对流占优扩散方程的差分法

对流占优扩散方程的差分法
对流占优扩散方程的差分法

摘要

对流占优扩散方程主要包含对流项和扩散项,其中对流项系数远远大于扩散项系数。在数值计算中,方程中的扩散项一般采用具有优良物理特性和计算精度的中心差分离散格式,而关于对流项的处理就稍显困难,若处理不当便会产生数值震荡或数值弥散,给数值计算带来困难。因此,需要对求解的方法做出改进。

本文主要讨论迎风差分格式,迎风加权差分格式,以及特征有限差分格式。三种方法都能够消除数值震荡,但各种方法间又各有差异。迎风格式计算量较小,能够消除数值震荡,但是数值解的精度不高。特征有限差分格式中含有多个未知的点,计算量特别大,从误差分析中可以看出,其数值解拥有较高的精度。迎风加权差分格式,是在迎风格式的基础上改进得到的,精度较高,其数值解不仅受到时间和空间步长的影响,还受到不同参数的影响。可以选取不同的参数是迎风加权格式的一个优点。

关键词:对流占优扩散方程;迎风格式;迎风加权差分格式;特征有限差分法

Abstract

Convection-dominated diffusion problems mainly contain convection and diffusion terms, which the convection coefficient is much larger than the diffusion coefficient. In the numerical calculation, diffusion terms in the equation commonly used central difference discretization scheme with excellent physical properties and calculation accuracy. However, the method of the convective terms slightly difficult. It would produce numerical shock or numerical dispersion if not handled properly. Therefore, we need to make some improvements.

This article focuses on upwind difference scheme, upstream weighted scheme, as well as characteristic finite difference method. The numerical oscillation can be eliminated by all three methods, but there are differences between each method. Upwind difference scheme has smaller amount of calculation, to eliminate the numerical oscillation, but the accuracy of numerical solution is not as good as we expect. Characteristic finite difference method which contains a number of unknown point, with a large amount of calculation, and we can see from the error analysis, the accuracy of numerical solution is much higher. Upstream weighted scheme, which improved based on upwind scheme, is not only influenced by the time and space step, but also affected by different parameter of . To choose a different parameter of is also an advantage of upstream weighted scheme.

Key Words: Convection-dominated diffusion problem; Upwind difference scheme; Upstream weighted scheme; Characteristic finite difference method

目录

1、绪论 (1)

1.1设计(论文)的背景及目的 (1)

1.2 国内外研究现状 (1)

1.3 论文主要研究内容 (2)

1.4 研究思路和方法 (3)

2、论文的预备知识 (4)

2.1 差分法简介 (4)

2.2 方法 (5)

2.3 差分格式的稳定性定理 (6)

3、含对流项的一维抛物型方程 (7)

3.1 中心差分格式的推导 (7)

3.2稳定性分析 (8)

3.3中心差分格式的缺陷 (10)

4、迎风格式 (11)

4.1 对流占优扩散方程的迎风差分格式 (11)

4.2迎风差分格式的稳定性分析 (13)

5、迎风加权差分格式 (14)

5.1加权差分格式的建立 (15)

5.2稳定性分析 (15)

6、特征有限差分法 (16)

6.1特征差分格式的建立 (17)

6.2双线性插值 (18)

7、数值算例 (19)

结论 (26)

谢辞 (27)

参考文献 (28)

附录 (29)

对流占优扩散方程的差分法

1、绪论

1.1设计(论文)的背景及目的

对流占优扩散方程是一类基本的运动方程,它可用于环境科学、能源开发、流体力学和电子科学等许多领域,对该方程数值计算方法的研究具有重要的理论和实际意义。对流扩散方程右端第一项为扩散项,左端第二项则是对流项。由于其方程本身的特点,给建立准确有效的数值求解方法带来一定的困难。对流和扩散给流体中由流体携带的某种物理量的变化过程,可以通过一个无量纲的特征参数(数)来描述。如果数较小,即对流效应相对较弱,这类问题中,扩散占主导地位,方程是椭圆型或抛物线型;如果数较大,即溶质分子的扩散相对于流体速度而言是缓慢的,这类问题中,对流占优,方程具有双曲型方程的特点。

该方程表征了流动系统的质量传递规律,求解此方程可得出浓度分布。此方程系通过对系统中某空间微元体进行物料衡算而得。对于双组分系统,A组分流入某微元体的量,加上在此微元体内因化学反应生成的量,减去其流出量,即为此微元体中组分A的积累量。考虑到组分A进入和离开微元体均由扩散和对流两种作用造成,而扩散通量是用斐克定律表述的。对流占优扩散方程具有一个共性,即对流占优性,由于对流项的存在给数值求解带来许多困难。因此,寻找一种有效数值解法一直是计算数学中重要研究内容。

本文考虑一维对流扩散方程。用通常的差分法进行求解可能会出现数值震荡,为克服数值震荡,需要对传统的差分方程改进,如迎风格式,迎风加权差分格式,特征有限差分方法等。本文将讨论上述三种解决对流占优问题的差分算法,说明每种算法的稳定性条件,收敛性等,并结合数值算例说明。

1.2 国内外研究现状

年代,和等提出特征修正技术求解对流占优扩散问题,与其他方法相结合,提出了特征有限差分方法、特征有限元方法、特征混合有限元方法等,并给出理论分析;提出过一种沿线方向附加人工黏性的间断有限元法,称为流线扩散方程()。有限差分法、有限元法、有限体积法是工程应用中的主要方法。

西南石油大学本科毕业设计(论文)

国内也有许多这一方面的文献,秦新强在《对流占优扩散发方程的一种特征差分算法》中,提出了解对流扩散方程的特征线法, 这一方法考虑沿着特征线(流动方向) 的离散, 利用了对流扩散问题的物理力学特征, 可以有效地克服数值震荡, 保证数值解的稳定;梁栋在《对流扩散方程的一类迎风格式》中,对其方程进行分析, 得到了稳定性和收敛性定理。

1.3 论文主要研究内容

对流占优问题的求解,若采用常规的方法,很容易出现数值震荡。为了避免求解结果产生数值振荡,获得稳定解,本文讨论一些改进的差分方法,来求解常系数的对流占优对流扩散问题,使其得到稳定的数值解。

(1)迎风格式

基于广义差分法,数学家们提出了数值求解的一类迎风格式。从简单的一维常系数双曲方程着手,对我们构造差分格式是很有启发的。构造对流占优扩撒问题的差分逼近,为了导出稳定性条件,通常用局部固定系数法或视变系数为常系数法。最后按照气体理学的含义,系数表示气流速度,因此,人们称其为迎风格式。再对方程进行分析,得到了稳定性和收敛性定理,并对一类模型问题进行试算,结果良好。

(2)迎风加权差分格式

这也是一种解非定常对流占优扩散方程的有效方法,它实际上是对迎风格式的进一步改进,即对一般的空间中心格式和迎风格式进行加权处理。此格式适合对流项占优时求解,它是一个显示格式,计算量比较适中。另外,还有一个优点是可以通过选取参数而获得差分格式的适应性。经精度分析和数值验证,可得其稳定性良好,便于求解。

(3)特征有限差分方法

解对流扩散方程的特征线法,即考虑沿着特征线(流动方向) 的离散, 利用了对流扩散问题的物理力学特征, 可以有效地克服数值震荡, 保证数值解的稳定, 众多的理论和应用成果均采用了这一方法。另外,如果要进一步消除因分割区间的步长不同,而引起的数值震荡现象,则可对网格运用双线性插值的方法,构造出一种新的特征差分算法,同时由于算法构造的独特性,该算法还特别适用于求解变系数的对流占优扩散方程。

对流占优扩散方程的差分法

1.4 研究思路和方法

关于对流占优扩散问题的研究,目前国内外都没有的绝对良好的方法,只能尽可能的采用适合的逼近方法,来获取较稳定数值解。本文讨论前面提到的三种改进的差分格式,主要对三种方法进行阅读,理解其精髓,学会用方法判断其稳定性,后期要编程,并用实现数值算例的求解。这就要求在看懂方法的基础上,用数值算例来做检验,看其是否符合先前所做的稳定性分析和截断误差分析,从而验证该方法的正确性。并且对三种方法做出比较,能够在不同的情形下使用相应的差分方法来解决问题。

西南石油大学本科毕业设计(论文)

2、论文的预备知识

在进行论文写作之前,我们先要对毕业设计中可能用到的各种知识或者定理,进行说明和引述,以便在之后的论文中直接运用,不再赘述。本文中主要涉及到的知识有差分法,方法,以及差分格式相关的稳定性定理。而展开式等基本的方法,将不在本节详细介绍。

2.1 差分法简介

差分法是解微分方程的主要数值方法。由于数字电子计算机只能存储有限个数据和作有限次运算,所以任何一种计算机解题的方法,都必须把连续问题(微分方程的边值问题、初值问题等)离散化,最终化成有限形式的线性代数方程组。用差分法将连续问题离散化的步骤是,首先对求解区域做网格剖分,用有限个网格节点代替连续区域;其次将微分算子离散化,从定解问题的微分或积分形式出发,用数值微商或数值积分公式导出相应的代数方程,从而把微分方程的定解问题化为线性代数方程组的求解问题。

(1)差分法的基本问题

a)对求解域做网格剖分。一维情形是把区间分成一些等距或不等距的小区间,

称之为单元。二维情形则把区域分割成一些均匀或不均匀的矩形,其边与坐

标轴平行。也可分割成一些三角形或凸四边形等。

b)构造逼近微分方程定解问题的差分格式。有直接差分化法、有限体积法或广

义差分法、以及变分差分法。

c)差分解的存在唯一性、收敛性及稳定性的研究。这些理论问题都归结到对差

分解做出先验估计。

d)差分方程的解法。由于代数方程组的某些特点,容易导致数值震荡、病态,

所以求解时应采取某些特殊技巧。

(2)偏微分方程差分法的初值问题

对流占优扩散方程的差分法

许多物理现象随着时间而发生变化、如热传导过程、气体扩散过程和波的传播过程都与时间有关。描述这些过程的偏微分方程具有这样的性质:若初始时刻0t t =的解已经给定,则0t t >时刻的解完全取决于初始条件和某些边界条件,利用差分法解

这类问题,就是从初始值出发,通过差分格式沿时间增加的方向,逐步求出微分方程的近似解。

(3)偏微分方程差分法的边值问题

物理上的定常问题,如弹性力学中的平衡问题、电磁场及引力场等。其定解问题为各种边值问题,即要求解在某个区域D 内满足微分方程,在边界上满足给定的边界条件。差分解法可归结为选取合理的差分网格,建立差分格式,求解代数方程组以及考察差分格式的收敛性等问题。

2.2 方法 方法是分析差分方法稳定性的一种方法,又被称作方法,它是在第二次世界大战期间由首先提出的。该方法是目前分析线性常系数差分方程稳定性的应用最为广泛的方法。

我们用方法(包括积分和级数)将差分方程中的空间变量和时间变量分离,从而将差分方程的稳定性归结为有限阶矩阵族的一致有界性。

考虑一维的线性常系数抛物型方程

方程的初值和周期边值条件为

其中。则逼近它的二层差分方程的一般形式可以写为

101n n m j m m j m m N m N a u b u +++∈∈=∑∑,0,1,,1j N =-

这是空间网点处的差分方程,是包含及其邻近的正负整数的有限集合,不依赖但和有关。由于是周期边值条件,故可将周期开拓,使其对一切有意义,且方程对所有整数成立。

西南石油大学本科毕业设计(论文)

为了应用方法,我们再将。为此,取半整数点,并用如下阶梯函数逼近初试函数:

0()()j u x x ?=,当1122

j j x x x -+<<,

再将看成在任意成立,则得具连续变量的差分解。显然仍是的周期函数。这样我们就可将方法用于具连续空间变量的差分方程:

101()()n n m m m m m N m N a u x x b u x x +∈∈+=+∑∑

将展成级数:

2)(exp()n n p p p u x v i x l

∞π=-∞=

∑, 把,再比较对应项系数,得 1(,)n n p p v G ph v τ+=,

其中

101

22exp()exp ()(),m m m N m N m m a i ph b i ph l l G ph ππτ∈∈-????=?????????

∑∑ 我们称为增长因子,它是判断差分格式稳定与否的重要依据,也是进行稳定性分析的重要手段。 2.3 差分格式的稳定性定理

定理2.3.1 差分方程按谱范数稳定的充分必要条件是,对于任意的,均成立不等式

(,)n G ph K τ≤,

即(,)n G ph τ一致有界。其中为一个独立的正常数。

推论 差分方程按谱范数稳定的条件是,对于任意的,均成立不等式

(,)1()n G ph O ττ≤+。

对流扩散方程

徐州工程学院 课程设计报告 课程名称偏微分方程数值解 课题名称对流扩散方程 的迎风格式的推导和求解专业信息与计算科学 班级10信计3 姓名学号 指导教师杨扬 2013年 5 月23 日

一、实验目的: 进一步巩固理论学习的结果,学习双曲型对流扩散方程的迎风格式的构造 方法,以及稳定的条件。从而进一步了解差分求解偏微分方程的一些基本概念,掌握数值求解偏微分方程的基本过程。在此基础上考虑如何使用Matlab 的软件进行上机实现,并针对具体的题目给出相应的数值计算结果。 二、实验题目: ?? ? ??-=-==<<<<+=+);2/1exp(),1();exp(),0();2/exp()0,(10,10,11t t u t t u x x u t x f u b u a u xx x t 其中a1=1,b1=2, ) 2/exp(),(t x t x f --=。 用迎风格式求解双曲型对流扩散方程,观差分解对真解的敛散性()2/exp(t x u -= 三、实验原理: 1、用迎风格式求解双曲型对流扩散方程,迎风格式为: ) 01(21 1 )01(2112 1 1112 1 11 1<++-=-+->++-=-+--+++-+-+a f h u u u b h u u a u u a f h u u u b h u u a u u n j n j n j n j n j n j n j n j n j n j n j n j n j n j n j n j τ τ 若令,/*1,/*12h b h a r τμτ== 则迎风格式可整理为: > <<++-+-+=><>++++--=-+++-+2)01()()21(1)01()()21(111111a f u u r u r u a f u u r u r u n j n j n j n j n j n j n j n j n j n j τμμμτμμμ2、稳定条件: ) () (01),*11*2/(01),*11*2/(2 2<-≤>+≤a h a b h a h a b h ττ(*) 四、数值实验的过程、相关程序及结果: 本次的实验题目所给出的边界条件是第一边界条件,直接利用所给的边界条件,我们可以给出界点处以及第0层的函数值,根据a1的正负性,使用相应的<1>或者<2>式,求出其他层的函数值。误差转化成图的形式,并输出最大值。 针对三种不同的输入对应输出结果 :

一维热传导方程

一维热传导方程 一. 问题介绍 考虑一维热传导方程: (1) ,0),(22T t x f x u a t u ≤<+??=?? 其中a 是正常数,)(x f 是给定的连续函数。按照定解条件的不同给法,可将方程(1)的定解问题分为两类: 第一类、初值问题(也称Cauthy 问题):求具有所需次数偏微商的函数),(t x u ,满足方程(1)(∞<<∞-x )和初始条件: (2) ),()0,(x x u ?= ∞<<∞-x 第二类、初边值问题(也称混合问题):求具有所需次数偏微商的函数),(t x u ,满足方程(1)(l x <<0)和初始条件: (3) ),()0,(x x u ?= l x <<0 及边值条件 (4) .0),(),0(==t l u t u T t ≤≤0 假定)(x ?在相应区域光滑,并且在l x ,0=满足相容条件,使上述问题有唯一充分光滑的解。 二. 区域剖分 考虑边值问题(1),(4)的差分逼近。去空间步长N l h /=和时间步长M T /=τ,其中N,M 都是正整数。用两族平行直线: 将矩形域}0;0{T t l x G ≤≤≤≤=分割成矩形网格,网格节点为),(k j t x 。以h G 表示网格内点集合,即位于开矩形G 的网点集合;h G 表示所有位于闭矩形G 的网点集合;h Γ=h G --h G 是网格界点集合。 三. 离散格式 第k+1层值通过第k 层值明显表示出来,无需求解线性代数方程组,这样的格式称为显格式。 第k+1层值不能通过第k 层值明显表示出来,而由线性代数方程组确定,这样的格式称为隐格式。 1. 向前差分格式 (5) ,221 11j k j k j k j k j k j f h u u u a u u ++-=--++τ

扩散方程的差分解法

扩散方程的差分解法 在研究热传导过程、扩散过程、边界层现象时,我们常常遇到抛物型方程,这类方程中最典型、最简单的就是热传导方程。热传导方程中的自变量中包括时间t ,它是描述一种随时间变化的物理过程,即所谓不定常现象。这类问题的基本定解问题应是初值问题,即在初始时刻(t=0)时给定定解条件,求解t>0时的解。 本文主要运用有限差分法对一维扩散方程进行求解,并对差分解的适定性、相容性、收敛性及稳定性进行分析,同时与解析解进行对比。 1.扩散方程 一维扩散方程为: 22u u t x α??=?? (1) 式中,u 为因知量,α为扩散系数,x 为坐标,t 为时间。 其定解条件如下: 初始条件: (,0)() 0x u x f x L =≤≤ (2) 边界条件: 12(0,)() , (,)()u t f t u L t f t == (3) 一般假定函数()f x ,1()f t ,2()f t 满足连接条件,即1(0)(0) f f =,2()(0) f L f =。 2.有限差分法 有限差分法是数值计算解微分方程古老的方法之一,也是系统化地、数值地求解数学物理方法的方程。其控制方程中的导数用离散点上函数值的差商代替。 差分格式可以分为显格式和隐格式。所谓显格式是指在任一结点上因变量在新是时间层上的值可以通过之前的时间层上相邻结点变量的值显式解出来。由于这些层的变量值是已知的,当时间向前推进时,空间点上的新的变量值就只需逐点计算就行了,因此显格式计算起来比较省事。隐格式则是指任一结点上变量在新的时间层的值,不能通过之前的时间层上相邻结点的值显式解出来,它不仅与之前的时间层上的已知值有关,而且也与新时间层的相邻结点的变量值有关。因而一个差分方程常常包括几个相邻结点上的未知数,未知数的个数取决于格式的构成形式。为了解出这些未知数需要联立新的方程,而每引进一个新的方程往往又同时引进了新的未知数。因此,隐格式总是伴随着求解巨大的代数方程组。隐格式的主要缺点是计算工作量大,因而不如显格式计算得快,但这只是就时间步长一样的情况而言的。隐格式的主要优点是时间步长可以比显格式能够采用的最大步长大很多。显格式的时间步长受到稳定性条件的限制,而隐格式则几乎不受限制。 3.方程的离散 3.1 显格式 采用时间前差及第n 时间层的空间中心差,得一维扩散方程的显格式解: 111 2 2()n n n n n j j j j j u u u u u t x α ++---+=?? (4) 即 111(2) n n n n n j j j j j u u r u u u ++-=+-+ (5)

热传导方程向后差分格式的MATLAB程序

向后差分格式MATLAB编程: c lear;clc; format short e a=input('请输入系数a的值'); l=input('请输入长度l的值'); M=input('请输入将区间[0,1]等分的个数M '); ot=input('请输入时间增量ot的值'); n=input('请输入运行次数n的值'); ox=1/M; x0=zeros(M+1,1) for ii=1:M x0(ii+1)=ii*ox; end u=sin(pi*x0/l); r=a*ot/(ox)^2; for ii=1:n %数据的输入 B=zeros(M-1,1); A=zeros(M-2,1); C=zeros(M-2,1); S=zeros(M-1,1); for ii=1:M-2 B(ii)=1+2*r;A(ii)=-r;C(ii)=-r; S(ii)=u(ii+1,1); end B(M-1,1)=1+2*r;S(M-1,1)=u(M,1);u(1,2)=0;u(M+1,2)=0; S(1,1)=S(1,1)+r*u(1,2);S(M-1,1)=S(M-1,1)+r*u(M+1,2); %追赶法 S(1)=S(1)/B(1);T=B(1);k=2; while k~=M B(k-1)=C(k-1)/T; T=B(k)-A(k-1)*B(k-1); S(k)=(S(k)-A(k-1)*S(k-1))/T; k=k+1 end k=1; while k~=M-1 S(M-1-k)=S(M-1-k)-B(M-1-k)*S(M-k); k=k+1; end u(2:M,2)=S; u(:,1)=u(:,2); end %计算精确解 for x=0:M

热传导方程向前差分格式的MATLAB程序

向前差分格式MATLAB编程: c lear;clc; format short e a=input('请输入系数a的值'); l=input('请输入长度l的值'); M=input('请输入将区间[0,1]等分的个数M '); ot=input('请输入时间增量ot的值'); n=input('请输入运行次数n的值'); ox=1/M; x0=zeros(M+1,1) for ii=1:M x0(ii+1)=ii*ox; end u=sin(pi*x0/l); r=a*ot/(ox)^2; for ii=1:n %数据的输入 B=zeros(M-1,1); A=zeros(M-2,1); C=zeros(M-2,1); S=zeros(M-1,1); for ii=1:M-2 B(ii)=1+2*r;A(ii)=-r;C(ii)=-r; S(ii)=u(ii+1,1); end B(M-1,1)=1+2*r;S(M-1,1)=u(M,1);u(1,2)=0;u(M+1,2)=0; S(1,1)=S(1,1)+r*u(1,2);S(M-1,1)=S(M-1,1)+r*u(M+1,2); %追赶法 S(1)=S(1)/B(1);T=B(1);k=2; while k~=M B(k-1)=C(k-1)/T; T=B(k)-A(k-1)*B(k-1); S(k)=(S(k)-A(k-1)*S(k-1))/T; k=k+1 end k=1; while k~=M-1 S(M-1-k)=S(M-1-k)-B(M-1-k)*S(M-k); k=k+1; end D=(1-2*r)*eye(M-1); temp=r*linspace(1,1,M-2); D=D+diag(temp,1)+diag(temp,-1); S=D*S

第三章 一维扩散方程

第三章 一维扩散方程 本章讨论一维扩散方程。首先,从随机过程中的一维扩散方程的讨论可直接得到扩散方程的解。然后对非齐次和各类边值问题相应的扩散方程作了讨论。讨论的方程类型 (1)直线上的齐次和非齐次扩散方程: 2,,0 (,0)() t xx u c u x t u x x ??=-∞<<∞>? =?;(利用随机过程的理论得到结论,再直接验证) (,),,0 (,0)() t xx u ku f x t x t u x x ?-=-∞<<∞>?? =?;(算子方法,与常微分方程类比) (2)半直线上的扩散方程0,0,0(,0)(),(0,)0t xx u ku x t u x x u t ?-=<<∞>?? =??=? ;(其它非齐次边界等) 对扩散方程理论方面的探讨:最大(最小)值原理。由此证明方程解的唯一性和稳定性。 §3.1全直线上的扩散方程 首先讨论随机过程中的扩散过程。设想粒子在一维直线上作连续随机游动(Brown 运动),满足性质:在t ?时间内位移转移概率为均值为0,方差为2 t σ?的正态分布。在时刻t 处于x 的概率密度记为(,)Pr(())u x t dx X t x dx ==。则 2 ()2(,)(,)x y t u x t t u y t dy σ-∞ -?-∞+?=?, 或 2 2 (,)(,)y u x t t u x y t dy ∞ -+?= +? 2222 1 [(,)(,)(,)()]2 y x xx u x t u x t y u x t ty o t dy σ∞ - = ++?+?? 21 (,)(,)()2 xx u x t u x t t o t σ=+?+? 因此, 2 2 t xx u u σ= 。 可见:一维Brown 运动的状态概率密度满足扩散方程。 从随机过程的角度,可直接写出状态概率密度: 22()2(,)(,0)y x t u x t e u y dy σ-∞ - = ?。 所以,有如下定理。 定理 扩散方程2,,0 (,0)() t xx u c u x t u x x ??=-∞<<∞>?=?的解为

对流扩散方程引言

对流扩散方程的定解问题是指物质输运与分子扩散的物理过程和黏性流体流动的数学模型,它可以用来描述河流污染、大气污染、核污染中污染物质的分布,流体的流动和流体中热传导等众多物理现象。关于对流扩散方程的求解很也备受关注,因此寻找一种稳定实用的数值方法有着重要的理论与实际意义。 求解对流扩散方程的数值方法有多种,尤其是对流占优扩散方程,这些方法有迎风有限元法,有限体积法,特征有限体积法,特征有限差分法和特征有限元法,广义差分法,流线扩散法,以及这些方法与传统方法相结合的方法如迎风广义差分法,迎风有限体积法有限体积——有限元法等这些方法数值求解效果较好,及有效的避免了数值震荡,有减少了数值扩散,但是一般计算量偏大 近年,许多研究者进行了更加深入的研究,文献提出了对流扩散方程的特征混合元法,再次基础上,陈掌引入了特征间断混合元方法,还有一些学者将特征线和有限体积法相结合,提出了特征有限体积元方法(非线性和半线性),于此同时迎风有限元也得到较大的发展,胡建伟等人研究了对流扩散问题的Galerkin 部分迎风有限元方法和非线性对流扩散问题的迎风有限元,之后又有人对求解发展型对流扩散问题的迎风有限元法进行了理论分析 有限差分法和有限元是求解偏微分方程的常用数值方法,一般情况下考虑对流占优的扩散方程,当对流项其主导作用时,其解函数具有大梯度的过渡层和边界层,导致数值计算困难,采用一般的有限元或有限体积方法虽然具有形式上的高精度,不能解决数值震荡的问题,虽然我们不能简单的将对流占优扩散方程看做对流方程,但由于次方程中含有一阶不对称的导数,对流扩散方程仍会表现出“对流效应”,从而采用迎风格式逼近,尽量反应次迎风特点,此格式简单,克服了锋线前沿的数值震荡,计算结果稳定,之前的迎风格式只能达到一阶精度,我们采用高精度的广义迎风格式,此格式是守恒的,精度高,稳定性好,具有单调性,并且是特征线法的近似,有效的避免了锋线前沿的数值震荡。 有限体积是求解偏微分方程的新的离散技术,日益受到重视。有限体积与有限差分、有限元法最大的区别及优点在于有限体积将求解区域内的计算转化到控制体积边界上进行计算,而后二者均是直接(或间接)在域内计算,故有限体积有着明显的物理涵义,在很大程度上减少计算工作量又能满足计算精度要求,加快收敛速度。由于此方法讲散度的积分化为子域边界积分后子啊离散,数值解满足离散守恒,而且可以采用非结构网格,所以在计算物理特别是计算流体力学领域上有限体积有广阔的前景。 间断Galerkin(DG)方法是在1973年,Reed和Hill在求解种子迁移问题时,针对一阶双曲问题的物理特点提出的。之后C.Johnson,G.R.Richter等人对双曲问题的DG方法做了进一步的研究,并且得到了该机的误差分析结果,由于这种方法具有沿流线从“上游”到“下游”逐层逐单元计算的显示求解的特点,并且可以进行并行计算,所以被广泛应用于各类方程的求解。最近Douglas等人在{25}中处理二阶椭圆问题时,得到DG方法的有限元空间不需要满足任何连续性条件,因此空间构造简单,具有较好的局部性和并行性。DG发展的一个重要方面是对对流占优扩散方程的应用。G.R.Richter等在1992年提出利用DG方法求解定长对流扩散问题 近年DG方法有了新的发展,其中YeXiu提出间断体积元方法备受人们关注,2004年,她将有限体积法与DG相结合,提出了椭圆问题的间断有限体积法,此方法解除了逼近函数在跨越边界上连续的限制,之后更多的研究者应用到Stokes问题,抛物问题,双曲问题,并得到了较好的结果,该方法不但继承了有限体积的高精度计算简单及保持物理间局部守恒等优点,而且有限元空间无需满足任何连续性要求,空间构造简单,有较好的局部和并行性。 当对流扩散方程中的对流项占主导地位时,方程具有双曲方程的特点,这是由于对流扩散方程中的非对称的对流项所引起的迎风效应使对流扩散方程的数值求解更困难,用传统的中心差分法和标准的有限元求解会差生数值的震荡,从而使数值模拟失真,为了克服这一困难,早在20世纪50年代,就有人提出了迎风思想,由于使用迎风技巧可以有效的消除数值解不稳定性,因此吸引了众多学者的关注,从1977年,Tabata等人就针对对流扩散方程提出了三角形网格上的迎风格式{42,38},并进行了深入的研究,梁栋基于广义差分法,提出并分析了一类建立在三角网格上的广义迎风差分格式,袁益让2001年就多层渗流方程组合系统提出并分析了迎风分数步长差分方法,以上均是讨论的线性对流扩散问题,胡建伟等通过引入质量集中算子,构造并分析了一类基于三角网格的质量集中型的部分有限元方法处理线性和非线性对流扩散问

一类反应扩散方程解的长时间行为

I 一类反应扩散方程解的长时间行为 摘 要 本文主要在一个有界光滑区域中讨论了一类带有齐次Dirichlet 边值条件的反应扩散方程解的长时间行为,其方程的形式如下: 其中 偏微分算子是一致抛物的, ,满足一定条件。 对于以上方程,我们首先定义了该方程的弱解,之后我们在有限维空间中构造了一系列该方程的近似解,并证明了在维数趋于无穷时,存在子列收敛于该方程的弱解。最后,我们利用先验估计得到了该方程弱解的存在唯一性。 在获得方程弱解的存在唯一性后,我们便能定义伴随方程的解半群,并由此研究伴随方程解半群的全局吸引子。 为了证明解半群在 中存在全局吸引子,我们证明 了伴随方程的解半群在 与中有界吸收集的存在性,并利用Sobolev 紧嵌入定理得到了全局吸引子的存在性。 关 键 词:反应扩散方程;Galerkin 方法;全局吸引子;弱解

II ABSTRACT In this thesis, we mainly consider the long-time behavior of solutions for the following reaction-diffusion equation with homogeneous Dirichlet boundary condition in a bounded smooth domain : where The partial differential operator is uniformly parabolic, and satisfies some additional assumptions. First of all, we give the definition of weak solutions, and then, we construct a sequence of approximate solution in a n dimension subspace and show that there exists a subsequence will convergent to a weak solution of this problem when n goes to infinite. Finally, we establish the existence and uniqueness of weak solution by some aprior estimates. With the help of the existence and the uniqueness of weak solutions, we define the solution semigroup associate with the problem and investigate the existence of a global attractor for the semigroup. To prove the existence of a global attractor, we show that there exist bounded absorbing sets in and and obtain existence of a global attractor in by using the Sobolev compactness embedding theorem. KEY WORDS: Reaction-diffusion equation; Galerkin’s method ; Global attractor; Weak solution

【文献综述】热传导方程差分格式的收敛性和稳定性

文献综述 信息与计算科学 热传导方程差分格式的收敛性和稳定性在实际研究物理问题过程中, 往往能给出问题相应的数学表达式, 但是由于实际物理问题的复杂性, 它的解却一般不容易求出. 由此计算物理应运而生, 计算物理是以计算机为工具, 应用数学的方法解决物理问题的一门应用性学科, 是物理、数学和计算机三者结合的交叉性学科. 它产生于二战期间美国对核武器的研究, 伴随着计算机的发展而发展. 计算物理的目的不仅仅是计算, 而是要通过计算来解释和发现新的物理规律. 这一点它与传统的实验物理和理论物理并无差别, 所不同的只是使用的工具和方法. 计算物理早已与实验物理和理论物理形成三足鼎立之势, 甚至有人提出它将成为现代物理大厦的“栋梁”. 在一个物理问题中一个数值解往往比一个式子更直观, 更有价值. 在实际求解方程时, 除了一些特殊的情况下可以方便地求得其精确解外, 在一般情况下, 当方程或定解条件具有比较复杂的形式, 或求解区域具有比较复杂的形状时, 往往求不到, 或不易求到其精确解. 这就需要我们去寻找方程的近似解, 特别是数值近似解, 简称数值解. 这里主要研究的是热传导方程. 有限差分法是微分方程和积分微分方程数值解的方法. 其基本思想是把连续的定解区域用有限个离散点构成的网格来代替, 这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似, 积分用积分和来近似, 于是原微分方程和定解条件就近似地代之以代数方程组, 即有限差分方程组, 解此方程组就可以得到原问题在离散点上的近似解. 然后再利用插值方法便可以从离散解得到定解问题在整个区域上的近似解. 热传导的差分法是求解热传导方程的重要方法之一. 对于差分格式的的求解, 我们首先要关注差分格式的收敛性和稳定性. 对于一个微分方程建立的各种差分格式, 为了有实用意义, 一个基本要求是它们能够任意逼近微分方程, 即相容性要求. 一个差分格式是否有用, 就要看差分方程的精确解能否任意逼近微分方程的解, 即收敛性的概念. 此外, 还有一个重要的概念必须考虑, 即差分格式的稳定性. 因为差分格式的计

fick定律扩散方程

扩散方程 扩散方程稳态扩散与非稳态扩散 1.稳态扩散下的菲克第一定律(一定时间内,浓度不随时间变化dc/dt=0) 单位时间内通过垂直于扩散方向的单位截面积的扩散物质流量(扩散通量)与该面积处的浓度梯度成正比 即J=-D(dc/dx) 其中D:扩散系数,cm2/s,J:扩散通量,g/cm2·s ,式中负号表明扩散通量的方向与浓度梯度方向相反。 可见,只要存在浓度梯度,就会引起原子的扩散。 x轴上两单位面积1和2,间距dx,面上原子浓度为C1、C2 则平面1到平面2上原子数n1=C1dx ,平面2到平面1上原子数n2=C2dx 若原子平均跳动频率f, dt时间内跳离平面1的原子数为n1f·dt 跳离平面2的原子数为n2fdt,但沿一个方向只有1/2的几率,则单位时间内两者的差值即扩散原子净流量。 令,则上式 2.扩散系数的测定: 其中一种方法可通过碳在γ-Fe中的扩散来测定纯Fe的空心园筒,心部通渗碳气氛,外部为脱碳气氛,在一定温度

下经过一定时间后,碳原子从内壁渗入,外壁渗出达到平衡,则为稳态扩散单位时单位面积中碳流量: A:圆筒总面积,r及L:园筒半径及长度,q:通过圆筒的碳量 则: 即: 则: q可通过炉内脱碳气体的增碳求得,再通过剥层法测出不同r处的碳含量,作出C-lnr曲线可求得D。 第一定律可用来处理扩散中浓度不因时间变化的问 3.菲克第二定律:解决溶质浓度随时间变化的情况,即dc/dt≠0 两个相距dx垂直x轴的平面组成的微体积,J1、J2为进入、流出两平面间的扩散通量,扩散 中浓度变化为,则单元体积中溶质积累速率为 (Fick第一定律) (Fick第一定律) ,,, (即第二个面的扩散通量为第一个面注入的溶质与在这一段距离内溶质浓度变化引起的扩散通

一维热传导方程

一维热传导方程Last revision on 21 December 2020

一维热传导方程 一. 问题介绍 考虑一维热传导方程: (1) ,0),(22T t x f x u a t u ≤<+??=?? 其中a 是正常数,)(x f 是给定的连续函数。按照定解条件的不同给法,可将方程(1)的定解问题分为两类: 第一类、初值问题(也称Cauthy 问题):求具有所需次数偏微商的函数),(t x u ,满足方程(1)(∞<<∞-x )和初始条件: (2) ),()0,(x x u ?= ∞<<∞-x 第二类、初边值问题(也称混合问题):求具有所需次数偏微商的函数),(t x u ,满足方程(1)(l x <<0)和初始条件: (3) ),()0,(x x u ?= l x <<0 及边值条件 (4) .0),(),0(==t l u t u T t ≤≤0 假定)(x ?在相应区域光滑,并且在l x ,0=满足相容条件,使上述问题有唯一充分光滑的解。 二. 区域剖分 考虑边值问题(1),(4)的差分逼近。去空间步长N l h /=和时间步长M T /=τ,其中N,M 都是正整数。用两族平行直线: 将矩形域}0;0{T t l x G ≤≤≤≤=分割成矩形网格,网格节点为),(k j t x 。以h G 表示网格内点集合,即位于开矩形G 的网点集合;h G 表示所有位于闭矩形G 的网点集合;Γ=G --G 是网格界点集合。

三. 离散格式 第k+1层值通过第k 层值明显表示出来,无需求解线性代数方程组,这样的格式称为显格式。 第k+1层值不能通过第k 层值明显表示出来,而由线性代数方程组确定,这样的格式称为隐格式。 1. 向前差分格式 (5) ,22111j k j k j k j k j k j f h u u u a u u ++-=--++τ )(j j x f f =, )(0 j j j x u ??==, 00==k N k u u , 其中j = 1,2,…,N-1,k = 1,2,…,M-1。以2/h a r τ=表示网比。则方程(5)可以改写为: 易知向前差分格式是显格式。 2. 向后差分格式 (6) ,11111)21(j k j k j k j k j f u ru u u ru τ+=-++-+-+++ )(0 j j j x u ??==, 00==k N k u u , 其中j = 1,2,…,N-1,k = 1,2,…,M-1,易知向前差分格式是显格式。 3. 六点对称格式(Grank-Nicolson 格式) 将向前差分格式和向后差分格式作算术平均,即得到六点对称格式: (7) 111112)1(2+-+++-++-k j k j k j u r u r u r =j k j k j k j f u r u r u r τ++-+-+112 )1(2 利用0j u 和边值便可逐层求到k j u 。六点对称格式是隐格式,由第k 层计算第k+1层时需解线性代数方程组(因系数矩阵严格对角占优,方程组可唯一求解)。

对流扩散方程有限差分方法.

对流扩散方程有限差分方法 求解对流扩散方程的差分格式有很多种,在本节中将介绍以下3种有限差分格式:中心差分格式、Samarskii 格式、Crank-Nicolson 型隐式差分格式。 3.1 中心差分格式 时间导数用向前差商、空间导数用中心差商来逼近,那么就得到了(1)式的中心差分格式]6[ 2 1 11 1122h u u u v h u u a u u n j n j n j n j n j n j n j -+-+++-=-+-τ (3) 若令 h a τ λ=,2h v τ μ=,则(3)式可改写为 )2()(2 111111 n j n j n j n j n j n j n j u u u u u u u -+-+++-+--=μλ (4) 从上式我们看到,在新的时间层1+n 上只包含了一个未知量1 +n j u ,它可以由时间层n 上的值n j u 1-,n j u ,n j u 1+直接计算出来。因此,中心差分格式是求解对 流扩散方程的显示格式。 假定),(t x u 是定解问题的充分光滑的解,将1 +n j u ,n j u 1+,n j u 1-分别在),(n j t x 处 进行Taylor 展开: )(),(),(211ττO t u t x u t x u u n j n j n j n j +??? ?????+==++ )(2),(),(3 22211 h O x u h x u h t x u t x u u n j n j n j n j n j +????????+????????+==++ )(2),(),(3 22211 h O x u h x u h t x u t x u u n j n j n j n j n j +????????+????????-==-- 代入(4)式,有 2 111 1122),(h u u u v h u u a u u t x T n j n j n j n j n j n j n j n j -+-+++---+-= τ )()()(2222 h O v x u v h O a x u a O t u n j n j n j ?-????????-?+????????++????????=τ )()()(222h O v a O x u v x u a t u n j n j n j ?-++????????-??? ?????+????????=τ

有关扩散方程

扩散方程稳态扩散与非稳态扩散 1.稳态扩散下的菲克第一定律(一定时间内,浓度不随时间变化dc/dt=0) 单位时间内通过垂直于扩散方向的单位截面积的扩散物质流量(扩散通量)与该面积处的浓度梯度成正比 即J=-D(dc/dx) 其中D:扩散系数,cm2/s,J:扩散通量,g/cm2〃s ,式中负号表明扩散通量的方向与浓度梯度方向相反。 可见,只要存在浓度梯度,就会引起原子的扩散。 x轴上两单位面积1和2,间距dx,面上原子浓度为C1、C2 则平面1到平面2上原子数n1=C1dx ,平面2到平面1上原子数n2=C2dx 若原子平均跳动频率f, dt时间内跳离平面1的原子数为 n1f〃dt 跳离平面2的原子数为n2fdt,但沿一个方向只有1/2的几率,则单位时间内两者的差值即扩散原子净流量。 令,则上式 2.扩散系数的测定:

其中一种方法可通过碳在γ-Fe中的扩散来测定纯Fe的空心园筒,心部通渗碳气氛,外部为脱碳气氛,在一定温度 下经过一定时间后,碳原子从内壁渗入,外壁渗出达到平衡,则为稳态扩散单位时单位面积中碳流量: A:圆筒总面积,r及L:园筒半径及长度,q:通过圆筒的碳量 则: 即: 则: q可通过炉内脱碳气体的增碳求得,再通过剥层法测出不同r处的碳含量,作出C-lnr曲线可求得D。 第一定律可用来处理扩散中浓度不因时间变化的问 3.菲克第二定律:解决溶质浓度随时间变化的情况,即dc/dt≠0

两个相距dx垂直x轴的平面组成的微体积,J1、J2为进入、流出两平面间的扩散通量,扩散中浓度变化为,则单元体积中溶质积累速率为 (Fick第一定律) (Fick第一定律) (即第二个面的扩散通量为第一个面注入的溶质与在这一段距离内溶质浓度变化引起的扩散通量之和) 若D不随浓度变化,则 故: 4.Fick第二定律的解:很复杂,只给出两个较简单但常见问题的解 a. 无限大物体中的扩散

一维扩散方程的差分法matlab

一维扩散方程的差分法 m a t l a b Company number【1089WT-1898YT-1W8CB-9UUT-92108】

一维扩散方程的有限差分法 ——计算物理实验作业七 陈万 题目: 编程求解一维扩散方程的解 取1.0,1.0,1.0,10,0.1,0,1,1,0,1,1max 0222111======-=====τh D t a c b a c b a 。输出t=1,2,...,10时刻的x 和u(x),并与解析解u=exp(x+0.1t)作比较。 主程序: % 一维扩散方程的有限差分法 clear,clc; %定义初始常量 a1 = 1; b1 = 1; c1 = 0; a2 = 1;b2 = -1; c2 = 0; a0 = 1.0; t_max = 10; D = 0.1; h = 0.1; tao = 0.1; %调用扩散方程子函数求解 u = diffuse_equation(a0,t_max,h,tao,D,a1,b1,c1,a2,b2,c2); 子程序1: function output = diffuse_equation(a0,t_max,h,tao,D,a1,b1,c1,a2,b2,c2) % 一维扩散方程的有限差分法,采用隐式六点差分格式(Crank-Nicolson) % a0: x 的最大值 % t:_max: t 的最大值

% h: 空间步长 % tao: 时间步长 % D:扩散系数 % a1,b1,c1是(x=0)边界条件的系数;a2,b2,c2是(x=a0)边界条件的系数 x = 0:h:a0; n = length(x); t = 0:tao:t_max; k = length(t); P = tao * D/h^2; P1 = 1/P + 1; P2 = 1/P - 1; u = zeros(k,n); %初始条件 u(1,:) = exp(x); %求A矩阵的对角元素d d = zeros(1,n); d(1,1) = b1*P1+h*a1; d(2:(n-1),1) = 2*P1; d(n,1) = b2*P1+h*a2; %求A矩阵的对角元素下面一行元素e e = -ones(1,n-1);

基于Peclet数判别法的一维对流扩散方程分类研究

基于Peclet 数判别法的一维对流扩散方程分类研究 摘要:采用Peclet 数的绝对值大小来判别一维对流扩散方程为对流占优型或是扩散占优型方程,运用三种隐式差分格式—中心隐式格式、对流C-N 型格式和扩散C-N 格式,对不同Peclet 数的算例进行离散和求解。然后,将计算区域中所有节点的解析解与数值解表示成矩阵形式,并求解出它们的矩阵2范数之后作比较,两者越接近则代表差分格式精度越高。通过比较得出了当方程Peclet 数的绝对值小于等于0.5时,方程为扩散占优型方程。在离散方法选取方面,针对扩散项的离散可以采用更高精度的差分格式,如扩散C-N 格式;当Peclet 数的绝对值大于等于20时,方程为对流占优型方程。此时,针对对流项可以采用更高精度的差分格式,如对流C-N 格式;当Peclet 数的绝对值介于0.5与20之间时,无法用Peclet 数判断方程类型,不过可以选择折衷的离散格式减小误差,如中心隐式格式。 关键字:一维对流扩散方程 Peclet 数判别法 有限差分方法 数值模拟 MR(2010)主题分类号:39A14;65M06 中图分类号:O242.2 文献标识码: A 1.引言 一维对流扩散方程是描述流体流动和传热问题的一类线性化模型方程。土壤、大气等多孔介质中水、盐分、温度以及污染物质的对流扩散问题都会遇到此类方程。在一维对流扩散方程的求解过程中,反映流体对流和扩散两种物理作用的分别是对流项和扩散项。所以,根据方程中对流项还是扩散项占主导作用,通常可将方程分为对流占优型和扩散占优型两类方程。然而,要想得到精确度较高的数值结果,这两种类型方程的离散方法不能采用相同的离散格式。因此,需要有一种判别方法来判断方程的类型,关于对流占优型和扩散占优型方程的判别方法一直是近年来研究的热点问题。这对研究不同类型的方程使用合适的差分格式进行离散具有实际的意义。由于Peclet 数的绝对值表示了对流作用相对扩散作用的大小,即绝 大,扩散所起的作用就可以忽略。反之,当Peclet 数为零时,方程就为纯扩散方程。本文选用一维定解非稳态对流扩散方程为例,通过考察Peclet 数的绝对值大小来对方程进行分类,方程一般形式如下: 2(,),,0 122(1)(,0)()(,)(),(,)()12(,) u u u a f x t x x x t t x x u x g x u x t t u x t t u u x t υ?φ???? ?? ?? ????+=+≤≤≥???==== 其中a 和υ分别代表对流项系数和扩散项系数。假定求解区间长度为s , Peclet 数的绝对值

一维对流扩散方程的稳定性条件推导

一维稳态对流扩散方程稳定性条件的推导 姓名: 班级:硕5015 学号: 2015/12/15

证明: 一维稳态对流扩散方程: 22u x x φφρ??=Γ?? 采用控制容积积分法,对上图P 控制的容积作积分,取分段线性型线,对均分网格可得下列离散方程: ()()()()()()()()11112222e w e w P E W e w e w w w e e u u u u x x x x φρρφρφρδδδδ??????ΓΓΓΓ+-+=-++????????????????记:()()()()1122e w P e w w e a u u x x ρρδδΓΓ=+-+ ()()12 e E e e a u x ρδΓ=- ()()12w W w w a u x ρδΓ= + 定义通过界面的流量u ρ记为F ,界面上单位面积扩散阻力的倒数x δΓ记为D ,则原式简化为: P P E E W W a a a φφφ=+ 12 E e e a D F =- 12 W w w a D F =+ ()P E W e w a a a F F =++- 令 u x F Pe D ρδ==Γ 则 1111222 E W P Pe Pe φφφ????-++ ? ?????=

当Pe 大于2以后,数值解出现了异常;P φ小于其左右邻点之值,在无源项情 况下是不可能的。因为当2Pe >时系数12 E e e a D F =-小于零,即右边点的通过对流及扩散作用对中间点所产生的影响是负的,这会导致物理上产生不真实的解,所以2u x Pe ρδ=≤Γ 证毕。

本科毕业设计--求解热传导方程的高精度隐式差分格式

新疆大学毕业论文(设计) 题目:求解热传导方程的高精度隐式差分格式所属院系:数学与系统科学学院 专业:信息与计算科学

声明 本人郑重声明该毕业论文(设计)是本人在开依沙尔老师指导下独立完成的,本人拥有自主知识产权,没有抄袭、剽窃他人成果,由此造成的知识产权纠纷由本人负责。 声明人(签名): 年月日 亚库甫江.买买提同学在指导老师的指导下,按照任务书的内容,独立完成了该毕业论文(设计),指导教师已经详细审阅该毕业论文(设计)。 指导教师(签名): 年月日

新疆大学 毕业论文(设计)任务书 班级:信计07-2 姓名:亚库甫江.买买提论文(设计)题目:求解热传导方程的高精度隐式差分格式 专题:毕业设计 论文(设计)来源:教师自拟 要求完成的内容:学习和掌握一维热传导方程已有的各种差分 格式的基础上,扩散方程对空间变量应用紧 致格式离散,对时间变量应用梯形方法,构 造热传导方程的精度为() 24 τ+数值格式, O h 讨论格式的稳定性,最后数值例子来验证。发题日期:2012 年12月25日完成日期:2012 年5月28 日实习实训单位:数学学院地点:数学学院 论文页数:19页;图纸张数:4 指导教师:开依沙尔老师 教研室主任 院长(系主任)

摘要 本文首先对热传导方程经典差分格式进行复习和讨论,然后热传导方程对空间变量四阶紧致格式进行离散,时间变量保持不变,把一维热传导方程转化为常微分方程组的初值问题, 再利用梯形方法构造热传导方程方程的时间二阶空间四阶精度的一种差分格式,并稳定性进行分析,数值结果与Crank-Nicholson 格式进行比较,数值结果表明, 该方法是有效求解热传导方程的数值计算. 关键词: 热传导方程,高精度紧致格式; 梯形方法;两层隐格式; Crank-Nicolson格式 ABSTRACT This paper first study on some classical finite difference for the heat conduction equation, secondely secondely we apply compact finite difference approximation of fourth order for discretizing spatial derivatives but leave the time variable Continuous. This approach results in a system of ODEs, which can then be used trapezodial formula derived fourth order in space and second order in time unconditionally stable implicit scheme .the stability and local truncation error of the obtained method are analysied. Numerical experiments shows that this method Useful, efficient method for solving diffusion equation Keywords: Heat conduction eqution;Higher- oder compact scheme; Trapezodial formula ;Two- level implict scheme; Crank- Nicolson scheme

一维扩散方程的差分法matlab

一维扩散方程的有限差分法 ——计算物理实验作业七 陈万 题目: 编程求解一维扩散方程的解 取1.0,1.0,1.0,10,0.1,0,1,1,0,1,1max 0222111======-=====τh D t a c b a c b a 。输出t=1,2,...,10时刻的x 和u(x),并与解析解u=exp(x+0.1t)作比较。 主程序: % 一维扩散方程的有限差分法 clear,clc; %定义初始常量 a1 = 1; b1 = 1; c1 = 0; a2 = 1;b2 = -1; c2 = 0; a0 = 1.0; t_max = 10; D = 0.1; h = 0.1; tao = 0.1; %调用扩散方程子函数求解 u = diffuse_equation(a0,t_max,h,tao,D,a1,b1,c1,a2,b2,c2); 子程序1:

function output = diffuse_equation(a0,t_max,h,tao,D,a1,b1,c1,a2,b2,c2) % 一维扩散方程的有限差分法,采用隐式六点差分格式 (Crank-Nicolson) % a0: x的最大值 % t:_max: t的最大值 % h: 空间步长 % tao: 时间步长 % D:扩散系数 % a1,b1,c1是(x=0)边界条件的系数;a2,b2,c2是(x=a0)边界条件的系数 x = 0:h:a0; n = length(x); t = 0:tao:t_max; k = length(t); P = tao * D/h^2; P1 = 1/P + 1; P2 = 1/P - 1;

相关文档
最新文档