晶体结构解析步骤

晶体结构解析步骤
晶体结构解析步骤

晶体结构解析步骤

Steps to Crystallographic Solution

(基于SHELXL97结构解析程序和DOS版SHELXTL画图软件。在DOS下操作)

注意:

1. 每一个晶体数据必须在D:/STRUCT下建立一子目录(如D:\STRUCT\AAA),并将最初的数据备份一份于AAA目录下的子目录ORG;

2. 此处用了STRUCT.BAT批文件,它存在于C:\根目录下,内有path= c:\nix; c:\exe; d:\ struct; c:\windows\system32 (struct为工作目录,exe为SHELXL97程序,nix为SHELXTL画图)

3. 在了解DOS下操作之后,可在WIN的WINGX界面下进行结构解析工作,画图可用XP或DIAMOND软件进行。

一. 准备

1. 检查是否有inf、dat和f2(设为sss.f2)文件

2. 用EDIT或记事本打开dat或inf文件, 并于记录本上记录下相关数据(下面所说的记录均指记录于记录本上):

⊕从% crystal data项中,记下晶胞参数及标准偏差(cell);晶体大小(crystal size);颜色(crystal color);形状(crystal habit);测量温度(experiment temperature);

⊕从R merge项中,记下Rint=?.???? %;

⊕从total reflections项中,记下总点数;

⊕从unique reflections项中,记下独立点数

3. 双击桌面的DOS图标(或Win2000与WinNT的“命令提示符”)

4. 键入STRUCT(属于命令,大小写均可。下同)

5. 进入欲处理的数据所在的文件夹(上面的1~2工作也可在这之后进行)

6. 键入XPREP sss.f2 (屏幕显示DOS的选择菜单)

7. 选择[4],回车(下记为)

8. 输入晶胞参数 (建议在一行内将6个参数输入,核对后)

9. 一系列运行(对应的操作动作均为按)之后,输入分子式(如, Cu2SO4N2C4H12。此分子式仅为估计之用。注意:反应中所有元素都应尽可能出现,以避免后续处理的麻烦)

10. 退出XPREP运行之前,机器要求输入文件名,此时一定要输入文件名,且不与初始的文件名同名。另外,不要输入扩展名。如可输入aaa

11. 检查是否产生有PRP、PAR和INS文件(PRP文件内有机器对空间群确定的简要说明)

12. 更名:REN aaa.f2 aaa.hkl

13. 用EDIT或记事本打开aaa.ins文件,在第二~三行中,用实际的数据更改晶胞参数及其偏差(注意:当取向改变了,晶胞参数也应随之对应),波长用实际波长。

二.解结构

14. 键入SHELXS aaa或XS aaa, (INS文件中, TREF为直接法,PA TT为Pattersion法)

15. XP, (进入XP程序)(可能产生计算内址冲突问题,注意选择处理)

16. READ or REAP aaa (aaa.res 为缺省值,若其它文件应是文件名.扩展名,如aaa.ins)

17. FMOL, (不要H原子时,为FMOL LESS $H,或FMOL后,KILL $H, ) (读取各参数,屏幕上显示各原子的键合情况)

18. MPLN/N, (机器认为最好取向)

19. PROJ, (随意转动,直至你认为最理想取向)

20. PICK, (认为合理的位置投相应原子,如C原子键入C8,注意序号不能重复;不合理的用剔除,暂时不确定用空格键放弃,完成或不再投原子时键入"/")

21. SORT …….. (排序) 如,SORT $Cu $N $C $H

22. FILE aaa, (保存文件)

23. EXIT, 或QUIT, (退出XP程序)

24. 打开aaa.ins,删去原子序号之前的HKLF 4这一行以及机器自动产生的REM行(借助WINGX 界面不会产生这一问题)

25. 键入SHELXL aaa (此时的目的是用Fourier峰和差值Fourier峰找其它原子)

26. 用EDIT或记事本打开aaa.LST文件(查看Fourier峰的大小,记住峰值大于5e/?3以上的峰如Q1~Q8;如果前一次处理中有误,可能提示一些信息于文件中,请注意处理,去误存真)

27. 进行15~23步,投Qn(Fourier峰较大者)

28. 重复25~27步骤,直到解出完整结构模型(过程中可打开LST文件查看进行情况)

三.结构修正

29. 用EDIT打开aaa.ins,并完成:

⊕删去原子序号之前的HKLF 4这一行(修正时,不允许在原子序号前有HKLF 4;但HKLF n可放在END的前一行), 以及机器自动产生的REM行;

⊕在UNIT行后加入TEMP ?? (单位已设为°C)一行;

⊕加入SIZE (晶体的三维尺寸???? ???? ????,单位已设为mm)一行;

⊕在MERG 2前加REM;在OMIT 4前加REM

30. 键入SHELXL aaa

31. 用EDIT打开aaa.res,并将END后的WGHT行移到FV AR行之后,另存为同名的INS文件作为输入的指令文件

32. 重复30~31步骤,完成同性修正。每一次修正后,均可打开LST文件查看运行情况。认为合理时,COPY aaa.res zzz.res (另存文件,以备用)。必要时,记下同性(此时)的R1和wR2因子(不要求完全收敛)

33. 用EDIT打开aaa.res,并将END后的WGHT行移到FV AR行之后,并在原子序号之前加入单独的ANIS n一行(ANIS为异性修正,n为原子个数,可根据情况设定),存为同名的INS文件(履盖了原INS文件)

34. SHELXL aaa

35. 打开LST或RES文件,不合理时,修正INS文件ANIS n的n, 重复进行32~33步,直到合理后进行第36步

36. 进入XP程序,并加H。对C、N可理论加H,指令为HADD;对其它原子,则需采用Fourier加H,即第16步为REAP aaa ,第20步时投H原子

37. FILE aaa, (保存文件)

38. EXIT, (退出XP程序)

39. 用EDIT打开aaa.ins,并完成:

⊕更改BOND 0.5为BOND $H

⊕将各个H原子移到相应原子之后,在H原子前加AFIX n3一行,H原子之后加AFIX 0一行(有关n的规定,请查看SHELXL说明书);

⊕删去原子序号之前的HKLF 4这一行(修正时,不允许在原子序号前有HKLF 4),以及机器自动产生的REM行;

⊕如果非N、C原子仍不能找出H原子,可提高PLAN后的数值(残峰多一点)

40. 重复29~30和34~38步,继续修正,以致H尽可能全部找出(如果实在找不出,应在记录本上说明具体情况)

41. 重复29~30步,直到R1收敛,Shift/error最小(0.00?),残余峰小(<1e/?3)。此时,结构精修工作完成。强烈建议将这时的文件另存一备份(可履盖同性备份文件),COPY aaa.res zzz.res

四.氢键查找

氢键查找有多种方法,这里只是操作最简单的机器自动产生方法

42. 用EDIT打开aaa.res,END后的WGHT行移到FV AR行之后,并在UNIT行后加入HTAB 一行,存为同名的INS文件(履盖了原INS文件)

43. SHELXL aaa

44. 打开LST文件,记录下H键情况。并将H键情况拷贝到RES文件中的原子序号之前、BOND 之后,并将它们编成HTAB O2 N2_$1形式($1为对称性代码,用EQIV在HTAB之前定义),存编辑后的RES文件为INS文件(履盖了原INS文件)

45. SHELXL aaa

46. 用EDIT打开LST文件,核查用HTAB a b产生的H键是否全了和准确(和机器HTAB产生的H键对比)(用HTAB a b产生的H键和用机器HTAB产生的H键的差别在于前者可直接写入

CIF文件中并在以后的处理中自动产生H键表,而后者不能;同时,有时机器HTAB产生的H 键不合理,如一个给体同时与三个或以上受体产生H键,这必须依据H键的键长和键角用人工HTAB a b方式挑出正确的)

47. 记录下H键情况,以备画图之用

五.产生晶体学表

48. 用EDIT打开含H键命令的aaa.res,并完成:

⊕END后的WGHT行移到FV AR行之后;

⊕去掉LIST 行;

⊕在UNIT行之后加ACTA一行(以产生晶体学文件CIF和FCF)

⊕在ACTA行之后加TEMP(测量温度)(21°C, 为TEMP 21)、SIZE各一行

⊕可在CONF前加REM

⊕另存为同名的INS文件(履盖了原INS文件)

49. SHELXL aaa (运行之后将产生CIF和FCF两个文件)

50. 用EDIT打开CIF文件,输入晶系、空间群、颜色、形状、总衍射点数和Rint等参数

51. CIFTAB aaa (键入命令之前,可先关闭打印机,以免产生错误动作)

T

注意:实验室统一规定,晶体学数据文本文件统一存为aaa.TXT;衍射点文件统一为aaa.SFT

52. 用EDIT打开aaa.res,在ACTA命令前加REM,以免产生误操作,增加CIF文件48步的编辑工作。至此,结构解析工作基本完毕(结构解析还包括最小二乘平面的计算MPLA、画图等工作)

六.画结构图

53. 进行15~19步骤。其中,17步为READ ZZZ.RES(RES可省。ZZZ.RES为H键产生前的文件)

54. 画ORTEP图:JOIN 5 $H;LABL 1 550;TELP 0 -50

55. 画堆积(PACKING)图:MATR n(n = 1,2或3);PBOX;PACK(其中有许多操作,最后记得选sgen/mol后退出); LABL 1 330; TELP CELL

56. 画特殊图

*********************************

实验室对原子的颜色和线条(ATYP)统一规定为:

ATYP n $atom: n=1 for C; 2 for O; 3 for N; 4 for V, Mo or W;

n=5 for Cu, Ni, etc. 8 for Cl or X; 3 for tetrahedron 7 for octahedron.

注意:画图的指令很多,可通过HELP获得帮助。每一图都应输入一文件名,文件名应一目了然。如:BALL为球棒图;ELL50(.PLT)为ORTEP图;PKA为沿a轴的投影图;PKB为沿b轴的投影图;PKC为沿c轴的投影图;HA为沿a轴的H氢键图;1D为一维链图等。如果是随意的,应在记录本上记下对应文件名的意义。

说明:在写论文时,作为初稿,可用XP的VIEW/W 命令在屏幕上显示图后,用拷屏方法先嵌于文中。作为正式稿,则采用其它方式插入图。常用方法有三:一是将图打印出来,指令为XP 下的DRAW ELL50 (ELL50为PLT文件),后扫描成TIFF文件;二是XP下的DRAW ELL50.PLT 文件为HPL文件,后在WINGX下转化为PS文件,再用PHOTOSHOP转化为TIFF文件;三是直接在DIAMOND下直接作图,并将图拷贝到PHOTOSHOP转化为TIFF文件。三种方法各有优缺点,第一种方法的PLT图文件很小,是TIFF文件的1/10~1/100,且图像清晰,但要外部扫描。第二种方法将可在计算机内直接操作,不需要纸,但产生了两个较大的图文件HPL和TIFF,且转成黑白图时原彩色图不清晰。第三种方法的最大优点是图像艳丽(也可设置成黑白图),适于画多面体图和制作幻灯片,但其指令较多,且文件非常庞大,在计算机存储空间足够大时是很好的一种方法。(一般稿件要求提供TIFF图或EP图,晶体学期刊要求提供HPL图)

七.晶体学表WORD表格化

57. 从WORD打开aaa.txt文件,用表格相关命令将之转化为WORD表格,并另存为aaa.doc文件

aaa.ins文件的格式(常用)

TITL --title up to 76 characters

CELL--wavelength in ? and unit cell in ? & degree

ZERR--Z(number of molecule = unite-content/molecule-formula), cell esd's

LATT--lattice type

SYMM--symmetry operators

SFAC--to define scattering factor numbers

UNIT--unit cell contents in the same order

SIZE--crystal dimensions, e.g. SIZE 0.61 0.039 0.023

TEMP--temperature, e.g. temp 22

L.S. n --n cycles full-matrix least-squares

ACTA--CIF-output, bonds, Fourier peak search

OMIT h k l --to suppress bad reflections

BOND $H(/0.5)--including H(/ or non-H) in bong lengths/angles tables

CONF--all torsion angles except involving H

EQIV $1 -x+1, -y+1, -z-- symmetry operation

HTAB--H-bonds will be listed in the LST file

HTAB a d--(a is the acceptor, d is the donor. This command can code H-bonds into the CIF file.) HFIX m7 or m3--(7 for rotating model, 3 for riding model, and m see 'help HADD')

BIND a b--to join atoms a and b

RTAB H..D--to list the distance of H and D (e. g., RTAB H..D H1 O2_$1)

RTAB AHD--to list the angle of H bonding (e. g., RTAB AHD N1 H1 O2_$1)

MPLA n atom1 atom2 …-- to list the derivation of plan(<0.03? basic plane, <0.07 near plane, >0.07? out of plane)

FMAP n--Fo-Fc Fourier (when n<0, hole peaks will also be found)

PLAN n--no. of peak list

EXTI-- to refine an isotropic extinction parameter

SWAT-- to calculate the solvent effect

ANIS n -- to convert n atoms from isotropically to anisotropically

WGHT--weighting shceme

FV AR--over scale and free for U(H). When partial occupancy, it will be more than 2 values.

Atom name , SFAC number x y z, U(iso) or Uij. The progam automatically generates special position constraints.

AFIX mn--(see HFIX)

AFIX 0

HKLF 4-- to read h,k,l Fo^2,sigma(Fo^2) from .hkl data file

END

晶体结构解析基本步骤

晶体结构解析基本步骤 Steps to Crystallographic Solution (基于SHELXL97结构解析程序的SHELXTL软件,尚需WINGX和DIAMOND程序配合) 注意:每一个晶体数据必须在数据所在的目录(E:\STRUCT)下建立一子目录(如E:\STRUCT\AAA),并将最初的数据备份一份于AAA目录下的子目录ORIG,形成如右图所示的树形结构。 一. 准备 1. 对IP收录的数据, 检查是否有inf、dat和f2(设为sss.f2, 并更名为sss.hkl)文件; 对CCD 收录的数据, 检查是否有同名的p4p和hkl(设为sss.hkl)文件 2. 对IP收录的数据, 用EDIT或记事本打开dat或inf文件, 并于记录本上记录下相关数据(下面所说的记录均指记录于记录本上): ⊕从% crystal data项中,记下晶胞参数及标准偏差(cell);晶体大小(crystal size);颜色(crystal color);形状(crystal habit);测量温度(experiment temperature); ⊕从total reflections项中,记下总点数;从R merge项中,记下Rint=?.???? % (IP收录者常将衍射数据转化为独立衍射点后传给我们); ⊕从unique reflections项中,记下独立点数 对CCD收录的数据, 用EDIT或记事本打开P4P文件, 并于记录下相关数据: ⊕从CELL和CELLSD项中,记下晶胞参数及标准偏差; ⊕从CCOLOR项中,记下晶体颜色; 总点数;从CSIZE项中,记下晶体大小; ⊕从BRA V AIS和SYMM项中,记下BRA V AIS点阵型式和LAUE群 3. 双击桌面的SHELXTL图标(打开程序), 呈 4. New, 先在“查找范围”选择数据所在的文件夹(如E:\STRUCT\AAA), 并选择衍射点数据文件(如sss.hkl),?单击Project Open,?最后在“project name”中给一个易于记忆和区分的任务名称(如050925-znbpy). 下次要处理同一结构时, 则只需Project 在任务项中选择050925-znbpy便可 5. 单击XPREP , 屏幕将显示DOS式的选择菜单: ⊕对IP收录的数据, 输入晶胞参数后回车(下记为) (建议在一行内将6个参数输入, 核对后) ⊕在一系列运行中, 注意屏幕内容(晶胞取向、格子型式、消光规律等), 一般的操作动作是按。之后,输入分子式(如, Cu2SO4N2C4H12。此分子式仅为估计之用。注意:反应中所有元素都应尽可能出现,以避免后续处理的麻烦 ⊕退出XPREP运行之前,如果机器没有给出默认的文件名[sss],此时, 晶胞已经转换, 一定要输入文件名,且不与初始的文件名同名。另外,不要输入扩展名。如可输入aaa 6. 在数据所在文件夹中,检查是否产生有PRP、PCF和INS文件(PRP文件内有机器对空间群确定的简要说明) 7. 在第5步中若重新输入文件名, 则要重做第4步, 并在以后将原任务名称(如050925-znbpy)删除 8. 用EDIT 打开sss.ins文件,在第二~三行中,用实际的数据更改晶胞参数及其偏差(注意:当取向改变了,晶胞参数也应随之对应),波长用实际波长,更正测量温度TEMP ?? C)。?(单位已设为

单晶结构解析步骤

shelxtl open new name xp fmol kill $q proj select the good direction exit telp 0 -30 plotfile enter file name draw file name select file(ps file) black and white cell fmol kill $q matr 1=a 2=b 3=c pbox 5 15 pack select (space=keep, enter=del) fmol telp cell enter file name draw file name select file type(a=psfile) black and white(enter) plane xp read file name fmol mpln atom1 atom 2..... enter angle xp read file name fmol

mpla n(atom number) atom1 atom 2..... mpla n(atom number) atom1 atom 2..... mpla n(atom number) atom1 atom 2..... enter fmol kill link matr pbox pack undo c**? C**? telp cell xl 计算方法 在ins中任何地方插入 mpla 虚拟平面的原子个数(例如六个原子只有四个可能共平面,即输入4),后面连续输入可能共平面的4个原子,后面在输入其他两个平面外的原子。 例如c1 c2 c3 c4 c5 n1中,c1 c2 c4 c5 共平面 mpla 4 c1 c2 c4 c5 c3 n1 txt 运行xcif 选择t 两次回车 输入文件名.txt 选择def 回车直到选择q 理论加氢 在ins中输入 HFIX 要加氢的原子 保存ins 运行XL 打开RES 拷贝相应的数据到ins中即可。 CHEMICAL DRAW 选中画笔 点出两个点 按ESC 点选择键 选中画笔 鼠标移动至出现小手

单晶结构解析常见问题问答

1.为什么要提高空间群的对称性? 有时候在对称性较高的空间群内不容易解得初结构,在这种情况下可以降低对称性来解,但是解完以后还要把空间群转换回去。 1.1 先安装Platon 从其主页上下载https://www.360docs.net/doc/ac16643074.html,/~louis/software/platon/ https://www.360docs.net/doc/ac16643074.html,/~louis/software/platon/pwt_setup.zip https://www.360docs.net/doc/ac16643074.html,/~louis/software/platon/platon.zip Download the PLA TON for Windows Taskbar 和Download the PLA TON executable. 然后解压安装,首先安装pwt,安装时需设定系统环境变量,安装后再将platon解压后复制到pwt的安装目录内即可。 1.2 运行pwt.exe 点击File--Select Data File,选择要升高对称性的结构文件*.res或者*.ins。 再点击Publish-addsym 系统显示检查画面,如提示有更高对称性的空间群,则原先空间群有误,需要进行转化。 再点击Publish-addsym shelx,可以生成一个新的同名*.res文件,此res文件会将原先的res文件覆盖,在此文件的基础上继续精修即可。 应该没有任何问题,已经试过很多次了! 最好用xp打开此res文件,然后再file一次,再作经修 2. 在xp中, 用mpln定义平面,仔细看那个方程(大家用xp操作时不要太快,因为那个方程第一个出来,一块就找不到了),方程的等号右边有一个常数,你算第一个平面时将它记下,不过最好将望着的方程记下,然后再算第二个平面,又有一个方程,记下常数项,然后二者一减就是二者的距离,不过平面越是完全平行这个值越接近他俩的真实距离,平行与否可以看大家都能看到的那个夹角,另外也可以看刚才的方程的系数,系数相同或者成线形比例,就平行. 3.我的CIF文件里的对称代码2_556 1_545 请问这些对称代码是如何算出来的?? 在考虑对称单元的时候,在ShelxTl里面考虑x,y,z均为9个单胞的范围,并且把N_555规定为最初的单胞,即此单胞内的原子坐标均小于1,如果一个对称单元出现的下(x+1,y,z)的那个那个单胞内,则相应的堆成码就变成了N_655,其他的如此类推,比如在(x-2,y+1,z+2)的单胞内,对称码就为N_367,总之都是以N_555为最中心做相应的加减,这应该比较好理解。在那么大的范围内,我们希望长出来的对称单元应该都可以长出来了。我们常见的对称码都在N_555附近,很少有大于N_777的和小于N_333的。 下面再来说前面的N_555中的“N”的含义,它表示对称操作(symmetry operators)的类型,它可以在XP界面下由SYMM命令得到,第几个对称操作,N就相应是几了。N在不同空间群内代表的对称操作是不一样的。 欢迎大家继续讨论。

晶体结构解析的过程XP

晶体结构解析的过程 (2010-06-10 16:49:31) 转载 分类:晶体解析 标签: 杂谈 1、挑选直径大约为0.1–1.0mm的单晶。 CCD的准直管直径有0.3mm,0.5mm,0.8mm;分别对应得晶体大小是0-0.3mm, 0.3-0.5mm, 0.5-0.8mm. 2、选择用铜靶还是钼靶? 铜靶要求θmax〉=66度,最大分辨率是0.77埃 钼靶要求θmax〉=25度,最大分辨率是0.36埃 3、用smart程序收集衍射数据:得到大约一千张倒易空间的衍射图像,300M 大小。其中matrix图像45张,分成三组,每组15张,用以判定晶体能否解析。 4、用saint程序还原衍射数据:得到很多文件,但是只有三个文件是我们需要的:-ls,p4p,raw。 -ls文件中包含有最大的和最小的θ角,有效地精修衍射点数目。好像不同的机器或者还原程序得到的文件不同,有的是hkl,abs。 5、用shelxtl程序处理上述数据,并画出需要的图形。 5.1 装好shelxtl程序,新建一个project,输入要建立工程的名字,然后打开要解析的p4p或者raw文件。 5.2 用xprep程序确立空间群,建立指令文件 这个过程基本上是一直按回车键的过程(除了在要输入化学成分的时候改动一下和在是否建立指令文件的时候输入Y即可),一般不会出错。如果出错,那就要重新对空间群进行指认(出错可能是出现在下面的精修过程中)。 一般Mean(I/sigma)〉2才可以,越大越好。

得到ins,hkl,pcf三个重要数据文件。 其中ins文件:包含分子式,空间群等信息; hkl文件:包含的是衍射点的强度数据; pcf文件:记录了晶体物理特征,分子式,空间群,衍射数据收集的条件以及使用的相关软件等信息。 5.3 选择要解析的方法:直接法(TREF)还是帕特深法(PATT)? 如果晶体中含有重原子如金属原子,那就要用PATT法;如果晶体中没有原子量差异特别大的原子,就用TREF法。默认的方法是直接法。 5.4 用xs程序解析粗结构 得到res文件:包含了ins文件的内容和所有的Q峰信息。 5.5 用xp程序与xl程序完成原子的指认,付利叶加氢或理论加氢,画图等。 达到比较好的结果标准: A 化学上合理(键长、键角、价态) B R1 <0.08(0.06),wR2 <0.18(0.16),goof=S=1+-0.2(1.00) C R(int)<0.1,R(singma)<0.1 D Maximum=0.000 5.5.1 原子的指认 打开xp 输入fmol

单晶结构解析XP作图

单晶结构解析XP作图: 1、画结构图 打开Shelxtl软件→导入res文件→打开XP程序→输入fmol→kill $q→kill $h→envi (中心对称原子)→回车后寻找不同于1555对称操作的代码如2555→sgen 2555→proj(查看结构)→利用操作按钮转动结构找出最佳摆放位置(高度不能大于宽度)→labl 2 500(2 500是默认的大小) →telp 0 -30 0.05 0(后面四个数据分别确定结构的模型和一些参数) →回车回车直到出现Plotfile:(在这里输入名字,这里画结构图,可以统一命名为jiegou) 后回车将会出现命名所有原子的图(根据鼠标位置提醒依次在原子周围左键点击)→draw jiegou→回车后会出现SLPT device[L]:(输入a或者h)再回车输入jiegou,然后回车直到光标不闪位置→出现了xp《图标说明结构图已经画好→quit 注:红色字体为结构需要对称操作才能显示一个完整的分子结构所进行的操作。 图片操作解析 在这里找到res 文件的位置

2导入res 文件后,打开XP 操作系统输入fmol 后回车 3输入kill $h $q 4 proj 后出现下图所示

5 按步骤画图 命名所有原子

二、作堆积图 Fmol→matr 1(代表a方向堆积) →pbox 15 15→pack 然后点 击按钮sgen/fmol保存(倒数第二个)→proj cell→telp cell →命名duiji 后出现一个命名原子的图框,标出O a b c→draw duiji→a或h→duiji→→quit 1、 当出现这个时表 明图已经画好

单晶结构解析加氢,绘图问题解答

1.通常,H原子的处理方法作者要给出 (1)一般通过理论加H,其温度因子为固定值,可通过INS等文件查看 (2) 水分子上H原子可通过Fourier syntheses得到 (3)检查理论加上的H原子是否正确,主要看H原子的方向。若不正确则删去再通过Fourier syntheses 合成得到 (4) 检查H原子的键长、键角、温度因子等参数是否正常。通过检查分子间或分子内的H键是否合理 最易看出H键的合理性 (5) 技巧:有时通过Fourier syntheses得到的H原子是正确的,可一计算其温度因子等参就变得不正常, 则可以固定其参数后再精修(如在INS中的该H原子前用afix 1,其后加afix 0) (6)各位来说说方法与心得? 2.胡老师,下面的问题怎么解决啊?谢谢您。 220_ALERT_2_B Large Non-Solvent C Ueq(max)/Ueq(min) ... 3.70 Ratio 222_ALERT_3_B Large Non-Solvent H Ueq(max)/Ueq(min) ... 4.97 Ratio 342_ALERT_3_B Low Bond Precision on C-C bonds (x 1000) Ang (49) B 级提示当然得重视了。建议你先把H撤消,精修到C的热椭球不太变形和键长趋正常。如做不到就要看空间群?衍射点变量比太小?以至追查到原始数据的录取参数和处理等。这些粗略意见仅供参考,如何? 3.在XP中画图时,只有一部分,想长出另外的对称部分。我是envi完了,然后sgen长出 来的,可是和symm显示的对称信息不一样。比如:我根据envi的结果用sgen O1 4555得到的是O1A而不是O1D,这跟文献中标注的不一样啊,怎么统一呢?很困扰,忘达人指教。 xp里是按顺序编号的,第一个sgen出的的统一为A,依次标号。你如果想一开始就统一D的话,重新name一下 4.高氯酸根怎么精修呀?我用的SHETXL6.1版的,最好告诉我怎么用其中的XSHELL来做,我觉得他 好用! Method 1 DFIX Dfix 1.42 0.02 Cl1 O1 Cl1 O2 Cl1 O3 Cl1 O4 Dfix 1.42 0.02 O1 O2 O1 O3 O1 O4 O2 O3O2 O4O3 O4 Method 2 SADI Sadi 0.01 Cl1 O1 Cl1 O2 Cl1 O3 Cl1 O4 Sadi 0.01 O1 O2 O1 O3 O1 O4 O2 O3 O2 O4 O3 O4 5. 晶体的无序是怎么造成的呀,是晶体培养的问题吗? 如果无序太多,在解单晶的时候怎么办?我指的是很多的点,没有结构,他们的峰值都大于了0.5 大于0.5没什么的,解完后都在1以下就可以了。特殊的比较大的在重原子附近也没有关系5.比较确切的定义是单胞中你测定的或你设想的“化学式”的数目。 在分子晶体中,Z是分子数,在其它各类晶体中则为化学式个数。 例如有机物一般是分子数目,离子晶体像NaCL只好说化学式为4。 晶体结构常有无序和缺位等,但给出非化学计量式后Z都是确定的。 Z 的数字决定于你的化学式。三斜晶系的P-1空间群的Z多为2。由于双聚等原因如将双聚体写成你的化学式,那么Z就变为1了。但是就拿这个三斜晶系来说,出现Z为4或6的情况也是可能的。 这时分子形成双聚或者三聚,而你指定的分子式只是个单体罢了。测定结构初期得到单胞以后,往往希望知道单胞中有几个"分子",如你知道了或提出了化学式,从我们介绍的范氏半径或原字体积即可毛

晶体解析的步骤

晶体解析的步骤 Steps to Crystallographic Solution (基于SHELXL97结构解析程序和DOS版SHELXTL画图软件。在DOS下操作) 注意: 1. 每一个晶体数据必须在D:/STRUCT下建立一子目录(如D:\STRUCT\AAA),并将最初的数据备份一份于AAA目录下的子目录ORG; 2. 此处用了STRUCT.BAT批文件,它存在于C:\根目录下,内有path= c:\nix; c:\exe; d:\ struct; c:\windows\system32 (struct为工作目录,exe为SHELXL97程序,nix为SHELXTL 画图) 3. 在了解DOS下操作之后,可在WIN的WINGX界面下进行结构解析工作,画图可用XP 或DIAMOND软件进行。 一. 准备 1. 检查是否有inf、dat和f2(设为sss.f2)文件 2. 用EDIT或记事本打开dat或inf文件, 并于记录本上记录下相关数据(下面所说的记录均指记录于记录本上): ⊕从% crystal data项中,记下晶胞参数及标准偏差(cell);晶体大小(crystal size);颜色(crystal color);形状(crystal habit);测量温度(experiment temperature); ⊕从R merge项中,记下Rint=?.???? %; ⊕从total reflections项中,记下总点数; ⊕从unique reflections项中,记下独立点数 3. 双击桌面的DOS图标(或Win2000与WinNT的“命令提示符”) 4. 键入STRUCT(属于命令,大小写均可。下同) 5. 进入欲处理的数据所在的文件夹(上面的1~2工作也可在这之后进行) 6. 键入XPREP sss.f2 (屏幕显示DOS的选择菜单) 7. 选择[4],回车(下记为) 8. 输入晶胞参数 (建议在一行内将6个参数输入,核对后) 9. 一系列运行(对应的操作动作均为按)之后,输入分子式(如, Cu2SO4N2C4H12。此分子式仅为估计之用。注意:反应中所有元素都应尽可能出现,以避免后续处理的麻烦) 10. 退出XPREP运行之前,机器要求输入文件名,此时一定要输入文件名,且不与初始的文件名同名。另外,不要输入扩展名。如可输入aaa 11. 检查是否产生有PRP、PAR和INS文件(PRP文件内有机器对空间群确定的简要说明) 12. 更名:REN aaa.f2 aaa.hkl 13. 用EDIT或记事本打开aaa.ins文件,在第二~三行中,用实际的数据更改晶胞参数及其偏差(注意:当取向改变了,晶胞参数也应随之对应),波长用实际波长。 二.解结构 14. 键入SHELXS aaa或XS aaa, (INS文件中, TREF为直接法,PATT为Pattersion 法) 15. XP, (进入XP程序)(可能产生计算内址冲突问题,注意选择处理) 16. READ or REAP aaa (aaa.res 为缺省值,若其它文件应是文件名.扩展名,如aaa.ins)

整理晶体结构解析步骤

晶体结构解析步骤Steps to Crystallographic Solution (基于SHELXL97结构解析程序和DOS版SHELXTL画图软件。在DOS下操作) 注意:1. 每一个晶体数据必须在D:/STRUCT下建立一子目录(如D:\STRUCT\AAA),并将最初的数据备份一份于AAA目录下的子目录ORG; 2. 此处用了STRUCT.BA T批文件,它存在于C:\根目录下,内有path= c:\nix; c:\exe; d:\ struct; c:\windows\system32 (struct为工作目录,exe为SHELXL97程序,nix为SHELXTL画图) 3. 在了解DOS下操作之后,可在WIN的WINGX界面下进行结构解析工作,画图可用XP 或DIAMOND软件进行。 一. 准备 1. 检查是否有inf、dat和f2(设为sss.f2)文件 2. 用EDIT或记事本打开dat或inf文件, 并于记录本上记录下相关数据(下面所说的记录均指记录于记录本上): ⊕从% crystal data项中,记下晶胞参数及标准偏差(cell);晶体大小(crystal size);颜色(crystal color);形状(crystal habit);测量温度(experiment temperature); ⊕从R merge项中,记下Rint=?.???? %; ⊕从total reflections项中,记下总点数; ⊕从unique reflections项中,记下独立点数 3. 双击桌面的DOS图标(或Win2000与WinNT的“命令提示符”) 4. 键入STRUCT(属于命令,大小写均可。下同) 5. 进入欲处理的数据所在的文件夹(上面的1~2工作也可在这之后进行) 6. 键入XPREP sss.f2 (屏幕显示DOS的选择菜单) 7. 选择[4],回车(下记为) 8. 输入晶胞参数(建议在一行内将6个参数输入,核对后) 9. 一系列运行(对应的操作动作均为按)之后,输入分子式(如, Cu2SO4N2C4H12。此分子式仅为估计之用。注意:反应中所有元素都应尽可能出现,以避免后续处理的麻烦) 10. 退出XPREP运行之前,机器要求输入文件名,此时一定要输入文件名,且不与初始的文件名同名。另外,不要输入扩展名。如可输入aaa 11. 检查是否产生有PRP、PAR和INS文件(PRP文件内有机器对空间群确定的简要说明) 12. 更名:REN aaa.f2 aaa.hkl 13. 用EDIT或记事本打开aaa.ins文件,在第二~三行中,用实际的数据更改晶胞参数及其偏差(注意:当取向改变了,晶胞参数也应随之对应),波长用实际波长。 二.解结构 14. 键入SHELXS aaa或XS aaa,(INS文件中, TREF为直接法,PATT为Pattersion法) 15. XP,(进入XP程序)(可能产生计算内址冲突问题,注意选择处理) 16. READ or REAP aaa (aaa.res 为缺省值,若其它文件应是文件名.扩展名,如aaa.ins) 17. FMOL, (不要H原子时,为FMOL LESS $H,或FMOL后,KILL $H, ) (读取各参数,屏幕上显示各原子的键合情况) 18. MPLN/N, (机器认为最好取向) 19. PROJ, (随意转动,直至你认为最理想取向)

单晶结构解析技巧

单晶结构解析技巧 1. 通常,H原子的处理方法作者要给出: (1)一般通过理论加H,其温度因子为固定值,可通过INS等文件查看 (2) 水分子上H原子可通过Fourier syntheses得到 (3)检查理论加上的H原子是否正确,主要看H原子的方向。若不正确则删去再通过Fourier syntheses合成得到 (4) 检查H原子的键长、键角、温度因子等参数是否正常。通过检查分子间或分子内的H键是否合理最易看出H键 的合理性 (5) 技巧:有时通过Fourier syntheses得到的H原子是正确的,可一计算其温度因子等参就变得不正常,则可以固定 其参数后再精修(如在INS中的该H原子前用afix 1,其后加afix 0) (6) 各位来说说方法与心得? 2. 胡老师,下面的问题怎么解决啊?谢谢您。 220_ALERT_2_B Large Non-Solvent C Ueq(max)/Ueq(min) ... 3.70 Ratio 222_ALERT_3_B Large Non-Solvent H Ueq(max)/Ueq(min) ... 4.97 Ratio 342_ALERT_3_B Low Bond Precision on C-C bonds (x 1000) Ang (49) B 级提示当然得重视了。建议你先把H撤消,精修到C的热椭球不太变形和键长趋正常。 如做不到就要看空间群?衍射点变量比太小?以至追查到原始数据的录取参数和处理等。 这些粗略意见仅供参考,如何? 3. 在XP中画图时,只有一部分,想长出另外的对称部分。我是envi完了,然后sgen长出来的,可是和symm显示的对称信息不一样。比如:我根据envi的结果用sgen O1 4555得到的是O1A而不是O1D,这跟文献中标注的不一样啊,怎么统一呢?很困扰,忘达人指教。 xp里是按顺序编号的,第一个sgen出的的统一为A,依次标号。你如果想一开始就统一D的话,重新name一下 4. 高氯酸根怎么精修呀?我用的SHETXL6.1版的,最好告诉我怎么用其中的XSHELL来做,我觉得他好用!Method 1DFIX Dfix 1.42 0.02 Cl1 O1 Cl1 O2 Cl1 O3 Cl1 O4 Dfix 1.42 0.02 O1 O2 O1 O3 O1 O4 O2 O3O2 O4O3 O4 Method 2SADI Sadi 0.01 Cl1 O1 Cl1 O2 Cl1 O3 Cl1 O4 Sadi 0.01 O1 O2 O1 O3 O1 O4 O2 O3 O2 O4 O3 O4 5. 晶体的无序是怎么造成的呀,是晶体培养的问题吗? 如果无序太多,在解单晶的时候怎么办?我指的是很多的点,没有结构,他们的峰值都大于了0.5 大于0.5没什么的,解完后都在1以下就可以了。特殊的比较大的在重原子附近也没有关系 5. 比较确切的定义是单胞中你测定的或你设想的“化学式”的数目。 在分子晶体中,Z 是分子数,在其它各类晶体中则为化学式个数。 例如有机物一般是分子数目,离子晶体像NaCL只好说化学式为4。

jade分析物相及晶胞参数和晶粒尺寸计算过程

《无极材料测试技术》课程作业 对编号01N2009534的样品XRD测试数据进行物相分析,并计算其平均晶粒尺寸大小与晶胞参数。 1.物相分析过程 使用MDI Jade5.0软件对样品XRD测试数据进行分析,以定性分析样品的物相。 1.1.数据的导入 将测试得到的XRD测试数据文件01N2009534.txt直接拖动到Jade软件图标上,导入数据,得到样品XRD衍射图(图1-1)。 图1-1 数据导入Jade5.0后得到的XRD图 1.2.初步物相检索 右键点击键,弹出检索对话框,设定初步检索条件:选择所有类型的数据库;检索主物相(Major Phase);不使用限定化学元素检索(Use Chemistry前方框不打钩)(如图1-2所示)。点击“OK”开始检索,得到的检索结果见图1-3。 从初步检索结果可以看出,最可能的物相有四个:CaB5O8(OH)B(OH)3(H2O)3(图1-3)、CaB6O10·5H2O(图1-4a)、Ca2.62Al9.8Si26.2O72H4.56(图1-4b)和C20H20N16O8S4Th(图1-4c)。其中前三个均为无机物,第四个为有机金属化合物。

从结果分析,由图1-4b、c中可以看出,这两种物相的标准衍射峰没有与样品衍射峰中的最强峰匹配,因此样品中不含有第三、四中物相或者其主晶相不是第三、四种物相。而从图1-3以及图1-4a中可以看出,两种物相的衍射峰与样品的衍射峰几乎都能对上,并且强弱对应良好,因此样品中主晶相可能为CaB5O8(OH)B(OH)3(H2O)3或CaB6O10·5H2O或者两者的混合物。 图1-2 初步物相检索条件设定 图1-3 经过初步检索得到的检索结果

结构解析的教程

结构解析的教程 2005年3月31日星期四[1] : 1 现在,我能理解大家觉得XP不好用,因为WIN版要不断地找mouse、按菜单确实麻烦。而DOS版的SHELXTL,只用键盘指令,顺序无非是:1、XPREP准备;2、SHELXS(或XS)解初模型;3、XP(投原子);4、SHELXL同性修正(或差值F峰合成);5、XP(4和5步重复,直到找出所有非H原子);6、原子排序(用EDIT或XP的SORT;7、编辑INS文件,加入BOND $H 和ANIS;8、SHELXL(异性修正);9、加H(或差值F峰合成或理论加H)。接下来是,修正至收敛,找H键(必要时用Platon程序协助),计算平面性、二面角、pi-pi作用距离,产生晶体学CIF文件及晶体学表。 当然,在转换成晶体学表之前必须转到WIN窗口运行WinGX之Platon V alidate检查一下结构的合理性,并逐一解决它。 面对着WIN版,我就觉得别扭。WIN版的高手,请问以上DOS版的解析顺序适用于WIN版吗?我已好久没有解过单晶结构了(忙于非晶结构),这几天很想录一个晶体,学学WIN版。但愿DOS 版的顺序适用于WIN版,否则我宁愿残缺的DOS版。 WinGX的LST文件打开时字太小了,不好玩!但它作为界面倒不错,特别是可用成“超链接”式。Diamond没有经验,只觉得太耗时了,但画图挺好看的。它对无机物画图是VERY GOOD,但对有机或配合物画图中H又如何处理啊(H键经常是会出现的)?H老是钩三搭四的。有经验的大虾说一说 2大致顺序基本一样,我一般是这么用的:XPREP—>XS—>XShell<—>XL(直接在XShell下refine,且最后可以直接勾选acta产生.cif)只是不知道在ShelXTL下怎么修占位度呢? 3在DOS下可以在批处理文件中加入path=d:\shelex;%path% 在win2000中可以以下操作, 在“我的电脑”按右键选“属性”再选“高级”中间一项“环境变量”新建一项您的目录。不过如果是在DOS下使用SHELEX好像不需要安装。 4那就用wingx里面集成的SHELX吧,功能是一样的呀! 把那个表打印出来,相应的内容一填,一扫描,发到他们的邮箱里,就Ok

晶体结构分析讲义(上)

晶体结构分析 主讲人:吴文源 2010.5

1.Shelxtl 使用流程 ※解析原始文件有hkl文件(或raw文件),包含衍射数据;p4p文件,包含晶胞参数 ※为一个晶体的数据建立project,该项目下所有文件具有相同的文件名;一旦在XPREP 中发生hkl文件的矩阵转换,则需要输出新文件名的hkl等文件,因此要建立新的project。※首先运行XPREP,寻找晶体的空间群 ※然后运行XS,根据XPREP设定的空间群,寻找结构初解 ※在Xshell中观察初解是否合理,如不合理,需重回XPREP中设定其他的空间群 2.Xshell 使用流程 ※找出重原子或者确定性大的原子 ※找出其余非氢原子 ※精修原子坐标 ※精修各项异性参数 ※找到氢原子(理论加氢或差值傅里叶图加氢) ※反复精修,直到wR2等指标收敛。最后的R1<0.06(0.08) wR2<0.16(0.18) ※通过HTAB指令寻找氢键,判定氢的位置是否合理,并且将相关氢键信息通过HTAB和EQIV指令写进ins文件中 ※将原子排序(sort) 3.cif 文件生成和检测错误流程 ※在步骤1、2完成后,在ins文件中加入以下三条命令 bond $H conf acta ※此时生成了cif和fcf文件,将cif文件拷贝到planton所在文件夹中检测错误,也可以通过如下在线检测网址:https://www.360docs.net/doc/ac16643074.html,/services/cif/checkcif.html ※根据错误提示信息,修改或重新精修,将A、B类错误务必全部消灭,C类错误尽量消灭。 4.Acta E 投稿准备流程 投稿前,请务必切实做好如下工作: ※按步骤1、2、3解析晶体并生成相应cif和fcf文件。 ※准备结构式图(Chemical structural diagram)、分子椭球图(Molecular ellipsoid diagram)和晶胞堆积图(Packing diagram),最好是pdf格式。 ※按要求撰写文章的文字部分,填写cif中相应段落,注意格式要求! _publ_section_title 题目 _publ_section_abstract 摘要 _publ_section_related_literature 相关文献 _publ_section_comment 评论 _publ_section_exptl_prep 制备方法 _publ_section_exptl_refinement 精修说明 _publ_section_references 参考文献 _publ_section_figure_captions 插图说明 _publ_section_table_legends 表格说明 _publ_section_acknow ledgements 致谢 ※将cif中需要填写的其他部分(在cif的标准空白样本中以!标注)全部完成,并再次检查整个cif文件格式和内容。

单晶培养和结构解析

单晶培养和结构解析 单晶结构是用来了解晶型的晶体结构和确定药物分子的立体化学结构最具说服力的数据,但培养单晶通常很有挑战性,需要耐心和细心。科研人员需要具有很高的晶体生长技巧和丰富的单晶培养经验,能根据药物分子的物化性能选择最适合的结晶方法。单晶培养方法包括但不限于以下七种: ●溶剂挥发法 ●冷却结晶法 ●蒸气扩散 ●液-液扩散法 ●悬滴法 ●升华法 ●共晶生成法 详情请登陆:苏州晶云药物科技https://www.360docs.net/doc/ac16643074.html, 中国药物晶型论坛https://www.360docs.net/doc/ac16643074.html,/

关于苏州晶云药物科技有限公司 晶云药物科技有限公司是中国首家专注于药物晶型研究的公司,为全球各制药公司提供药物晶型研究和药物固态研发领域的专业技术服务。 公司总部设立在苏州工业园区生物纳米园,在美国新泽西州设有分部。领导团队由中美科学家及管理人员共同组成,用国际化的先进理念领导和管理公司。核心团队成员过去在美国默克,美国百时美施贵宝以及罗氏等全球领先的制药公司直接负责和从事药物晶型研究和结晶工艺开发以及优化,共积累了在该领域60多年的研发和管理经验,曾共同负责和管理过超过200个药物分子的晶型研究,拥有40多项药物晶型专利,在各类国际学术期刊发表过100多篇论文。研发团队成员晶型研究经验丰富,技术力量雄厚,其中海外博士约占30%,硕士占50%,学士占20%。 团队利用掌握的核心技术开发出中国在药物晶型研究及药物固态研发领域的首个高新技术平台,并通过该平台为全球各制药公司提供该领域的高级技术研发服务。公司拥有享有自主知识产权的高新技术和高新仪器,不仅保证技术平台填补了国内在该领域的空白,而且使其处于国际领先地位。公司的业务集中在以药物的固态信息为中心的专业领域,包括原料药及其中间体的盐类,共晶和多晶的筛选和评估,原料药和制剂的专业表征和评估,药物结晶工艺的优化和放大,临床前药物制剂的研发,以及上述相关领域内自主知识产权技术和产品的开发,高级技术咨询及其培训等。 凭借晶云团队丰富的经验,高质量和高效率的专业服务,自2010年成立以来已经与全球五十多家制药企业建立合作关系,成为其在药物晶型研究和药物固态研发领域的紧密合作伙伴。随着晶云的不断发展,晶云将会一如既往秉持客户至上的服务理念,力求为越来越多的客户提供始终领先于科技前沿的高级技术服务。

晶体结构解析基本步骤

晶体结构解析基本步骤-CAL-FENGHAI.-(YICAI)-Company One1

晶体结构解析基本步骤 Steps to Crystallographic Solution (基于SHELXL97结构解析程序的SHELXTL软件,尚需WINGX和DIAMOND程序配合) 注意:每一个晶体数据必须在数据所在的目录(E:\STRUCT)下建立一子目录(如E:\STRUCT\AAA),并将最初的数据备份一份于AAA目录下的子目录ORIG,形成如右图所示的树形结构。 一. 准备 1. 对IP收录的数据, 检查是否有inf、dat和f2(设为, 并更名为文件; 对CCD收录的数据, 检查是否有同名的p4p和hkl(设为文件 2. 对IP收录的数据, 用EDIT或记事本打开dat或inf文件, 并于记录本上记录下相关数据(下面所说的记录均指记录于记录本上): ⊕从% crystal data项中,记下晶胞参数及标准偏差(cell);晶体大小(crystal size);颜色(crystal color);形状(crystal habit);测量温度(experiment temperature); ⊕从 total reflections项中,记下总点数;从R merge项中,记下Rint=. % (IP 收录者常将衍射数据转化为独立衍射点后传给我们); ⊕从unique reflections项中,记下独立点数 对CCD收录的数据, 用EDIT或记事本打开P4P文件, 并于记录下相关数据: ⊕从CELL和CELLSD项中,记下晶胞参数及标准偏差; ⊕从CCOLOR项中,记下晶体颜色; 总点数;从CSIZE项中,记下晶体大小; ⊕从BRAVAIS和SYMM项中,记下BRAVAIS点阵型式和LAUE群 3. 双击桌面的SHELXTL图标(打开程序), 呈 4. New, 先在“查找范围”选择数据所在的文件夹(如E:\STRUCT\AAA), 并选择衍射点数据文件(如,单击Project Open,最后在“project name”中给一个易于记忆和区分的任务名称(如050925-znbpy). 下次要处理同一结构时, 则只需Project 在任务项中选择050925-znbpy便可 5. 单击XPREP , 屏幕将显示DOS式的选择菜单: ⊕对IP收录的数据, 输入晶胞参数后回车(下记为) (建议在一行内将6个参数输入, 核对后) ⊕在一系列运行中, 注意屏幕内容(晶胞取向、格子型式、消光规律等), 一般的操作动作是按。之后,输入分子式(如, Cu2SO4N2C4H12。此分子式仅为估计之用。注意:反应中所有元素都应尽可能出现,以避免后续处理的麻烦 ⊕退出XPREP运行之前,如果机器没有给出默认的文件名[sss],此时, 晶胞已经转换, 一定要输入文件名,且不与初始的文件名同名。另外,不要输入扩展名。如可输入aaa 6. 在数据所在文件夹中,检查是否产生有PRP、PCF和INS文件(PRP文件内有机器对空间群确定的简要说明) 7. 在第5步中若重新输入文件名, 则要重做第4步, 并在以后将原任务名称(如050925-znbpy)删除

晶体结构解析步骤

晶体结构解析步骤 Steps to Crystallographic Solution (基于SHELXL97结构解析程序和DOS版SHELXTL画图软件。在DOS下操作) 注意: 1. 每一个晶体数据必须在D:/STRUCT下建立一子目录(如D:\STRUCT\AAA),并将最初的数据备份一份于AAA目录下的子目录ORG; 2. 此处用了STRUCT.BAT批文件,它存在于C:\根目录下,内有path= c:\nix; c:\exe; d:\ struct; c:\windows\system32 (struct为工作目录,exe为SHELXL97程序,nix为SHELXTL画图) 3. 在了解DOS下操作之后,可在WIN的WINGX界面下进行结构解析工作,画图可用XP或DIAMOND软件进行。 一. 准备 1. 检查是否有inf、dat和f2(设为sss.f2)文件 2. 用EDIT或记事本打开dat或inf文件, 并于记录本上记录下相关数据(下面所说的记录均指记录于记录本上): ⊕从% crystal data项中,记下晶胞参数及标准偏差(cell);晶体大小(crystal size);颜色(crystal color);形状(crystal habit);测量温度(experiment temperature); ⊕从R merge项中,记下Rint=?.???? %; ⊕从total reflections项中,记下总点数; ⊕从unique reflections项中,记下独立点数 3. 双击桌面的DOS图标(或Win2000与WinNT的“命令提示符”) 4. 键入STRUCT(属于命令,大小写均可。下同) 5. 进入欲处理的数据所在的文件夹(上面的1~2工作也可在这之后进行) 6. 键入XPREP sss.f2 (屏幕显示DOS的选择菜单) 7. 选择[4],回车(下记为) 8. 输入晶胞参数 (建议在一行内将6个参数输入,核对后) 9. 一系列运行(对应的操作动作均为按)之后,输入分子式(如, Cu2SO4N2C4H12。此分子式仅为估计之用。注意:反应中所有元素都应尽可能出现,以避免后续处理的麻烦) 10. 退出XPREP运行之前,机器要求输入文件名,此时一定要输入文件名,且不与初始的文件名同名。另外,不要输入扩展名。如可输入aaa 11. 检查是否产生有PRP、PAR和INS文件(PRP文件内有机器对空间群确定的简要说明) 12. 更名:REN aaa.f2 aaa.hkl 13. 用EDIT或记事本打开aaa.ins文件,在第二~三行中,用实际的数据更改晶胞参数及其偏差(注意:当取向改变了,晶胞参数也应随之对应),波长用实际波长。 二.解结构 14. 键入SHELXS aaa或XS aaa, (INS文件中, TREF为直接法,PA TT为Pattersion法) 15. XP, (进入XP程序)(可能产生计算内址冲突问题,注意选择处理) 16. READ or REAP aaa (aaa.res 为缺省值,若其它文件应是文件名.扩展名,如aaa.ins) 17. FMOL, (不要H原子时,为FMOL LESS $H,或FMOL后,KILL $H, ) (读取各参数,屏幕上显示各原子的键合情况)

晶体解析步骤

AFIX, DFIX, HFIX, HIMP这些加氢的指令怎用阿(讨论一下加氢的基本步骤吧) 想请教有关加氢的问题(讨论一下加氢的基本步骤吧) 1. AFIX, DFIX, HFIX, HIMP这些加氢的指令怎用阿 2. 如果可以用Q峰加氢..要用哪个指令呢?指令怎样用?在哪个文件加? 3. 如果找不到Q峰,除了hadd之外,大家都是怎样加氢的??要用哪个指令?指令怎样用?在哪个文件加?? 4. 除了这些指令...大家都是怎样加的...大家谈谈加氢的经验和过程吧... 有高手可以把加?做??劫...我想一定?成?精攘帖的...也可以?初?者?考... 感谢分享...这些都是我们初学者要学的阿...拜托...热心的人回答一下吧 跟帖学习,就用过AFIX 和DFIX,没闹明白到底是怎么回事,q峰加氢应该就是用name指令吧?找不到Q峰就就加大Q峰的数量,还是没有就可以基本判断没有H了吧?溶剂水的加氢一直没搞定。 有高手知道??? 怎?是?人??? 老弟是不是没有shelx的说明书啊? 再次建议你静下心来好好看看. 1. AFIX, DFIX, HFIX, HIMP这些加氢的指令怎用阿 AFIX 内容比较多, 看书去. DFIX DANG是分别固定键长键角的. 形式 DFIX 0.85 0.01 O1 H1 DANG 1.35 0.01 H1 H2

HFIX 和AFIX差不多, 但在没加氢前用在.ins中,修正后,回直接帮你把理论的氢产生好. himp用来在xp中改变X-H的键长. 比如himp 0.82 h1 2. 如果可以用Q峰加氢..要用哪个指令呢?指令怎样用?在哪个文件加? plan 300 在.ins文件中加 3. 如果找不到Q峰,除了hadd之外,大家都是怎样加氢的??要用哪个指令?指令怎样用?在哪个文件加?? 碳上的氢, hadd足矣. O上的氢, 一般从Dif-fourier map找, 就是把合适的Q命名为H. 在xp中 先用envi o1之类的命令找到合适的Q, 在用name q1 h1改名. 4. 除了这些指令...大家都是怎样加的...大家谈谈加氢的经验和过程吧... 没有秘诀, 反复尝试. 如果数据比较好, 可以找到H; 如果不好, 要按照尽可能形成氢键的原则. 我有个quick question....何时需要固定键长呢??哪些原子上的氢需要固定键长键角? 像是3.里面的O上加的氢...在指定名称之后...需要固定键长吗??怎固定??? 谢谢老师的回应阿....你人真的太好了 哀...凌晨快要三点了....看这些指令头都晕了..... 引用xi2004老?的:""1. AFIX, DFIX, HFIX, HIMP这些加氢的指令怎用阿 AFIX 内容比较多, 看书去. DFIX DANG是分别固定键长键角的. 形式 DFIX 0.85 0.01 O1 H1 DANG 1.35 0.01 H1 H2 HFIX 和AFIX差不多, 但在没加氢前用在.ins中,修正后,回直接帮你把理论的氢产生好. himp用来在xp中改变X-H的键长. 比如himp 0.82 h1""

相关文档
最新文档