超临界机组汽动给水泵振动原因分析及处理措施

超临界机组汽动给水泵振动原因分析及处理措施
超临界机组汽动给水泵振动原因分析及处理措施

超临界机组汽动给水泵振动原因分析及处理

朱宝森

(潍坊公司生技部)

摘要:某厂超临界670MW机组配备两台汽动给水泵,在试运阶段出现过给水泵轴瓦突振现象,运行一段时间以后,出现突振的次数增多,振动幅值增大,持续时间增长。经振动故障诊断分析,存在明显低频振动分量,判断为给水泵轴瓦问题。经过对轴瓦进行处理,轴振突振明显减小至报警值以下,突振现象减少或消失。

关键词:给水泵;轴承;突振;油膜涡动;顶隙

一、前言

某厂一台超临界670MW机组配套两台(以下称为“A、B”)50%容量汽动给水泵(以下简称“汽泵”)。配套汽轮机型式为单缸、单流、冲动式纯凝机组,最大功率为13.5MW,运行转速为2800-6000 r/min。

A、B汽泵型号为FK4E39-SC,四级卧式、筒体芯包结构,额定转速为5865r/min,轴端密封型式为迷宫密封。汽轮机和汽泵之间由齿形联轴器连接。#1、#2轴承均为可倾瓦轴承,#3、#4轴承为园筒型轴承。每个轴承安装有两个斜450 X、Y向速度探头,用来测量轴振。

汽泵组轴系型式如下:

图一汽泵组轴系图

二、振动情况描述:

2006年8月15日,A汽泵#4轴振振动突振出现,随后#3、#2、#1轴承出现了同样的振动突振,不过副值较小。

类别幅值(μm)

轴振4X 23-102

轴振4Y 15-87

瓦振垂直 20

瓦振水平 30

瓦振轴向 15-22

表一 A汽泵#4轴承及轴振发生突振时的振动幅值

A汽泵#4X向振动由23μm瞬间跳变到102μm,立即恢复到25μm的轴振水平。表一为发生突振时所测的瓦振及轴振值,由于轴振动的突发性,在测量时无法扑捉到振动突升时的轴瓦振动。

2007年1月16日,B汽泵#4Y向轴振出现瞬间突振现象,然后瞬间降低到40μm。

类别幅值(μm)

轴振4X 26-114

轴振4Y 30-110

瓦振垂直 18

瓦振水平 30

瓦振轴向 18-36

表二 B汽泵#4轴承及轴振发生突振时的振动幅值

在A、B汽泵在转速为5650-5700r/min段之间频繁出现轴振突振现象,以#4轴振突振现象最为明显,振动发生前后轴承瓦温和汽泵转速变化很小,振动持续时间很短,轴系中的#1-#3轴承也存在相同的振动突升现象,但突振增加的幅值较小,一般为10μm -15μm,A、B泵振动现象一致。

2007年9月08日,B汽泵转速在4800-4900r/min 时,#4Y向轴振出现突变,突变频率加大,两天后,突振现象消失。

三、初步检查分析:

针对A、B汽泵轴振出现突振问题,该厂召开多次专题讨论会,先后采取提高油温和降低转速等方法进行干预,但效果均不明显。厂方技术人员认为两台汽泵芯包为进口英国WEIR公司芯包,不会出现问题。但需在检修中检查汽泵轴瓦结构尺寸及乌金情况,检查水泵进出口管道的支吊架悬挂情况。如果上述检查都没有问题,则按以下标准控制振动:控制轴振X\Y 向在150μm以下,轴承振动只控制垂直振动50μm以下。即只要轴振(X\Y 向)超过150μm或轴承垂直振动超过50μm,则必须停泵检修。

利用检修机会,该厂对A、B汽泵轴瓦进行了揭瓦检查,测量轴瓦间隙及紧力,均符合制造厂标准(间隙:0.16-0.23 mm;紧力:0-0.03 mm)。现场检查轴瓦乌金表面也没有发现脱胎及损坏现象;检查汽动给水泵进出口支吊架没有发现脱落或松驰。

四、振动原因分析:

2009年05月01日,A、B汽泵轴振频繁出现突振现象,并且振动出现的转速进一步降低为4200-4400r/min,振动持续时间加长,#4轴振副值均在120μm左右, #4轴承振动增大,水平振动最大到140μm,且存在波动现象,垂直振动在50μm。

测量轴承振动频谱情况如下:

图二 A汽泵#4 Y向振动频谱图(测量转速由4856 r/min升高到5022 r/min)

图三 B汽泵#4X向振动频谱图(转速为4897r/min)

从振动的频谱分析来看,A、B汽泵轴振频谱以低频0.40X(倍频)为主,幅值约60μm左右,大大超过了工频幅值,判断为油膜涡动,应对轴瓦进行处理。

五、振动处理措施:

(一)第一次处理:

5月14日,停A汽泵,对#3、#4轴瓦进行揭瓦处理,打开#4轴瓦下瓦,接触面有较明显的“擀”接触痕迹,部分区域出现龟裂。#3轴瓦情况较好,但也出现了轴径的涡动痕迹。

图四 A汽泵#4轴瓦下瓦损坏情况

当轴承发生油膜涡动时,涡动速度较高,间隙中的油液存在很大压力差,容易在油孔、油槽以及轴承剖分面的接口处,发生强烈的涡流或断流,产生油气蚀,造成轴瓦乌金损坏。另外,轴振突振,在轴承乌金的表面引起交变的拉应力和剪切应力,剪切应力很容易使轴瓦表面产生疲劳裂纹。从图四看,裂纹的部位正处在油膜应力梯度很陡的位置。

1、根据现场情况,采取了如下的处理方案:

(1)、降低轴瓦顶隙为1.2-1.5‰D(轴径直径)。

(2)、降低轴承下瓦接触面积,宽度由原来的65mm,调整到55mm。即下瓦的两端分别括削5mm为不接触,接触部分和不接触部分要有圆滑过渡。

(3)、为防止采取以上措施后导致油温升高,将下瓦开人工油囊,深度掌握在0.20mm-0.30mm,面积为投影面积的1.5%;将#3、#4轴承的进油孔由12mm扩至14mm。

测量及调整后的轴瓦间隙、紧力如表三:

轴瓦编号轴瓦间隙(mm)轴瓦紧力(mm)瓦口间隙(mm)轴承宽度(mm)

修前修后修前修后修前修后修前修后#3 0.19 0.16 0.02 0.02 0.07 0.06 65 55

#4 0.24 0.19 -0.12 0.03 0.07 0.07 65 55

表三 A汽动给水泵#3、#4轴瓦间隙及紧力检修情况

2、对#

3、4轴瓦处理后,又制定了如下的运行调整措施:

(1)、提高润滑油压力至高油压区运行,由0.12MPa提高到0.15MPa 运行。

(2)、参照苏尔寿芯包轴封水的控制要求,降低轴封水调节门的开度,由调门关小前的水温差5℃,提高到14℃运行。

A汽泵启动后,转速最高升至5600 r/min,没有出现突振。正常运行方式10个小时后,#3、#4轴振又出现了突振现象,最高至123μm,初步处理不成功。

(二)、第二次处理:

根据轴瓦处理后的瓦温及振动情况,该厂决定将轴瓦顶隙进一步缩小到0.8-0.9‰D(轴径),即控制到0.117-0.104 mm。同时,适当增加轴承负载,将下瓦乌金厚度提高0.05mm,控制新瓦的瓦口间隙为0.08mm。

按以上处理方案对A汽泵轴瓦揭瓦处理,发现#4轴瓦下瓦油囊的边缘部位又出现了疲劳裂纹。参考部分检修资料要求,决定不进行人工开刮油囊,采取现有轴瓦的机加工油囊,防止油囊刮削不规范,振动产生后对油囊造成损害。

A汽泵轴瓦经以上处理,启动运行后,轴振动有了根本改善,由最高123μm降低到30μm左右。采用相同的处理办法,对B汽泵轴瓦进行了处理。

经过一个月的观察,A、B汽泵轴振突振次数明显减少,突振幅值和振动持续时间明显降低,在一个月的时间里,只突振了3-4次,一般只突振到40μm左右,就立刻衰减为正常振动水平。

经上述处理后,轴瓦温度升高不明显。由于轴瓦的瓦温测点实际测量的是瓦胎的位置,真实的轴瓦乌金温度比显示的瓦温要高。

六、结语

该厂A、B汽泵轴振出现突振现象,从频谱分析到处理经历了一个星期的时间。由于油膜涡动后,轴承间隙处理没有参考标准,控制到多少合适

没有现成的经验可以遵循,通过实践摸索,部分解决了汽泵轴振突振现象,为同类型汽泵相同振动原因轴振突振的处理提供了参考。

参考文献:

参考文献1 《汽轮发电机组振动及事故》施维新中国电力出版社 1998年10月

参考文献2 《FK4E39-SC型给水泵运行及维护说明书》

给水泵机封损坏原因分析与处理方法

给水泵机封损坏原因分析及处理措施 给水泵是确保电厂安全运行的重要设备,针对三厂区热源一期给水泵机械密封损坏的问题,本文通过机械密封损坏原因分析吸取的教训,结合现场实际情况降低给水泵振动,改善给水泵机械密封冷却水水质,改善机械密封运行环境,较好解决了给水泵机械密封频繁损坏的问题,取得了较好的效果. 1前言 三厂区热源一期除氧给水系统配备长沙佳能通用泵业有限公司的DG150-100×10(P)多级锅炉给水泵,该泵型系卧式自平衡型结构离心泵,为单吸多级结构,其吸入口在进水段上为垂直向上,吐出口在出水段上为垂直向上,用拉紧螺栓将泵的进水段、中段、

出水段、次级进水段联成一体,轴承驱动端采用圆柱滚子轴承,末端采用圆柱滚子轴承和角接触球轴承组合结构,采用强制油循环稀油润滑,润滑油由液偶油系统提供;泵的进水段、中段、出水段之间的密封面均采用密封胶或“0”形圈密封,轴的密封形式为机械密封。 2给水泵机封运行中存在的问题 三厂区热源一期给水泵在启动正常后,可连续运行,随着运行周期延长,机封漏水量逐渐增大,机封靠轴端外缘出现积盐,在运行中给水泵临时切换或者处理故障停运,机封漏水量显著加大,以至于过大而无法启动。同时当给水泵振动增大时,机械密封漏水量也会增大,严重影响给水泵组安全运行。 3给水泵机封损坏原因分析 3.1机械密封安装注水静试泄漏分析

机械密封安装调好后,要进行注水静压检查,观察泄漏量。如泄漏量较小,多为动环或静环密封圈存在问题;泄漏量较大时,则表明动、静环摩擦副间存在问题。在初步观察泄漏量、判断泄漏部位的基础上,再手动盘车观察,若泄漏量无明显变化则静、动环密封固有问题;如盘车时泄漏量有明显变化则可断定是动、静环摩擦副存在问题;如泄漏介质沿轴向喷射,则动环密封圈存在问题居多,泄漏介质向四周喷射或从水冷却孔中漏出,则多为静环密封圈失效。 3.2试运转时机械密封出现的泄漏分析 给水泵机械密封经过静试后,运转时高速旋转产生的离心力,会抑制给水的泄漏。因此,试运转时机械密封泄漏在排除轴间及端盖密封失效后,基本上都是由于动、静环摩擦副受破坏所致。引起摩擦副密封失效的因素主要有:

水泵振动原因及对策

水泵振动原因及对策 一、水泵振动的原因 引起水泵振动的原因很多,也很复杂,大致可分为三种情况: 1.1机械原因引起的振动 1.1.1水泵叶轮或电动机转子质量分布不均 水泵叶轮或电动机转子质量分布不均,叶轮叶片的厚薄不匀,或者叶轮前后板有局部地方厚薄不一致。这种叶轮旋转起来就会对整个泵体产生周期性激振力,使泵体产生强迫振动此外这种叶轮旋转起来会前后晃动,使水泵轴承受到侧向力,加速了轴承的磨损。 1.1.2水泵轴与电机轴不在一条直线上 如果水泵轴与电机轴不同心接合面不平行度达不到要求(机械加工精度差或安装不合要求)就会使联轴器间隙随轴旋转而忽大忽小,因而发生和质量不平衡一样的周期性强迫振动,其频率和转速成倍数关系,振幅随泵轴与电动机偏心距大小而定。 1.1.3联轴器螺栓间距不良 联轴器螺栓间距精度误差造成只有一部分螺栓传递扭矩,这部分螺栓受力大,因而产生不平衡的力作用在轴上,与上述两种情况一样产生周期性强迫振动。其频率与转速成倍数关系,若法兰形联轴器橡皮圈配合不均匀也会产生性质完全相同的振动。 1.1.4轴的临界转速 当泵轴转速逐渐增加并接近泵转子的固有振动频率时,泵就会猛烈地振动起来,转速高于或低于这一转速时,泵就能平稳地工作,通常把泵发生共振时的转速称为临界转速n c 。。泵的临界转速有好几个,这些转速由低到高分为第一临界转速n c1、第二临界转速n c2等等。泵的工作转速不能与临界转速相重合、相接近或成倍数,否则将发生共振而使泵遭到破。 泵的工作转速低于第一临界转速的轴为刚性轴,高于第一临界转速的轴为柔性轴,过去许多泵采用刚性轴,现在随着泵的尺寸的增加或采用多级泵,泵的工作转速经常高于第一临界转速n c1,一般柔性轴工作转速必须满足1.3n c1

汽动给水泵防轴抱死措施(正式)

编订:__________________ 单位:__________________ 时间:__________________ 汽动给水泵防轴抱死措施 (正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-4595-53 汽动给水泵防轴抱死措施(正式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行 具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常 工作或活动达到预期的水平。下载后就可自由编辑。 1、编制目的 为防止机组配套的汽动给水泵组轴抱死现象发生,根据以往亚临界机组调试经验,制定本技术措施,以便于在试运中加以实施,避免汽动给水泵轴抱死现象发生。 2、编制依据 2.1 《小汽轮机使用说明书》杭州汽轮机厂 2.2 《调速给水泵组使用说明书》沈阳水泵股份有限公司 3、调试对象及简要特性 型号: Sulzer HPT 300-340-6s 进口压力: 2.42MPa 出口压力: 31.69MPa 流量: 1053m3/h

抽头压力: 12MPa 抽头流量: 36m3/h 转速: 5782r/min 所配套的汽轮机 型号: NK63/71/0 最大功率: 10 MW 调速范围: 3000~5900 r/min 排汽压力: 6.6 kPa 4、泵轴抱死原因分析 从其它电厂的调研看,汽动给水泵组在试运阶段的盘车过程中发生抱死,大致有以下原因: 4.1 水质不洁造成动静部位的磨损抱死 在试运阶段内,给水系统中可能存在各种硬性机械杂质,汽动泵组在低速盘车时杂质颗粒容易卡到密封环、轴封等间隙处,由于给水泵动静间隙较小(大约0.5mm),泵轮材质为不锈钢,杂质颗粒对动静部位的磨损,最后演变成泵组动、静部位的直接碰磨,导致抱死;

浅谈对汽动给水泵的几点认识

浅谈对汽动给水泵的几点认识 摘要:本文简要介绍了汽动给水泵的结构、工作原理和优点,着重对运行注意事项、事故处理两个方面进行了叙述和分析。 关键词:汽动给水泵;结构;优点;注意事项;事故处理 Abstract: This paper briefly introduces thesteam driven feed waterpump structure,working principle and advantages,focusing on theoperation ofattention totwo aspects of the narrativeand analysis,accident treatment. Key words:steam driven feed water pump;structure; advantages;note;accident treatment 前言 变速给水泵是以改变水泵的转速来调节流量,节流损失减少,调节阀工作条件好,寿命长,并可低速启动,但设备较复杂,投资费用高,维修量大,适用于大容量泵。变速给水泵变压运行时,负荷越低,变速给水泵的功率消耗越小,而定速给水泵耗功基本不变。为提高给水泵运行的经济性,采用除氧器滑压运行的单元制大机组,都使用变速调节的高速给水泵,转速为5000—8000rpm及以上,其对应的NPSHr(克人口和第一级叶轮人口的压降所必须的净正吸水头)比一般3000rpm水泵高得多。采用1500rpm左右的低速前置泵后,因其NPSHr大为减小,所要求的除氧器布置高度可大幅降低,可以减小土建投资。从技术经济的角度,增设前置泵比单纯提高除氧器布置位置使土建投资增加更为合算,故采用滑压除氧器的机组,几乎全部采用变速给水泵及前置泵。目前参数大容量电厂所用给水泵,为提高运行的经济性均采用速度调节,无级的速度调节有电动调速给水泵和汽动给水泵两种。 一、概述 汽动给水泵为锅炉供给热水。前臵泵(升压泵)从除氧器水箱中取水,并将其出水输入至主泵吸入口,由小汽轮机驱动的给水泵增压后输入锅炉。汽动给水泵组主要由:电动机驱动的前臵泵与小汽轮机驱动的给水泵组成。正常时,启动二台汽动给水泵即能满足机组带额定负荷连续运行的要求。 汽动给水泵,是通过一个单独的小汽轮机驱动的给水泵。该汽机从抽汽管道上抽取蒸汽,通过小汽机的转动带动给水泵进行给水,调节泵的转速是通过小汽轮机的调速器控制进汽量来进行的。小汽轮机可采用凝汽式、背压式。小汽机的正常运行,需要相应的汽、水管道系统,调速系统,备用汽源等。汽动给水泵多采用不同轴的串联方式。

导致离心泵振动的十大原因

导致离心泵振动的十大原因 一、引起离心泵振动的十大原因——轴 轴很长的泵,易发生轴刚度不足,挠度太大,轴系直线度差的情况,造成动件(传动轴)与静件(滑动轴承或口环)之间碰摩,形成振动。另外,泵轴太长,受水池中流动水冲击的影响较大,使泵水下部分的振动加大。轴端的平衡盘间隙过大,或者轴向的工作窜动量调整不当,会造成轴低频窜动,导致轴瓦振动。旋转轴的偏心,会导致轴的弯曲振动。 二、引起离心泵振动的十大原因——基础及泵支架 驱动装置架与基础之间采用的接触固定形式不好,基础和电机系统吸收、传递、隔离振动能力差,导致基础和电机的振动都超标。水泵基础松动,或者水泵机组在安装过程中形成弹性基础,或者由于油浸水泡造成基础刚度减弱,水泵就会产生与振动相位差1800的另一个临界转速,从而使水泵振动频率增加,如果增加的频率与某一外在因素频率接近或相等,就会使水泵的振幅加大。另外,基础地脚螺栓松动,导致约束刚度降低,会使电机的振动加剧。 三、引起离心泵振动的十大原因——联轴器 联轴器连接螺栓的周向间距不良,对称性被破坏;联轴器加长节偏心,将会产生偏心力;联轴器锥面度超差;联轴器静平衡或动平衡不好;弹性销和联轴器的配合过紧,使弹性柱销失去弹性调节功能造成联轴器不能很好地对中;联轴器与轴的配合间隙太大;联轴器胶圈的

机械磨损导致的联轴器胶圈配合性能下降;联轴器上使用的传动螺栓质量互相不等。这些原因都会造成振动。 四、引起离心泵振动的十大原因——水泵自身的因素 叶轮旋转时产生的非对称压力场;吸水池和进水管涡流;叶轮内 部以及涡壳、导流叶片漩涡的发生及消失;阀门半开造成漩涡而产生的振动;由于叶轮叶片数有限而导致的出口压力分布不均;叶轮内的 脱流;喘振;流道内的脉动压力;汽蚀;水在泵体中流动,对泵体会有摩擦和冲击,比如水流撞击隔舌和导流叶片的前缘,造成振动;输送高温水的锅炉给水泵易发生汽蚀振动;泵体内压力脉动,主要是泵叶轮密封环,泵体密封环的间隙过大,造成泵体内泄漏损失大,回流严重,进而造成转子轴向力的不平衡和压力脉动,会增强振动。另外,对于输送热水的热水泵,如果启动前泵的预热不均,或者水泵滑动销轴系统的工作不正常,造成泵组的热膨胀,会诱发启动阶段的剧烈振动;泵体来自热膨胀等方面的内应力不能释放,则会引起转轴支撑系统刚度的变化,当变化后的刚度与系统角频率成整倍数关系时,就发生共振。 五、引起离心泵振动的十大原因——电机 电机结构件松动,轴承定位装置松动,铁芯硅钢片过松,轴承因磨损而导致支撑刚度下降,会引起振动。质量偏心,转子弯曲或质量分布问题导致的转子质量分布不均,造成静、动平衡量超标川。另外,鼠笼式电动机转子的鼠笼笼条有断裂,造成转子所受的磁场力和转子的旋转惯性力不平衡而引起振动,电机缺相,各相电源不平衡等原因

汽动给水泵系统

第24章汽动给水泵系统24.1汽动给水泵组设备规范

24.2汽动给水泵组启动与停止 24.2.1启动前的检查与准备 汽动给水泵系统启动前检查与准备工作除按《辅机通则》执行外还应注意下列事项: (1)检查各热工仪表和保护装置已投入。 (2)检查油箱油位正常,油系统阀门状态正确。 (3)检查冷油器已投入,冷却水进、出口阀门已开启,回水正常。 (4)检查密封水系统已投入,密封水回水温度设定在65℃,回水温度控制投自动。 (5)开启小机高、低压进汽管路疏水手动阀,高、低压主汽阀前管路疏水阀。 (6)关闭小机本体疏水阀。 (7)开启再循环控制阀前后手动阀。 (8)关闭给水泵泵体放水阀,关闭暖泵阀。 (9)开启小机轴封回汽总阀及轴封回汽阀。 (10)全开前置泵入口手动阀、再循环阀前后手动阀、中间抽头手动阀、,对泵体及管道注

水排气。 (11)全开小机疏水箱射水器其中一路进出、口手动阀,射水控制阀前后手动阀。 (12)高压汽源暖管:确认辅汽至小机高压汽源管道疏水阀全开,开启辅汽至小机手动阀。 (13)开启小机主汽阀前管道疏水阀,稍开电动阀暖管。 (14)低压汽源管暖管:五抽电动总阀及电动阀已开,用“暖管”模式开逆止阀,暖管完 成后切换至“解除”模式。 (15)轴封蒸汽管暖管:开轴封进汽手动阀前疏水阀,开始暖管。 24.2.2汽动给水泵组启动(以A汽泵为例) (1)确认汽泵启动条件满足: A五抽到小机逆止阀XV-4#255A非暖管模式。 B前置泵入口手动阀FW-028全开。 C汽泵出口电动阀MV-4#104B全关。 D汽泵再循环阀FCV-4#102B全开。 E除氧器水位>2300mm。 F给水泵泵体上、下金属温差小于40℃,泵体上金属与除氧水箱水温差小于75 ℃。 G暖泵电动阀MV-4#115B/C全关。 (2)小机启动可在OPS顺序启动,也可在TSP盘选择自动或手动模式启动,其启动过程 基本一致,现场操作完全相同。 (3)TSP触摸键闪烁提示下一步操作及正在进行的项目。 (4)TSP盘上手动启动: A启动准备工作完成后,在TSP盘检查监视画面无异常报警及跳闸信号。 B现场确认油泵已切换到“遥控”位置。 C在TSP触摸屏主菜单上选择手动启动,按START SEQUENCE键进入启动菜单,按YES 键进入下一级菜单。 D按住START键直到VAPOR FAN键闪动。 E按VAPOR FAN键进入排烟风机画面,启动油箱排烟风机,OL NOR键绿。 F按OIL PUMP键进入油泵画面,启动一台油泵后,油泵选择自动模式控制,检查油压正常,滤网差压正常,油压报警消失,OP NOR键变绿。 G当启动条件满足时READY灯变绿时允许启动盘车,按TURN MOTOR键进入盘车画面,启动盘车,OPS及TSP盘上检查各轴承振动及偏心度正常,现场用听针检查无异常 声音。 H轴封暖管完成后,开启轴封进汽手动阀,按GLA STM-V键进入轴封供汽阀画面,开启轴封供汽阀。 I微开排汽蝶阀抽真空旁路阀,小机开始抽真空,微开小机本体疏水阀。 J轴封供汽阀开启10分钟后,且真空上升到-86KPa时排汽蝶阀将自动开启。 K排汽蝶阀开启后关闭其抽真空旁路阀,小机抽真空时注意主机真空。 L按NEXT键进入下一级画面,按TURN COMP键。 M确认高低压主汽阀和调阀关闭,按MSV键进入主汽阀画面,开启高低压主汽阀。

给水泵震动大的原因分析

给水泵震动大的原因分析 针对水泵机组的各部件存在的振动,分析了产生振动的原因。从水泵的水力、机械结构设计,到泵的安装、运行、维护等方面几提出了减轻泵振动的措施。结果表明,保证泵零部件结构尺寸、精度与泵的无过载性能等水力特性相适应;保证泵的实际运行工况点与泵的设计工况点吻合;保证加工精度与设计精度的一致性;保证零部件安装质量与其运行要求的一致性;保证检修质量与零部件磨损规律的一致性,可以减轻泵的振动。 振动是评价水泵机组运行可靠性的一个重要指标。振动超标的危害主要有:振动造成泵机组不能正常运行;引发电机和管路的振动,造成机毁人伤;造成轴承等零部件的损坏;造成连接部件松动,基础裂纹或电机损坏;造成与水泵连接的管件或阀门松动、损坏;形成振动噪声。 引起水泵振动的原因是多方面的。泵的转轴一般与驱动电机轴直接相连,使得泵的动态性能和电机的动态性能相互干涉;高速旋转部件多,动、静平衡沐能满足要求;与流体作用的部件受水流状况影响较大;流体运动本身的复杂性,也是限制泵动态性能稳定性的一个因素。 1 对引起泵振动原因的分析 电机 电机结构件松动,轴承定位装置松动,铁芯硅钢片过松,轴承因磨损而导致支撑刚度下降,会引起振动。质量偏心,转子弯曲或质量分布问题导致的转子质量分布不均,造成静、动平衡量超标川。另外,鼠笼式电动机转子的鼠笼笼条有断裂,造成转子所受的磁场力和转子的旋转惯性力不平衡而引起振动,电机缺相,各相电源不平衡等原因也能引起振动。电机定子绕组,由于安装工序的操作质量问题,造成各相绕组之间的电阻不平衡,因而导致产生的磁场不均匀,产生了不平衡的电磁力,这种电磁力成为激振力引发振动。 基础及泵支架 驱动装置架与基础之间采用的接触固定形式不好,基础和电机系统吸收、传递、隔离振动能力差,导致基础和电机的振动都超标。水泵基础松动,或者水泵机组在安装过程中形成弹性基础,或者由于油浸水泡造成基础刚度减弱,水泵就

给水泵振动原因分析及对策

给水泵振动原因分析及对策 发表时间:2019-07-24T14:48:05.860Z 来源:《电力设备》2019年第5期作者:韩文建 [导读] 摘要:现阶段,随着社会的发展,我国的科学技术的发展也有了很大的进步。 (通辽发电总厂霍林河项目部内蒙古通辽 028000) 摘要:现阶段,随着社会的发展,我国的科学技术的发展也有了很大的进步。电站用各种泵类机组在设计制造、安装检修、运行和管网几个方面都有可能引起轴承的振动。介绍了泵组在设计和制造中通常能引起振动的原因。以某电厂给水泵轴承振动为课题,详细介绍了振动的现象、测量过程,分析结果及解决方案。通过测量结果中工频分量的比例,判断出振动引起振动的原因为不平衡引起的激振。配重处理后的测量结果显示振动值在正常范围内。由于重新起机后出现了远传信号过大问题,对DCS获得的测量数据趋势进行了分析。通过与其它振动测量结果的比较,提出了高频谐波振动的影响因素。介绍了谐波的概念,提出谐波处理方法,并对有源滤波和无源滤波的优缺点进行比较,建议在今后的设计中考虑这一因素,尽量避免因此带来的伤害。 关键词:给水泵;振动原因分析;对策 引言 锅炉给水泵是锅炉安全稳定运行的基础,由于设备老化和检修安装技术水平等原因。造成在试运行时,会出现各种常见的缺陷,其中轴承振动偏大是工作中的一个难点,针对给水泵振动这个问题,通过联轴器中心调整、轴承检查间隙调整、转子扬度调整等3个事例实践总结分析出3种切实可行的解决方案。 1水力振动 1.1水力冲击式振动 在给水泵运行中当叶轮叶片的外端有水经过时会形成比较大的水利冲击,并且水利冲击产生的力量大小与给水泵中叶轮的尺寸和叶片的转动速度有重要关系。当水力脉冲传输到管路系统中时会产生噪音,同时也会产生一定的振动,如果水力脉冲的力量和频率与管道或者自身的频率接近,那么就会产生激烈的共振,从而给设备带来一定伤害。针对这类由于水力原因产生的振动问题,可以从四个方面进行预防,首先可以改善叶轮外端与导叶入口的距离,为防止振动的出现将距离增大是比较有效方法。其次是在进行安装时,在确定给水泵首级叶轮的的位置后,按照有效的间隔距离将其他各级叶轮叶片进行交错分布,同时将叶片的位置进行交错分布,从而防止在遭受比较大的水力冲击时造成的损失。另外预防措施就是可以适当调整泵管道的形状和路线等因素,降低冲击和振幅。其次还可以将泵的安装高度和前置泵的安装位置等进行科学测量确定有效位置。 1.2压力脉动式振动 在给水泵运行中,每个设备都有最小流量限值,如果在运行中低于最小限值就会摩擦生热,水会汽化,在叶轮的进出口会产生回流,从而形成局部涡流区等现象,压力脉冲现象会影响泵压力,从而造成水流量忽大忽小。这对这一原因首先可以采用调整叶片出口角的方法,减小角度从而改变泵的性能曲线。其次在设计管路时避免有较大波动,科学计算管路的倾斜度,在安装节流装置时应当在靠近出口的位置可以有效避免管路出现向上倾斜的问题。其次还可以安装再循坏等相关装置,这一方法可以有效避免在运行中流量值低于限值的状况。另外还可以安装液力耦合装置从而根据流量的变化合理设置转速。 1.3汽浊引起的振动 当泵内的流量比较大时,经过泵口的不能有效出水,从而形成产生汽化现象,当汽水混流会产生振动和噪音。针对这一原因可以采取的措施有,第一降低给水泵运行中符合变化幅度,这一方法可以在出现汽浊现象时及时对流量和转速机进行调整。第二可以采取缩短泵入水管路的方法减少水流动中产生的阻力。第三可以选择增加水箱与给水泵标高的方法,不仅保证泵入口压差在合理范围内,而且还能降低水泵符合急剧变化的问题,从而保证除氧器水箱中有足够的容量。 2机械振动 2.1中心不正原因造成的振动 中心不正是指泵轴与电机轴的中心线不在同一条直线上,经常出现的比如联轴器圆周偏差问题或者端面平行度超标问题等。针对产生的原因采取相应的应对措施。首先在给水泵安装以后由于没有进行及时检查,造成中心误差比较大,如果在机械中瓢偏度、对轮晃度没有达到标准这一情况下需要使用百分表找中心,切不可使用塞尺。如果给水泵中需要加装填料可以选择调料空隙时间找中心。在找到中心以后需要进行检查以降低人为失误。第二如果暖泵使用不当会中造成转子膨胀从而产生振动,泵组织在启动前由于热膨胀问题也会造成中心位置的改变,所以这要求在避免暖泵出现变形,同时在找中心时应当是将热膨胀因素卡西率在内。其次水泵进出口的应力也会造成中信位置的变化,可以通过重新焊接的形式降低应力。针对轴承和支吊架造成中心位置变化的问题可以采取提高润滑油质量或者跟换轴承的方法进行改善。而针对联轴器的问题,更换新的齿轮即可解决。 2.2动静部件摩擦而引起的振动 轴瓦乌金、轴间隙过大、部件脱落或者轴与密封圈摩擦产生的高温问题都会导致轴变曲等问题的出现,从而形成部件之间的动静摩擦,产生振动问题,而动静之间的摩擦也会反作用与转子使转子产生强烈振动。针对这一问题采用的方法合理掌控动静部件之间的距离,利用扩大动静间隙的方法降低摩擦。还可以定期进行检查,拧紧转子背冒防止松动。其次还要定期检查轴瓦是否出现松动问题,并及时进行调整。 2.3回转部件不平衡引起的振动 回转部件不平衡是引起振动的重要原因,而振幅的大小与转速有重要联系。而造成不平衡问题出现的原因也是非常多的,通过分析主要原因有新更换的叶轮质量不平衡,转子中心不正等原因造成的,可以采取安装水泵后的调整转子中的方法,安装暖泵时应当选择合理的安装方法,可以避免由于泵体膨胀产生的动静摩擦。另外在更换转子以后需要进行平衡试验,以保证质量合格。 2.4谐波处理 抑制谐波,主要有以下两方面的措施。①减少谐波源产生的谐波含量。这种措施一般在工程设计中予以考虑,最有效的办法是增加整流装置的脉波数,常用于大型整流装置中。②在谐波源附近安装滤波器就近吸收谐波电流,由交流电抗器和电容器组成的无源滤波器国内外已大量应用到工程实际中。滤波器是一种能使有用频率信号通过而同时抑制(或衰减)无用频率信号的电子电路或装置。在工程上,常

汽轮机汽动给水泵组培训教材

汽轮机汽动给水泵组培训教材 汽前泵 汽动给水泵前置泵是上海电力修造总厂生产的HZB253-640离心泵,为卧式、单级双吸垂直进出、单蜗壳泵。前置泵由电机驱动,通过柔性叠片联轴器进行功率传递,一个支撑在近中心线的壳体以允许轴向和径向自由膨胀,从而保持对轴线中心一致。泵整体安装在装有适合的排水装置的刚性结构的泵座上。前置泵主要由泵壳、叶轮、轴、叶轮密封环、轴承、轴、联轴器及泵座等部件组成。 前置泵主要技术规范 序号参数名称单位额定工况 点 最大工况 点 单泵最小点 1 进水压力MPa 1.071 1.13 1.071 2 流量t/h 1069 1136 247 3 扬程m 140.22 137.75 151.22 4 转速rpm 1490 1490 1490 5 必须汽蚀余 量 m 5.9 6.35 - 6 泵的效率% 86 86.4 40.95 7 轴功率kW 474.75 493.2 248.46 8 泵出口压力MPa 2.39 2.42 2.49 9 设计水温℃182.9 185.3 182.9

序号参数名称单位额定工况 点 最大工况 点 单泵最小点 10 正常轴承振 动值 mm 0.05 11 旋转方向顺时针(从传动端向自由端看) 12 轴承形式滑动轴承+ 推力轴承 13 汽前泵电机 功率 KW 600 14 汽前泵电机 型号 YKK500-4 15 极数 4 16 额定电流 A 43.3 17 轴承形式滚动轴承 右图为汽泵前置泵 结构示意图。壳体结 构为单蜗壳型、水平 中心线分开、进出口 水管在壳体下半部, 材质为高质量的碳钢 铸件。设计成双蜗壳 的目的时为了平衡泵在运行时的径向力,因为径向力的产生

汽动给水泵调试方案

汽动给水泵调试方 案

FA〖08〗-JF15-QJ22-8 黑龙江华电佳木斯发电有限公司 2×300MW供热扩建工程#15机组 汽动给水泵调试方案 黑龙江惠泽电力科技有限公司 二○〇八年六月

黑龙江华电佳木斯发电有限公司 2×300MW供热扩建工程#15机组 汽动给水泵调试方案 编制单位:批准 审核 编写 会审单位:黑龙江华电佳木斯发电有限公司 黑龙江省火电第一工程公司 黑龙江省电力建设监理有限责任公司

目录 1编制依据 ................................................................... 错误!未定义书签。2调试目的 ................................................................... 错误!未定义书签。3调试对象及范围........................................................ 错误!未定义书签。4调试方法及工艺流程 ................................................ 错误!未定义书签。5系统调试前应具备的条件 ........................................ 错误!未定义书签。6调试步骤、作业程序 ................................................ 错误!未定义书签。7调试验评标准 ........................................................... 错误!未定义书签。8所用仪器设备 ........................................................... 错误!未定义书签。9环境、职业健康安全风险因素控制措施.................. 错误!未定义书签。10组织分工 ................................................................ 错误!未定义书签。

给水泵倒转的危害及防范措施实用版

YF-ED-J1683 可按资料类型定义编号 给水泵倒转的危害及防范 措施实用版 In Order To Ensure The Effective And Safe Operation Of The Department Work Or Production, Relevant Personnel Shall Follow The Procedures In Handling Business Or Operating Equipment. (示范文稿) 二零XX年XX月XX日

给水泵倒转的危害及防范措施实 用版 提示:该解决方案文档适合使用于从目的、要求、方式、方法、进度等都部署具体、周密,并有很强可操作性的计划,在进行中紧扣进度,实现最大程度完成与接近最初目标。下载后可以对文件进行定制修改,请根据实际需要调整使用。 一、给水泵倒转的原因及危害 1、给水泵倒转的原因一般为出口逆止门和 电动门不严,使给水系统内的高压水返流入主 泵及前置泵中,造成给水泵反转。 2、一单元给水泵主泵与前置泵均采用离心 式水泵,离心式水泵的叶轮套装通过固定装置 与转轴紧密结合,给水泵正转时,叶轮与转轴 越转越紧,反之,则使叶轮松动、甚至脱落, 产生动静摩擦,严重危害给水泵的安全运行。 二、三单元给水泵前置泵为独立电动增压泵,

给水泵倒转还会造成前置泵电机烧损,前置泵至主泵间管道泄漏、严重时危及人员安全。 二、防范措施 1、给水泵跳闸或停运后,严密监视停运给水泵出口门状态、出口压力、转速及流量。严密监视汽包水位的变化情况,防止因给水泵倒转抢水引起汽包水位低跳炉。 2、发现给水泵倒转时,要确保其润滑油系统安全运行,要严密其振动及各部轴承温度变化,发生危急设备安全情况应立即停止所有给水泵并采取措施将给水系统消压,使倒转的给水泵安全停运。 3、给水泵倒转时,应立即通知检修手动关闭电动出口门,并关闭运行泵供再热减温水手动门。倒转的给水泵参数无其它异常变化时要

引起立式离心泵震动的大原因

引起立式离心泵震动的8大原因 立式离心泵是利用叶轮旋转而使水发生离心运动来工作的。水泵在启动前,必须使泵壳和吸水管内充满水,然后启动电机,使泵轴带动叶轮和水做高速旋转运动,水发生离心运动,被甩向叶轮外缘,经蜗形泵壳的流道流入水泵的压水管路引起立式离心泵震动的原因1:轴 1.轴很长的泵,易发生轴刚度不足,挠度太大,轴系直线度差的情况,造成动件(传动轴)与静件(滑动轴承或口环)之间碰摩,形成振动。 2.泵轴太长,受水池中流动水冲击的影响较大,使泵水下部分的振动加大。轴端的平衡盘间隙过大,或者轴向的工作窜动量调整不当,会造成轴低频窜动,导致轴瓦振动。旋转轴的偏心,会导致轴的弯曲振动。 引起立式离心泵震动的原因2:联轴器 1.联轴器连接螺栓的周向间距不良,对称性被破坏。 2.联轴器加长节偏心,将会产生偏心力。 3.联轴器锥面度超差。 4.联轴器静平衡或动平衡不好。 5.弹性销和联轴器的配合过紧,使弹性柱销失去弹性调节功能造成联轴器不能很好地对中。 6.联轴器与轴的配合间隙太大;联轴器胶圈的机械磨损导致的联轴器胶圈配合性能下降。 7.联轴器上使用的传动螺栓质量互相不等。以上这些原因都会造成振动。 引起立式离心泵震动的原因3:电机 1.电机结构件松动,轴承定位装置松动,铁芯硅钢片过松,轴承因磨损而导致支撑刚度下降,会引起振动。 2.质量偏心,转子弯曲或质量分布问题导致的转子质量分布不均,造成静、动平衡量超标川。 3.另外,鼠笼式电动机转子的鼠笼笼条有断裂,造成转子所受的磁场力和转子的旋转惯性力不平衡而引起振动。 4.电机缺相,各相电源不平衡等原因也能引起振动。 5.电机定子绕组,由于安装工序的操作质量问题,造成各相绕组之间的电阻不平衡,因而导致产生的磁场不均匀,产生了不平衡的电磁力,这种电磁力成为激振力引发振动。 引起立式离心泵震动的原因4:水泵选型和变工况运行 1.每台泵都有自己的额定工况点,实际的运行工况与设计工况是否符合,对泵的动力学稳定性有重要的影响。 2.水泵在设计工况下运行比较稳定,但在变工况下运行时,由于叶轮中产生径向力的作用,振动有所加大;单泵选型不当,或是两种型号不匹配的泵并联。这些都会造成泵的振动。 引起立式离心泵震动的原因5:水泵自身的因素 1.叶轮旋转时产生的非对称压力场。 2.吸水池和进水管涡流,叶轮内部以及涡壳、导流叶片漩涡的发生及消失。 3.阀门半开造成漩涡而产生的振动。 4.由于叶轮叶片数有限而导致的出口压力分布不均。 5.叶轮内的脱流、喘振、流道内的脉动压力、汽蚀、水在泵体中流动,对泵体会有摩擦和冲击,比如水流撞击隔舌和导流叶片的前缘(公众号:泵管家),造成振动。 6.输送高温水的锅炉给水泵易发生汽蚀振动。 7.泵体内压力脉动,主要是泵

基于电厂锅炉给水泵振动原因及解决措施研究

基于电厂锅炉给水泵振动原因及解决措施研究 发表时间:2017-08-29T13:39:50.600Z 来源:《电力设备》2017年第12期作者:邱国平 [导读] 摘要:针对给水泵的振动进行了分类及原因,并进一步对某电厂给水泵振动原因进行分析,提出了的解决措施。以便于能够为技术人员在检查和处理给水泵振动工作中提供必要的参考依据。 (广东省韶关粤江发电有限责任公司广东韶关 512132) 摘要:针对给水泵的振动进行了分类及原因,并进一步对某电厂给水泵振动原因进行分析,提出了的解决措施。以便于能够为技术人员在检查和处理给水泵振动工作中提供必要的参考依据。 关键词:电厂;水泵;振动;措施 引言 给水泵是火电厂的重要设备,其稳定性和安全性至关重要。为了适应火电厂的发展需要,给水泵逐渐向高速度、大流量、超高压的方向发展。但是,随着给水泵转速的提高,其振动问题也日益严重。给水泵振动超标会造成转子的弯曲和变形,损坏叶片,严重时甚至会影响火电厂的正常运行。因此,给水泵振动超标问题必须在实际工作中加以重视。 火电厂给水泵振动的原因是多种多样。具体归类可以分为以下几类:一是给水泵零部件设计缺陷,不符合国家的质量规定;二是转子部件异常,实际旋转中心与设计中心的偏差没有控制在合理的范围内;三是转子部件与静止部件润滑失效,实际摩擦力较大;四是给水泵设备本身或者是各个零部件之间存在联接松动。因此,在实际工作中,有关人员在发现给水泵振动异常时一定要对其振动情况进行检测和测量,科学合理地判断给水泵的振动类型。同时,也不能忽视对泵体机组的整体运行情况的把握,应该对给水泵机组进行全方位的检修,充分了解给水泵的运行状况,及时找到产生振动的原因,并根据原因的不同选择合适的处理方法。 下文根据故障案例分析水泵振动原因分析及处理措施。 1故障案例分析 某电厂9、10号机组为2台东汽300MW供热凝汽式汽轮发电机组,单机配备2台50%B-MCR汽动给水泵组运行,1台50%B-MCR电动给水泵备用。汽动给水泵型号300QTSBⅡ-JA,结构形式为卧式、离心、多级节段、双壳体全抽芯结构,进出、口及抽头接口均垂直向下布置,电动给水泵型号300TSBⅡ-JB,其结构形式与汽动给水泵基本相同,区别在于进出口及抽头接口均垂直向上布置,厂家设计2种泵型芯包完全一致,可以互换。该型锅炉给水泵芯包共5级叶轮,并采用诱导轮技术,诱导轮安装在首级叶轮之前,提高首级叶轮入口压力,降低泵的必须汽蚀余量,给水泵前可不设前置泵。该电厂给水系统现场布置为汽动给水泵有前置泵,电动给水泵无前置泵。 2振动原因分析 现场每1台给水泵出现振动异常后,都会根据锅炉给水泵振动常见原因进行排查,首先检查排除引起给水泵振动的外部因素,最终确定给水泵内部存在缺陷。给水泵芯包返厂后,解体检查轴瓦无异常磨损,转子与壳体动静部件无碰摩痕迹,多数存在诱导轮断裂缺陷。通过对上述多台次给水泵振动情况对比及芯包返厂解体检修情况综合分析,导致该电厂给水泵频繁发生振动超标的主要原因如下。 a.某一转速范围内的振动增大原因为水力激振。9号机电动给水泵是第1台投运的给水泵,与其余5台给水泵同一批次,因此将10号机尚未安装的电动给水泵返厂检查,经厂家设计部门试验分析在4000r/min以上某一转速区间内的振动超标原因,并非转子刚性不足导致存在临界转速,而是由于水流经过叶轮流道后进入中段内的导叶产生水力冲击,当水力冲击的激振频率与转子或泵壳的固有频率接近时,便会产生共振。通过对泵内各级导叶流道进行分析,发现泵内流体从叶轮流出后在导叶内流动时,在圆周方向上并不均匀,在大流量、高压力的工况下,水力流动不均衡必然产生较强的水力激振,当泵转速达到某一范围时,水力激振引发共振,导致泵振动增大。 b.振动突增原因为诱导轮叶片断裂导致的转子质量不平衡。诱导轮为轴流式叶轮,即使在发生汽蚀时,性能也不会突然下降,而且诱导轮本身的结构设计使其具有更好的抗汽蚀性能。但在该电厂的实际使用中,给水泵诱导轮叶片断裂几乎是该型给水泵的共性缺陷,通过对诱导轮的工况条件和叶片断裂形貌特征进行分析,发现诱导轮的设计叶片厚度、入口型线与水力特性不能完全匹配,导致诱导轮进口处易发生汽蚀,因汽蚀而产生的复杂非定常流动引发压力脉动,与诱导轮叶片的固有频率接近或成一定的比例关系时产生共振,最终叶片疲劳断裂。诱导轮叶片断裂位置均处于进口边缘较薄部位。 c.转子动平衡不合格。2015年6月17日,10号机1号汽动给水泵返修后初次投运便出现振动超标,且振动值随着转速升高而增大,坚持运行一个月后将芯包返厂解体检查,经测量发现该泵转子第4级、第6级叶轮晃度超标(第4级叶轮晃度0.14mm、第6级01.8mm,标准≤0.05mm),转子残余不平衡量达1050g?mm,大于该转子许用不平衡量799g?mm,振动超标原因为转子动平衡不合格。 3处理措施及效果 根据上述不同振动原因,制定针对性的处理措施,并利用机组临停和检修机会对每台给水泵芯包进行检修和改进。 a.改善流体在导叶中的水力特性。针对给水泵在某一转速范围内的轴承振动增大问题,经厂家设计部门分析确定对泵的设计进行更改,将部分导叶在圆周方向旋转一定角度,即:二级中段、六级中段上的导叶固定销孔在原位置逆时针旋转15°,三级中段、五级中段上的导叶固定销孔在原位置顺时针旋转15°,经更改后各导叶流道位置依次错开60°,保证流体在导叶中流动的均匀性,有效改善导叶内的异常水力激振,对每台给水泵芯包返厂时均按照更改设计实施,振动消除。 b.改进诱导轮。原诱导轮重新设计改进为加强型诱导轮,优化诱导轮入口型线,加大进口边后掠角,由90°增加到120°(见图1),使叶片进口后掠部位延长,高度降低,改变诱导轮入口的液体流动,提高汽蚀性能,改善给水泵首级叶轮入口条件;对诱导轮叶片整体加厚,改善铸造工艺和热处理工艺,加大叶片与轮毂结合处的圆角,减小应力集中,提高诱导轮结构强度,经无损探伤合格的诱导轮方可使用。先后对2台电动给水泵更换加强型诱导轮,使用效果良好。对4台汽动给水泵,去除诱导轮,用相应的轴套代替。厂家初期设计汽动给水泵安装诱导轮,目的是使得300MW机组电动给水泵和汽动给水泵芯包完全相同,以保证2种泵芯包的互换性。由于电动给水泵没有前置泵,在该泵的设计中为降低泵的必须汽蚀余量NPSHr,保证不发生汽蚀,在首级叶轮前设计了诱导轮增压,诱导轮的设

给水泵轴振动大处理

FK4E39SC型汽动给水泵 轴振大的原因分析及处理 吕大伟 (河南华润电力首阳山有限公司,河南洛阳471943) 【摘要】针对FK4E39SC型汽动给水泵轴振普遍偏大的异常情况,结合该型汽动给水泵的设计特点和结构特性,通过实践改变给水泵设计中心标准来消除振动,使泵组振动保护正常投入,保障机组的安全运行。【关键词】汽动给水泵振动处理 1 设备概况 河南华润电力首阳山有限公司2×600MW机组给水系统配备2×50% 容量的上海电力修造厂进口的WEIR FK4E39SC型汽动给水泵,该泵于2006年9月份投运,其基本性能参数见表1,总装结构见图1。 表1 汽动给水泵基本参数

图1 FK4E39SC型给水泵总装图 2 异常现象 河南华润电力首阳山有限公司2×600MW机组共配置4台FK4E39SC型汽动给水泵,在机组启动和运行过程中,常发生给水泵轴振大现象,以致于振动保护长期不能正常投入,给设备的“可控、在控”带来潜在隐患。 图2 为2A汽泵在额定转速下的轴振情况,驱动端轴振已达到了跳泵条件。 图2 2A汽动给水泵运行过程轴振情况 3 原因分析 影响振动的因素是多方面的,包括设计、安装、检修、 运行等。但同型4台给水泵共性发生类似的振动现象,却 不常见。 安装方面:查阅以往检修运行检测记录,四台泵 组基础台板的振动均在优秀范围内,瓦振在合格范围内, 可以排除基础对振动的影响。 检修方面:泵组的解体、回装均严格按照生产厂 家的要求进行,而且每次芯包都进行返厂检修,并有甲方 人员现场见证,厂家检修工艺符合设计要求,相关检修数

据的验证和检修试验均合格。基本排除检修工艺的影响。 设备质量:该型泵组采用的设备均是同期国内外先进厂家的成熟工艺,业绩口碑良好。生产工艺标准和生产质量是可以保证的。 排除了以上原因,问题的焦点有可能集中在泵组的基本设计方面。 众所周知,转动机械的中心调整是影响轴振的一个重要因素。 一般情况下,转子的中心标准为:圆周和端 面各向偏差不应大于0.03mm(依据联轴器型式有 所偏差)。 该型泵的中心调整标准:冷态情况下,泵相 对小机中心偏低0.44mm,偏左0.154mm(从机头 看),偏差小于0.03mm;联轴器张口偏差小于 0.03mm。主要是考虑了热力机械在热态下的膨胀 和转轴飘移问题。 该型泵组小汽机的冷热态中心偏差如图3;给 水泵的冷热态中心偏差如图4。 给水泵组的中心标准正是由图3和图4冷热 态偏差计算而来。所以,原有设计中心标准是否 恰当取决于设备的实际膨胀达与设计膨胀是否相 符。 基于常规经验判断,给水泵中心在热态下的设计膨胀量达0.5mm,数据偏大,实际运行中泵体温度不到200℃,给水泵中心的膨胀量就达不到0.5mm。因此,有必要通过实践来修正这一标准。 4 解决对策 结合机组检修,将给水泵热态中心向下修正,每次修正0.05mm左右。经过两年来的不断调整和摸索,验证出该型给水泵热态下的膨胀约为0.4mm左右。因此,泵组的中心标准应为: 泵相对小机中心偏低0.34mm,偏左0.154mm(机头看),偏差小于0.03mm;联轴器张口偏差小于0.03mm。 按照上述标准进行中心调整,4台给水泵的振动情况有了明显改观,各向轴振均达优秀值。 5 修后运行状况 图5 为2A汽泵中心标准调整后在额定转速下的轴振情况,各向轴振优秀。

锅炉给水泵振动原因分析

锅炉给水泵振动原因分析 水泵振动现象 某厂汽动给水泵是上海电力修造厂与英国韦尔(WEIR)泵公司合作生产的配套300MW 机组50%容量主给水泵,型号为DG600—240。泵为5级叶轮,刚性转子。 该泵于2003年初随炉改造进行大修,解体后发现第二、四两级叶轮叶柄(轮毂)与导叶套间隙超标(标准间隙0.49mm/0.41mm),即更换该两级导叶套,更换后的导叶套在机床上修整,转子做动平衡。泵大修后投运发现,泵吐出侧轴承振动大,振幅0.03mm 左右,且振动随转速上升而上升,在5600r/min时高达0.06mm,当时为确保发电,该泵勉强运行。在一次主机因故跳闸后,该泵随又启动运行,发现泵吐出侧轴承在5600r /min时,振动高达0.22mm,同时测得振动频率2倍、3倍等高次谐波,周期性较突出,超次谐波相对较少,停泵进行解体检查。 解体检查情况 解体发现此次碰摩之处仍是二、四级叶轮叶柄与导叶套碰摩,其中第四级较严重,其余部位未发现明显碰摩痕迹。根据上述两次碰摩部位的情况,对该两级叶轮的中段在机床上检查同轴度及止口配合尺寸,结果发现2#、4#中段配合止口松动,有0.20mm左右。 原因分析 两次解体检查发现问题产生的症结基本是一致的,不同的是碰摩程度带来的后果有些差异。 由于第一次发现2#、4#导叶套磨损间隙超标后,深入分析不够,所以才产生第二次。锅炉给水泵静止部分与转子之间在装配与运转时所需保持的同轴度要求很高,它主要依靠以下四方面来保证最终的同轴度:各配合部件在加工过程中的工艺、工装及配合尺寸公差要求;装配时对转子位置的准确调整;给水泵在冷态或备用态的暖泵效果与转子两侧密封水的水温、流量的控制;管道对泵的连接附加应力。 以上四个方面只要有一个不行,就会造成泵动静件间碰摩的后果,所以必须一一分析。暖泵:由于暖泵不妥善,高温水在泵内形成上下分层,造成泵体变形,使叶轮密封环间隙变小或等于0。尽管各国对暖泵方式、泵体结构做了很多改进,但由于泵内流道结构较复杂,仍无法做到完全消除暖泵带来的影响。给水泵虽称无需暖泵,但它的结构形式决定了即使不暖泵,也有影响,仍无法彻底消除启动前泵内水温分层、泵体变形的困扰。

相关文档
最新文档