时间序列相似性度量

时间序列相似性度量
时间序列相似性度量

讨论一般时间序列相似的度量方式

1、概念:

时间序列的相似性度量是衡量两个时间序列的相似程度的方法。它是时间序列分类、聚类、异常发现等诸多数据挖掘问题的基础;也是时间序列挖掘的核心问题之一。

2、意义:

时间序列式进行序列查询、分类、预测的基本工作,寻求一种好的度量对提高挖掘任务的效率和准确性有着至关重要的意义。

3、影响因素:

两个序列是否相似,主要看它们的变化趋势是否一致。由于时间序列数据的复杂性特点,实际中不可能存在两条完全相同的时间序列,即使相似的时间序列往往也会呈现出各种各样的变化。所以,任何两个序列之间都存在着某种差异,影响这种差异的主要因素有:

(1)噪声:现实的大多数时间序列数据都存在噪声,体现在图形上式指数据的曲线不光滑,即存在“毛刺”。

(2)振幅平移:即两条形态相似的时间序列分别绕高低不同的均值波动。(3)振幅伸缩:即两条时间序列的变化趋势相同,但其中一条时间序列在纵轴上似乎被拉伸或者压缩过一样,即两个序列的振幅不同。

(4)时间轴伸缩:是指两条时间序列的波形相似,但其中一条时间序列在时间轴上按比例伸缩。

(5)线性漂移:是指两条时间序列的波动节奏相似,但其中一条时间序列呈现线性递增或递减趋势。

(6)不连续性:是指两条时间序列整体的波动趋势相同,只是在别的时间点或段出现间断。

然而,在实际应用中情况要复杂得多,往往是以上多种因素交织在一起。时间序列的相似性并没有一个客观的定义,具有一定的个人偏好性,也就是说,不同的人或不同的应用场合对各种差异影响的重视程度是不一样的。给定两条时间序列 {}12,,....,n X x x x =和{}12=,,....m Y y y y ,相似性度量的问题就是在各种各样差异因素的影响下,寻求一个合适的相似性度量函数(),Sim X Y ,使得该函数能很好地反映时间序列数据的特点。

4、方法:目前时间序列相似性度量,最常用的有Minkowski 距离和动态时间弯曲。

一、Minkowski 距离

给定两条时间序列{}{}1

212....=....n n X x x x Y y y y =和 它们之间的Minkowski 距离如下:

()11,n p p i i i d X Y x y =??=- ???∑

Minkowski 距离是一种距离度量,因为它满足距离的三个条件:

(1) 非负性:()(),0,,,0d X Y X Y d X Y ≥==当且仅当;

(2) 对称性:()(),,;d X Y d Y X =

(3) 三角不等式:()()(),,,d Y Z d X Y d X Z ≤+

大多简单的相似性度量是Minkowski 距离及其它的变种,Minkowski 距离的优点是简单、直观且计算复杂度不高,与时间序列的长度成线性关系即序列长度的增加不会造成计算复杂程度的迅速提高。所以当训练集比较大时,Minkowski 距离比其他更有效。但是Minkowski 距离不支持时间序列的线性漂移和时间弯曲,且无法处理不等长的时间序列。

参考文献

[]1王达;荣刚;时间序列的模式距离;浙江大学学报(工学版)2004;39(7);795-799

[]2方开泰;潘恩培;聚类分析;北京地质出版社;1992;44-51

[]3范明;孟晓峰.;数据挖掘概念与技术;北京机械工业出版社;2001 []4林珣;李志蜀周勇;时间序列模式的相似性研究;计算机科学;2011

基于数据挖掘的符号序列聚类相似度量模型

—178 — 基于数据挖掘的符号序列聚类相似度量模型 郑宏珍,初佃辉,战德臣,徐晓飞 (哈尔滨工业大学智能计算中心,264209) 摘 要:为了从消费者偏好序列中发现市场细分结构,采用数据挖掘领域中的符号序列聚类方法,提出一种符号序列聚类的研究方法和框架,给出RSM 相似性度量模型。调整RSM 模型参数,使得RSM 可以变为与编辑距离、海明距离等价的相似性度量。通过RSM 与其他序列相似性度量的比较,表明RSM 具有更强的表达相似性概念的能力。由于RSM 能够表达不同的相似性概念,从而使之能适用于不同的应用环境,并在其基础上提出自组织特征映射退火符号聚类模型,使得从消费者偏好进行市场细分结构研究的研究途径在实际应用中得以实现。 关键词:符号序列聚类;数据挖掘;相似性模型 Symbolic Sequence Clustering Regular Similarity Model Based on Data Mining ZHENG Hong-zhen, CHU Dian-hui, ZHAN De-chen, XU Xiao-fei (Intelligent Computing Center, Harbin Institute of Technology, Harbin 264209) 【Abstract 】From a consumer point of the sequence of preference, data mining is used in the field of symbolic sequence clustering methods to detect market segmentation structure. This paper proposes a symbolic sequence clustering methodology and framework, gives the similarity metric RSM model. By adjusting RSM model, parameters can be changed into RSM and edit distance, Hamming distance equivalent to the similarity metric. RSM is compared with other sequence similarity metric, and is more similar to the expression of the concept of capacity. As to express different similarity, the concept of RSM can be applied to different applications environment. Based on the SOM annealing symbol clustering model, the consumer preference for market segmentation can be studied in the structure, which means it is realized in practical application. 【Key words 】symbolic sequence clustering; data mining; similarity model 计 算 机 工 程Computer Engineering 第35卷 第1期 V ol.35 No.1 2009年1月 January 2009 ·人工智能及识别技术·文章编号:1000—3428(2009)01—0178—02文献标识码:A 中图分类号:TP391 1 概述 在经济全球化的环境下,面对瞬息万变的市场和技术发展,企业要想在国内外市场竞争中立于不败之地,必须对客户和市场需求做出快速响应。目前,通过市场调研公司或企业自身的信息系统,收集来自市场和消费者的数据相对容易,而如何理解数据反映的市场细分结构和需求规律却是相当困难的。 为解决这一问题,许多研究者选择消费者的职业、收入、年龄、性别等特征数据作为细分变量,利用统计学传统聚类方法得到市场细分结构[1-2]。在实际应用中,不同的细分变量会导致不同的市场细分结果[3]。 为此,本文从用户偏好序列数据对市场进行细分。通过对符号序列数据相似性的研究,给出一个可形式化的RSM 相似性度量模型和算法概要。该度量模型考虑了2对象之间相似与相异2个方面的因素,通过参数的调整,可以根据问题的具体性质表达不同的相似性概念。并在此基础上,将在数值型数据领域表现良好的SOM 神经网络引入到符号序列数据的聚类问题上,给特征符号序列的机器自动识别提供了可能性。 2 符号序列聚类问题 序列聚类问题作为发现知识的一种重要的探索性技术,受到数据挖掘与知识发现研究领域的极大重视。企业决策者在进行市场和产品相关战略时,迫切需要某些技术手段来理解序列数据,这也正是本文研究的序列聚类问题的工程背景。 下面给出符号序列的相关定义。 定义1 设12{,,,}n A a a a ="为有限符号表,A 中的l 个符号12,,,l a a a "构成的有序集称为符号序列,记为s = 12{,,,}l a a a ",并称l 是s 的长度,记为s 。A 上所有有限长 度符号序列集合记为A *。例如:符号表{a , b , c , d , e , f , g },则, 是符号序列。 定义2 设12{,,,,,}t n P S S S S ="",S t 是A *上的某个符号序列。符号序列聚类是指寻找P 上的划分P 1, P 2,…, P k ,使属于同一划分的符号序列间的相似性尽量大,而属于不同划分的符号序列间相似性尽量小。 3 符号序列的正则相似度量模型 相似性度量往往与问题的应用背景具有紧密联系,并影响符号序列聚类结果。为此建立符号序列形式化的相似性度量模型,并在此基础上研究符号序列的聚类问题。 3.1 正则相似度量模型 下面给出形式化的相似度量模型——正则相似度量模型 基金项目:国家“863”计划基金资助项目“CIMS 模型驱动的智能化软构件与软件生成技术”(2006AA01Z167) 作者简介:郑宏珍(1967-),女,副教授,主研方向:数据挖掘,智能计算;初佃辉,副教授、硕士;战德臣、徐晓飞,教授、博士 收稿日期:2008-06-24 E-mail :hithongzhen@https://www.360docs.net/doc/ab15511451.html,

相似性和相异性的度量

相似性和相异性的度量 相似性和相异性是重要的概念,因为它们被许多数据挖掘技术所使用,如聚类、最近邻分类和异常检测等。在许多情况下,一旦计算出相似性或相异性,就不再需要原始数据了。这种方法可以看作将数据变换到相似性(相异性)空间,然后进行分析。 首先,我们讨论基本要素--相似性和相异性的高层定义,并讨论它们之间的联系。为方便起见,我们使用术语邻近度(proximity)表示相似性或相异性。由于两个对象之间的邻近度是两个对象对应属性之间的邻近度的函数,因此我们首先介绍如何度量仅包含一个简单属性的对象之间的邻近度,然后考虑具有多个属性的对象的邻近度度量。这包括相关和欧几里得距离度量,以及Jaccard和余弦相似性度量。前二者适用于时间序列这样的稠密数据或二维点,后二者适用于像文档这样的稀疏数据。接下来,我们考虑与邻近度度量相关的若干重要问题。本节最后简略讨论如何选择正确的邻近度度量。 1)基础 1. 定义 两个对象之间的相似度(similarity)的非正式定义是这两个对象相似程度的数值度量。因而,两个对象越相似,它们的相似度就越高。通常,相似度是非负的,并常常在0(不相似)和1(完全相似)之间取值。 两个对象之间的相异度(dissimilarity)是这两个对象差异程度的数值度量。对象越类似,它们的相异度就越低。通常,术语距离(distance)用作相异度的同义词,正如我们将介绍的,距离常常用来表示特定类型的相异度。有时,相异度在区间[0, 1]中取值,但是相异度在0和之间取值也很常见。 2. 变换 通常使用变换把相似度转换成相异度或相反,或者把邻近度变换到一个特定区间,如[0, 1]。例如,我们可能有相似度,其值域从1到10,但是我们打算使用的特定算法或软件包只能处理相异度,或只能处理[0, 1]区间的相似度。之所以在这里讨论这些问题,是因为在稍后讨论邻近度时,我们将使用这种变换。此外,这些问题相对独立于特定的邻近度度量。 通常,邻近度度量(特别是相似度)被定义为或变换到区间[0, 1]中的值。这样做的动机是使用一种适当的尺度,由邻近度的值表明两个对象之间的相似(或相异)程度。这种变换通常是比较直截了当的。例如,如果对象之间的相似度在1(一点也不相似)和10(完全相似)之间变化,则我们可以使用如下变换将它变换到[0, 1]区间:s' = (s-1)/9,其中s和s'分别是相似度的原值和新值。一般来说,相似度到[0, 1]区间的变换由如下表达式给出:s'=(s-min_s) / (max_s - min_s),其中max_s和min_s分别是相似度的最大

相似度测度总结汇总

1 相似度文献总结 相似度有两种基本类别: (1)客观相似度,即对象之间的相似度是对象的多维特征之间的某种函数关系,比如对象之间的欧氏距离;(2)主观相似度,即相似度是人对研究对象的认知关系,换句话说,相似度是主观认知的结果,它取决于人及其所处的环境,主观相似度符合人眼视觉需求,带有一定的模糊性[13]。 1.1 客观相似度 客观相似度可分为距离测度、相似测度、匹配测度。它们都是衡量两对象客观上的相近程度。客观相似度满足下面的公理,假设对象 A 与B 的相似度判别为(,)A B δ,有: (1) 自相似度是一个常量:所有对象的自相似度是一个常数,通常为 1,即 (,)(,)1A A B B δδ== (2) 极大性:所有对象的自相似度均大于它与其他对象间的相似度,即 (,)(,)(,)(,)A B A A A B B B δδδδ≤≤和。 (3) 对称性:两个对象间的相似度是对称的,即(,)(,)A B B A δδ=。 (4) 唯一性:(,)1A B δ=,当且仅当A B =。 1.1.1 距离测度 这类测度以两个矢量矢端的距离为基础,因此距离测度值是两矢量各相应分量之差的函数。设{}{}'' 1212,,,,,,,n n x x x x y y y y == 表示两个矢量,计算二者之间距离测度的具体方式有多种,最常用的有: 1.1.1.1 欧氏距离:Euclidean Distance-based Similarity 最初用于计算欧几里德空间中两个点的距离,假设 x ,y 是 n 维空间的两个点,它们之间的欧几里德距离是: 1/221(,)()n i i i d x y x y x y =??=-=-????∑(1.1)

颜色特征常用的特征提取与匹配方法

颜色直方图: 全局颜色直方图:反映的是图像中颜色的组成分布,即出现了哪些颜色以及各种颜色出现的概率,Swain 和 Ballard最先提出了使用颜色直方图作为图像颜色特征的表示方法。他们还指出:颜色直方图相对于图像的以观察轴为轴心的旋转以及幅度不大的平移和缩放等几何变换是不敏感的,颜色直方图对于图像质量的变化(如模糊)也不甚敏感。颜色直方图的这种特性使得它比较适合于检索图像的全局颜色相似性的场合,即通过比较颜色直方图的差异来衡量两幅图像在颜色全局分布上的差异。 颜色直方图的主要性质有:直方图中的数值都是统计而来,描述了该图像中关于颜色的数量特征,可以反映图像颜色的统计分布和基本色调;直方图只包含了该图像中某一颜色值出现的频数,而丢失了某象素所在的空间位置信息;任一幅图像都能唯一的给出一幅与它对应的直方图,但不同的图像可能有相同的颜色分布,从而就具有相同的直方图,因此直方图与图像是一对多的关系;如将图像划分为若干个子区域,所有子区域的直方图之和等于全图直方图;一般情况下,由于图像上的背景和前景物体颜色分布明显不同,从而在直方图上会出现双峰特性,但背景和前景颜色较为接近的图像不具有这个特性。 累加直方图:当图像中的特征并不能取遍所有可取值时,统计直方图中会出现一些零值。这些零值的出现会对相似性度量的计算带来影响,从而使得相似性度量并不能正确反映图像之间的颜色差别。为解决这个问题,在全局直方图的基础上,Stricker和Orengo进一步提出了使用“累加颜色直方图”的概念。在累加直方图中,相邻颜色在频数上是相关的。相比一般直方图,虽然累加直方图的存储量和计算量有很小的增加,但是累加直方图消除了一般直方图中常见的零值,也克服了一般直方图量化过细过粗检索效果都会下降的缺陷。一般的颜色直方图由于颜色空间是三维的,具有相同的三通道独立分布,但其联合分布并不为一。这种不考虑联合分布的方法,会导致在结果集中不相似的图像数目增加。

距离和相似度度量

在数据分析和数据挖掘的过程中,我们经常需要知道个体间差异的大小,进而评价个体的相似性和类别。最常见的是数据分析中的相关分析,数据挖掘中的分类和聚类算法,如K最近邻(KNN)和K均值(K-Means)。当然衡量个体差异的方法有很多,最近查阅了相关的资料,这里整理罗列下。 为了方便下面的解释和举例,先设定我们要比较X个体和Y个体间的差异,它们都包含了N个维的特征,即X=(x1, x2, x3, … x n),Y=(y1, y2, y3, … y n)。下面来看看主要可以用哪些方法来衡量两者的差异,主要分为距离度量和相似度度量。 距离度量 距离度量(Distance)用于衡量个体在空间上存在的距离,距离越远说明个体间的差异越大。 欧几里得距离(Euclidean Distance) 欧氏距离是最常见的距离度量,衡量的是多维空间中各个点之间的绝对距离。公式如下: 因为计算是基于各维度特征的绝对数值,所以欧氏度量需要保证各维度指标在相同的刻度级别,比如对身高(cm)和体重(kg)两个单位不同的指标使用欧式距离可能使结果失效。 明可夫斯基距离(Minkowski Distance) 明氏距离是欧氏距离的推广,是对多个距离度量公式的概括性的表述。公式如下: 这里的p值是一个变量,当p=2的时候就得到了上面的欧氏距离。 曼哈顿距离(Manhattan Distance) 曼哈顿距离来源于城市区块距离,是将多个维度上的距离进行求和后的结果,即当上面的明氏距离中p=1时得到的距离度量公式,如下:

切比雪夫距离(Chebyshev Distance) 切比雪夫距离起源于国际象棋中国王的走法,我们知道国际象棋国王每次只能往周围的8格中走一步,那么如果要从棋盘中A格(x1, y1)走到B格(x2, y2)最少需要走几步?扩展到多维空间,其实切比雪夫距离就是当p趋向于无穷大时的明氏距离: 其实上面的曼哈顿距离、欧氏距离和切比雪夫距离都是明可夫斯基距离在特殊条件下的应用。 马哈拉诺比斯距离(Mahalanobis Distance) 既然欧几里得距离无法忽略指标度量的差异,所以在使用欧氏距离之前需要对底层指标进行数据的标准化,而基于各指标维度进行标准化后再使用欧氏距离就衍生出来另外一个距离度量——马哈拉诺比斯距离(Mahalanobis Distance),简称马氏距离。 相似度度量 相似度度量(Similarity),即计算个体间的相似程度,与距离度量相反,相似度度量的值越小,说明个体间相似度越小,差异越大。 向量空间余弦相似度(Cosine Similarity) 余弦相似度用向量空间中两个向量夹角的余弦值作为衡量两个个体间 差异的大小。相比距离度量,余弦相似度更加注重两个向量在方向上的差异,而非距离或长度上。公式如下: 皮尔森相关系数(Pearson Correlation Coefficient) 即相关分析中的相关系数r,分别对X和Y基于自身总体标准化后计算空间向量的余弦夹角。公式如下:

数据挖掘期末

(一)概述 为什么要数据挖掘(Data Mining)? 存在可以广泛使用的大量数据,并且迫切需要将数据转转换成有用的信息和知识 什么是数据挖掘? 数据挖掘(Data Mining)是指从大量数据中提取或“挖掘”知识。 对何种数据进行数据挖掘? 关系数据库、数据仓库、事务数据库 空间数据 超文本和多媒体数据 时间序列数据 流数据 (二)数据预处理 为什么要预处理数据? 为数据挖掘过程提供干净、准确、简洁的数据,提高数据挖掘的效率和准确性,是数据挖掘中非常重要的环节; 数据库和数据仓库中的原始数据可能存在以下问题: 定性数据需要数字化表示 不完整 含噪声 度量单位不同 维度高 数据的描述 度量数据的中心趋势:均值、加权均值、中位数、众数 度量数据的离散程度:全距、四分位数、方差、标准差 基本描述数据汇总的图形显示:直方图、散点图 度量数据的中心趋势 集中趋势:一组数据向其中心值靠拢的倾向和程度。 集中趋势测度:寻找数据水平的代表值或中心值。 常用的集中趋势的测度指标: 均值: 缺点:易受极端值的影响 中位数:对于不对称的数据,数据中心的一个较好度量是中位数 特点:对一组数据是唯一的。不受极端值的影响。 众数:一组数据中出现次数最多的变量值。 特点:不受极端值的影响。有的数据无众数或有多个众数。

度量数据的离散程度 反映各变量值远离其中心值的程度(离散程度),从另一个侧面说明了集中趋势测度值的代表程度。 常用指标: 全距(极差):全距也称极差,是一组数据的最大值与最小值之差。 R=最大值-最小值 组距分组数据可根据最高组上限-最低组下限计算。 受极端值的影响。 四分位距 (Inter-Quartilenge, IQR):等于上四分位数与下四分位数之差(q3-q1) 反映了中间50%数据的离散程度,数值越小说明中间的数据越集中。 不受极端值的影响。 可以用于衡量中位数的代表性。 四分位数: 把顺序排列的一组数据分割为四(若干相等)部分的分割点的数值。 分位数可以反映数据分布的相对位置(而不单单是中心位置)。 在实际应用中四分位数的计算方法并不统一(数据量大时这些方法差别不大)。对原始数据: SPSS中四分位数的位置为(n+1)/4, 2(n+1)/4, 3 (n+1)/4。 Excel中四分位数的位置分别为(n+3)/4, 2(n+1)/4,(3 n+1)/4。 如果四分位数的位置不是整数,则四分位数等于前后两个数的加权平均。 方差和标准差:方差是一组数据中各数值与其均值离差平方的平均数,标准差是方差正的平方根。 是反映定量数据离散程度的最常用的指标。 基本描述数据汇总的图形显示 直方图(Histogram):使人们能够看出这个数据的大体分布或“形状” 散点图 如何进行预处理 定性数据的数字化表示: 二值描述数据的数字化表示 例如:性别的取值为“男”和“女”,男→1,女→0 多值描述数据的数字化表示 例如:信誉度为“优”、“良”、“中”、“差” 第一种表示方法:优→1,良→2,中→3,差→4 第二种表示方法:

相似性度量

在做分类时常常需要估算不同样本之间的相似性度量(SimilarityMeasurement),这时通常采用的方法就是计算样本间的“距离”(Distance)。采用什么样的方法计算距离是很讲究,甚至关系到分类的正确与否。对常用的相似性度量作一个总结。1.欧氏距离2.曼哈顿距离3. 切比雪夫距离4. 闵可夫斯基距离5.标准化欧氏距离6.马氏距离7.夹角余弦8.汉明距离9.杰卡德距离& 杰卡德相似系数10.相关系数& 相关距离11.信息熵12.兰氏距离13.斜交空间距离14.最大-最小相似度15.指数相似度16.KL距离 1. 欧氏距离(EuclideanDistance) 欧氏距离是最易于理解的一种距离计算方法,源自欧氏空间中两点间的距离公式。 (1)二维平面上两点a(x1,y1)与b(x2,y2)间的欧氏距离: 三维空间两点a(x1,y1,z1)与b(x2,y2,z2)间的欧氏距离: (2)两个n维向量a(x11,x12,…,x1n)与 b(x21,x22,…,x2n)间的欧氏距离: 也可以用表示成向量运算的形式: (4)Matlab计算欧氏距离 Matlab计算距离主要使用pdist函数。若X是一个M×N的矩阵,则pdist(X)将X矩阵M行的每一行作为一个N维向量,然后计算这M个向量两两间的距离。 例子:计算向量(0,0)、(1,0)、(0,2)两两间的欧式距离 X= [0 0 ; 1 0 ; 0 2] D= pdist(X,'euclidean') 结果: D= 1.0000 2.0000 2.2361 2. 曼哈顿距离(ManhattanDistance)又称绝对值距离 从名字就可以猜出这种距离的计算方法了。想象你在曼哈顿要从一个十字路口开车到另外一个十字路口,驾驶距离是两点间的直线距离吗?显然不是,除非你能穿越大楼。实际驾驶距离就是这个“曼哈顿距离”。而这也是曼哈顿距离名称的来源,曼哈顿距离也称为城市街区距离(CityBlock distance)。 (1)二维平面两点a(x1,y1)与b(x2,y2)间的曼哈顿距离

时间序列相似性度量

讨论一般时间序列相似的度量方式 1、概念: 时间序列的相似性度量是衡量两个时间序列的相似程度的方法。它是时间序列分类、聚类、异常发现等诸多数据挖掘问题的基础;也是时间序列挖掘的核心问题之一。 2、意义: 时间序列式进行序列查询、分类、预测的基本工作,寻求一种好的度量对提高挖掘任务的效率和准确性有着至关重要的意义。 3、影响因素: 两个序列是否相似,主要看它们的变化趋势是否一致。由于时间序列数据的复杂性特点,实际中不可能存在两条完全相同的时间序列,即使相似的时间序列往往也会呈现出各种各样的变化。所以,任何两个序列之间都存在着某种差异,影响这种差异的主要因素有: (1)噪声:现实的大多数时间序列数据都存在噪声,体现在图形上式指数据的曲线不光滑,即存在“毛刺”。 (2)振幅平移:即两条形态相似的时间序列分别绕高低不同的均值波动。(3)振幅伸缩:即两条时间序列的变化趋势相同,但其中一条时间序列在纵轴上似乎被拉伸或者压缩过一样,即两个序列的振幅不同。 (4)时间轴伸缩:是指两条时间序列的波形相似,但其中一条时间序列在时间轴上按比例伸缩。 (5)线性漂移:是指两条时间序列的波动节奏相似,但其中一条时间序列呈现线性递增或递减趋势。 (6)不连续性:是指两条时间序列整体的波动趋势相同,只是在别的时间点或段出现间断。

然而,在实际应用中情况要复杂得多,往往是以上多种因素交织在一起。时间序列的相似性并没有一个客观的定义,具有一定的个人偏好性,也就是说,不同的人或不同的应用场合对各种差异影响的重视程度是不一样的。给定两条时间序列 {}12,,....,n X x x x =和{}12=,,....m Y y y y ,相似性度量的问题就是在各种各样差异因素的影响下,寻求一个合适的相似性度量函数(),Sim X Y ,使得该函数能很好地反映时间序列数据的特点。 4、方法:目前时间序列相似性度量,最常用的有Minkowski 距离和动态时间弯曲。 一、Minkowski 距离 给定两条时间序列{}{}1 212....=....n n X x x x Y y y y =和 它们之间的Minkowski 距离如下: ()11,n p p i i i d X Y x y =??=- ???∑ Minkowski 距离是一种距离度量,因为它满足距离的三个条件: (1) 非负性:()(),0,,,0d X Y X Y d X Y ≥==当且仅当; (2) 对称性:()(),,;d X Y d Y X = (3) 三角不等式:()()(),,,d Y Z d X Y d X Z ≤+ 大多简单的相似性度量是Minkowski 距离及其它的变种,Minkowski 距离的优点是简单、直观且计算复杂度不高,与时间序列的长度成线性关系即序列长度的增加不会造成计算复杂程度的迅速提高。所以当训练集比较大时,Minkowski 距离比其他更有效。但是Minkowski 距离不支持时间序列的线性漂移和时间弯曲,且无法处理不等长的时间序列。

时间序列相似性度量的研究

《时间序列相似性度量的研究》读书笔记 一、文章主要内容 时间序列的相似性度量是时间序列数据挖掘研究中的一个重要问题,是进行序列查询、分类、预测的一项基础工作。寻求一种好的度量对提高挖掘任务的效率和准确性有着至关重要的意义。目前从事这方面的研究除了少许理论论述外,几乎都采用一种固定的方法,即提出具体要求并提供实验数据。然而,大多数实验方法不是使用范围有限就是侧重点不同。为了提供一个比较全面的实验验证,用INN分类算法进行了大量的时间序列交叉验证实验。重新评估了其中的弹性度量,并使用不同应用领域的28个时间序列数据集进行比较,结果表明,该方法具有更高的准确性。 二、文章重点内容 1、时间序列的相似性度量 时间序列的相似性度量是时间序列数据挖掘研究中的一个重要问题,能反映数据中基本的相似性,这一点为时间序列的相似性检索、分类、预测等尤其可取。因此合理的相似性度量能够提高数据挖掘的有效性和准确性。 目前时间序列相似性度量,最常用的有欧氏距离(ED)和动态时间弯曲(DTW)。其它许多度量及它们的扩展已被广泛引用到文献和用于便利查询处理和时间序列数据挖掘。本文根据降维和压缩的方法定义距离度量。保证约简后的距离小于或等于原数据的真实距离。即满足无漏报原则,就是要求数据表示满足条件:DF(q,s)≤D(q,s),其中:q是查询序列;s是数据集中的任意序列;是约简空间中的两序列距离;D是真实的两序列距离。 2、DTW DTW允许时间序列的延伸或压缩,查找结果要优于ED。而且可采用下界函数加速查找速度。带有动态窗口的时间弯曲s,不仅能提高计算效率而且能提高相似性测量精度。

另一组时间序列的相似性度量是在编辑距离概念的基础上形成的。它的思想是两个序列越相似,则将其中的一个序列通过插入、删除等操作变换成另一个序列所要做的功就越少。它们为时间序列的匹配定义了一系列操作及一个衡量这些操作所需的代价函数,事件序列间的相似距离就可以定义为将一个序列变换为另一个序列所需要操作的代价之和。然后,通过动态变换来计算编辑距离。最好的是LCSS,它利用最长公共子序列模型,适应设置的时间序列匹配字符的概念。阈值参数8已知,如果它们的距离少于£。说明两个时间序列的两个点是匹配的。EDR是基于编辑距离的另一个相似性度量.和LCSS相比,EDR也用了一个阈值参数8,参数的作用是量化一对点0或1之间的距离。EDR根据空白的长度增强数据率.分配两个匹配部分间的差距。ERP距离包括了DTW 和EDR的优点。通过连续变化的参考点计算两个时间序列差距的距离。实质上,如果两个点之间的距离太大,ERP简单使用这些点中的一个和参考点计算之间的距离值。最近,计算编辑距离的一种新方法在文献『9] 4、数据世系分类 按照数据世系包含的数据源类型不同,数据的世系可分为在不同数据源间的数据演化过程和相同数据源内部数据的演化过程,即模式级和实例级数据演化过程。 (1)模式级数据世系:异构数据源间的数据共享问题一直是数据集成的核心问题之一。不同模式的数据源间进行的数据演化过程是数据集成的关键部分,由于不知道数据的具体形式从而无法标注数据项的世系,只能利用模式级数据问的对应关系追踪数据在不同模式间的演化过程。 (2)实例级数据世系:用户通过查询所有可能的映射关系,找到模式级数据的世系,想要获取更细粒度的世系,还需要在某数据源内部考察数据的演化过程,即实例级数据的世系。和模式级数据的世系不同,实例级的数据项可以被显式地表达出来,通过对数据进行标注得到更细粒度的数据世系。 5、数据世系的应用 在科学数据管理、商业应用等领域,特别是在分布式环境下,数据世系的管理获得了一些成果,R. Bose将数据处理过程分为以下几种方式:基于脚本或程序运行的、基于查询的、基于工作流管理系统的和基于服务的方式。 下表是典型的世系研究项目:

数据挖掘_概念与技术(第三版)部分习题答案

1.4 数据仓库和数据库有何不同?有哪些相似之处? 答:区别:数据仓库是面向主题的,集成的,不易更改且随时间变化的数据集合,用来支持管理人员的决策,数据库由一组内部相关的数据和一组管理和存取数据的软件程序组成,是面向操作型的数据库,是组成数据仓库的源数据。它用表组织数据,采用ER数据模型。 相似:它们都为数据挖掘提供了源数据,都是数据的组合。 1.3 定义下列数据挖掘功能:特征化、区分、关联和相关分析、预测聚类和演变分析。使用你熟悉的现实生活的数据库,给出每种数据挖掘功能的例子。 答:特征化是一个目标类数据的一般特性或特性的汇总。例如,学生的特征可被提出,形成所有大学的计算机科学专业一年级学生的轮廓,这些特征包括作为一种高的年级平均成绩(GPA:Grade point aversge)的信息, 还有所修的课程的最大数量。 区分是将目标类数据对象的一般特性与一个或多个对比类对象的一般特性进行比较。例如,具有高GPA 的学生的一般特性可被用来与具有低GPA 的一般特性比较。最终的描述可能是学生的一个一般可比较的轮廓,就像具有高GPA 的学生的75%是四年级计算机科学专业的学生,而具有低GPA 的学生的65%不是。 关联是指发现关联规则,这些规则表示一起频繁发生在给定数据集的特征值的条件。例如,一个数据挖掘系统可能发现的关联规则为:major(X, “computing science”) ? owns(X, “personal computer”) [support=12%, confidence=98%] 其中,X 是一个表示学生的变量。这个规则指出正在学习的学生,12% (支持度)主修计算机科学并且拥有一台个人计算机。这个组一个学生拥有一台个人电脑的概率是98%(置信度,或确定度)。 分类与预测不同,因为前者的作用是构造一系列能描述和区分数据类型或概念的模型(或功能),而后者是建立一个模型去预测缺失的或无效的、并且通常是数字的数据值。它们的相似性是他们都是预测的工具: 分类被用作预测目标数据的类的标签,而预测典型的应用是预测缺失的数字型数据的值。 聚类分析的数据对象不考虑已知的类标号。对象根据最大花蕾内部的相似性、最小化类之间的相似性的原则进行聚类或分组。形成的每一簇可以被看作一个对象类。聚类也便于分类法组织形式,将观测组织成类分 层结构,把类似的事件组织在一起。 数据演变分析描述和模型化随时间变化的对象的规律或趋势,尽管这可能包括时间相关数据的特征化、区分、关联和相关分析、分类、或预测,这种分析的明确特征包括时间序列数据分析、序列或周期模式匹配、和基于相似性的数据分析 2.3 假设给定的数据集的值已经分组为区间。区间和对应的频率如下。――――――――――――――――――――――――――――――――――――― 年龄频率――――――――――――――――――――――――――――――――――――― 1~5 200 5~15 450 15~20 300 20~50 1500 50~80 700 80~110 44 ―――――――――――――――――――――――――――――――――――――计算数据的近似中位数值。 解答:先判定中位数区间:N=200+450+300+1500+700+44=3194;N/2=1597 ∵ 200+450+300=950<1597<2450=950+1500; ∴ 20~50 对应中位数区间。

时间序列相关算法

时间序列相关算法 面向瓦斯检测数据的时间序列相似搜索算法研究 赵华(西安科技大学硕士论文) 1.3 时间序列相似搜索发展趋势 总结现有的基于时间序列相似搜索的各种变换方法可以得出时间序列相似搜索问题的发展方向及趋势。从最初时间序列相似性点对点的比较,到DFT和DWT 等方法的数据变换,再到时间序列等长分段后处理的方法,再发展到几种方法结合使用。时间序列相似搜索的算法可以是线性变换,如DFT、DWT 等,也可以是非线性变换,甚至可以分段处理,以关键特征代替原始序列。 提出了基于分段多项式表示(PPR, Piecewise Polynomial Representation)的煤矿瓦斯监测数据相似搜索方法和基于二维小波变换的煤矿瓦斯多变量时间序列相似搜索方法 提出了基于分段多项式表示(PPR, Piecewise Polynomial Representation)的煤矿瓦斯监测数据相似搜索方法。 提出了基于二维小波变换的煤矿瓦斯监测数据的多变量时间序列相似搜索算法。将瓦斯多变量时间序列存为数据矩阵形式,采用二维小波变换方法对数据矩阵降维,并用灰度图像把多变量时间序列可视化,再用欧式距离和Eros 距离进行相似性比较,并分别求出它们的查询效率。 (本篇文章是用于瓦斯涌出量的分析,不是危险源头的辨识,但是关于时间序列数据的处理可能有用,相当于缩短搜索时间的方法。) 基于云模型的时间序列相似性度量方法 时间序列的相似性度量就是衡量两条时间序列之间的相似性,是时间序列的查询、分类、预测的基础,广泛应用于时间序列的聚类、分类和分割等研究领域。一种有效的相似性度量能够提高数据挖掘的效率和准确率。 欧氏距离 欧氏距离、动态时间弯曲(伪h翻iciTm。认厄rpign,简称DTW)距离和形态距离是时间序列相似性度量的经典度量方法,这几种方法在在某些方面都有各自的优势,但是它们在应用到实际的时间序列数据挖掘上有其固有的缺陷。本文在基于这些经典的相似性度量方法的基础上结合云模型的方法理论,提出了一种基于云模型的时间序列相似性度量方法。 欧氏距离是时间序列相似性研究中最广泛采用的相似性度量。它的优点是计算简单,容易理解,运行速度快,广泛应用于时间序列的聚类和分类等研究领域。然而欧氏距离测度存在一些局限性,例如对数据在时间轴上的形变缺乏辨识能力和对噪声的鲁棒性不好,对数据中的扭曲现象非常敏感,且要求两个时间序列长度一样,因此应用范围也受到限制。 DT份距离 D伴可以有效的消除欧氏距离的缺陷,支持时间序列的时间轴伸缩,根据最小代价的时间弯曲路径进行对齐匹配,且DT甲距离不要求两个序列的长度一样,序列的值可以是一对多,或多对一,比较灵活。 形态距离 形态距离在很大程度上受到PLR模型表示的影响,若PLR模型对原时间序列的表示存在较大的误差,会引起形态距离度量上的偏差。 云模型

基于面匹配的模型相似性度量方法

优先出版 计 算 机 应 用 研 究 第32卷 -------------------------------- 基金项目:黑龙江省教育厅科学技术研究资助项目(12541125) 作者简介:高雪瑶(1979-),女,黑龙江省哈尔滨市人,副教授硕导,博士,主要研究方向为计算机图形学与CAD(gaoxueyao@https://www.360docs.net/doc/ab15511451.html,);姜宏山(1989-),男,硕士研究生,主要研究方向为计算机图形学与CAD ;张春祥(1974-),男,教授硕导,博士,主要研究方向为计算机图形学与自然语言处理;卢志茂(1972-),男,教授硕导,博士,主要研究方向为自然语言处理. 基于面匹配的模型相似性度量方法 * 高雪瑶1a ,姜宏山1a ,张春祥1b ,卢志茂2 (1.哈尔滨理工大学 a .计算机科学与技术学院;b .软件学院,哈尔滨 150080;2.大连理工大学 计算机科学与技术学院,辽宁 大连 116024) 摘 要:模型相似性度量是CAD 模型检索中的一个重要问题。为了准确地衡量两个模型的相似程度,本文提出了一种基于面匹配的模型相似性计算方法。使用面邻接图表示模型的拓扑结构,根据面的组成边数来构造两个模型之间的面匹配矩阵,同时,使用贪心算法来计算模型之间的相似性。在实验中,使用本文所提出的方法来度量目标CAD 模型和源CAD 模型之间的相似程度。实验结果表明:该方法能够有效地衡量模型之间的差异。 关键词:模型相似性;面邻接图;面匹配矩阵;贪心算法 中图分类号:TP391.7 文献标志码:A Method of model similarity measurement based on face matching GAO Xue-yao 1a , JIANG Hong-shan 1a , ZHANG Chun-xiang 1b , LU Zhi-mao 2 (1. a. School of Computer Science & Technology, b. School of Software, Harbin University of Science & Technology, Harbin 150080, China; 2. School of Computer Science & Technology, Dalian University of Technology, Dalian 116024, China) Abstract: Model similarity measurement is an important problem in retrieval of CAD models. In order to measure the similarity degree between two models precisely, this paper proposes a method to compute the similarity of models based on face matching. It uses a face relational graph to express the topological structure in the model and constructs the face matching matrix between two models. At the same time, it applies the greedy algorithm to compute the similarity between these two models. In experiments, it uses the proposed method of this paper to measure the similarity degree between target CAD model and source CAD model. Experimental results show that the method can measure the difference of models efficiently. Key Words: model similarity; face relational graph; face matching matrix; greedy algorithm 0 引言 CAD 模型相似性计算是三维模型检索中的重要组成部分,对检索系统的效率和可靠性都有着很大程度的影响。针对现有模型检索算法对局部细节特征描述不充分的现状,白晓亮提出了一种基于最大公共子图的三维CAD 模型检索算法。提取CAD 模型的B-Rep 信息,使用属性邻接图来表示模型。利用最大公共子图来检测CAD 模型中所包含的相似特征,根据相似特征来实现CAD 模型的相似性评价[1]。张欣提出了一种利用属性图来比较CAD 模型形状相似性的算法。根据图的邻接矩阵和顶点属性来构造图顶点序列,通过动态编程求出最大公共子图,得到CAD 模型之间的形状相似度。根据求出的未知模型与已知模型之间的形状相似度,利用概率方法来实现未知模型的自动语义标注[2]。王小凤提取三维模型深度图像边界方向的直方图和Zernike 矩特征,利用特征距离来度量两个模型之间的相似性[3]。王洪申利用模型的B-rep 表示过滤出与欲检索结构组成面相似 的面。通过删除不相关的面,将可能相似的局部结构从待检索模型中分离出来。利用二分图最优匹配算法计算分离出来的结构和欲检索结构之间的相似系数,以度量模型之间的相似程度 [4]。Tao 使用面属性关系图来表示CAD 模型,将实体模型的表 面边界分解为局部凸面、凹面和平面。在分解过程中,保持其突出几何特征数量的最小化。利用区域代码来描述表面区域以及它们在CAD 模型中的连接关系。通过比较区域属性代码来评估两个模型之间的相似性[5]。Wang 在三维模型表面任取若干个点,记录每个点的法向量,连接任意两点形成线段。计算线段的欧几里得距离,求出两端点的法向量与该线段的夹角。根据两个夹角将所得线段分为三个集合。针对每个集合,使用欧几里得距离来构造形状分布曲线。通过比较模型的三条形状分布曲线来求出两个模型的相似度[6]。Supasasi 使用Reeb 图来表示三维模型的结构属性,将其分解为若干个子部件。利用姿态无关的形状符号来描述每一个子部件的表面。使用最大公共子图来表示其拓扑结构,以度量三维模型之间的相似程度[7]。Wei

距离和相似性度量

距离和相似性度量 相似性度量或者距离函数对于像聚类,邻域搜索这样的算法是非常重要的。前面也提到,网页去重复也是相似性应用的一个例子。然而,如何定义个合适的相似或者距离函数,完全依赖于手头的任务是什么。一般而言,定义一个距离函数d(x,y),需要满足以下几个准则:1. d(x,x) = 0 ;//到自己的距离为0 2. d(x,y)>=0 // 距离要非负 3. 对称性,d(x,y) = d(y,x) //如果A到B距离是a,那么B 到A的距离也应该是a 4. 三角形法则(两个之和大于第三边)d(x,k)+ d(k,y) >= d(x,y) 满足这4个条件的距离函数很多,一般有几类是比较常见的,通常来自比较直观的形象,如平面的一个两点的直线距离。下面讨论应用比较广泛的几类距离或相似性度量函数,欧拉距离,余弦函数cosine,Pearson函数,Jaccard index,edit distance。如果一个对象d(如:一篇文档)表示成一个n维的向量(d1,d2,….,dn),每一个维度都为对象的一个特征,那么这些度量函数极容易得到应用。1.范数和欧拉距离 欧拉距离,来自于欧式几何(就是我们小学就开始接触的几何学),在数学上也可以成为范数。如果一个对象对应于空

间的一个点,每一个维度就是空间的一个维度。特殊情况,如果n=1,那么,小学我们就学过,直线上两个点的距离是|x1-x2|。推广到高纬情况,一个很自然的想法是,把每一个维度的距离加起来不就可以呢。这就形成了传说中的一范数:看,是不是很简单。有一范数就有二范数,三范数。。。无穷范数。其实,二范数来的更加直观,我们都知道二维空间,三维空间的两点的距离公式。他就是二范数,在二维三维上的形式了。 好了,一鼓作气,p范数(p-norm) 无穷范数: 空间两点的距离公式(2-范数),是最常用的距离公式,他就是传说中的欧拉距离。多简单。2. cosine similarity cosine similarity是备受恩宠啊,在学向量几何的时候,应该接触过这个神奇的公式 分子是两 个向量的点积,||A||是向量的长度,这个公式神奇的地方是,随着角度的变化的,函数是从-1,1变化的。向量夹角的余 弦就是两个向量的相似度。cosine similarity 说,如果两个 向量的夹角定了,那么无论一个向量伸长多少倍,他们的相似性都是不变的。所以,应用cosine 相似性之前,要把对 象的每一个维度归一化。在搜索引擎技术中,cosine 相似性在计算查询和文档的相似性的时得到了很好的应用。对查询

相关文档
最新文档