第05讲 图论模型

第05讲 图论模型
第05讲 图论模型

第八讲 图论中的匹配与逻辑推理问题

第八讲图论中的匹配与逻辑推理问题 先看一个例题.中、日、韩三个足球队进行比赛,已知A不是第一名,B不是韩国队,也不是第二名,第一名不是日本队,中国队第二.问A、B、C各代表哪国队?各是第几名? 一般解这类题都归于逻辑推理类问题. 我们先来降低难度.先只要求你判断出中、日、韩各是第几名(不必判断A、B、C).可以把中、日、韩各用一个点代表,列于上一行.第一、二、三名各用一个点代表,列于下一行,记为: V1={中,日,韩},V2={第1名,第2名,第3名}. V1中的点与V2中某一个点有肯定关系的,就画一条实线,如和②.否定关系的两点之间画一条虚线,如不是②;不是①.把已知条件不加任何推理地表现于图上.虚线2条,实线1条,共3条线. 现在,有两个明显的事实;第一,V1中每点有且只有一条实线与V2中相应点配对,V2中每点有且只有一条实线与V1中相应点配对.V1内部点之间不会有线相联结,V2内部点之间也不会有线相联结.第二,从V1(或V2)中某一个点,例如说a点如发出了一条实线向着V2(或V1)中某一个点,例如说x点,那么a点与V2(或V1)中其他点之间必然只能用虚线联结.(这是逻辑推理中的排它性) 由此,我们很容易将中、日、韩的名次判出. 这样的问题,抽象起来可归属于图论中称之为“二分图的匹配”问题. 图论的名词术语太多,这里不作详细定义,只是描述性介绍一下,大家以前在“一笔画”等讲中已初步接触.所谓二分图,就是顶点集合可以划分成两个部分,V=V1+V2,如V1有p个点,记为V1={v1,v2…,v p},V2有q个点,记为V2={v p+1,v p+2…,v p+q},而V1中任意一点,不会

数学建模中常见的十大模型

数学建模常用的十大算法==转 (2011-07-24 16:13:14) 转载▼ 1. 蒙特卡罗算法。该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。 2. 数据拟合、参数估计、插值等数据处理算法。比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MA TLAB 作为工具。 3. 线性规划、整数规划、多元规划、二次规划等规划类算法。建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。 4. 图论算法。这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。 5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。 6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。 7. 网格算法和穷举法。两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。 8. 一些连续数据离散化方法。很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。 9. 数值分析算法。如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。 10. 图象处理算法。赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MA TLAB 进行处理。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 2 十类算法的详细说明 2.1 蒙特卡罗算法 大多数建模赛题中都离不开计算机仿真,随机性模拟是非常常见的算法之一。 举个例子就是97 年的A 题,每个零件都有自己的标定值,也都有自己的容差等级,而求解最优的组合方案将要面对着的是一个极其复杂的公式和108 种容差选取方案,根本不可能去求解析解,那如何去找到最优的方案呢?随机性模拟搜索最优方案就是其中的一种方法,在每个零件可行的区间中按照正态分布随机的选取一个标定值和选取一个容差值作为一种方案,然后通过蒙特卡罗算法仿真出大量的方案,从中选取一个最佳的。另一个例子就是去年的彩票第二问,要求设计一种更好的方案,首先方案的优劣取决于很多复杂的因素,同样不可能刻画出一个模型进行求解,只能靠随机仿真模拟。 2.2 数据拟合、参数估计、插值等算法 数据拟合在很多赛题中有应用,与图形处理有关的问题很多与拟合有关系,一个例子就是98 年美国赛A 题,生物组织切片的三维插值处理,94 年A 题逢山开路,山体海拔高度的插值计算,还有吵的沸沸扬扬可能会考的“非典”问题也要用到数据拟合算法,观察数据的

华罗庚学校数学教材(六年级下)第08讲 图论中的匹配与逻辑推理问题

本系列共14讲 第八讲图论中的匹配与逻辑推理问题 . 文档贡献者:与你的缘 先看一个例题.中、日、韩三个足球队进行比赛,已知A不是第一名,B 不是韩国队,也不是第二名,第一名不是日本队,中国队第二.问A、B、C 各代表哪国队?各是第几名? 一般解这类题都归于逻辑推理类问题. 我们先来降低难度.先只要求你判断出中、日、韩各是第几名(不必判断A、B、C).可以把中、日、韩各用一个点代表,列于上一行.第一、二、三名各用一个点代表,列于下一行,记为: V1={中,日,韩},V2={第1名,第2名,第3名}. V1中的点与V2中某一个点有肯定关系的,就画一条实线,如和②.否定关系的两点之间画一条虚线,如不是②;不是①.把已知条件不加任何推理地表现于图上.虚线2条,实线1条,共3条线. 现在,有两个明显的事实;第一,V1中每点有且只有一条实线与V2中相应点配对,V2中每点有且只有一条实线与V1中相应点配对.V1内部点之间不会有线相联结,V2内部点之间也不会有线相联结.第二,从V1(或V2)中某一个点,例如说a点如发出了一条实线向着V2(或V1)中某一个点,例如说x点,那么a点与V2(或V1)中其他点之间必然只能用虚线联结.(这是逻辑推理中的排它性)

由此,我们很容易将中、日、韩的名次判出. 这样的问题,抽象起来可归属于图论中称之为“二分图的匹配”问题. 图论的名词术语太多,这里不作详细定义,只是描述性介绍一下,大家以前在“一笔画”等讲中已初步接触.所谓二分图,就是顶点集合可以划分成两个部分,V=V1+V2,如V1有p个点,记为V1={v1,v2…,v p},V2有q个点,记为V2={v p+1,v p+2…,v p+q},而V1中任意一点,不会与V1中其他点联结,而只能与V2中某些点联结;V2也如此.大家看几个例. 一般的图记为G=(V,E),V是顶点集合,E是边(也可称为线)的集合.大家在哥尼斯堡七桥问题中已领略过这种抽象.现在的二分图是一类特殊的图,只不过顶点集V划分为两部分,而这只能“跨越”于V1中某个点和V2中另一个点.二分图的匹配问题,就是找一个边的集合,这些边之间都没有公共的端点. 关于二分图的匹配,要研究的是“最大匹配”,即找一个边最多的匹配. 就本讲开始引入的问题看,我们还没有解完,因为还有A、B、C三个代号到底如何归于中、日、韩三队的问题.一种解题办法,是把已判出的国籍和名次捆绑在一个顶点内,如(中2)、(韩1)、(日3),再和A、B、C构造一个新的二分图:

图论模型简介

图论模型简介 一、图及其矩阵表示 1、起源:哥尼斯堡七桥问题: 欧拉为了解决这个问题,建立数学模型:陆地——点,桥——边,得到一个有四个“点”,七条“边”的“图”。问题转化为能否从任一点出发一笔画出七条边再回到起点。欧拉考察了一般一笔画的结构特点,给出了一笔画判定法则:图是连通的,且每个顶点都与偶数条边相关联(这种图称为欧拉图)。由此可以得出结论:七桥问题无解。

2、基本概念: 图(graph):由顶点和边(又称线,边的两端必须是顶点)组成的一个结构。 邻接:一条边的两个端点称是邻接的;关联:边与其两端的顶点称是关联的。 无向图(graph):边无方向的图;有向图(digraph):边有方向的图。 路(path):由相邻边组成的序列,其中中间顶点互不相同。 圈(cycle):首、尾顶点相同的路,即闭路。 连通图(connected graph):图中任意两顶点间都存在路的图。 树(tree):无圈连通图 完全图(complete graph):任意两个顶点之间都有边相连的无向图,记为K n。 竞赛图(tournament):由完全图给每条边定向而得到的有向图。 二部图(bipartite graph):图的顶点分成两部分,只有不同部分顶点之间才有边相连。图G的子图H(subgraph):H是一个图,H的顶点(边)是图G的顶点(边)。 网络(Network):边上赋了权的有向图。

3、图的矩阵表示 无向图 有向图 0100010 11001011 011000 1 00???????????????? ???? ? ? ? ? ????????0110010100000100100000110

图论例讲

图论例讲 (陶平生) 1、设有2n 阶简单图G ,若其每个顶点的度数皆不小于n ,证明:从G 中必可选出 n 条边,其端点互不相同. 2、某地网球俱乐部的20名成员举行14场单打比赛,每人至少上场一次,证明:必有六场比赛,其中的12名参赛者各不相同.(美国1989) 3、设G 为n 阶图,且没有长为4的圈;证明:其边数( 14n q ?? ≤ +??? ? . 4、任意给定() 2n n ≥个互不相等的n 位正整数,证明:存在{}1,2,,k n ∈ ,使得 将它们的第k 位数字都删去后,所得到的n 个1n -位数仍互不相等. 5、设G 为n 阶图()5n ≥,其边数4e n ≥+,证明G 中存在两个无公共边的圈. 6、若简单图G 有21n +个顶点,至少31n +条边(2)n ≥,证明:G 中必有偶圈. 7、一次足球邀请赛共安排了n 支球队参加,每支球队预定的比赛场数分别是 12,,,n m m m ,如果任两支球队之间至多安排了一场比赛,则称12(,,,)n m m m 是一个有 效安排;证明:如果12(,,,)n m m m 是一个有效安排,且12n m m m ≥≥≥ ,则可取掉一支球队,并重新调整各队之间的对局情况,使得11231 2(1,1,,1,,,)m m n m m m m m ++--- 也 是一个有效安排. 8、十个城市之间有两个航空公司服务,其中任意两个城市之间都有一条直达航线(中 间不停),所有航线之间都是可往返的. 证明:至少有一个航空公司可以提供两条互不相交的环形旅行线路,其中每条线路上的城市个数都为奇数. (与其等价的图论说法是:10阶完全图10K 的边红蓝2-染色,则必存在两个无公共顶点的同色奇圈(顶点个数为奇数的圈,且这两个圈的边或者同为红色,或者同为蓝色)). 9、在一次学术讲演中有五名数学家参加,会上每人均打了两次旽,且每两人均有同时 在打旽的时刻,证明:一定有三人,他们有同时在打旽的时刻. 10 、() 2n n n ?≥矩阵A 中,每行及每列的元素中各有一个1和一个1-,其余元素 皆为0;证明:可以通过有限次行与行的交换以及列与列的交换,化为矩阵B ,使得 0A B +=.(即A 中的每个数都变成了其相反数) 11、有七种颜色的珍珠,共计14颗,其中每种颜色的珍珠各两颗;今把这些珍珠分装 于七个珠盒中,使得每个珠盒中各有一对不同颜色的珍珠; (1)、证明:不论各盒中的珍珠怎样搭配,总可以将这七个珠盒分别放置于一个正七边 形的七个顶点之上,使得七边形的任两个相邻顶点处所放置的盒中,四颗珍珠互不同色. (2)、如将以上条件与待证结论中的“七”一律改为“五” ,14改为10,则情况如何?

数学建模中的图论方法

数学建模中的图论方法 一、引言 我们知道,数学建模竞赛中有问题A和问题B。一般而言,问题A是连续系统中的问题,问题B是离散系统中的问题。由于我们在大学数学教育内容中,连续系统方面的知识的比例较大,而离散数学比例较小。因此很多人有这样的感觉,A题入手快,而B题不好下手。 另外,在有限元素的离散系统中,相应的数学模型又可以划分为两类,一类是存在有效算法的所谓P类问题,即多项式时间内可以解决的问题。但是这类问题在MCM中非常少见,事实上,由于竞赛是开卷的,参考相关文献,使用现成的算法解决一个P类问题,不能显示参赛者的建模及解决实际问题能力之大小;还有一类所谓的NP问题,这种问题每一个都尚未建立有效的算法,也许真的就不可能有有效算法来解决。命题往往以这种NPC问题为数学背景,找一个具体的实际模型来考验参赛者。这样增加了建立数学模型的难度。但是这也并不是说无法求解。一般来说,由于问题是具体的实例,我们可以找到特殊的解法,或者可以给出一个近似解。 图论作为离散数学的一个重要分支,在工程技术、自然科学和经济管理中的许多方面都能提供有力的数学模型来解决实际问题,所以吸引了很多研究人员去研究图论中的方法和算法。应该说,我们对图论中的经典例子或多或少还是有一些了解的,比如,哥尼斯堡七桥问题、中国邮递员问题、四色定理等等。图论方法已经成为数学模型中的重要方法。许多难题由于归结为图论问题被巧妙地解决。而且,从历年的数学建模竞赛看,出现图论模型的频率极大,比如: AMCM90B-扫雪问题; AMCM91B-寻找最优Steiner树; AMCM92B-紧急修复系统的研制(最小生成树) AMCM94B-计算机传输数据的最小时间(边染色问题) CMCM93B-足球队排名(特征向量法) CMCM94B-锁具装箱问题(最大独立顶点集、最小覆盖等用来证明最优性) CMCM98B-灾情巡视路线(最优回路) 等等。这里面都直接或是间接用到图论方面的知识。要说明的是,这里图论只是解决问题的一种方法,而不是唯一的方法。 本文将从图论的角度来说明如何将一个工程问题转化为合理而且可求解的数学模型,着重介绍图论中的典型算法。这里只是一些基础、简单的介绍,目的在于了解这方面的知识和应用,拓宽大家的思路,希望起到抛砖引玉的作用,要掌握更多还需要我们进一步的学习和实践。

图论 模型

251 图论模型 图论是运筹学的一个经典和重要分支,专门研究图与网络模型的特点、性质以及求解方法。许多优化问题,可以利用图与网络的固有特性而形成的特定方法来解决,比用数学规划等其他模型来求解往往要简单且有效得多。 图论起源于1736年欧拉对柯尼斯堡七桥问题的抽象和论证。1936年,匈牙利数学家柯尼希(D. K?nig )出版的第一部图论专著《有限图与无限图理论》,树立了图论发展的第一座里程碑。近几十年来,计算机科学和技术的飞速发展,大大地促进了图论研究和应用,其理论和方法已经渗透到物理、化学、计算机科学、通信科学、建筑学、生物遗传学、心理学、经济学、社会学各个学科中。 9.1 图的基础理论 9.1.1 图的基本概念 所谓图,概括地讲就是由一些点和这些点之间的连线组成的。定义为(,)G V E =,V 是顶点的非空有限集合,称为顶点集。E 是边的集合,称为边集。边一般用(,)i j v v 表示,其中 ,i j v v 属于顶点集V 。 以下用V 表示图(,)G V E =中顶点的个数,E 表示边的条数。 如图9.1是几个图的示例,其中图9.1 (a)共有3个顶点、2条边,将其表示为 (,)G V E =,123{,,}V v v v =,1213{(,),(,)}E v v v v =. 2 3 v 45 v 3 4 (a) (c) 图9.1 图的示意图 1.无向图和有向图 如果图的边是没有方向的,则称此图为无向图(简称为图),无向图的边称为无向边(简称边)。如图9.1 (a)和(b)都是无向图。连接两顶点i v 和j v 的无向边记为(,)i j v v 或(,)j i v v 。 如果图的边是有方向(带箭头)的,则称此图为有向图,有向图的边称为弧(或有向边),如图9.1 (c)是一个有向图。连接两顶点i v 和j v 的弧记为,i j v v ??,其中i v 称为起点,j v 称为终点。显然此时弧,i j v v ??与弧,j i v v ??是不同的两条有向边。有向图的弧的起点称为弧头,弧的终点称为弧尾。有向图一般记为(,)D V A =,其中V 为顶点集,A 为弧集。 例如图9.1 (C)可以表示为(,)D V A =,顶点集1234{,,,}V v v v v =,弧集为1223{,,,, A v v v v =????243441,,,,,}v v v v v v ??????。 对于图除非指明是有向图,一般地,所谓的图都是指无向图。有向图也可以用G 表示。 例9.1 设12345{,,,,}V v v v v v =,12345{,,,,}E e e e e e =,其中

数学建模中常见的十大模型讲课稿

数学建模中常见的十 大模型

精品文档 数学建模常用的十大算法==转 (2011-07-24 16:13:14) 转载▼ 1. 蒙特卡罗算法。该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。 2. 数据拟合、参数估计、插值等数据处理算法。比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MA TLAB 作为工具。 3. 线性规划、整数规划、多元规划、二次规划等规划类算法。建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。 4. 图论算法。这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。 5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。 6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。 7. 网格算法和穷举法。两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。 8. 一些连续数据离散化方法。很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。 9. 数值分析算法。如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。 10. 图象处理算法。赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MATLAB 进行处理。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 2 十类算法的详细说明 2.1 蒙特卡罗算法 大多数建模赛题中都离不开计算机仿真,随机性模拟是非常常见的算法之一。 举个例子就是97 年的A 题,每个零件都有自己的标定值,也都有自己的容差等级,而求解最优的组合方案将要面对着的是一个极其复杂的公式和108 种容差选取方案,根本不可能去求解析解,那如何去找到最优的方案呢?随机性模拟搜索最优方案就是其中的一种方法,在每个零件可行的区间中按照正态分布随机的选取一个标定值和选取一个容差值作为一种方案,然后通过蒙特卡罗算法仿真出大量的方案,从中选取一个最佳的。另一个例子就是去年的彩票第二问,要求设计一种更好的方案,首先方案的优劣取决于很多复杂的因素,同样不可能刻画出一个模型进行求解,只能靠随机仿真模拟。 2.2 数据拟合、参数估计、插值等算法 数据拟合在很多赛题中有应用,与图形处理有关的问题很多与拟合有关系,一个例子就是98 年美国赛A 题,生物组织切片的三维插值处理,94 年A 题逢山开路,山体海拔高度的 收集于网络,如有侵权请联系管理员删除

图论讲义第3章-匹配问题

第三章 匹配理论 §3.1 匹配与最大匹配 定义3.1.1 设G 是一个图, )(G E M ?,满足:对i e ?,M e j ∈,i e 与j e 在G 中不相邻,则称M 是G 的一个匹配。对匹配M 中每条边uv e =,其两端点 u 和 v 称为被匹配M 所匹配,而 u 和 v 都称为是M 饱和的(saturated vertex )。 注:每个顶点要么未被M 饱和, 要么仅被M 中一条边饱和。 定义3.1.2 设M 是G 的一个匹配, 若G 中无匹配M ′, 使得||||M M >′, 则称M 是G 的一个最大匹配;如果G 中每个点都是M 饱和的, 则称M 是G 的完美匹配(Perfect matching ). 显然, 完美匹配必是最大匹配。 例如,在下图G 1中,边集{e 1}、{e 1,e 2}、{e 1,e 2,e 3}都构成匹配,{e 1,e 2,e 3}是G 1的一个最大匹配。在 G 2中,边集{e 1,e 2,e 3,e 4}是一个完美匹配,也是一个最大匹配。 定义3.1.3 设M 是G 的一个匹配, G 的M 交错路是指其边M 和M G E \)(中交替出现的路。如果G 的一条M 交错路(alternating path)的起点和终点都是M 非饱和的,则称其为一条M 可扩展路或M 增广路(augmenting path)。 定理 3.1.1(Berge,1957) 图G 的匹配M 是最大匹配的充要条件是G 中不存在M 可扩展路。 证明:必要性:设M 是G 的一个最大匹配。如果G 中存在一个M 可扩展路P ,则将P 上所有不属于M 的边构成集合M ′。显然M ′也是G 的一个匹配且比M 多一条边。这与M 是最大匹配相矛盾。 充分性:设G 中不存在M 可扩展路。若匹配M 不是最大匹配,则存在另一匹配M ′,使 ||||M M >′. 令 ][M M G H ′⊕=,(M M M M M M ′?′=′⊕∩∪称为对称差)。 则H 中每个顶点的度非1即2(这是因为一个顶点最多只与M 的一条边及M ′的一条边相关联)。故H 的每个连通分支要么是M 的边与M ′的边交替出现的一个偶长度圈,要么是M 的边与M ′的边交替出现的一条路。 由于||||M M >′,H 的边中M ′的边多于M 的边,故必有H 的某个连通分支是一条路,且始于M ′的边又终止于M ′的边。这条路是一条M 可扩展路。这与条件矛盾。 证毕。

数学建模中常见的十大模型

数学建模中常见的十大 模型 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

数学建模常用的十大算法==转 (2011-07-24 16:13:14) 1. 蒙特卡罗算法。该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。 2. 数据拟合、参数估计、插值等数据处理算法。比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MATLAB 作为工具。 3. 线性规划、整数规划、多元规划、二次规划等规划类算法。建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。 4. 图论算法。这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。 5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。 6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。 7. 网格算法和穷举法。两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。

8. 一些连续数据离散化方法。很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。 9. 数值分析算法。如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。 10. 图象处理算法。赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MATLAB 进行处理。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 2 十类算法的详细说明 蒙特卡罗算法 大多数建模赛题中都离不开计算机仿真,随机性模拟是非常常见的算法之一。 举个例子就是97 年的A 题,每个零件都有自己的标定值,也都有自己的容差等级,而求解最优的组合方案将要面对着的是一个极其复杂的公式和108 种容差选取方案,根本不可能去求解析解,那如何去找到最优的方案呢随机性模拟搜索最优方案就是其中的一种方法,在每个零件可行的区间中按照正态分布随机的选取一个标定值和选取一个容差值作为一种方案,然后通过蒙特卡罗算法仿真出大量的方案,从中选取一个最佳的。另一个例子就是去年的彩票第二问,要求设计一种更好的方案,首先方案的优劣取决于很多复杂的因素,同样不可能刻画出一个模型进行求解,只能靠随机仿真模拟。

图论讲义2连通性

第二章 图的连通性 连通图:任二顶点间有路相连。 例 可见在连通图中,连通的程度也是有高有低。 本章的目的就是定义一种参数来度量连通图连通程度的高低。 §2.1 割边、割点与连通度 一、割点: 定义2.1.1 设)(G V v ∈,如果)()(G w v G w >?,则称v 为G 的一个割点。(该定义与某些著作有所不同,主要是在有环边的顶点是否算作割点上有区别)。 例 定理2.1.1 如果点v 是图G 的一个割点,则边集E (G)可划分为两个非空子集1E 和2E ,使得 ][1E G 和][2E G 恰好有一个公共顶点v 。 推论2.1.1 对连通图G ,顶点v 是G 的割点当且仅当v G ?不连通。 以上两个结论的证明留作习题。 定理2.1.2 设v 是树T 的顶点,则v 是T 的割点当且仅当1)(>v d 。 证明:必要性:设v 是T 的割点,下面用反证法证明1)(>v d 。 若0)(=v d ,则1K T ?,显然v 不是割点。 若1)(=v d ,则v T ?是有1)(??v T ν条边的无圈图,故是树。从而)(1)(T w v T w ==?。因此v 不是割点。 以上均与条件矛盾。 充分性:设1)(>v d ,则v 至少有两个邻点u ,w 。路uvw 是T 中一条),(w u 路。因T 是树,uvw 是T 中唯一的),(w u 路,从而)(1)(T w v T w =>?。故v 是割点。证毕。 推论2.1.2 每个非平凡无环连通图至少有两个顶点不是割点。 证明:设T 是G 的生成树,则T 至少有两个叶子u ,v ,由上一定理知,u ,v 都不是T 的割点,即1)()(==?T w u T w 。由于u T ?是图u G ?的生成树,故 )(1)()()(G w T w u T w u G w ===?=?,

数学建模常用算法模型

按模型的数学方法分: 几何模型、图论模型、微分方程模型、概率模型、最优控制模型、规划论模型、马氏链模型等 按模型的特征分: 静态模型和动态模型,确定性模型和随机模型,离散模型和连续性模型,线性模型和非线性模型等 按模型的应用领域分: 人口模型、交通模型、经济模型、生态模型、资源模型、环境模型等。 按建模的目的分: 预测模型、优化模型、决策模型、控制模型等 一般研究数学建模论文的时候,是按照建模的目的去分类的,并且是算法往往也和建模的目的对应 按对模型结构的了解程度分: 有白箱模型、灰箱模型、黑箱模型等 比赛尽量避免使用,黑箱模型、灰箱模型,以及一些主观性模型。 按比赛命题方向分: 国赛一般是离散模型和连续模型各一个,2016美赛六个题目(离散、连续、运筹学/复杂网络、大数据、环境科学、政策) 数学建模十大算法 1、蒙特卡罗算法 (该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,比较好用的算法) 2、数据拟合、参数估计、插值等数据处理算法 (比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)

3、线性规划、整数规划、多元规划、二次规划等规划类问题 (建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现) 4、图论算法 (这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备) 5、动态规划、回溯搜索、分治算法、分支定界等计算机算法 (这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法 (这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用) 7、网格算法和穷举法 (当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具) 8、一些连续离散化方法 (很多问题都是从实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的) 9、数值分析算法 (如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)10、图象处理算法 (赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的这些图形如何展示,以及如何处理就是需要解决的问题,通常使用Matlab进行处理) 算法简介 1、灰色预测模型(必掌握)

图论模型及其解答

各种图论模型及其解答 摘要: 本文用另一种思路重新组织《图论及其应用》相关知识。首先,用通俗化语言阐述了如何对事物间联系的问题进行图论建模;接着从现实例子出发,给出各种典型图论模型,每种图论模型对应于图论一个重要内容;再者,介绍相关知识对上述提到的图论模型涉及的问题进行解答;最后,补充一些图论其他知识,包括图论分支、易混概念。 符号约定: Q(Question)表示对问题描述,M(Modeling)表示数学建模过程,A(Answer)表示原问题转化为何种图论问题。 一、引言 图论是研究点、线间关系的一门学科,属于应用数学的一部分。现实生活中,凡是涉及到事物间的关系,都可以抽象为图论模型。点表示事物,连线表示事物间的联系。整个求解过程如下: 原问题——>图论建模——>运用图论相关理论求解——>转化为原问题的解 整个过程关键在于图论建模,所谓图论建模,就是明确点表示什么,连线表示什么,原问题转化为图论中的什么问题。存在以下两种情况: ①若事物间联系是可逆的(比如双行道,朋友),则抽象成无向图 ②若事物间联系是不可逆的(比如单行道,状态转化不可逆),则抽象成有向图 如果需要进一步刻画事物间的联系(比如城市间的距离),就给连线赋一个权值,从而抽象成赋值图。 综上,根据实际问题,可建模成下列图论模型的一种:无向赋权图、有向赋权图、无向非赋权图、有向非赋权图。 例1.宴会定理:任何一宴会中,一定存在两个人有相同的数量朋友M:点表示人,连线表示当且仅当该两个人是朋友 A:问题转化为任何一个图一定存在两个顶点的度相等 二、图论模型 接下来介绍若干典型的图论模型,每种模型几乎对应于图论的一个重要内容,这些内容将在第三章进行讨论,也就给出了这些模型的解答思路。 2.1 偶图模型 凡涉及两类事物间的联系(即只考虑两类事物间的联系,而不考虑同类事物间的联系),均可抽象成偶图模型。作图时,将两类事物分成两行或者两列。这

数学建模中常见的十大模型

数学建模中常见的十大 模型 集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

数学建模常用的十大算法==转 (2011-07-24 16:13:14) 1. 蒙特卡罗算法。该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。 2. 数据拟合、参数估计、插值等数据处理算法。比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MATLAB 作为工具。 3. 线性规划、整数规划、多元规划、二次规划等规划类算法。建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。 4. 图论算法。这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。 5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。 6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。 7. 网格算法和穷举法。两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。

8. 一些连续数据离散化方法。很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。 9. 数值分析算法。如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。 10. 图象处理算法。赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MATLAB 进行处理。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 2 十类算法的详细说明 蒙特卡罗算法 大多数建模赛题中都离不开计算机仿真,随机性模拟是非常常见的算法之一。 举个例子就是97 年的A 题,每个零件都有自己的标定值,也都有自己的容差等级,而求解最优的组合方案将要面对着的是一个极其复杂的公式和108 种容差选取方案,根本不可能去求解析解,那如何去找到最优的方案呢随机性模拟搜索最优方案就是其中的一种方法,在每个零件可行的区间中按照正态分布随机的选取一个标定值和选取一个容差值作为一种方案,然后通过蒙特卡罗算法仿真出大量的方案,从中选取一个最佳的。另一个例子就是去年的彩票第二问,要求设计一种更好的方案,首先方案的优劣取决于很多复杂的因素,同样不可能刻画出一个模型进行求解,只能靠随机仿真模拟。

图论讲义第1章-图的概念

图论与网络流理论 (Graph Theory and Network Flow Theory) 高随祥 中科院研究生院专业基础课 学时/学分:60/3 本课程适合基础数学、应用数学、计算数学、运筹学与控制论、概率论与数理统计各专业的硕士学位研究生作为专业基础课,也可供物理学、化学、天文学、地学、生物科学、计算机科学与技术、计算机软件、管理科学与工程以及通信、信号等学科专业的硕士研究生选修。主要讲授图论与网络流理论的基本概念、方法和定理,介绍该领域重要的问题以及典型的算法,展示图论与网络流模型及方法的广泛应用。为学习者将来从事有关方面的理论研究打下基础,也为进行应用性研究提供一种有力的工具。

内容提要 第一章 图的基本概念 图的基本概念;二部图及其性质;图的同构;关联矩阵与邻接矩阵。 路、圈与连通图;最短路问题。 树及其基本性质;生成树;最小生成树。 第二章 图的连通性 割点、割边和块;边连通与点连通;连通度;Whitney定理;可靠通信网络的设计。 第三章 匹配问题 匹配与最大匹配;完美匹配;二部图的最大匹配;指派问题与最大权匹配。 第四章 欧拉图与哈密尔顿图 欧拉图;中国邮递员问题;哈密尔顿图;旅行商问题。 第五章 支配集、独立集、覆盖集与团 支配集、点独立集、点覆盖集、边覆盖集与团的概念及其求法。 第六章图的着色问题 点着色;边着色;平面图;四色猜想;色多项式;色数的应用。 第七章网络流理论 有向图;网络与网络流的基本概念;最大流最小割定理;求最大流的标号算法;最小费用流问题;最小费用最大流;网络流理论的应用。 主要参考书 [1] J.A. Bondy and U.S. Murty, Graph theory with applications, 1976, 有中译本(吴望名等译)。 [2] B.Bollobas, Modern graph theory (现代图论),科学出版社,2001。 [3] 蒋长浩,图论与网络流,中国林业出版社,2001。 [4] 田丰,马仲蕃,图与网络流理论,科学出版社,1987。 [5] 徐俊明,图论及其应用,中国科技大学出版社,1998。 [6] 王树禾,图论及其算法,中国科技大学出版社,1994。 [7] 殷剑宏,吴开亚,图论及其算法,中国科技大学出版社,2003。 考核方式:平时成绩+期末闭卷笔试

数学建模常用模型有哪些[1]

数学建模常用模型有哪些??? 1蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法 2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具) 3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现) 4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备) 5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用) 7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具) 8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的) 9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用) 10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理) 作用: 应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步。建立教学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。要通过调查、收集数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题。这就需要深厚扎实的数学基础,敏锐的洞察力和想象力,对实

数学建模图论

第五章 图与网络模型及方法 §1 概论 图论起源于18世纪。第一篇图论论文是瑞士数学家欧拉于1736 年发表的“哥尼斯堡的七座桥”。1847年,克希霍夫为了给出电网络方程而引进了“树”的概念。1857年,凯莱在计数烷22 n n H C 的同分异构物时,也发现 了“树”。哈密尔顿于1859年提出“周游世界”游戏,用图论的术语,就是如何找出一个连通图中的生成圈,近几十年来,由于计算机技术和科学的飞速发展,大大地促进了图论研究和应用,图论的理论和方法已经渗透到物理、化学、通讯科学、建筑学、生物遗传学、心理学、经济学、社会学等学科中。 图论中所谓的“图”是指某类具体事物和这些事物之间的联系。如果我们用点表示这些具体事物,用连接两点的线段(直的或曲的)表示两个事物的特定的联系,就得到了描述这个“图”的几何形象。图论为任何一个包含了一种二元关系的离散系统提供了一个数学模型,借助于图论的概念、理论和方法,可以对该模型求解。哥尼斯堡七桥问题就是一个典型的例子。在哥尼斯堡有七座桥将普莱格尔河中的两个岛及岛与河岸联结起来问题是要从这四块陆地中的任何一块开始通过每一座桥正好一次,再回到

实用标准文案 起点。当 然可以通过试验去尝试解决这个问题,但该城居民的任何尝试均未成功。欧拉为了解决这个问题,采用了建立数学模型的方法。他将每一块陆地用一个点来代替,将每一座桥用连接相应两点的一条线来代替,从而得到一个有四个“点”,七条“线”的“图”。问题成为从任一点出发一笔画出七条线再回到起点。欧拉考察了一般一笔画的结构特点,给出了一笔画的一个判定法则:这个图是连通的,且每个点都与偶数线相关联,将这个判定法则应用于七桥问题,得到了“不可能走通”的结果,不但彻底解决了这个问题,而且开创了图论研究的先河。 图与网络是运筹学(Operations Research)中的一个经典和重要的分支,所研究的问题涉及经济管理、工业工程、交通运输、计算机科学与信息技术、通讯与网络技术等诸多领域。下面将要讨论的最短路问题、最大流问题、最小费用流问题和匹配问题等都是图与网络的基本问题。 我们首先通过一些例子来了解网络优化问题。 例1 最短路问题(SPP-shortest path problem)

图论第一讲

第七章图论与网络优化模型 图论与网络优化是数学建模的一个重要方面,经济管理、工业工程、通讯与网络技术等诸多领域中的问题都可以化为图论和网络模型进行研究。本章在介绍有关图的一些基本概念的基础上,主要介绍图与网络中的最短路、最小生成树、最大匹配等数学模型及其解法,最后,给出几个应用实例。 第一节图的概念和最小生成树 一、图与网络优化的例子 上述三个实例有两个共同的特点:一是它们的目的都是从若干可能的安排或方案中寻求某种意义下的最优方案或安排,数学称这种问题为优化问题;二是它们都易于用图形的形式直观地描述和表达,数学上把这种与图相关的结构称为网络,与图和网络有关的优化问题称为网络优化。 二、图的概念 图的理论研究已经有了200多年的历史。早期的研究与数学游戏有关,哥尼斯堡七桥问题就是其中之一。 18世纪德国哥尼斯堡有一条河,河中有两个岛,

两岸与两岛间共架有七座桥。那时候,哥尼斯堡市民 生活很富足,市民们喜欢四处散步,于是便产生这样 的问题:是否可以设计一种方案,使得人们从自己家 里出发,经过每座桥恰好一次,最后回到家里。即一 个人能否不重复地走遍七座桥而回到原地。这便是著 名的“哥尼斯堡七桥问题”。 图7-1-1(a) 热衷于这个有趣问题的人们试图解决它,但一段 时间内竟然没有人能给出答案。后来,问题传到了著 名数学家欧拉那里,居然也激起了他的兴趣。他从人 们寻求路线屡遭失败的教训中敏锐地领悟到,也许这 样的方案根本就不存在。欧拉经过悉心的研究,1736年,年方29岁的欧拉终于解决了这个问题,并向圣 彼得堡科学院递交了一份题为《哥尼斯堡的七座桥》 的论文。论文不仅仅是解决了这一难题,而且引发了 一门新的数学分支——图论的诞生。 欧拉解决七桥问题时采用了图的方法。既然岛与 陆地无非是桥梁连接的,那么就不妨把A、B、C、D

相关文档
最新文档