如何根据电力变压器容量选择无功补偿电容器的大小[1]1

如何根据电力变压器容量选择无功补偿电容器的大小[1]1
如何根据电力变压器容量选择无功补偿电容器的大小[1]1

最佳答案

进行测试后,将电容补偿柜(空柜)和电力电容器分开运输,直到最终目的地(直接用户处)再进行安装。

用户只要对电力电容器选用得当,可为企业提高经济效益,为设备运行与人身财产提供安全的保证。

二、对环境的原因直接影响到电力电容器的寿命。电压过高与冲击电流对电力电容器是致命损害。所以选用电力电容器时,应向生产厂家提供下列几点情况,这样生产厂家可为用户生产专用的电容器。

1、电力电容器设计温度标准45℃,超过45℃对电容器影响很大。(如上海虹桥机场国内候机楼配电房,其里面温度比外界的自然温度高出许多,普通电容器被封闭在柜子里,温度则更高。导致电容器在高温状态下发热过度,引起膨胀、漏液。而更换了带有温度保险的专用电力电容器,在自然环境温度38℃以上,且配电房及电容柜温度更高的状态下,运行一切良好。)

2、在灰尘多、静电多的场合,电容器的选择要求较高。一般的产品在这种环境下,运行寿命短,所以选择电力电容器时应考虑使用抗灰尘、抗静电的专用电力电容器。

3、在有些地区电压不稳定,过高或过低,对电力电容器有影响。因此选择电力电容器时,应将电压等级提高,如原先用0.4KV电压等级的可提升至0.45KV,这样可延长电容器的使用寿命。

4、电流不稳定对电容器存在致命的伤害。(如上海的一家电器厂是生产电器产品的厂家,较验台多、冲击电流大,一般的电容器无法承受,使用了抗冲击的专用电力电容器就没问题了。)因此对一些有如行车、起吊设备或起动频繁的设备的企业,建议最好使用抗冲击的专用电力电容器。

5、有在特殊环境、特殊工作运行的电器设备的企业,在选择电力电容器时,应向电容器生产厂家说明,以方便厂家根据用户的特殊情况提供专用的电力电容器。

所以企业在选择电力电容器时,应针对环境、电压、电流等特殊的条件,购买相应的专用电力电容器,这样既能延长电容器的使用寿命,又能节省资金、提供经济效益。

三、电力电容器容量的选配得当对电网的安全运行提供了保证。容量选配对电网的影响较大,这就要求企业在使用电力电容器补偿时,既不能过多,也不能过少。

在很多地方,如果一个企业的电容器补偿不够,会被供电局罚款。因此企业会多补电容,但这样对电网的电压升高太大,容易烧坏用电设备,也会被供电局罚款。而在上海及周边的一些城市,为保证电网运行及供电质量,企业都被要求安装双向无功电度表。对发生电容容量过补或欠补的现象,供电局都要进行罚款,因此应选配多少容量的电容器就显得非常重要。

怎样才能使电力电容器容量的选配得当呢?以下几点可供参考:

1、在就地补偿来讲,根据电动机的空载电流Io×就是所需要补偿的容量。

2、根据总载机的容量或根据变压器容量′60%,计算电容器选配的所需容量(配电房)。

3、根据实际负载高峰值′80%,计算电容器选配的所需容量(配电房)。

第2、3点要根据实际情况,各企业的情况不同有不同的对待处理,经济效益好,是否是三班24小时不停运行,或两班、一班运行,都有不同用电状态,需不同的处理补偿方式,最好用质量可靠的无功功率补偿器来控制。

选用电力电容器补偿时,还应考虑变压器的损耗,因为变压器运行时也消耗无功。(在变压器补偿这方面最大补偿到25KVAR,最小补偿到1KVAR。这要针对变压器的容量大小、是否是节能型而定。)

四、经济的飞速发展带来了供电紧张,非线性设备的广泛应用使大量的谐波电流被注入电网,不仅增加了电能损耗,降低经济效益,而且严重影响电能质量,威胁电网安全运行。

特别是化工、轧钢、冶炼工业的发展造成大量整流、变频逆变电磁等非线性负荷接入电网运行,产生大量的谐波电流和电压,造成过流、过电压、过负荷。对这类用电的情况,提供以下几点用户参考:

1、谐波不严重的用户,选用电力电容器应提高电压等级,用450V或525V电压等级的电力电容器。

2、谐波不严重但电流波动大,选用电力电容器应提高电压等级,电容器内加装电抗器,最好加装温度保护。

3、谐波较严重的用户,每台电力电容器应提高电压等级,而容量要改小。接触器、熔断器的容量放大,能够承受因谐波产生震荡而防大电流。

4、谐波严重的用户,每台电力电容器应加装滤波装置,这滤波装置要根据用户单位测量出的谐波数据而定做。

5、有谐波的用电单位,选用无功功率自动补偿控制器,必须要抗谐波。

总而言之,电力电容器选配得当,可以保证用电质量,节约能源,有效保护电器设备,甚至有额外的经济奖励

并联电容器无功补偿方案

课程设计 并联电容器无功补偿方案设计 指导老师:江宁强 1010190456 尹兆京

目录 1绪论 (2) 1.1引言 (2) 1.2无功补偿的提出 (3) 1.3本文所做的工作 (3) 2无功补偿的认识 (3) 2.1无功补偿装置 (3) 2.2无功补偿方式 (4) 2.3无功补偿装置的选择 (4) 2.4投切开关的选取 (4) 2.5无功补偿的意义 (5) 3电容器无功补偿方式 (5) 3.1串联无功补偿 (5) 3.2并联无功补偿 (6) 3.3确定电容器补偿容量 (6) 4案例分析 (6) 4.1利用并联电容器进行无功功率补偿,对变电站调压 (6) 4.2利用串联电容器,改变线路参数进行调压 (13) 4.3利用并联电容器进行无功功率补偿,提高功率因素 (15) 5总结 (21) 1绪论 1.1引言 随着现代科学技术的发展和国民经济的增长,电力系统发展迅猛,负荷日益增多,供电容量扩大,出现了大规模的联合电力系统。用电负荷的增加,必然要

求电网系统利用率的提高。但由于接入电网的用电设备绝大多数是电感性负荷,自然功率因素低,影响发电机的输出功率; 降低有功功率的输出; 影响变电、输电的供电能力; 降低有功功率的容量; 增加电力系统的电能损耗; 增加输电线路的电压降等。因此,连接到电网中的大多数电器不仅需要有功功率,还需要一定的无功功率。 1.2无功补偿的提出 电网输出的功率包括两部分:一是有功功率;二是无功功率。无功,简单的说就是用于电路内电场与磁场的交换,并用来在电气设备中建立和维持磁场的电功率。电机和变压器中的磁场靠无功电流维持,输电线中的电感也消耗无功,电抗器、荧光灯等所有感性电路全部需要一定的无功功率。为减少电力输送中的损耗,提高电力输送的容量和质量,必须进行无功功率的补偿。 1.3本文所做的工作 主要对变电站并联电容器无功补偿作了简单的分析计算,提出了目前在变电站无功补偿实际应用中计算总容量与分组的方法,本文主要作了以下几个方面的工作: 对无功补偿作了简单的介绍,尤其是电容器无功补偿,选取了相关的案例进行了简单的计算和分析。 2无功补偿的认识 2.1无功补偿装置 变电站中传统的无功补偿装置主要是调相机和静电电容器。随着电力电子技术的发展及其在电力系统中的应用,交流无触点开关SCR、GTR、GTO等相继出现,将其作为投切开关无功补偿都可以在一个周波内完成,而且可以进行单相调节。如今所指的静止无功补偿装置一般专指使用晶闸管投切的无功补偿设备,主要有以下三大类型: 1、具有饱和电抗器的静止无功补偿装置; 2、晶闸管控制电抗器、晶闸管投切电容器,这两种装置统称为SVC 3、采用自换相变流技术的静止无功补偿装置——高级静止无功发生器。

无功补偿容量计算

无功补偿容量计算 Prepared on 22 November 2020

一、无功补偿装置介绍 现在市场上的无功补偿装置主要分为固定电容器组、分组投切电容器组、有载调压式电容器组、SVC和SVG。下面介绍下各种补偿装置的特点。 1)固定电容器组。其特点是价格便宜,运行方式简单,投切间隔时间长。但它对于补偿变化的无功功率效果不好,因为它只能选择全部无功补偿投入或全部无功补偿切出,从而可能造成从补偿不足直接补偿到过补偿,且投切间隔时间长无法满足对电压稳定的要求。而由于光照强度是不停变化的,利用光伏发电的光伏场发出的电能也跟着光伏能力的变化而不断变化,因此固定电容器组不适应光伏场的要求,不建议光伏项目中的无功补偿选用固定电容器组。 2)分组投切电容器组。分组投切电容器组和固定电容器组的区别主要是将电容器组分为几组,在需要时逐组投入或切出电容器。但它仍然存在投切间隔时间长的问题,且分的组数较少,一般为2~3组(分的组数多了,投资和占地太大),仍有过补偿的可能。因此分组投切电容器组适用于电力系统较坚强、对相应速度要求较低的场所。 3)有载调压式电容器组。有载调压式电容器组和固定电容器组的区别主要是在电容器组前加上了一台有载调压主变。根据公式Q=2πfCU2可知,电容器组产生的无功功率和端电压的平方成正比,故调节电容器组端电压可以调节电容器组产生的无功功率。有载调压式电容器组的投切间隔时间大大缩短,由原来的几分钟缩短为几秒钟。且有载调压主变档位较多,一般为8~10档,每档的补偿无功功率不大,过补偿的可能性较小。因此分组投切电容器组适用于电力系统对光伏场要求一般的场所。

变压器容量的选型

功率的标称:以千瓦(kW)为单位的是有功功率,以千伏安(kVA)为单位的是视在功率。 变压器的额定容量均是以视在功率来做为功率标称的。 也就是说1kVA是变压器的额定容量,是以视在功率来做为功率标称的。 视在功率 交流电路中总电压与总电流有效值的乘积叫做视在功率,即:S=UI。 视在功率、有功功率和无功功率构成一个直角三角形,我们称为功率三角形。 电功率分为有功功率(P)和无功功率(Q),二者的向量和就是视在功率(S),其实就是三角函数的关系:S=根号(P的二次方+Q的二次方)。 变压器的视在功率就是指变压器传递的总功率,有功功率和无功功率是根据负荷的特性改变的。视在功率的单位是V A(付安),有功功率是W(瓦),无功功率是Var(乏)。 发电机和变压器的单位都可以是KW或KV A,KW和KV A表示的意义一样,都指“功率”。 而电力变压器常用KV A作容量的单位,原因是在负载没有确定的情况下,是不能得到有功功率(符号P,单位KW)和无功功率(符号Q,单位KV AR)的大小的,只有使用KV A为单位,表示视在功率,符号S。S^2=P^2+Q^ 可以理解负载为纯阻抗时,变压器的有功功率。 1KV A=1KW,物理课中应该学过功率P=U*I吧?P的单位是W,U的单位是V,I的单位是A,所以1W=1V*1A 在设备铭牌标示上,KV A用来表示实在功率,即设备的容量,KW用来表示有功功率,这是我们的习惯. 参: KW:有功功率(P)单位 KV A:视在功率(S)单位 V AR:无功功率Q S=(P平方+Q平方)的开方 P=S*cos(φ) φ是功率因数 S=UI=I^2│Z│,(Z为复数阻抗) 有功功率(单位KW)与视在功率(单位KV A)差一个cos(φ)

无功补偿电容器串联电抗器的选用

无功补偿电容器串联电抗器的选用 在高压无功补偿装置中,一般都装有串联电抗器,它的作用主要有两点:1)限制合闸涌流,使其不超过20倍;2)抑制供电系统的高次谐波,用来保护电容器。因此,电抗器在无功补偿装置中的作用非常重要。 然而,串抗与电容器不能随意组合,若不考虑电容装置接入处电网的实际情况,采用“一刀切”的配置方式(如电容器一律配用电抗率为5%~6%的串抗),往往适得其反,招致某次谐波的严重放大甚至发生谐振,危及装置与系统的安全。由于电力谐波存在的普遍性,复杂性和随机性,以及电容装置所在电网结构与特性的差异,使得电容装置的谐波响应及其串抗电抗率的选择成为疑难的问题,也是人们着力研究的课题。电容器组投入串抗后改变了电路的特性,串抗既有其抑制涌流和谐波的优点,又有其额外增加的电能损耗和建设投资与运行费用的缺点。所以对于新扩建的电容装置,或者已经投运的电容装置中的串抗选用方案,进行技术经济比较是很有必要的。虽然现有的成果尚不足为电容装置工程设计中串抗的选用作出量化的规定,但是随着研究工作的深入,实际运行经验的积累,业已提出许多为人共识的见解,或行之有效的措施,或可供借鉴的教训。 下面总结电容器串联电抗器时,电抗率选择的一般规律。 1. 电网谐波中以3次为主 根据《并联电容器装置设计规范》,当电网谐波以3次及以上为主时,一般为12%;也可根据实际情况采用4.5%~6%与12%两种电抗器:(1)3次谐波含量较小,可选择0.5%~1%的串联电抗器,但应验算电容器投入后3次谐波放大量是否超过或接近限值,并有一定裕度。(2)3次谐波含量较大,已经超过或接近限值,可以选用12%或4.5%~6%串联电抗器混合装设。 2. 电网谐波中以3、5次为主 (1)3次谐波含量较小,5次谐波含量较大,选择4.5%~6%的串联电抗器,尽量不使用0.1%~1%的串联电抗器;(2)3次谐波含量略大,5次谐波含量较小,选择0.1%~1%的串联电抗器,但应验算电容器投入后3次谐波放大是否超过或接近限值,并有一定裕度。 3. 电网谐波以5次及以上为主 (1)5次谐波含量较小,应选择4.5%~6%的串联电抗器;(2)5次谐波含量较大,应选择4.5%的串联电抗器。对于采用0.1%~1%的串两电抗器,要防止对5次、7次谐波的严重放大伙谐振。对于采用4.5%~6%的串联电抗器,要防止怼次谐波的严重放大或谐振。当系统中无谐波源时,为防止电容器组投切时产生的过电压和对电容器组正常运行时的静态过电压、无功过补时电容器端的电压升高的情况分析计算,可选用0.5%~1%的电抗器。 根据以上的选择原则,对无功补偿装置中的串联电抗器有以下建议: (1)新建变电所的电容器装置中串联电抗器的选择必须慎重,不能与电容器任意组合,必须考虑电容器装置接入处的谐波背景。 (2)对于已经投运的电容器装置,其串联电抗器选择是否合理须进一步验算,并组织现场实测,了解电网谐波背景的变化。对于电抗率选择合理的电容器装置不得随意增大或减小电容器组的容量。 (3)电容器组容量变化很大时,可选用于电容器同步调整分接头的电抗器或选择电抗

无功补偿常用计算方法

按照不同的补偿对象,无功补偿容量有不同的计算方法。 (1)按照功率因数的提高计算 对需要补偿的负载,补偿前后的电压、负载从电网取用的电流矢量关系图如图3.7所示: I 2r I 1 补偿前功率因数1cos ?,补偿后功率因数2cos ?,补偿前后的平均有功功率为 P ,则需要补偿的无功功率容量 )t a n (t a n 21? ?-=P Q 补偿 (3.1) 由于负载功率因数的增加,会使电网给负载供电的线路上的损耗下降, 线损的下降率 %100)cos (3)cos (3)cos ( 3%21 122 2211?-= ?R I R I R I P a a a ???线损 %100)c o s c o s (1221??? ? ???-=?? (3.2) 式中R 为负载侧等值系统阻抗的电阻值。 (2)按母线运行电压的提高计算 ①高压侧无功补偿 无功补偿装置直接在高压侧母线补偿,系统等值示意图如图3.8所示: 图3.7 电流矢量图

P+jQ 补偿 图中, S U、U分别是系统电压和负载侧电压;jX R+是系统等值阻抗(不 含主变压器高低压绕组阻抗);jQ P+是负载功率, 补偿 jQ是高压侧无功补偿容 量; 1 U、 2 U分别是补偿装置投入前后的母线电压。 无功补偿装置投入前后,系统电压、母线电压的量值存在如下关系: 无功补偿装置投入前 1 1U QX PR U U S + + ≈ 无功补偿装置投入后 2 2 ) ( U X Q Q PR U U S 补偿 - + + ≈ 所以 2 1 2U X Q U U补偿 ≈ -(3.3) 所以母线高压侧无功补偿容量 ) ( 1 2 2U U X U Q- = 补偿 (3.4) ②主变压器低压侧无功补偿 无功补偿装置在主变压器的低压侧进行无功补偿,系统等值示意图如图3.9所示: P+jQ 补偿 图3.8 系统等值示意图

电气设备无功补偿装置的选用和无功补偿装置容量的确定

电气设备无功补偿装置的选用 无功补偿应本着全面规划,合理布局,分级补偿,就地平衡的原则确定最优的补偿容量和分布方式,具体内容如下: (1)总体的无功平衡与局部的无功平衡相结合。既要满足供电网的总无功需求,又要满足分线、分站的变电站及各用户无功平衡。 (2)集中补偿与分散补偿相结合。以分散补偿为主,这就要求在负荷集中的点进行补偿,既要在变电站进行大容量集中补偿,又要在配电线路、配电变压器和用电设备处进行分散补偿,使无功就地平衡,减少变压器和线路的损耗。 (3)高压补偿与低压补偿相结合。以低压补偿为主,电气设备高压无功补偿装置应装设在变压器的主要负荷侧,当不具备条件时,可装设在变压器的第三绕组侧,高压侧无负荷时,不得在高压侧装设补偿装置。 (4)降损与调压相结合。以降损为主,兼顾调压。这是针对供电半径较长,分支较多,负荷比较分散,自然功率因数低的线路。这种线路负荷率低,线路的供电变压器多工作在空载或轻载的工况下,线路损失大,若对此线路进行补偿,可明显提高线路的供电能力。 电气设备无功补偿装置容量的确定 2.1低压集中补偿 配电网的无功补偿以配电变压器低压的集中补偿为主,以高压补偿为辅,电气设备配电变压器无功补偿装置的容量如果无法了解负荷的工作情况及系统参数,可按变压器最大负荷率为75%,负荷功率

因数为0.70考虑,补偿到变压器最大负荷时其高压侧的功率因数不低于0.95,或按变压器容量的20%~40%进行配置。 用户对功率因数有特殊要求时,可选择合适的补偿容量使功率因数达到用户的要求值。 2.2电动机定补 按照电动机的空载电流确定电动机的定补容量,电气设备电动机的空载电流约占额定电流的25%~40%。为了防止电机退出运行时产生自激过电压,电动机的补偿容量一般不应大于电动机的空载无功,通常取QC=(0.95~0.98)UeI0 对于排灌电动机等所带机械负荷轴惯性较大的电机,补偿容量可适当加大,大于电机空载无功负荷,但要小于额定无功负荷。对于排灌用普通电机,可按下式确定补偿容量:QC=(0.5~0.6)Pe(kvar) 2.3随器补偿 电气设备变压器在轻载及空载时的无功负荷主要是变压器的空载励磁无功。 Q0=I0%Se×10-2(kvar) 随器补偿只能补偿配变的空载无功Q0。如果在补偿容量大于变压器的空载无功时,则在配变接近空载时会造成过补偿,易产生铁磁谐振。因此推荐选用的补偿容量为QC=(0.95~0.98)Q0

低压无功补偿回路保护熔断器选择

低压无功补偿回路保护熔断器选择 低压无功补偿柜中补偿回路的熔断器作用,是为了保证整个回路安全可靠的运行,以达到无功补偿的目的,那么电容器(和串联电抗器)作为补偿回路的核心元件,熔断器对它提供可靠的保护性能是非常必要的。由于现行相关标准里对补偿回路保护熔断器的选择没有特别详细的要求,所以在实际应用中大家的选择也不尽一致,有时差别甚至相当悬殊。 在低压配电系统中的负载类型变得越来越复杂的情况下,补偿回路熔断器的选择不能一概而论,要视低压无功补偿的具体类型进行科学的分析和选择。 下面我们根据相关的国家标准和低压无功补偿类型两方面来分析如何合理正确的选择补偿回路的熔断器。 一、相关的国家标准 1、在低压并联电容器标准GB/T12747.1-2004中,对有关电容器最大电流和保护的相关要求和说明如下: 21 最大允许电流 电容器单元应适用于在线路电流方均根值为1.3倍该单元在额定正弦电压和额定频率下产

生的电流下连续运行,过渡过程除外。考虑到电容偏差,最大电容可达1.10CN,故其最大电流可达1.43IN。 这些过电流因素是考虑到谐波、过电流和电压偏差共同作用的结果。 33 过电流 电容器决不可在电流超过第21章中规定的最大值下运行。 34 开关、保护装置及连接件 开关、保护装置及连接件均应设计成能连续承受在额定频率和方均根值等于额定电压的正弦电压下得到的电流的1.3倍的电流。因为电容器的电容可能为额定值的 1.10倍,故这一电流最大值为 1.3×1.10倍额定电流,即为1.43IN 2、在中低压电容器及其成套装置标准GB7251中,有关电容保护熔断器的选择要求如下: 5.3.5 b) 熔断器额定工作电流(方均根值)应按2~3倍单组电容器额定电流选取。 3、在并联电容器装置设计规范GB50227-2008中,有关电容保护熔断器是这样要求的: 5.4 熔断器 5.4.2 用于单台电容器保护的外熔断器的熔丝额

配电变压器低压侧无功补偿容量选择

配电变压器低压侧无功补偿容量选择 为了提高功率因数,减少电能损耗,增强供电能力,在农网改造中,应对100kVA及以上配电变压器在低压侧安装 容量为配变额定容量8%左右的补偿电容器进行无功补偿。但许多人认为按配电变压器容量的8%配置补偿容量太 小,不足以补偿低压侧所有的无功负荷,配变高压侧功率因数提高不大。其实,这是一种误解,因为配变低压侧无 功补偿,作用仅限于减少变压器本身及以上配电网的功率损耗,凡是向负荷输送的无功功率,由于仍然要经过低压 线路的电阻和电抗,配电线路上产生的功率损耗并未减少。所以,配变低压侧无功补偿容量选择过大是无益的。而 只有采取配变低压侧补偿和用户端就地补偿相结合的补偿方式才可以在提高功率因数的同时,减少低压线路损耗, 取得最佳的经济效益。 配变低压侧补偿容量过大不但不经济,而且在变压器空载运行时,或者负荷较轻时,还会造成过补偿,使功率 因数角超前、无功功率向电力系统倒送和电源电压升高。 功率因数角超前的坏处是: (1)电容器与电源仍有无功功率交换,同样减少电源的有功出力。 (2)网络因传输容性无功功率,仍会造成有功损耗。 (3)白白耗费了电容器的设备投资。 另外,如补偿电容过大,当电源缺相时有可能发生铁磁谐振过电压,烧毁电容器和变压器。 所以,配变低压侧补偿容量过大不但不经济,而且还会影响设备的安全运行。 根据以上分析,配变低压侧集中无功补偿根据功率因数的需求选择不科学,补偿容量不应过大。为了防止发生 过补偿现象,配变低压侧无功补偿原则为:其补偿容量不应超过配变的无功功率。 变压器总的无功功率:Qb=Qb0+QbH·(S/Se)2 Qb=[I0%/100+Ud%/100·(S/Se)2]·Se(1) 式中Qb0-变压器空载无功功率,kvar QbH-变压器满载无功功率,kvar I0%-变压器空载电流百分数

电力电容器及无功补偿技术手册

电力电容器及无功补偿 技术手册 沙舟编著

目录 前言 第一章基本概念 (1) §1-1 交流电的能量转换 (1) §1-2 有功功率与无功功率 (2) §1-3 电容器的串联与并联 (3) §1-4 并联电容器的容量与损耗 (3) §1-5 并联电容器的无功补偿作用 (4) 第二章并联电容器无功补偿的技术经济效益 (5) §2-1 无功补偿经济当量 (5) §2-2 最佳功率因数的确定 (7) §2-3 安装并联电容器改善电网电压质量 (8) §2-4 安装并联电容器降低线损 (11) §2-5 安装并联电容器释放发电和供电设备容量 (13) §2-6 安装并联电容器减少电费支出 (15)

前言 众所周知,供电质量主要决定于电压、频率和波形三个方面。电网频率稳定决定于电网有功平衡,波形主要决定于网络和负荷的谐波,电压稳定则决定于无功平衡。当然三者之间也具有一定的内在关系。无功平衡决定于网络中无功的产生和消耗。在系统中无功电源有同步发电机、同步调相机、电容器、电缆、输电线路电容、静止无功补偿装置和用户同步电动机,无功负荷则有电力变压器,输电线路电感和用户的感应电动机,各种感应式加热炉、电弧炉等。为了满足系统中无功电力的需求,单靠发电机、调相机、电缆和输电线路电容是不够的,静补装置中也是采用电容器等。因此电容器在系统的无功电源中占有相当比重,加之调相机为旋转设备。建设投资大,运行维护费用高。近年来世界各国都积极装设电容器,满足系统无功电力要求,维持电压稳定。但各国主要是装设并联电容器,装串联电容器者较少,因此编者主要介绍并联电容器无功补偿技术,它还广泛应用于谐波滤波装置,动态无功补偿设备和电气化铁道无功补偿装置之中,因与电力系统谐波有关。限于篇幅,准备在“谐波技术”中详述。这里主要介绍一些无功补偿技术基础。限于编者水平,加上时间仓促,不当之处难免,请读者批评指正。

主变压器容量的选择

主变压器容量的选择 2.1 主变压器的选择 主变压器是主接线的中心环节,其台数、容量和型式的初步选择是构成各种 主接线的基础,并对发电厂和变电所的技术经济性有很大影响。 2.1.1 主变容台数的选择 (1)对大城市郊区的一次变,在中、低压侧构成环网情况下,装两台主变为宜。 (2)对地区性孤立的一次变或大型的工业专用变电所,设计时应考虑装三台的可能性。 (3)对规划只装两台主变的变电所,其主变基础宜大于变压器容量的1-2级设计,以便负荷发展时更换主变。 变压器的容量、台数直接影响到变电站的电气主接线形式和配电装置的结构。它的确定除了依据传递容量基本原始资料外,还要根据电力系统5—10 年的远景 发展计划,输送功率的大小、馈线回路数、电压等级以及接入电力系统中的紧密 程度等因素,进行综合分析与合理的选择。 (4)在有一级,二级负荷的变电站中,应该装设两台主变电压器。当技术经济比较合理时主变压器的台数也可以多于两台。如果变电站可由中、低压侧电力网中取得足够能量的备用电源时,可以装设一台主变压器。 (5)装设两台及其以上主变压器的变电站中,当断开一台时,其余主变压器的容量应保证用户一级负荷和部分二级负荷(一般不应小于主变压器容量的60%)。具有三种电压等级的变电站中,如果通过主变压器各侧绕组的功率均达到主变压器容量的15%时,主变电压器宜采用三绕组变压器。 2.1.2 主变容量选择 根据“ 35?110KV变电所设计规范”主要变压器的台数和容量,应根据地区 供电条件、负荷性质、用电容量和运行方式等条件综合考虑确定。在有一、二级负荷变电所中宜装设两台主变压器,当技术经济比较合理时,可装设两台以上主变压器。装有两台及以上主变压器的变电所,当断开一台时,其余主变压器的容量不应小于60%的全部负荷,并应保证用户的一、二级负荷。具有三种电压的变电所,如通过主变压器各侧线圈的功率均达到该变压器的15%以上,主要变 压器宜采用三线圈变压器。 由于我国电力不足、缺电严重、电网电压波动较大。变压器的有载调压是改善电压质量、减少电压波动的有效手段。对电力系统,一般要求110KV及以下变电所至少采用一级有载调压变压器,因此城网变电所采用有载调压变压器的较多。 2.1.3 主变容量选择原则 1)主变容量选择一般应按变电所建成后5-10年的规划负荷选择,并适当

电力电容器及无功补偿技术手册

1 电力电容器及无功补偿 技术手册 沙舟编著

目录 前言 第一章基本概念 (1) §1-1 交流电的能量转换 (1) §1-2 有功功率与无功功率 (2) §1-3 电容器的串联与并联 (3) §1-4 并联电容器的容量与损耗 (3) §1-5 并联电容器的无功补偿作用 (4) 第二章并联电容器无功补偿的技术经济效益 (5) §2-1 无功补偿经济当量 (5) §2-2 最佳功率因数的确定 (7) §2-3 安装并联电容器改善电网电压质量 (8) §2-4 安装并联电容器降低线损 (11) §2-5 安装并联电容器释放发电和供电设备容量 (13) §2-6 安装并联电容器减少电费支出 (15)

前言 众所周知,供电质量主要决定于电压、频率和波形三个方面。电网频率稳定决定于电网有功平衡,波形主要决定于网络和负荷的谐波,电压稳定则决定于无功平衡。当然三者之间也具有一定的内在关系。无功平衡决定于网络中无功的产生和消耗。在系统中无功电源有同步发电机、同步调相机、电容器、电缆、输电线路电容、静止无功补偿装置和用户同步电动机,无功负荷则有电力变压器,输电线路电感和用户的感应电动机,各种感应式加热炉、电弧炉等。为了满足系统中无功电力的需求,单靠发电机、调相机、电缆和输电线路电容是不够的,静补装置中也是采用电容器等。因此电容器在系统的无功电源中占有相当比重,加之调相机为旋转设备。建设投资大,运行维护费用高。近年来世界各国都积极装设电容器,满足系统无功电力要求,维持电压稳定。但各国主要是装设并联电容器,装串联电容器者较少,因此编者主要介绍并联电容器无功补偿技术,它还广泛应用于谐波滤波装置,动态无功补偿设备和电气化铁道无功补偿装置之中,因与电力系统谐波有关。限于篇幅,准备在“谐波技术”中详述。这里主要介绍一些无功补偿技术基础。限于编者水平,加上时间仓促,不当之处难免,请读者批评指正。

无功补偿容量配置方法

1无功补偿作用: 提高变压器利用率,降低损耗、提高功率因数,避免罚款争取奖励。2型号示意 设计时:估算根据变压器容量估算补偿容量:变压器30%左右;计算负载有功功率,估算补偿前功率因数,确定补偿后达到的功率因数,根据无功补偿系数表查询数据,计算出所需补偿(比较准确)。 改造时:断掉现有补偿,记录、监测:有功功率、功率因数(补偿前),取得数据后,确定补偿后功率因数,查询无功补偿系数表,计算达到补偿后功率因数需要的补偿容量。 以上的到的补偿容量均为计算容量,即所需补偿的实际输出容量,而实际电容器输出容量和额定容量不是一致的。额定容量即安装电容器在电容器标注的额定电压下的容量,如450V电容器额定容量30kVar,指电容器在450V下输出30kVar,而实际在400V系统下,此电容器输出容量为30*(400*400/450*450)=23.7,如果实际电容端电压只有380V,输出只有21kVar。 (公式: Qc=2×π×f×C×U×U;当电源频率f=50HZ、π=3.14时,则简化为: Qc=0.314×C×U×U (Qc=千乏,C=μF))

带电抗时考虑电抗影响,实际输出容量(Qc)与安装容量(Qe),计算系数为,带7%电抗(额定电压480V)时,Qc=0.746Qe,带14%电抗(额定电压525V)时,Qc=0.675Qe,为确保容量配置足够,根据此公式计算所需安装电容补偿容量Qe。 附-无功补偿容量补偿表

根据上述计算容量,计算容量为补偿所需输出容量,根据输出容量计算出安装容量,为最后所需配置的补偿容量。一般配置补偿容量要求加一定裕量,1.2倍左右配置最佳。

电力电容器的补偿原理精编版

电力电容器的补偿原理公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

1电力电容器的补偿原理 电容器在原理上相当于产生容性无功电流的发电机。其无功补偿的原理是把具有容性功率负荷的装置和感性功率负荷并联在同一电容器上,能量在两种负荷间相互转换。这样,电网中的变压器和输电线路的负荷降低,从而输出有功能力增加。在输出一定有功功率的情况下,供电系统的损耗降低。比较起来电容器是减轻变压器、供电系统和工业配电负荷的最简便、最经济的方法。因此,电容器作为电力系统的无功补偿势在必行。当前,采用并联电容器作为无功补偿装置已经非常普遍。 2电力电容器补偿的特点 优点 电力电容器无功补偿装置具有安装方便,安装地点增减方便;有功损耗小(仅为额定容量的 %左右);建设周期短;投资小;无旋转部件,运行维护简便;个别电容器组损坏,不影响整个电容器组运行等优点。 缺点 电力电容器无功补偿装置的缺点有:只能进行有级调节,不能进行平滑调节;通风不良,一旦电容器运行温度高于70 ℃时,易发生膨胀爆炸;电压特性不好,对短路稳定性差,切除后有残余电荷;无功补偿精度低,易影响补偿效果;补偿电容器的运行管理困难及电容器安全运行的问题未受到重视等。 3无功补偿方式 高压分散补偿 高压分散补偿实际就是在单台变压器高压侧安装的,用以改善电源电压质量的无功补偿电容器。其主要用于城市高压配电中。 高压集中补偿

高压集中补偿是指将电容器装于变电站或用户降压变电站6 kV~10 kV高压母线的补偿方式;电容器也可装设于用户总配电室低压母线,适用于负荷较集中、离配电母线较近、补偿容量较大的场所,用户本身又有一定的高压负荷时,可减少对电力系统无功的消耗并起到一定的补偿作用。其优点是易于实行自动投切,可合理地提高用户的功率因素,利用率高,投资较少,便于维护,调节方便可避免过补,改善电压质量。但这种补偿方式的补偿经济效益较差。 低压分散补偿 低压分散补偿就是根据个别用电设备对无功的需要量将单台或多台低压电容器组分散地安装在用电设备附近,以补偿安装部位前边的所有高低压线路和变压器的无功功率。其优点是用电设备运行时,无功补偿投入,用电设备停运时,补偿设备也退出,可减少配电网和变压器中的无功流动从而减少有功损耗;可减少线路的导线截面及变压器的容量,占位小。缺点是利用率低、投资大,对变速运行,正反向运行,点动、堵转、反接制动的电机则不适应。 低压集中补偿 低压集中补偿是指将低压电容器通过低压开关接在配电变压器低压母线侧,以无功补偿投切装置作为控制保护装置,根据低压母线上的无功符合而直接控制电容器的投切。电容器的投切是整组进行,做不到平滑的调节。低压补偿的优点:接线简单、运行维护工作量小,使无功就地平衡,从而提高配变利用率,降低网损,具有较高的经济性,是目前无功补偿中常用的手段之一。 4电容器补偿容量的计算 无功补偿容量宜按无功功率曲线或无功补偿计算方法确定,其计算公式如下: QC=p(tgφ1-tgφ2)或是QC=pqc(1) 式中:Qc:补偿电容器容量; P:负荷有功功率; COSφ1:补偿前负荷功率因数; COSφ2:补偿后负荷功率因数; qc:无功功率补偿率,kvar/kw。 5电力电容器的安全运行

变压器容量大小选择

变压器容量大小选择 Prepared on 24 November 2020

变压器容量大小选择 一、按变压器的效率最高时的负荷率βM来计算变压器容量 当建筑物的计算负荷确定后,配电变压器的总装机容量为: S=Pjs/βb×cosφ2(KVA) (1) 式中Pjs——建筑物的有功计算负荷KW; cosφ2——补偿后的平均功率因数,不小于; βb——变压器的负荷率。 因此,变压器容量的最终确定就在于选定变压器的负荷率βb。 我们知道,当变压器的负荷率为: βb=βM=Po/PKH (2) 时效率最高 式中Po——变压器的空载损耗; PKH——变压器的短路损耗。 然而高层建筑中设备用房多设于地下层,为满足消防的要求,配电变压器一般选 用干式或环氧树脂浇注变压器,表一为国产SGL型电力变压器最佳负荷率。 表国产SGL型电力变压器最佳负荷率βm 容量(千伏安) 500 630 800 1000 1250 1600 空载损耗(瓦) 1850 2100 2400 2800 3350 3950 负载损耗(瓦) 4850 5650 7500 9200 11000 13300 损失比α2: 最佳负荷率βm%

技术文章选择变压器容量的简便方法: 我们在平时选用配电变压器时,如果把变压器容量选择过大,就会形成“大马拉小车”的现象。这不仅增加了设备投资,而且还会使变压器长期处于空载状态,使无功损失增加。如果变压器容量选择过小,将会使变压器长期处与过负荷状态,易烧毁变压器。因此,正确选择变压器容量是电网降损节能的重要措施之一,在实际应用中,我们可以根据以下的简便方法来选择变压器容量。高频变压器变压器容量本着“小容量,密布点”的原则,配电变压器应尽量位于负荷中心,供电半径不超过千米。配电变压器的负载率在~之间效率最高,此时变压器的容量称为经济容量。如果负载比较稳定,连续生产的情况可按经济容量选择变压器容量。 对于仅向排灌等动力负载供电的专用变压器,一般可按异步电动机铭牌功率的倍选用变压器容量。一般电动机的启动电流是额定电流的4~7倍,变压器应能承受住这种冲击,直接启动的电动机中最大的一台的变压器容量,一般不应超过变压器容量的30%左右。应当指出的是:排灌专用变压器一般不应接入其他负荷,以便在非排灌期及时停运,变压器容量减少电能损失。 对于供电照明、农副业产品加工等综合用电变压器容量的选择,要考虑用电设备的同时功率,可按实际可能出现的最大负荷的倍选用变压器容量。 根据农村电网用户分散、负荷密度小、负荷季节性和间隙性强等特点,可采用调容量变压器。调容量变压器是一种可以根据负荷大小进行无负荷调整容量的变压器,它适宜于负荷季节性变化明显的地点使用。 变压器容量对于变电所或用电负荷较大的工矿企业,一般采用母子变压器供电方式,其中一台(母变压器)按最大负荷配置,另一台(子变压器)按低

无功补偿电容器运行特性参数选取

无功补偿电容器运行特性参数选取 1 电力电容器及其主要特性参数 电力电容器是无功补偿装置的主要部件。随着技术进步和工艺更新,纸介质电容器已被 自愈式电容器所取代,自愈式电容器采用在电介质中两面蒸镀金属体为电极,其最大的改进是电容器在电介质局部击穿时其绝缘具有自然恢复性能,即电介质局部击穿时,击穿处附近的金属涂层将熔化和气化并形成空洞,由此虽然会造成极板面积减少使电容C 及相应无功功率有所下降,但不影响电容器正常运行。 自愈式电容器主要特性参数有额定电压、电容、无功功率。 1. 1 额定电压 《自愈式低电压并联电容器》第3. 2 条规定“电容器额定电压优先值如 下0. 23 ,0. 4 ,0. 525 及0. 69 kV。”电容器额定电压选取一般比电气设备额定运行电压高5 %。 1. 2 电容 电容器的电容是极板上的电荷相对于极板间电压的比值,该值与极板面积、极板间绝缘 厚度和绝缘介质的介电系数有关, 其计算式为C = 1 4πε× S D 式中ε为极板间绝缘介质的介电系数; S 为电容器极板面积; D 为电容器绝缘层厚度。 在上式中,电容C 数值与电压无直接关系, C 值似乎仅取决于电容器极板面积和绝缘介质,但这只是电容器未接网投运时的静态状况;接网投运后,由于电介质局部击穿造成极板面积减少从而会影响到电容C 数值降低,因此运行过程中, 电容C 是个逐年衰减下降的变量,其衰减速度取决于运行电压状况和自身稳态过电压能力。出厂电容器的电容值定义为静态电 容。一般,投运后第一年电容值下降率应在2 %以内,第二年至第五年电容值下降率应在1 %~ 2 % ,第五年后因电介质老化,电容值将加速下降,当电容值下降至出厂时的85 %以下,可认为该电容器寿命期结束。 1. 3 无功功率 在交流电路中,无功功率QC = UI sinφ由于电容器电介质损耗角极小,φ= 90°,所以sin φ= 1 ,则无功功率QC = UI =ωCU2 ×10 - 3 = 2πf CU2 ×10 - 3 (μF) ,从该式可见,电容器无功功率不仅取决于电容C ,而且还与电源频率f 、端电压U 直接相关,电容器额定无功功率的准确定义应是标准频率下外接额定电压时静态电容C 所对应的无功率。接网投运后电容器所输出实际无功功率能否达到标定容量,则需视运行电压状况。当电网电压低于电容器额定电压时,电容器所输出的无功功率将小于标定值。因此如果电容器额定电压选择偏高,电容器实际运行电压长期低于额定值,很可能因电容器无功出力低于设计值造成电网无功短 缺。 2 无功补偿电容装置参数的选取误区 无功补偿装置在进行设计选型及设备订货时,提供给厂家的参数往往仅是电容补偿柜型 号和无功功率数值,而电容器额定电压及静态电容值这两个重要参数常被忽略。由于电容器 生产厂家对产品安装处电压状况不甚了解,在产品设计时往往侧重于降低产品生产成本和减 少电介质局部击穿,所选取的电容器额定电压往往高于国家标准推荐值,这样做对电网运行的无功补偿效果会造成什么影响对电网建设投资又会引起什么变化呢可通过以下案例进行 分析。 例如某台10 0. 4 kV 变压器,按照功率因数0. 9 的运行要求,需在变压器低压侧进行集中 无功补偿,经计算需补偿无功功率100 kvar ,如果按额定电压U = 450 V 配置电容器,根据QC=ωCU2 ×10 - 3 计算,电容器组的静态电容值C 为1 572μF ,接入电网后在运行电压U =400 V 的状态下,该电容器实际向电网提供的无功功率QC 为79 kvar ,补偿效果仅达预期的79 %。反之,在上述条件下,要想保证实际补偿效果为100 kvar ,则至少需配置电容器无功功率为127 kvar ,也就意味着设备投资需要增加27 %。中山市2004 年变压器增加898 台,合计容量近60 万kvar ,按30 %补偿率计需补偿无功功率近18 万kvar 。

无功补偿和变压器的容量选择

无功补偿和变压器的容量选择 摘要合理的无功就地补偿和选择变压器容量可以降低损耗,提高系统运行的经济性,是电力需求侧管理的重要内容。本文将二者有效结合,推导了最经济运行的公式,通过简单迭代来确定无功就地补偿容量和变压器容量的选择。算例证明了其效果。 关键词无功补偿变压器容量最佳负载率无功补偿和变压器的容量选择 Planning of Reactive Compensation and Transformer Capacity Abstract: Rational planning of local reactive compensation and transformer capacity is very important for demand side management to reduce power losses and improve the economical power system operation. The best economical formulas are deduced through connection of the both. The capacity determination of local reactive compensation and the rational transformer capacity can be got through simple iteration. Examples are presented to show the effectiveness. Keywords: reactive compensation transformer capacity optimal load coefficient 1 前言 电力市场的开放使电力需求侧管理越来越受到关注。电力需求侧管理指的是电力公司采取有效的激励和诱导措施以及适宜的运作方式,与用户共同协力提高终端用电效率,改变用电方式,为减少电量消耗和电力需求所进行的管理活动。其主要目标是节约电力,减少装机,提高环境质量;节约电量、减少消耗,提高电力公司的经济效益和市场竞争力。鼓励用户进行无功补偿和合理选择变压器的容量是需求侧管理的重要内容。大用户的无功补偿可有效的降低有功网损同时也可降低对变压器的容量要求:合理选择变压器容量可提高用电效率。本文对用户侧变压器最佳容量选择和最佳无功补偿进行了研究。 2 最佳变压器容量的选择 变压器损耗在系统损耗中占有重要一部分,特别是在配电网中,变压器损耗约占整个线损的50%以上,如何降低变压器损耗是电力公司必须面临的问题,也

电力电容器的补偿原理

1电力电容器的补偿原理 电容器在原理上相当于产生容性无功电流的发电机。其无功补偿的原理是把具有容性功率负荷的装置和感性功率负荷并联在同一电容器上,能量在两种负荷间相互转换。这样,电网中的变压器和输电线路的负荷降低,从而输出有功能力增加。在输出一定有功功率的情况下,供电系统的损耗降低。比较起来电容器是减轻变压器、供电系统和工业配电负荷的最简便、最经济的方法。因此,电容器作为电力系统的无功补偿势在必行。当前,采用并联电容器作为无功补偿装置已经非常普遍。 2电力电容器补偿的特点 2.1优点 电力电容器无功补偿装置具有安装方便,安装地点增减方便;有功损耗小(仅为额定容量的0.4 %左右);建设周期短;投资小;无旋转部件,运行维护简便;个别电容器组损坏,不影响整个电容器组运行等优点。 2.2缺点 电力电容器无功补偿装置的缺点有:只能进行有级调节,不能进行平滑调节;通风不良,一旦电容器运行温度高于70 ℃时,易发生膨胀爆炸;电压特性不好,对短路稳定性差,切除后有残余电荷;无功补偿精度低,易影响补偿效果;补偿电容器的运行管理困难及电容器安全运行的问题未受到重视等。 3无功补偿方式 3.1高压分散补偿 高压分散补偿实际就是在单台变压器高压侧安装的,用以改善电源电压质量的无功补偿电容器。其主要用于城市高压配电中。 3.2高压集中补偿

高压集中补偿是指将电容器装于变电站或用户降压变电站6 kV~10 kV高压母线的补偿方式;电容器也可装设于用户总配电室低压母线,适用于负荷较集中、离配电母线较近、补偿容量较大的场所,用户本身又有一定的高压负荷时,可减少对电力系统无功的消耗并起到一定的补偿作用。其优点是易于实行自动投切,可合理地提高用户的功率因素,利用率高,投资较少,便于维护,调节方便可避免过补,改善电压质量。但这种补偿方式的补偿经济效益较差。 3.3低压分散补偿 低压分散补偿就是根据个别用电设备对无功的需要量将单台或多台低压电容器组分散地安装在用电设备附近,以补偿安装部位前边的所有高低压线路和变压器的无功功率。其优点是用电设备运行时,无功补偿投入,用电设备停运时,补偿设备也退出,可减少配电网和变压器中的无功流动从而减少有功损耗;可减少线路的导线截面及变压器的容量,占位小。缺点是利用率低、投资大,对变速运行,正反向运行,点动、堵转、反接制动的电机则不适应。 3.4低压集中补偿 低压集中补偿是指将低压电容器通过低压开关接在配电变压器低压母线侧,以无功补偿投切装置作为控制保护装置,根据低压母线上的无功符合而直接控制电容器的投切。电容器的投切是整组进行,做不到平滑的调节。低压补偿的优点:接线简单、运行维护工作量小,使无功就地平衡,从而提高配变利用率,降低网损,具有较高的经济性,是目前无功补偿中常用的手段之一。 4电容器补偿容量的计算 无功补偿容量宜按无功功率曲线或无功补偿计算方法确定,其计算公式如下: QC=p(tgφ1-tgφ2)或是QC=pqc(1) 式中:Qc:补偿电容器容量; P:负荷有功功率; COSφ1:补偿前负荷功率因数; COSφ2:补偿后负荷功率因数; qc:无功功率补偿率,kvar/kw。 5电力电容器的安全运行

变压器容量选择方法

变压器容量的选择 近年来,随着人民生活水平不断提高,住宅建设高速增长,出现了大量成片的住宅小区,加之大量私营企业的增加,变压器容量的选择不能仅仅是所有负荷的百分之几,负荷预测就显得更为重要。 1住宅用电负荷预测 需用系数法:依据人们的生活习惯,可能使用的电气设备有:灯具 300W 音响600W 电视机400W 冰箱200W 微波炉或电饭煲1800W 饮水机100W抽油烟机200W洗衣机200W热水器1500W空调2500W 其它未知设备600V Y合计8400W有些大型住宅的居民还增加空调、电视机、或双卫生间,用电容量将大幅增加,约为16 000W据统计,居民用电的最大负荷出现在夏季19~22时间段,这时用电负荷约为3800V y是用电设备容量的45%所以需用系数为0.45。一般住宅的计算负荷取3800V y大一些住宅取9500W Pjs=KxPs Pjs--- 计算负荷Ps---设备容量 单位面积法:按《中华人民共和国电力法》、《电力供应与使用条例》有关规定,一户一表工程应满足居民用电在30-50年内增长达到中等电气化的目标。住宅用电中等电气化水平是在普及电视机、洗衣机、电冰箱、电饭煲等家用电器的基础上,考虑空调或电热器进入居民家庭,炊事用具初步电气化,每户住宅日均用电水平达到7~20kwh根据经济发展水平和居民用电消费结构的不同,一户一表进户线及户内

配线的改造应能保障今后30~50年内不再改造,其供电能力达到 4~10KW勺水平、最低不低于50W/m2的居民小区用电设计标准。Pjs二p x S p ---建筑面积的负荷密度,即50W/m2 2变压器的选择 同时系数法:Pjs=K刀KxPs K刀---同时系数 住宅小区内居民由于作息时间不同,同时系数偏小,取同时系数一般为50 户以下0.55、50?100 户为0.45、100?200 户0.40、200 户以上取0.35。 由于居民用电基本没有无功补偿,取负荷功率因数0.7。 例如:在一住宅区有490户住户,确定变压器容量为多大? 用需用系数法计算小区的负荷为: Pjs=KxPs=3.8 x 490=1862KW 用单位面积法计算小区的负荷,每户按5KW十算,则 Pjs=490 x 5=2 450KW 因490>200 户取Kx=0.35 Pjs=2450 x 0.35=857.5KW Sjs二Pjs/cos ①=857.5/0.7=1 225KVA 规范规定:居民小区单台变压器容量不宜大于630KVA可取两台 630KVA的变压器。 3私立小厂的变压器容量的选择

相关文档
最新文档