总是指向平衡位置,所以叫回复力 3、简谐运动:回复力大小与相对于平衡位置的位移成正比,方向相反 F k x =- 二、简谐运动的性质 F kx =- ''mx kx =- 取试探解(解微分方程的一种重要方法) cos()x A t ω?=+ 代回微分方程得: 2m x kx ω-=- 解得: 22T π ω== 对位移函数对时间求导,可得速度和加速度的函数 cos()x A t ω?=+ sin()v A t ωω?=-+ 2cos()a A t ωω?=-+ 由以上三个方程还可推导出: 222()v x A ω += 2a x ω=- 三、简谐运动的几何表述 一个做匀速圆周运动的物体在一条直径 上的投影所做的运动即为简谐运动。 因此ω叫做振动的角频率或圆频率, ωt +φ为t 时刻质点位置对应的圆心角,也叫 做相位,φ为初始时刻质点位置对应的圆心 角,也叫做初相位。

四、常见的简谐运动 1、弹簧振子 (1)水平弹簧振子 (2)竖直弹簧振子 2、单摆(摆角很小) sin F mg mg θθ=-≈- x l θ≈ 因此: F k x =- 其中: mg k l = 周期为:222T π ω=== 例1、北京和南京的重力加速度分别为g 1=9.801m/s 2和g 2=9.795m/s 2,把在北京走时准确的摆钟拿到南京,它是快了还是慢了?一昼夜差多少秒?怎样调整? 例2、三根长度均为l=2.00m 、质量均匀的直杆,构成一正三角彤框架 ABC .C 点悬挂在一光滑水平转轴上,整个框架可绕转轴转动.杆AB 是一导轨,一电动玩具松鼠可在导轨运动,如图所示.现观察到松鼠正在导轨上运动,而框架却静止不动,试论证松鼠的运动是一种什么样的运动?

2019年高考备考理综演讲稿

2019年高考备考理综演讲稿 又临一年高考时,这一时刻,考验考生的是心理素质和应试技巧。如下为大家收集的高考备考理综演讲稿,欢迎阅读! 一、复习使用的资料及评价 (一)本次物理高考复习所用资料如下: 1、物理方面:《世纪金榜》第一轮、XX年福建各地市质检理 综卷(物理部分),《三维设计》第二轮、XX年福建各地市质检理综 卷(物理部分)、自编选择实验专项训练等。 2、理综方面:从高三上学期期末就开始进行理综大考、月考、校模。 (二)对以上资料的评价: 1、《世纪金榜》系列,例题、习题比较经典,内容详细全面,编排合理,资料丰富,资料品种齐全、形式多样(书、活页、分章节、综合型都有)对提高班、普通班来说均实用,是一个较好的复习资料 系列。《世纪金榜》的缺点是不够新颖,而新题常常缺乏严密的编撰,有些拼凑牵强,甚至漏洞。《世纪金榜》系列题量偏大需进一步浓缩,对于有些题完全可以不做不讲,总的说来《世纪金榜》系列比较适合在第一轮用。 2、福建各地市质检理综卷(物理部分),题目难度适当(比《世 纪金榜》还要容易上手),习题比较经典,来自于福建各地市,题源 贴近本省比较适合福建考生,第二轮复习用应该是一种很不错的资料。

4、其他的理综卷,质量参差不齐,大部分只能讲一般,少数也有精品。在新颖和把握高考形势上这些卷子应该有优势,关键是如何用好这些资料的精华部分。 二、高三物理复习在时间分段上的安排 (一)分段情况 1、暑假补课阶段:基本完成物理选修3-5的内容。 2、高三上学期—高三下学期6周(省质检前):第一轮复习。地毯式轰炸,按章节进行,以《世纪金榜》为教材,以知识点为线索,以做习题、讲习题为载体,系统复习基础知识点、公式,特别重视能力的训练,尤其是计算题能力的训练。 3、高三下学期第8周以后(省质检后):第二轮复习,此时开始有些晚,复习计划常常会受到各种于扰,有些被动。 第一阶段:模型、物理方法专题训练,具体分为传送带模型,整体法二个专题,以自己编的练习为主要参考资料。 第二阶段:选择题专题训练,以自编选择题为主要资料。实验题专题训练,以自编实验题为主要资料。 第三阶段:高考模拟训练。自编及选择了一些高考模拟题(仅物理部分),对学生进行限时训练。4月11日以后,给学生训练了XX 年,这一阶段的主要目的:找气氛、适应理综合考试、进入状态,指导学生调整、保持状态。 最后阶段:收集XX年福建各地市质检理综卷(物理部分)、信息卷及时收集整理印发,教师先做,后取舍,作出有效的针对性训练。

高中物理竞赛讲义电磁感应

电磁感应 【拓展知识】 1.楞次定律的推广 (1)阻碍原磁通量的变化; (2)阻碍(导体的)相对运动; (3)阻碍原电流的变化。 2.感应电场与感应电动势 磁感应强度发生变化时,在磁场所在处及周围的空间范围内,将激发感应电场。感应电场不同于静电场: (1)它不是电荷激发的,而是由变化的磁场所激发; (2)它的电场线是闭合的,没有起止点。而静电场的电场线是从正电荷出发终止于负电荷; (3)它对电荷的作用力不是保守力。 如果变化的磁场区域是一个半径为R 的圆形,则半径为r 的回路上各点的感应电场的场强大小为 ???? ??????≤???=.,2;,22R r t B r R R r t B r E φ 方向沿该点的切线方向。感应电场作用于单位电荷上的电场力所做的功就是感应电动势。 【试题赏析】 1.如图所示,在一无限长密绕螺线管中,其磁感应强度随时间线性变化( t B ??=常数),求螺线管内横截面上直线段MN 的感应电动势。已知圆心O 到MN 的距离为h 、MN 的长为L 以及 t B ??的大小。

解:求感生电动势有两种方法。 (1) 根据电动势的定义:某一线段上的感生电动势等于感生电场搬运单位 正电荷沿此段运动时所做的功。在MN 上任选一小段l ?,O 点到l ?距离为r ,l ?处 的感E ρ 如图4-4-8所示,与l ?的夹角为θ,感生电场沿l ?移动单位正电荷所做的功为 θ?=?cos l E A 感, 而 t B r E ??= 2感则 θ????= ?cos 2l t B r A 而 h r =θcos 故 l t B h A ???=?2 把MN 上所有l ?的电动势相加, t B hl l t B ??=???=ε∑ 2121 (2)用法拉第定律求解。连接OM ,ON ,则封闭回路三角形OMN 的电动势等于其所包围的磁通量的变化率。 lhB BS 21 ==Φ t B hl t ??=??Φ=ε21 OM 和ON 上各点的感生电场感E ρ 均各自与OM 和ON 垂直,单位正电荷OM 和ON 上移动时,感生电场的功为零,故OM 和ON 上的感生电动势为零,封闭回路OMNO 的电动势就是MN 上的电动势。 电动势的方向可由楞次定律确定。 【总结反思】理解两种电动势的产生机理 【变式训练】 图4-4-8

新版高一物理竞赛讲义

高中物理《竞赛辅导》力学部分 目录 :力学中的三种力 【知识要点】 (一)重力 重力大小G=mg,方向竖直向下。一般来说,重力是万有引力的一个分力,静止在地球表面的物体,其万有引力的另一个分力充当物体随地球自转的向心力,但向心力极小。 (二)弹力 1.弹力产生在直接接触又发生非永久性形变的物体之间(或发生非永久性形变的物体一部分和另一部分之间),两物体间的弹力的方向和接触面的法线方向平行,作用点在两物体的接触面上.2.弹力的方向确定要根据实际情况而定. 3.弹力的大小一般情况下不能计算,只能根据平衡法或动力学方法求得.但弹簧弹力的大小可用.f=kx(k 为弹簧劲度系数,x为弹簧的拉伸或压缩量)来计算. 在高考中,弹簧弹力的计算往往是一根弹簧,而竞赛中经常扩展到弹簧组.例如:当劲度系数分别为k1,k2,…的若干个弹簧串联使用时.等效弹簧的劲度系数的倒数为:,即弹簧变软;反之.若

以上弹簧并联使用时,弹簧的劲度系数为:k=k 1+…k n ,即弹簧变硬.(k=k 1+…k n 适用于所有并联弹簧的原长相等;弹簧原长不相等时,应具体考虑) 长为 的弹簧的劲度系数为k ,则剪去一半后,剩余 的弹簧的劲度系数为2k (三)摩擦力 1.摩擦力 一个物体在另一物体表面有相对运动或相对运动趋势时,产生的阻碍物体相对运动或相对运动趋势的力叫摩擦力。方向沿接触面的切线且阻碍物体间相对运动或相对运动趋势。 2.滑动摩擦力的大小由公式f=μN 计算。 3.静摩擦力的大小是可变化的,无特定计算式,一般根据物体运动性质和受力情况分析求解。其大小范围在0<f≤f m 之间,式中f m 为最大静摩擦力,其值为f m =μs N ,这里μs 为最大静摩擦因数,一般情况下μs 略大于μ,在没有特别指明的情况下可以认为μs =μ。 4.摩擦角 将摩擦力f 和接触面对物体的正压力N 合成一个力F ,合力F 称为全反力。在滑动摩擦情况下定义tgφ=μ=f/N ,则角φ为滑动摩擦角;在静摩擦力达到临界状态时,定义tgφ0=μs =f m /N ,则称φ0为静摩擦角。由于静摩擦力f 0属于范围0<f≤f m ,故接触面作用于物体的全反力同接触面法线 的夹角≤φ0,这就是判断物体不发生滑动的条件。换句话说,只要全反力的作用线落在(0,φ0)范围时,无穷大的力也不能推动木块,这种现象称为自锁。 本节主要内容是力学中常见三种力的性质。在竞赛中以弹力和摩擦力尤为重要,且易出错。弹力和摩擦力都是被动力,其大小和方向是不确定的,总是随物体运动性质变化而变化。弹力中特别注意轻绳、轻杆及胡克弹力特点;摩擦力方向总是与物体发生相对运动或相对运动趋势方向相反。另外很重要的一点是关于摩擦角的概念,及由摩擦角表述的物体平衡条件在竞赛中应用很多,充分利用摩擦角及几何知识的关系是处理有摩擦力存在平衡问题的一种典型方法。 【典型例题】 【例题1】如图所示,一质量为m 的小木块静止在滑动摩擦因数为μ=的水平面上,用一个与水平方 向成θ角度的力F 拉着小木块做匀速直线运动,当θ角为多大时力F 最小? 【例题2】如图所示,有四块相同的滑块叠放起来置于水平桌面上,通过细绳和定滑轮相互联接起来.如果所有的接触面间的摩擦系数均为μ,每一滑块的质量均为 m ,不计滑轮的摩擦.那么要拉动最上面一块滑块至少需要多大的水平拉力?如果有n 块这样的滑块叠放起 来,那么要拉动最上面的滑块,至少需多大的拉力? 【例题3】如图所示,一质量为m=1㎏的小物块P 静止在倾角为θ=30°的斜面 上,用平行于斜面底边的力F=5N 推小物块,使小物块恰好在斜面上匀速运动,试求小物块与斜面间的滑 动摩擦因数(g 取10m/s 2 )。 【练习】 1、如图所示,C 是水平地面,A 、B 是两个长方形物块,F 是作用在物块B 上沿水平方向的力,物块A 和B 以相同的速度作匀速直线运动,由此可知, A 、 B 间的滑动 θ F P θ F A B F C N F f m f 0 α φ

高中物理竞赛辅导讲义 第 篇 运动学

高中物理竞赛辅导讲义 第2篇 运动学 【知识梳理】 一、匀变速直线运动 二、运动的合成与分解 运动的合成包括位移、速度和加速度的合成,遵从矢量合成法则(平行四边形法则或三角形法则)。 我们一般把质点对地或对地面上静止物体的运动称为绝对运动,质点对运动参考照系的运动称为相对运动,而运动参照系对地的运动称为牵连运动。以速度为例,这三种速度分别称为绝对速度、相对速度、牵连速度,则 v 绝对 = v 相对 + v 牵连 或 v 甲对乙 = v 甲对丙 + v 丙对乙 位移、加速度之间也存在类似关系。 三、物系相关速度 正确分析物体(质点)的运动,除可以用运动的合成知识外,还可充分利用物系相关速度之间的关系简捷求解。以下三个结论在实际解题中十分有用。 1.刚性杆、绳上各点在同一时刻具有相同的沿杆、绳的分速度(速度投影定理)。 2.接触物系在接触面法线方向的分速度相同,切向分速度在无相对滑动时亦相同。 3.线状交叉物系交叉点的速度,是相交物系双方运动速度沿双方切向分解后,在对方切向运动分速度的矢量和。 四、抛体运动: 1.平抛运动。 2.斜抛运动。 五、圆周运动: 1.匀速圆周运动。 2.变速圆周运动: 线速度的大小在不断改变的圆周运动叫变速圆周运动,它的角速度方向不变,大小在不断改变,它的加速度为a = a n + a τ,其中a n 为法向加速度,大小为2 n v a r =,方向指向圆心;a τ为切向加速度,大小为0lim t v a t τ?→?=?,方向指向切线方向。 六、一般的曲线运动 一般的曲线运动可以分为很多小段,每小段都可以看做圆 周运动的一部分。在分析质点经过曲线上某位置的运动时,可 以采用圆周运动的分析方法来处理。对于一般的曲线运动,向心加速度为2n v a ρ =,ρ为点所在曲线处的曲率半径。 七、刚体的平动和绕定轴的转动 1.刚体 所谓刚体指在外力作用下,大小、形状等都保持不变的物体或组成物体的所有质点之间的距离始终保持不变。刚体的基本运动包括刚体的平动和刚体绕定轴的转动。刚体的任

电磁感应——电磁感应定律

第39讲:电磁感应——电磁感应定律 内容:§13-1,§13-2(上) 1.电磁感应现象 2.Faraday电磁感应定律 3.Lenz定律(50分钟) 4.动生电动势(50分钟) 要求: 1.了解电磁感应现象的发现概况; 2.掌握Faraday电磁感应定律与椤次定律,并能熟练应用Faraday电磁感应定律分析研究电磁感应现象的问题与习题。 3.认识到产生动生电动势的非静电力是洛仑兹力,掌握动生电动势的计算方法。 方法: 在中学物理的基础上,通过对电磁感应现象的分析,顺理成章地得出Faraday电磁感应定律,着重讲清其物理意义,讲清椤次定律的物理意义,再通过对典型例题的分析使学员能深入理解与掌握,运用Faraday电磁感应定律来分析和计算有关习题。着重讲授Lorentz力是产生动生电动势的非静电力,在此基础上讲述动生电动势的计算方法及其表示式的物理意义及其应用。 重点与难点: 1.Faraday 电磁感应定律 2.Lenz定律 3.动生电动势 作业: 问题:P236:1,2,3,4 习题:P240:2,4,11,12 预习:§13-2,§13-3,§13-4

导线在磁场中运闭合线圈在磁场

● 电磁感应现象:当通过一个闭合回路所包围的面积的磁通量发生变化时, )线圈中电流变化时另一线圈中产生电流,图c 。 )闭合回路的一部分切割磁力线,回路中产生电流,图d 。Faraday 电磁感应定律(Faraday Law of .法拉第电磁感应定律内容 Faraday 对电磁感应现象作了定量研究,当穿过闭合回路所包围面积的磁通量发生变化时,不论这种变化是什么原因引起的,回路中就有感应电动势产生,并且感应电动势正比于磁通量对时间变化率的负值。 制中: dt d i Φ-=ε

高中物理选修3-2电磁感应讲义

高中物理选修3-2电磁感应复习 一、电磁感应现象及其发生条件 1、电磁感应现象 当穿过闭合电路的磁通量发生变化时,电路中有感应电流产生,这种现象叫做电磁感应,产生的电流叫做感应电流.2.电磁感应的条件 (1)产生感应电流的条件为: ①电路为闭合电路;②回路中磁通量发生变化。 (2)感应电动势产生的条件:穿过电路的磁通量发生变化。 这里不要求闭合.无论电路闭合与否,只要磁通量变化了,就会有感应电动势产生。 例1.现将电池组、滑动变阻器、带铁芯的线圈A、线圈B、电流计及电键如图连接.下列说法中正确的是() A.电键闭合后,线圈A插入或拔出都会引起电流计指针偏转 B.线圈A插入线圈B中后,电键闭合和断开的瞬间电流计指针均不会偏转 C.电键闭合后,滑动变阻器的滑片P匀速滑动,会使电流计指针静止在中央零 刻度 D.电键闭合后,只有滑动变阻器的滑片P加速滑动,电流计指针才能偏转 例2.如图2所示,矩形线框abcd的一边ad恰与长直导线重合(互相绝缘).现使线框绕不同的轴转动,能使框中产生感应电流的是[ ] A.绕ad边为轴转动B.绕oo′为轴转动 C.绕bc边为轴转动D.绕ab边为轴转动 例3.如图6所示,一有限范围的匀强磁场宽度为d,若将一个边长为l的正方形导线框以速度v匀速地通过磁场区域,已知d>l,则导线框中无感应电流的时间等于[ ]

例4.条形磁铁竖直放置,闭合圆环水平放置,条形磁铁中心线穿过圆环中心,如图7所示。若圆环为弹性环,其形状由Ⅰ扩大为Ⅱ,那么圆环内磁通量变化情况是[ ] A.磁通量增大B.磁通量减小C.磁通量不变D.条件不足,无法确定 二、楞次定律(来句去留、增反减同、增缩减扩) 1.楞次定律:感应电流具有这样的方向,就是感应电流的磁场总要阻碍引起感应电流的磁通量的变化. 2.应用楞次定律判断感应电流方向的四个步骤。 (1)明确原磁场的方向; (2)明确穿过回路的磁通量是增加还是减少; (3)根据楞次定律确定感应电流的磁场方向; (4)利用安培定则,判断感应电流的方向。 3.右手定则:伸开右手,让拇指跟其余四指垂直,并且都跟手掌在一个平面内,让磁感线从掌心进入,拇指指向导体切割磁感线的运动方向,其余四指指的就是感应电流的方向. 例1.如图6所示,光滑导轨MN水平放置,两根导体棒平行放于导轨上,形成一个闭合回路,当一条形磁铁从上方下落(未达导轨平面)的过程中,导体P、Q的运动情况是:[ ] A.P、Q互相靠拢B.P、Q互相远离 C.P、Q均静止D.因磁铁下落的极性未知,无法判断 例2.如图7所示,一个水平放置的矩形线圈abcd,在细长水平磁铁的S极附近竖直下落,由位置Ⅰ经位置Ⅱ到位置Ⅲ。位置Ⅱ与磁铁同一平面,位置Ⅰ和Ⅲ都很靠近Ⅱ,则在下落过程中,线圈中的感应电流的方向为[ ]

高中物理竞赛辅导讲义 静力学

高中物理竞赛辅导讲义 第1篇 静力学 【知识梳理】 一、力和力矩 1.力与力系 (1)力:物体间的的相互作用 (2)力系:作用在物体上的一群力 ①共点力系 ②平行力系 ③力偶 2.重力和重心 (1)重力:地球对物体的引力(物体各部分所受引力的合力) (2)重心:重力的等效作用点(在地面附近重心与质心重合) 3.力矩 (1)力的作用线:力的方向所在的直线 (2)力臂:转动轴到力的作用线的距离 (3)力矩 ①大小:力矩=力×力臂,M =FL ②方向:右手螺旋法则确定。 右手握住转动轴,四指指向转动方向,母指指向就是力矩的方向。 ③矢量表达形式:M r F =? (矢量的叉乘),||||||sin M r F θ=? 。 4.力偶矩 (1)力偶:一对大小相等、方向相反但不共线的力。 (2)力偶臂:两力作用线间的距离。 (3)力偶矩:力和力偶臂的乘积。 二、物体平衡条件 1.共点力系作用下物体平衡条件: 合外力为零。 (1)直角坐标下的分量表示 ΣF ix = 0,ΣF iy = 0,ΣF iz = 0 (2)矢量表示 各个力矢量首尾相接必形成封闭折线。 (3)三力平衡特性 ①三力必共面、共点;②三个力矢量构成封闭三角形。 2.有固定转动轴物体的平衡条件:

3.一般物体的平衡条件: (1)合外力为零。 (2)合力矩为零。 4.摩擦角及其应用 (1)摩擦力 ①滑动摩擦力:f k = μk N(μk-动摩擦因数) ②静摩擦力:f s ≤μs N(μs-静摩擦因数) ③滑动摩擦力方向:与相对运动方向相反 (2)摩擦角:正压力与正压力和摩擦力的合力之间夹角。 ①滑动摩擦角:tanθk=μ ②最大静摩擦角:tanθsm=μ ③静摩擦角:θs≤θsm (3)自锁现象 三、平衡的种类 1.稳定平衡: 当物体稍稍偏离平衡位置时,有一个力或力矩使之回到平衡位置,这样的平衡叫稳定平衡。2.不稳定平衡: 当物体稍稍偏离平衡位置时,有一个力或力矩使它的偏离继续增大,这样的平衡叫不稳定平衡。 3.随遇平衡: 当物体稍稍偏离平衡位置时,它所受的力或力矩不发生变化,它能在新的位置上再次平衡,这样的平衡叫随遇平衡。 【例题选讲】 1.如图所示,两相同的光滑球分别用等长绳子悬于同一点,此两球同时又支撑着一个等重、等大的光滑球而处于平衡状态,求图中α(悬线与竖直线的夹角)与β(球心连线与竖直线的夹角)的关系。 面圆柱体不致分开,则圆弧曲面的半径R最大是多少?(所有摩擦均不计) R

高中物理讲稿

2008年高考物理复习串讲 一、三个模型的正确理解 1.轻绳 (1)不可伸长——沿绳索方向的速度大小相等、方向相反。 (2)不能承受压力,拉力必沿绳的方向。 (3)内部张力处处相等,且与运动状态无关。 2.轻弹簧 (1)约束弹簧的力是连续变化的,不能突变。 (2)弹力的方向沿轴线。 (3)任意两点的弹力相等 3.轻杆 (1)不可伸长和压缩——沿杆方向速度相同。 (2)力可突变——弹力的大小随运动可以自由调节。 二、牛顿定律与运动 1.在恒力作用下的匀变速运动 (1)句变速直线运动的研究技巧 矢量性(确定正方向) 关键运动示意图,对称性和周期性,图 a是否一样(往复运动) (2)研究匀变速曲线运动的基本方法(出发点) ——灵活运用运动的合成和分解 按正交方向分解抛体运动 ?带电粒子在电场中的运动 按产生运动的原因分解渡河问题 2.在变力作用下的圆周运动和机械振动 (1)圆周运动 ①圆周运动的临界问题 绳子0 圆周轨道的最高点、最低点(绳型、杆型)的极值速度临界轨道0 ? 摩擦力锥摆型、转台型、转弯型的轨道作用力临界 ②典型的圆周运动:天体运动、核外电子绕核运动、带电粒子在磁场中的运动、 带电粒子在多种力作用的圆周运动 ③等效场问题 ④天体运动问题 考虑多解性 (2)振动过程分析对称性V 的对称平衡位置的确定 特殊位置特征 (3)圆周运动、振动、波的系列解的确定方法 考虑时空周期性 运动的双向性 三、四个物理量的比较 功:——①F ②S ③功的正负判断方法④变力功的求法⑤一对内力功

1.功和冲量 冲量:——①变力冲量的求法 ②对合冲量的理解 ③一对内力的冲量 区别:一矢一标 2.动量与动能 关系:k k mE P m p E 222 == P E k ??与的关系:变化k E P 一定变化;P 变化;k E 不一定变化 四、四个规律的比较 (1)条件的比较 碰撞模型 (2)典型问题 反冲与爆炸 人船模型 五.带电粒子运动计算 (一)带电粒子在电场中运动 r v m r Qq k 2 2 = 点电荷电场中: 匀变速直线运动 1.常见运动 匀强电场中 匀变速曲线运动 方向不变的直线运动 交变电场中 振动 迂回运动 2.处理技巧 匀速直线运动 F 合=0 (1)粒子作直线运动 匀变速直线运动——三法均可以 变加速直线运动——功能关系 分解方法:牛顿定律+运动学公式或能量定理 (2)粒子作曲线运动 功能关系 (3)粒子在交变电场中运动

高中物理选修3-2电磁感应讲义(可编辑修改word版)

高中物理选修3-2 电磁感应复习 一、电磁感应现象及其发生条件 1、电磁感应现象 当穿过闭合电路的磁通量发生变化时,电路中有感应电流产生,这种现象叫做电磁感应,产生的电流叫做感应电流.2.电磁感应的条件 (1)产生感应电流的条件为: ①电路为闭合电路;②回路中磁通量发生变化。 (2)感应电动势产生的条件:穿过电路的磁通量发生变化。 这里不要求闭合.无论电路闭合与否,只要磁通量变化了,就会有感应电动势产生。 例1.现将电池组、滑动变阻器、带铁芯的线圈A、线圈B、电流计及电键如图连接.下列说法中正确的是( ) A.电键闭合后,线圈A 插入或拔出都会引起电流计指针偏转 B.线圈A 插入线圈B 中后,电键闭合和断开的瞬间电流计指针均不会偏转 C.电键闭合后,滑动变阻器的滑片P 匀速滑动,会使电流计指针静止在中央零 刻度 D.电键闭合后,只有滑动变阻器的滑片P 加速滑动,电流计指针才能偏转 例2.如图2 所示,矩形线框abcd 的一边ad 恰与长直导线重合(互相绝缘).现使线框绕不同的轴转动,能使框中产 生感应电流的是[ ] A.绕ad 边为轴转动B.绕oo′为轴转动 C.绕bc 边为轴转动D.绕ab 边为轴转动 例3.如图6 所示,一有限范围的匀强磁场宽度为d,若将一个边长为l 的正方形导线框以速度v 匀速地通过磁场区域,

已知d>l,则导线框中无感应电流的时间等于[ ] 例4.条形磁铁竖直放置,闭合圆环水平放置,条形磁铁中心线穿过圆环中心,如图7 所示。若圆环为弹性环,其形状由Ⅰ扩大为Ⅱ,那么圆环内磁通量变化情况是[ ] A.磁通量增大B.磁通量减小C.磁通量不变D.条件不足,无法确定 二、楞次定律(来句去留、增反减同、增缩减扩) 1.楞次定律:感应电流具有这样的方向,就是感应电流的磁场总要阻碍引起感应电流的磁通量的变化. 2.应用楞次定律判断感应电流方向的四个步骤。 (1)明确原磁场的方向; (2)明确穿过回路的磁通量是增加还是减少; (3)根据楞次定律确定感应电流的磁场方向; (4)利用安培定则,判断感应电流的方向。 3.右手定则:伸开右手,让拇指跟其余四指垂直,并且都跟手掌在一个平面内,让磁感线从掌心进入,拇指指向导体切割磁感线的运动方向,其余四指指的就是感应电流的方向. 例1.如图6 所示,光滑导轨MN 水平放置,两根导体棒平行放于导轨上,形成一个闭合回路,当一条形磁铁从上方下落(未达导轨平面)的过程中,导体P、Q 的运动情况是:[ ] A.P、Q 互相靠拢B.P、Q 互相远离 C.P、Q 均静止D.因磁铁下落的极性未知,无法判断

高中物理竞赛辅导讲义:原子物理

原 子 物 理 自1897年发现电子并确认电子是原子的组成粒子以后,物理学的中心问题就是探索原子内部的奥秘,经过众多科学家的努力,逐步弄清了原子结构及其运动变化的规律并建立了描述分子、原子等微观系统运动规律的理论体系——量子力学。本章简单介绍一些关于原子和原子核的基本知识。 §1.1 原子 1.1.1、原子的核式结构 1897年,汤姆生通过对阴极射线的分析研究发现了电子,由此认识到原子也应该具有内部结构,而不是不可分的。1909年,卢瑟福和他的同事以α粒子轰击重金属箔,即α粒子的散射实验,发现绝大多数α粒子穿过金箔后仍沿原来的方向前进,但有少数发生偏转,并且有极少数偏转角超过了90°,有的甚至被弹回,偏转几乎达到180°。 1911年,卢瑟福为解释上述实验结果而提出了原子的核式结构学说,这个学说的内容是:在原子的中心有一个很小的核,叫原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外的空间里软核旋转,根据α粒子散射的实验数据可估计出原子核的大小应在10-14nm 以下。 1、1. 2、氢原子的玻尔理论 1、核式结论模型的局限性 通过实验建立起来的卢瑟福原子模型无疑是正确的,但它与经典论发生了严重的分歧。电子与核运动会产生与轨道旋转频率相同的电磁辐射,运动不停,辐射不止,原子能量单调减少,轨道半径缩短,旋转频率加快。由此可得两点结论: ①电子最终将落入核内,这表明原子是一个不稳定的系统; ②电子落入核内辐射频率连续变化的电磁波。原子是一个不稳定的系统显然与事实不符,实验所得原子光谱又为波长不连续分布的离散光谱。如此尖锐的矛盾,揭示着原子的运动不服从经典理论所表述的规律。 为解释原子的稳定性和原子光谱的离经叛道的离散性,玻尔于1913年以氢原子为研究对象提出了他的原子理论,虽然这是一个过渡性的理论,但为建立近代量子理论迈出了意义重大的一步。 2、玻尔理论的内容: 一、原子只能处于一条列不连续的能量状态中,在这些状态中原子是稳定的,电子虽做加速运动,但并不向外辐射能量,这些状态叫定态。 二、原子从一种定态(设能量为E 2)跃迁到另一种定态(设能量为E 1)时,它辐射或吸收一定频率的光子,光子的能量由这种定态的能量差决定,即 γh =E 2-E 1 三、氢原子中电子轨道量子优化条件:氢原子中,电子运动轨道的圆半径r 和运动初速率v 需满足下述关系: π2h n rmv =,n=1、2…… 其中m 为电子质量,h 为普朗克常量,这一条件表明,电子绕核的轨道半径是不连

涡流检测试题讲课讲稿

涡流检测试题

第1页,共50页 1.对下述工件可采用涡流检测的是(d) a)铝合金锻件的热处理质量 b)碳钢的材料分选 c)导电材料的表面缺陷 d)以上都可以 2.在下面几个检测对象中指出能用涡流检测的对象(e) a.铝铸件表面裂纹 b.钢表面淬火硬度不均匀度 c.铸钢中心部位孔穴 d.钢焊缝的母材与熔敷金属界面 e.除c以外都可以 3.在下面几个检测对象中指出能用涡流检测的对象(d) a.金属表面涂层厚度的测定 b.钢的剩磁磁通密度的测定 c.碳钢钢种的鉴别 d.除b以外都可以 4.在下面几个检测对象中指出能用涡流检测的对象(e) a.有机玻璃管 b.铝管 c.石墨管 d.奥氏体钢管 e.除a以外都可以 5.涡流试验的原理是(B):A.磁致伸缩;B.电磁感应;C.压电能量转换;D.磁通势 6.涡流检测技术可以用来测量(D):A.涂层厚度;B.镀层厚度;C.薄板厚度;D.以上都是 7.涡流检测法最常用于(e):a)结构陶瓷材料 b)黑色金属材料 c)有色金属材料 d)石墨材料 e)B和C 8.涡流检测的原理是(c):a)磁致伸缩 b)压电能量转换 c)电磁感应 d)电致伸缩 9.涡流检测的原理是(c):a)磁致伸缩 b)压电效应 c)电磁感应 d)磁畴转动 10.从原理上讲,下列材料中不能采用涡流检测的是(a):a)玻璃钢 b)工具钢 c)不锈钢 d)轴承钢 11.下面哪种频率产生的涡流渗透深度最 大?(c):a)1MHz b)100Hz c)10KHz d)10MHz 12.用来描述试样与探头线圈之间距离变化引起电磁耦合变化所产生的影响的术语是(D) A.填充系数;B.边缘效应;C.端头效应;D.提离效应

电磁感应经典精讲(上)-高中物理讲义

简单学习网课程讲义 学科:物理 专题:电磁感应经典精讲(上) 考点梳理 金题精讲 题一 题面:如图,闭合线圈上方有一竖直放置的条形磁铁,磁铁的N 极朝下。当磁铁向下运动时(但未插入线圈内部)( ) A.线圈中感应电流的方向与图中箭头方向相同,磁铁与线圈相互吸引 B.线圈中感应电流的方向与图中箭头方向相同,磁铁与线圈相互排斥 C.线圈中感应电流的方向与图中箭头方向相反,磁铁与线圈相互吸引 D.线圈中感应电流的方向与图中箭头方向相反,磁铁与线圈相互排斥 题二 题面:如图所示,A 、B 是两根互相平行的、固定的长直通电导线,二者电流大小和方向都相同。一个矩形闭合金属线圈与A 、B 在同一平面内,并且ab 边保持与通电导线平行。线圈从图中的位置1匀速向左移动,经过位置2,最后到位置3,其中位置2恰在A 、B 的正中间。下面的说法中正确的是 ( ) A .在位置2这一时刻,穿过线圈的磁通量为零 B .在位置2这一时刻,穿过线圈的磁通量的变化率为零 a 2 1 3

C .从位置1到位置3的整个过程中,线圈内感应电流的方向发生了变化 D .从位置1到位置3的整个过程中,线圈受到的磁场力的方向没有发生变化 题三 题面:地磁场在北半球地磁场的竖直分量向下,飞机在我国上空匀速飞行,机翼保持水平,飞机高度不变,由于地磁场的作用,金属机翼上有电势差,设飞行员左方机翼末端处的电势为?1,右方机翼末端处的电势为?2,则( ) A . 若飞机从西向东飞,?1比?2高 B . 若飞机从东向西飞,?2比?1高 C . 若飞机从南向北飞,?1比?2高 D . 若飞机从北向南飞,?2比?1高 题四 题面:如图甲所示,由粗细均匀的电阻丝制成边长为l 的正方形线框abcd ,线框的总电阻为R 。现将线框以水平向右的速度v 匀速穿过一宽度为2l 、磁感应强度为B 的匀强磁场区域,整个过程中ab 、cd 两边始终保持与磁场边界平行。令线框的cd 边刚好与磁场左边界重合时t =0,电流沿abcd 流动的方向为正, u 0=Blv 。在图乙中画出线框中a 、b 两点间电势差u ab 随线框cd 边的位移x 变化的图象正确的是( ) 题五 A u -u u -u 00 00u u 00

重点高中物理电磁感应难题集

重点高中物理电磁感应难题集

————————————————————————————————作者:————————————————————————————————日期:

高中物理电磁感应难题集 Collect by LX 2014.04.11 1.(2015?青浦区一模)如图甲所示,MN、PQ为间距L=0.5m足够长的平行导轨,NQ⊥MN,导轨的电阻均不计.导轨平面与水平面间的夹角θ=37°,NQ间连接有一个R=4Ω的电阻.有一匀强磁场垂直于导轨平面且方向向上,磁感应强度为B0=1T.将一根质量为m=0.05kg的金属棒ab紧靠NQ放置在导轨上,且与导轨接触良好.现由静止释放金属棒,当金属棒滑行至cd处时达到稳定速度,已知在此过程中通过金属棒截面的电量 q=0.2C,且金属棒的加速度a与速度v的关系如图乙所示,设金属棒沿导轨向下运动过程中始终与NQ平行.(取g=10m/s2,sin37°=0.6,cos37°=0.8).求: (1)金属棒与导轨间的动摩擦因数μ (2)cd离NQ的距离s (3)金属棒滑行至cd处的过程中,电阻R上产生的热量 (4)若将金属棒滑行至cd处的时刻记作t=0,从此时刻起,让磁感应强度逐渐减小,为使金属棒中不产生感应电流,则磁感应强度B应怎样随时间t变化(写出B与t的关系式). 2.(2015?潍坊校级模拟)如图,两条平行导轨所在平面与水平地面的夹角为θ,间距为L.导轨上端接有一平行板电容器,电容为C.导轨处于匀强磁场中,磁感应强度大小为B,方向垂直于导轨平面.在导轨上放置一质量为m的金属棒,棒可沿导轨下滑,且在下滑过程中保持与导轨垂直并良好接触.已知金属棒与导轨之间的动摩擦因数为μ,重力加速度大小为g.忽略所有电阻.让金属棒从导轨上端由静止开始下滑,求: (1)电容器极板上积累的电荷量与金属棒速度大小的关系; (2)金属棒的速度大小随时间变化的关系.

高中物理竞赛辅导讲义_微积分初步

微积分初步 一、微积分的基本概念 1、极限 极限指无限趋近于一个固定的数值 两个常见的极限公式 0sin lim 1x x x →= *1lim 11x x x →∞??+= ??? 2、导数 当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限叫做导数。 0'lim x dy y y dx x ?→?==? 导数含义,简单来说就是y 随x 变化的变化率。 导数的几何意义是该点切线的斜率。 3、原函数和导函数 对原函数上每点都求出导数,作为新函数的函数值,这个新的函数就是导函数。 00()()'()lim lim x x y y x x y x y x x x ?→?→?+?-==?? 4、微分和积分 由原函数求导函数:微分 由导函数求原函数:积分 微分和积分互为逆运算。 例1、根据导函数的定义,推导下列函数的导函数 (1)2y x = (2) (0)n y x n =≠ (3)sin y x = 二、微分 1、基本的求导公式 (1)()'0 ()C C =为常数 (2)()1' (0)n n x nx n -=≠ (3)()'x x e e = *(4)()'ln x x a a a = (5)()1ln 'x x = *(6)()1log 'ln a x x a =

(7)()sin 'cos x x = (8)()cos 'sin x x =- (9)()21tan 'cos x x = (10)()21cot 'sin x x = **(11)() arcsin 'x = **(12)()arccos 'x = **(13)()21arctan '1x x =+ **(14)()2 1arccot '1x x =-+ 2、函数四则运算的求导法则 设u =u (x ),v =v (x ) (1)()'''u v u v ±=± (2)()'''uv u v uv =+ (3)2'''u u v uv v v -??= ??? 例2、求y=tan x 的导数 3、复合函数求导 对于函数y =f (x ),可以用复合函数的观点看成y =f [g (x)],即y=f (u ),u =g (x ) 'dy dy du y dx du dx == 即:'''u x y y u = 例3、求28(12)y x =+的导数 例4、求ln tan y x =的导数 三、积分 1、基本的不定积分公式 下列各式中C 为积分常数 (1) ()kdx kx C k =+?为常数 (2)1 (1)1n n x x dx C n n +=+≠-+?

相关文档
最新文档