接触式测温方法的分类和适用范围

接触式测温方法的分类和适用范围
接触式测温方法的分类和适用范围

接触式测温方法的分类和适用范围

热电偶是工业上最常用的温度检测元件之一。它通过将两种不同材料的导体或半导体A和B 焊接起来,构成一个闭合回路,当导体A和B的两个接触点之间存在温差时,两者之间便产生电动势,并在回路中形成热电流,因此,可将温度的变化转变成热电势或热电流的变化。热电偶直接与被测对象接触,不受中间介质的影响。

①测量精度高;

②测量范围广;

③构造简单,使用方便;

④将温度转换成电信号,便于处理和远传。

热电势的产生

热电势=接触电势+温差电势!

接触电势:金属导体的材料不同,导体内部自由电子密度不同→自由电子扩散→若A导体的自由电子密度较大,则→较多的自由电子由A至B,而返回较少→平衡时,A导体失去电子带正电,B导体得到电子带负电→A、B 接触处形成一定的电位差,及接触电势(帕尔帖电势)。

k:玻尔兹曼常数

(k=1.38×10-23J/K)

e:电子电荷量

(e=1.602×10-19)

NA:导体A电子密度

NB:导体B电子密度

T:接触点绝对温度

温差电势:单一导体两端温度不同,导体内部自由电子高温端具较大动能→自由电子向低温端扩散→高温端失去电子带正电,低温端得到电子带负电→导体内部形成静电场,阻止电子继续扩散→动态平衡时,在导体两端产生一个电位差,及温差电势(汤姆逊电势)

δ:汤姆逊系数,表示温差为1℃时所产生的电动势值,与导体材料的性质有关。

热电势是T和T0的温度函数的差,而不是温差的函数-热电势的非线性

若两个电极为同种导体,则NA=NB,δA=δB,则EAB(T,T0) ≡0,即热电偶必为两种材料组成;若T=T0,则EAB(T,T0)≡0,即产生热电势的条件是两接点温度不同;导体接触面积无关。若T0=0,则EAB(T,T0)=f(T),热电势和温度之间为唯一对应的单值函数关系。结论:热电势的大小只与两种导体材料A、B及冷热端温度有关,与热电极的形状、大小、长短,以及两导体接触面积无关。

构成热电极的导体材质有何要求?

均质导体定律

由同一种均质导体组成的闭合回路,不论导体的截面积和长度如何,也不论各处的温度分布如何,都不产生热电势

热电偶的热电势如何输出?

在制作热电偶时,一定要选用均质材料,以防止因材质不均匀而产生附加热电势,造成测量误差。热电偶必须采用两种不同材质的导体组成

中间导体定律

A、B构成的热电偶回路接入第三种导体C,只要中间导体两端温度相同,那么中间接

入的导体对热电偶回路的总热电势没有影响。如第三种导体两端温度不等,将造成热电势变化,变化取决于导体热电性质与接点温度。因此,接入导体材料要尽量与热电偶热电性质相近

当热电偶参比端温度波动较大时,如何实现单变量测量?

在热电偶回路中,如果热电极A、B分别和连接导体A’、B’相连,其接点温度分

别为T,TC 和T0,则回路的总热电势等于热电偶的热电势和连接导体的热电势的代数和。即

冷端温度不为0时,如何根据分度表求出热端温度?热电偶A、B在接点温度为T,T0 时的热电势等于热电偶A、B在接点温度为T,TC 和TC ,T0 的热电势的代数和,即

标准和非标准热电偶

任何两种导体都可组成热电偶,但作为测温的热电偶需满足:

电势值大,随温度单调上升,最好线性

材料易获得,有较好的延展性,易于加工

热电性质稳定;复现性好,价格低,物理、化学性稳定

电极的电阻小,温度系数小

7777按照工业标准化要求,可将热电偶分为标准化和非标准化热电偶两种。

标准化热电偶:工艺上比较成熟,能批量生产,性能稳定、应用广泛,具有统一的分度表并已列入国际和国家标准文件中的热电偶,标准化热电偶可以互换,精度有一定的保证,并有配套的显示和记录仪表可供选用。

非标准化热电偶:虽然已有产品,也能够使用,但没有统一的标准,使用前仍需个别标定来确定热电势和温度之间的关系的热电偶,其存在的主要目的是进一步扩展高温和低温的范围。

t=0℃时,所有型号的热电偶的热电势均为0,温度越高,热电势越大,t<0 ℃时,热电势为负值;

不同型号的热电偶在相同温度下,热电势一般有较大的差别;

温度和热电势之间的关系一般为非线性,因此,当热电偶自由端温度t0≠0时,应

根据中间温度定律计算热电势,然后再查分度表,求的温度t

当冷端温度波动较大时?

解决的办法:

将热电极延长→冷端引到一个温度稳定的地方,然后再考虑将冷端温度处理为0℃→热电偶的冷端处理和补偿!

常用的方法:

补偿导线法,冰点槽法,计算修正法,冷端补偿器法,软件修正法

补偿导线法

采用一定温度范围内(如-20~100℃),热电性质与热电偶的热电性质基本相同,但材料不同、价格较便宜的金属导体将热电偶的热电极延长,由于A’、B’的热电性质与A、B相近,可将其视为A、B电极的延长不会产生附加热电势。

连接导线定律

中间温度定律

补偿导线的特点

通常由补偿导线合金丝、绝缘层、护套和屏蔽层组成,在一定温度范围内具有和所匹配的热电偶热电势标称值相同的特性;

采用补偿导线可改善热电偶测温线路的物理性能和机械性能。采用多股线芯或小线径补偿导线可提高线路挠性,接线方便,也可调节线路电阻和屏蔽外界的干扰;

采用补偿导线可降低线路成本,节约热电偶材料。

补偿导线的分类

延长型:补偿导线合金丝的名义化学成分及热电势标称值与配用的热电偶相同,字母“X”表示

补偿型:其合金丝的名义化学成分与配用的热电偶不同,但其热电势值在100下与配用的热电偶的热电势标称值相同,用字母“C”表示

必须注意的问题

补偿导线只能在规定的温度范围内(一般为0~100℃)与热电偶的热电势相等或相近;

不同型号的热电偶有不同的补偿导线;

热电偶和补偿导线的二个接点要保持同温;

补偿导线有正负极,分别与热电偶的正负极相连;

补偿导线的作用只是延伸热电偶的自由端,当自由端温度不等于0时,还需要进行其他的补偿与修正;

不同的补偿导线有不同的颜色。

参比端恒温法在工业应用时,一般把补偿导线的末端(即热电偶的自由端)引至电加热的恒温器中,使其维持在某一恒定的温度。通常一个恒温器可供多支热电偶同时使用。在实验室及精密测量中,通常把自由端放在盛有绝缘油的试管中,然后再将其放入装满冰水混合物的容器中,以使自由端温度保持为0℃,这种方法称为冰点槽法。

计算修正法用补偿导线把热电偶的自由端延长到t0处(通常是环境温度),只要知道该温度值,并测出热电偶回路的电势值,通过查热电偶分度表计算的方法,就可以求得被测实际温度。

由于热电势的非线性,热电势是温度函数的差,而不是温差的单值函数

冷端补偿器法要求:

1)不同分度号的热电偶配用不同的冷端补偿器

2)补偿器中铜电阻必须与冷端同温

3)补偿范围有限(一定精度内,一般为0~50 ℃)

4)极性不能接反

软件修正法

在计算机监控系统中,有专门设计的热电偶信号采集卡或采集器,通常有单路、8路、或16路信号通道,带有隔离、放大、滤波等处理电路,在每一块卡上都在接线端子附近安有热敏电阻或半导体温度传感器,在采集卡驱动程序的支持下,计算机每次都采集各路热电动势信号和冷端温度信号,按计算修正法计算出每一路的热电动势值,就可以得到准确的被测值

修正方法:软件编程

出现背景:计算机技术和现场总线技术的发展

热电偶的结构型式

要求:

电偶两极之间以及与保护套管之间都需要有良好的绝缘;

⑵耐高温、耐腐蚀和耐冲击的外保护套管。普通型装配式结构

柔性安装型铠装结构

优点测量端热容量小,响应速度快,挠性好,可弯曲,可以安装在狭窄或结构复

杂的测量场合,耐压,耐振,耐冲击

将热电偶丝,绝缘材料(氧化镁粉等)和金属保护套管三者组合装配后,经拉伸加工而成的一种坚实组合体

薄膜热电偶由两种金属薄膜连接而成的一种特殊结构的热电偶

热容量小,动态响应快,可用于微小面积上温度测量,或快速变化的物体表面温度测量测温范围:-200~300 ℃

接触式测温热电阻温度计

金属热电阻(热电阻) 半导体热电阻(热敏电阻)

热电阻

电阻的热效应:利用金属电阻随温度变化的规律进行测量。

测温范围:-200~850℃

材料要求:

电阻温度系数要大:

电阻率尽可能大,热容量要小

测量范围内,应具有稳定的物理和化学性能;电阻与温度的关系最好接近于线性;应有良好的可加工性,且价格便宜。

骨架材料的体膨胀系数要小,机械强度和绝缘性能良好,耐高温腐蚀(云母、石英、陶瓷、玻璃和塑料等)

标准热电阻

铂电阻

测温范围:-200~850 C ;

Rt=R0(1+At+Bt2);当-200~0 C

Rt=R0[1+At+Bt2 +Ct3(t-100)];当0~850 C

温度升高,阻值增加。

分度号:Pt10, Pt100

铜电阻:线性好,价格地,但体积大,热响应慢

测温范围:-50~150 C ;

Rt=R0(1+ t);近似线性;

分度号:Cu50, Cu100

标准热电阻的分度表

采用标准热电阻数学模型计算得出,在相邻数据间采用线性内插法

三线制和四线制

三线制:为了减小引线电阻的影响,引线可采用三根,其中两根引线来自热电阻的一个引出端。另一根引线接至热电阻的另一个引出端。三根引线分别接到变送器或显示仪表输入电路的电桥的电源和两个桥臂。这种引线方式称为三线制

电桥平衡时:

四线制:如果采用恒流源和直流电位差及来测量电阻阻值时,就要求采用四线制接法,即在热电阻两端各引出两根导线,其中两根和恒流源连接,另外两根线和电位差计相连。

此时:

在电流回路中,导线电阻r 引起的

压降rI不在测量回路范围内

在测量电压回路中虽然有导线电

阻r 但并无电流,因为电位差计

在测量时不取电流

因此:四根导线电阻对测量均没有影响!

注意:导线必须从热电阻感温体的根部引出;

流过热电阻的电流应小于6mA;

与电桥或电位差计配合使用时,要注意共模电压对测量的影响。

热敏电阻

用金属氧化物或半导体材料作为电阻体的测温敏感元件

负温度系数:

两个重要参数:R(T0=25℃),B

优点:α值一般为金属热电阻的

十几倍,灵敏度高;

阻值高,引线电阻可忽略;

结构简单,响应快;

价格便宜。

缺点:互换性差,稳定性不好

测温元件的安装注意事项

确保测温元件与被测材料有充分接触;

保持接线盒清洁干燥;

防止热量散失,保护套管露在设备外部长度应尽量短,并加保温层;

使用规定的补偿导线,并确保正确接线;

一次仪表与二次仪表间的信号线尽量不要有接头;

信号线尽量单独穿管敷设;

插入深度要求:量端应有足够的插入深度,应使保护套管的测量端超过管道中心线5~10mm;

插入方向要求:保证测温元件与流体充分接触,有条件应尽量在管道弯管处安装;最好是迎着被测介质流向插入,正交90°也可,但切勿与被测介质形成顺流。如需水平安装,应有支架加以支撑。

变送器是一种特殊的传感器,它分别将各种对象参数和电、气信号转换成相应的统一标准信号,并传送到指示记录仪表、各种运算器或调节器等,供指示、记录或调节

由图知,输入输出关系为:

当满足深度负反馈条件时:

广泛应用负反馈原理,信号处理电路等,使输入输出具有良好的线性关系

为了使用方便,还应具有零点调整、零点迁移和量程调整等功能

量程调整

量程是指被测参数测量范围的上限值xmax减去测量范围的下限值xmin。量程(或满度)调整的目的,是使变送器的输出信号上限值ymax与测量范围的上限值xmax相对应,相当于改变输入输出特性的斜率。

量程调整通常通过改变反馈系数F

的大小来实现

也有些变送器还可以通过改变转换

系数D来调整量程

零点调整和零点迁移

目的:使输出信号下限值ymin与测量范围的下限值xmin相对应

xmin=0时,称为零点调整,xmin≠0时,称为零点迁移

④非线性特性的校正方法

在反馈通道中设置非线性补偿环节,使反馈环节与检测元件具有相同的非线性特性

在测量转换部分中设置非线性补偿环节,使测量转换部分与检测检测元件具有相反的非线性特性

⑤变送器信号传输方式

二线制和四线制

两线制:两根导线同时传送变送器所需的电源和输出电流信号

四线制:供电电源和输出信号分别用两根导线传输

两线制:节省连接电缆,有利于安全防爆和抗干扰;大大降低安装费用,减少自控系统投资

工业中广泛使用的温度变送器是一种仪表装置,可与温度传感器(热电偶和热电阻)连接,在测量时将热电势和电阻值转化为直流4~20mA标准信号进行远传,完成从温度量到传输信号量的转换。

1. 仪表系列温度变送单元

直流毫伏量程单元

热电动势量程单元

热电阻量程单元

放大单元

2. 一体化温度变送器

该温度变送器属于仪表系列中、变送单元中的一种型号,其特点为:

采用2线制、4~20mA标准信号进行远传

直流24V集中供电,变送器内无电源电路

采用集成电路运算放大器件

除直流毫伏输入的品种之外,热电偶输入和热电阻输入的品种都有线性化功能

兼有安全栅作用,可以用于本安防爆系统

直流毫伏、热电偶、热电阻这三种输入信号的“量程单元”(即由输入电路和反馈电路组成的线路板)各不相同,但其后所接的放大单元相同。

一体化温度变送器,是指将变送器模块安装在测温元件接线盒或专用接线盒内的一种温度变送器。其变送器模块和测温元件形成一个整体,可以直接安装在被测温度的工艺设备上,输出为4~20mA统一标准信号,属DDZ-S系列仪表。

分为配热电偶的SBWR型(E,K,S,B,T等)及配热电阻的SBWZ型(Cu50,Cu100 ,Pt100 );

按输出信号有无线性化可分为与被测温度呈线性关系及与输入信号呈线性关系两种;

基本误差都不超过量程的±0.5%,环境温度影响为每1℃变动不超过0.05%,可安装在-25~80 ℃环境中;

额定电压24V,但允许使用于12~35V电源电压下;

大多数无输入输出隔离措施;

主要特点:

节省了热电偶补偿导线或延长线的投资,只需两根普通导线相连

由于其连接导线中为较强的4~20mA信号,比传递微弱的热电动势具有明显的抗干扰能力

体积小巧紧凑,通常为直径几十毫米的短柱型,安装在热电偶或热电阻套管接线端子盒中,不必占用额外的空间。

不需调整维护,因为全部采用硅橡胶或树脂密封结构,其耐环境性较好,但损坏后只能整体更换。

非接触式测温测温原理:利用物体处于绝对零度之上时,其辐射能量随其温度而变化的原理,理论上测量上限无限制。

分类:光学高温计、辐射温度计

应用:冶金,铸造、热处理以及玻璃、陶瓷和耐火材料等工业生产中的高温测量,其中辐射测温方法广泛应用于900 ℃以上的高温区测量,近来随红外技术的发展,测温下限移至常温区,大大扩展了非接触测温方法的使用范围

特点:不干扰被测对象的温度场,不受被测对象的腐蚀和毒化,不必与被测对象同温,测量上限不受限制,不必与被测对象达到热平衡,动态特性好,但测量准确性受环境及对象性质影响较大。

非接触式红外测温仪

毕业设计(论文) 题目非接触式红外测温仪 学生姓名:李林 指导教师:李宏升 理学院应用物理学专业061 班

非接触式红外测温仪 学生姓名:李林 所在专业:应用物理学班级:061 指导教师:李宏升 申请学位:学士 论文提交日期:20xx -xx-xx 论文答辩日期:20xx -xx-xx 学位授予单位:青岛理工大学

摘要:本文结合国内外红外技术的发展和应用,简绍了红外技术的基础理论,阐述了红外热像仪的工作原理、发展和分类。以及红外测温仪的原理和实现。 关键词:黑体辐射、红外测温仪、普朗克定律、热像仪。 目录 内容摘要 第一章概述 第二章红外基础理论 2.1 扫像仪原理 2.2热像仪的发展 2.3 热像仪分类 第三章红外测温仪的原理及实现 3.1红外测温仪的种类 3.2红外测温仪的工作原理 3.3红外测温仪的性能 第四章红外测温仪的选择 4.1确定测温范围 4.2确定目标尺寸 4.3确定距离系数(光学分辨率) 4.4确定波长范围 4.5确定响应时间 4.6 信号处理功能

4.7环境每件考虑 4.8 红外测温仪的优点 4.9 红外测温仪的缺点 4.10 使用注意事项 第五章结束语 参考文献 第一章概述 红外测温技术在生产过程中,在产品质量控制和监测,设备在线故障诊断和安全保护以及节约能源等方面发挥了着重要作用。近20年来,非接触红外测温仪在技术上得到迅速发展,性能不断完善,功能不断增强,品种不断增多,适用范围也不断扩大,市场占有率逐年增长。比起接触式测温方法,红外测温有着响应时间快、非接触、使用安全及使用寿命长等优点。非接触红外测温仪包括便携式、在线式和扫描式三大系列,并备有各种选件和计算机软件,每一系列中又有各种型号及规格。在不同规格的各种型号测温仪中,正确选择红外测温仪型号对用户来说是十分重要的。 红外检测技术是“九五”国家科技成果重点推广项目,红外检测是一种在线监测(不停电)式高科技检测技术,它集光电成像技术、计算机技术、图像处理技术于一身,通过接收物体发出的红外线(红外辐射),将其热像显示在荧光屏上,从而准确判断物体表面的温度分

红外测温方法的工作原理及测温..

红外测温方法的工作原理及测温仪 (北京化工大学信息科学与技术学院) 摘要:本文从黑体辐射原理出发分析了红外测温的工作原理,从发射率、距离系数、环境等几个方面,探讨和分析了测温误差的原因,以及基于红外测温技术的测温仪的简单的概述,并对红外测温仪的分类、性能、选择及应用简要的说明。 关键词:黑体辐射、红外测温仪、温度测量 Infrared Thermometer and the working principle of Infrared Temperature measurement (College of Science and Technology, Beijing University of Chemical Technology) Abstract: In this paper, the theory of infra-red temperature measurement was analyzed according to the principle of blackbody radiation. We discussed the main factors for measurement accuracy, such as reflectance, distance coefficient and environment.Based on infrared temperature measurement technology, we make a simple overview of infrared thermometer, and a brief description of its classification, performance, selection and application. Key words: Blackbody radiation; infrared thermometer; temperature measurement 0引言 在自然界中,当物体的温度高于绝对零度时,由于它内部热运动的存在,就会不断地向四周辐射电磁波,其中就包含了波段位于0. 75~100μm的红外线.红外测温仪就是利用这一原理制作而成的,温度是度量物体冷热程度的一个物理量,是工业生产中很普遍、很重要的一个热工参数,许多生产工艺过程均要求对温度进行监视和控制,特别是在化工、食品等行业生产过程中,温度的测量和控制直接影响到产品的质量和性能。传统的接触式测温仪表如热电偶、热电阻等,因要与被测物质进行充分的热交换,需经过一定的时间后才能达到热平衡,存在着测温的延迟现象,故在连续生产质量检验中存在一定的使用局限。目前,红外温度仪因具有使用方便,反应速度快,灵敏度高,测温范围广,可实现在线非接触连续测量等众多优点,正在逐步地得以推广应用。表1列出了常用的测温方法和特点,其中红外测温作为一种常用的测温技术显示出较明显的优势。 表1常用测温方法对比 测温方法温度传感器测温范围(°C)精度(%) 接触式热电偶-200~1800 0.2~1.0 热电阻-50~3000.1~0.5非接触式红外测温-50~33001其它示温材料-35~2000<1

最新5温度测量仪表汇总

5温度测量仪表

第五章 温度测量仪表 第一节 概述 在化工生产中温度是个最常见和非常重要的物理参数。由于物体的很多物理及化学性质都与温度有关,很多生产过程都必须在适当的温度下才能进行,因此,对温度进行精确的测量和控制十分重要。 一、 概念 1、 什么是温度? 温度是反映物体冷热程度的一个状态参数,也可以说是对物体冷 热程度的一种度量。 2、 温标:是温度的数值表示方法,是温度的标尺。常用温标有摄氏温 标(℃)、华氏度(℉)和凯氏温标(K )三种,且℃=5/9 (℉- 32);℉=9/5 ℃+32;℃=K-273.15。 二、测温仪表的分类 测温仪表根据其在使用时感温元件是否与被测介质直接接触,可分为接触式和非接触式两大类: 第二节 热电阻 热电阻温度计的测温原理是根据导体(或半导体)的电阻值随温度变化而变化的性质,再用显示仪表把电阻值的变化显示出来。 测温仪 接触非接触式 膨胀压力表热电阻热电偶Pt10、B 、S 、K 、液体膨胀固体膨胀水银温度计 双金属温度光学高温辐射高温比色高温

工业使用热电阻可检测-200~+500℃范围的温度,其使用特点是:测量精度高,尤其适用于低温测量;常用热电阻有铂、铜热电阻。 一、热电阻的材料 用作热电阻的材料必须具有以下性质: ①具有较大的电阻温度系数;②电阻率要大;③电阻与温度近于线性关系;④热容量 小;⑤物理化学性质稳定;⑥易加工、复制性强,价格便宜。 二、铂热电阻。 1、铂的纯度:是用电阻比R100/R0来表示;R100是铂在标准大气压下, 水的沸点时阻值;R0是铂在水三相点的电阻值。 2、连接方式:采用三线制连接,目的是在与电桥构成测温仪表时,可 从减小一、二次仪表间连接导线因环境温度变化而引起的测量误 差。 三、热电阻的测温原理。 热电阻阻值随温度的变化关系式:R t=R0〔1+∝0(t-t0)〕; R0—温度为t0时的电阻值;∝0—温度为t0时的电阻温度系数。 热电阻测量的温度的变化,通过测量电路(平衡电桥)转换成相应的电压信号,经放大器放大后,指示或记录被测介质的温度。 第三节热电偶 热电偶温度计使用范围广,可以完成-100~1600℃范围内的温度测量,且便于远距离传送与集中检测。 一、测温原理: E AB(T,T0)=E AB(T,0)-E AB(T0,0)

非接触式测温仪设计与制作

非接触式测温仪的设计与制作 田云,黑龙江农业经济职业学院 本文介绍一种采用凌阳公司生产的TN9红外测温传感器来实现红外测温,控制器采用大家熟悉的51单片机。所有物体都会发出红外线能量。物体越热,其分子就愈加活跃,它所发出的红外线能量也就越多。红外线温度仪包括有光学装置,可以收集来自物体的辐射红外线能量,并把该能量聚焦在探测器上。能量经探测器转化为电信号,并被放大、显示出来。红外测温打破了传统的接触式测温模式,它根据被测物体的红外辐射能量来确定物体的温度,不与被测物体接触,具有不扰动被测物体温度分布场,温度分辨率高、响应速度快、测温范围广,稳定性好、可同时测量环境温度和目标温度的特点。近年来在汽车电子、航空和军事上得到越来越广泛的应用。 一、红外测温传感器TN9 红外测温传感器选用凌阳科技公司生产的TN9红外测温传感器,可测量目标温度和环境温度。它采用非接触测温手段,解决了传统测温中需要接触的问题,具有回应速度快、测量精度高、测量范围广以及可同时测量目标温度和环境温度的特点。红外测温模块根据大气状况最远测温距离约 30m,测量回应时间大约为 0.5s,而且,它具备 SPI接口,可以很方便地与单片机传输数据。外型如图1所示,它的基本特性如表1所示。 量程-33-220℃/-27-428℉ 工作温度-10-50℃/14-122℉ 精度±0.6℃ 反应时间1sec 重量8g 电压范围3V- 5V 图1 TN9红外测量传感器外型

1、红外测温传感器引脚 红外测温模块的引脚如图2所示。其中V为电源电压引脚VCC,VCC一般为 3V到 5V之间的电压;D为数据接收引脚,没有数据接收时D为高电平;C为 2KHz Clock输出引脚(这里需要注意,只有为TN9供上电源,C脚就有2KHz的方波信号输出);G为接地引脚;A为测温启动信号引脚,低电平有效。 图2 TN9红外测温传感器引脚 2、红外测温模块的工作时序 TN9红外模块的工作SPI时序如图3所示。 从时序图可以看出: TN9红外传感器向单片机发送一帧数据共有5个BYTE组成,每个BYTE位的含义如下: Item :如果为4CH代表此帧测量为目标温度,为66H代表此帧测量为环境温度。 MSB :数据高八位 LSB :数据低八位 SUM :校验位 SUM=Item+MSB+LSB CR :0DH为结束码 单片机在CLOCK的下降沿接收数据,一次温度测量需接收 5 个字节的数据,这五个字节中:Item为 0x4c表示测量目标温度,为 0x66 表示测量环境温度;MSB为接收温度的高八位数据;LSB为接收温度的低八位数据;Sum为验证码,接收正确时Sum=Item+MSB+LSB;CR 为结束标志,当CR为 0x0dH时表示完成一次温度数据接收。

非接触式温度测量

非接触式温度测量 马弗炉网:admin 添加时间:2012-10-26 18:06 浏览:345 非接触式温度测量 热电偶和热电阻属于接触式温度测量,测量时必须与被测对象达到热平衡状态,才能真实反映对象的温度。接触式测量方法有时受测量环境的影响,如腐蚀、污染、还原气氛、振动以及磨损等因素,使测量变得困难。由于热电偶测量范围有限,对于温度超过2300℃高温电阻炉,接触式测量温度比较困难。基于热辐射原理的非接触式测量方法可以克服上述困难,因为非接触测量不需要与被测对象处在同一环境中,更不需要与被测对象接触,而且测量温度较高,在高温电阻炉温度测控中得到了广泛应用。非接触测量仪器常见的有光学高温计、光电高温计、全辐射高温计和光电比色高温计。 光学高温计 光学高温计又称单波辐射高温计,是辐射高温计的一种,可测量的温度范围800~6000℃,它广泛地用来测量冶炼、轧钢、玻璃熔窖、锻打、热处理等温度。隐丝式光学高温计的组成,如图一所示,由物镜1、目镜4构成的光学装置,用于对比标准光源的亮度温度。吸收玻拜2用来提高测量范围。标准光源是一个可调节亮度的灯丝3。由电均盘R和电源E组成的亮度调节装置,通过调节灯丝电流,来改变灯全的亮度。指示电表的显示与炉子温度相对应。

光学高温计是利用受热物体的单色辐射强度随温度升高而增长的原理来进行高温测量的,具体是利用了亮度均衡法。被测物体成像于高温计的灯丝平面上,调节滑线电阻盘,使灯丝的亮度与被测物体的亮度相均衡,灯丝轮廓就隐灭于被测物体的影像中,就可由仪表直接读取被测物体的亮度温度。指示电表是按绝对黑体(黑体是指能全部吸辐射能的物体)来进行温度刻度的,但被测物体往往是非黑体,由光学高温计所测得的亮度温度,必须用该物体的单色辐射系数,经查表修正后,才能求得该被测物体的实际温度。由于单色辐射系数总小于1,物体的亮度温度低于实际温度。

5温度测量仪表

第五章 温度测量仪表 第一节 概述 在化工生产中温度是个最常见和非常重要的物理参数。由于物体的很多物理及化学性质都与温度有关,很多生产过程都必须在适当的温度下才能进行,因此,对温度进行精确的测量和控制十分重要。 一、概念 1、 什么是温度? 温度是反映物体冷热程度的一个状态参数,也可以说是对物体冷热程度的一种度量。 2、 温标:是温度的数值表示方法,是温度的标尺。常用温标有摄氏温标(℃)、 华氏度(℉)和凯氏温标(K )三种,且℃=5/9 (℉-32);℉=9/5 ℃+32;℃=K-273.15。 二、测温仪表的分类 测温仪表根据其在使用时感温元件是否与被测介质直接接触,可分为接触式和非接触式两大类: 第二节 热电阻 热电阻温度计的测温原理是根据导体(或半导体)的电阻值随温度变化而变化的性质,再用显示仪表把电阻值的变化显示出来。 工业使用热电阻可检测-200~+500℃范围的温度,其使用特点是:测量精度高,尤其适用于低温测量;常用热电阻有铂、铜热电阻。 一、热电阻的材料 用作热电阻的材料必须具有以下性质: ①具有较大的电阻温度系数;②电阻率要大;③电阻与温度近于线性关系;④热容量小;⑤物理化学性质稳定;⑥易加工、复制性强,价格便宜。 二、铂热电阻。 1、 铂的纯度:是用电阻比R 100/R 0来表示;R 100是铂在标准大气压下,水的沸点 时阻值;R 0是铂在水三相点的电阻值。 2、 连接方式:采用三线制连接,目的是在与电桥构成测温仪表时,可从减小一、 二次仪表间连接导线因环境温度变化而引起的测量误差。 三、热电阻的测温原理。 热电阻阻值随温度的变化关系式:R t =R 0〔1+∝0(t-t 0)〕; R 0—温度为t 0时的电阻值;∝0—温度为t 0时的电阻温度系数。 测温仪表 接触式 非接触式 膨胀式 压力表式 热电阻式: 热电偶式: Pt10、Pt100 B 、S 、K 、E 、T 液体膨胀式: 固体膨胀式: 水银温度计 双金属温度计 光学高温计 辐射高温计 比色高温计

非接触式红外测温仪设计

非接触式红外测温仪设计 摘要 温度测量技术应用十分广泛,而且在现代设备故障检测领域中也是一项非常重要的技术。但在某些应用领域中,要求测量温度用的传感器不能与被测物体相接触,这就需要一种非接触的测温方式来满足上述测温需求。本论文正是应上述实际需求而设计的红外测温仪。 红外测温仪是以黑体辐射定律作为理论基础,是光学理论和微电子学综合发展的产物。与传统的测温方式相比,具有响应时间短、非接触、不干扰被测温场、使用寿命长、操作方便等一系列优点。 本文介绍了红外测温仪测温的基本原理和实现方法,提出了以STC89C51单片机为其核心控制部件的红外测温系统。详细介绍了该系统的构成和实现方式,给出了硬件原理图和软件的设计流程图。该系统主要由光学系统、光电探测器、显示输出等部分组成。光学系统汇集其视场内目标的红外辐射能量,红外能量聚焦在光电探测仪上并转变为相应的电信号。STC89C51单片机负责控制启动温度测量、接收测量数据、并按照单片机中的温度值计算算法计算出目标的温度值再通过LED把结果显示出来。 关键词: STC89C51单片机,红外测温,LED显示

THE DESIGN OF NON-CONTECT INFRARED THERMOMETER ABSTRACT The technology of temperature measurement is used widespread, and it also important in the modern equipment failure examination field. But in some application domains, we needn’t the sensor contact with the measured object which used in temperature measurement, this needs a kind of non-contact temperature measurement to satisfies the demand and the design of this infrared thermometer is also based on the demand. Infrared thermomter, it uses the blackbody radiation laws as the theories foundation, it is the outcome that the optical theories and micro-electronics learn a comprehensive development. Compared to the way of traditional temperature measurement, it has a series of merits, such as short in response time, non-contact, noninterference to temperature field, long useful time and convenient operation, etc. The paper introduces the basic principle of infrared thermometer and the method of realization, puts forward infrared trermometer system with the STC89C51 MCU as the CPU. The paper introduces the composing and the method of that system in detail, and gives the hardware principle diagram and the design flow chart of the software. The system formed by the optical system, photoelectron detector,display and output partially. The optical system collects the infrared radiation energy of the object in its field of view, the infrared energy focusing on the instrument and transforms to the corresponding electrical signal. The STC89C51 MCU is used to start the temperature survey, data receive, count the value of the object temperature based on the arithmetic with in MCU and the result is displayed on LED.

温度测量仪表检修规程

温度测量仪表检修规程 1.围 本规程给出了温度测量系统一次、二次测量设备及氧化锆测量系统的检修工艺、检修方法,使用于华润热电生产现场的温度测量元件、仪表和回路的现场维护、检修。 2. 热电偶的检修 2.1 检修项目 2.1.l 清扫接线端子盒,及套管外部灰尘、锈垢。 2.1.2 检查绝缘、电极和接线情况。 2.1.3 热偶工作端清理、检查、焊接。 2.1.4 热电偶的校验。 2.1.5 保护套管检查。 2.2 技术要求和质量标准 2.2.1 热偶套管、端子盒部和外部不得有灰垢,接线端子螺丝密封圈齐全完好、紧固。 2.2.2 在环境温度为(5~35)℃,相对湿度不大于85%时,非接壳式热电偶的热偶丝对套管的绝缘电阻不小于5M--(250V摇表)。 2.2.3 新制作的热电偶电极直径均匀、平直、无裂纹、瓷套管孔光滑。工作端绞接成麻花状,其长度为电极直径的4~5倍,焊接牢固,表面光滑,无气孔、无夹灰,呈球状。 2.2.4 使用中的热偶工作端应无裂纹、脱层、腐蚀、磨损现象。套管无磨损。 2.2.5 热偶元件的正、负极应有明显标志,并有元件安装位置标牌。 2.2.6 热偶示值检定点一般按表1规定,也可按需要确定检定点,其检定周期随主设备大修进行, 2.2.7 每两次设备大修检查一次保护套管,并进行金相分析。 2.2.8 常用的热电偶的检定误差,应符合表2规定。

2.3 热电偶的焊接和处理方法 2.3.1 参考表3规定鉴别热电偶的损坏程度。 表3 热电偶的损坏程度 2.3.2 普通金属热电偶有轻度损坏时,如果长度允许,可将工作端与自由端对调重新焊接。中度以上损坏应更新:贵金属热电偶有轻度和中度损坏时,应进行清洗退火处理,损坏较严重时应报废。处理过的热电偶必须经过校验,合格后才能使用。 2.3.3 清洗和退火的方法是,首先去掉热电偶上的绝缘瓷管,用(30—50)%的硝酸水溶液,将热电偶洗涤1小时,再用蒸溜水冲洗。然后将热电偶的两根电极分开约30悬空接入电路,调整凋压器使加热电流为10.5 A—11.5A(热电偶直径为0.5mm)。用光学高温计测量热电偶温度,当温度达到1100℃~1150℃时,即用化学纯硼砂块接触热电偶的两个上端。使硼砂溶化成滴、顺热电偶下流,进行多次清洗直至电极表面发白并呈现出金属光泽为止。然后将热电偶放入蒸溜水中煮沸数次,使电极上的硼砂彻底洗净为止。最后将热电偶接入电路,通以10.5~A 11.5A电流,进行1小时退火。 2.3.4 热电偶的焊接。 2.3.4.1 用交流或直流220V或llOV的电流通过石墨电极产生弧光进行焊接。焊接前,先把应焊的一端对齐,并撒上硼砂作保护,置于电弧光中熔化,时间约(4—5)秒。待焊接点成球状后迅速取出,然后用热水洗净电极上的残渣。用此法焊接铂铑一铂时,为避免热电偶中渗进碳,不允许热电偶和石墨电极直接接触。只能在弧光中焊接(以直流电弧焊接较适宜)。 2.3.4.2 气焊。气焊就是一般的乙炔焰等火焰焊接,各种热电偶均可采用。焊时把焊接的热电偶顶端并齐或绞成麻花状,撒上硼砂后用乙炔焰焊接。焊接时必须用焰心加热,这样焊接才能焊的光滑。焊成的热电偶应放在热水中洗干净。 2.3.4.3盐水焊接。这种焊接方法适用于贵金属热电偶的焊接,焊接装置示意如图1所示。焊接前将热电偶的一端并齐或绞成麻花状(长度一般15mm),用带绝缘把手的夹持器夹住热电偶电极,接通电源后,

常用温度测量仪表分类

温度测量仪表的分类 温度测量仪表按测温方式可分为接触式和非接触式两大类。通常来说接触式测温仪表比较简单、可靠,测量精度较高;但受耐高温材料的限制,不能应用于很高的温度测量。非接触式仪表测温是通过热辐射原理来测量温度的,测温元件不需与被测介质接触,测温范围广,不受测温上限的限制,也不会破坏被测物体的温度场,反应速度一般也比较快;但受到物体的发射率、测量距离、烟尘和水气等外界因素的影响,其测量误差较大。 按工作原理分为膨胀式、电阻式、热电式,辐射式。 玻璃管温度计是根据液体热膨胀原理测温,双金属温度计是根据固体热膨胀原理测温,热电阻根据热阻效应原理测温,热电偶根据热电效应原理测温,辐射高温计根据热辐射原理测温。 一、热电偶 热电偶是工业上最常用的温度检测元件之一。其优点是: ①测量精度高、热惯性小。因热电偶直接与被测对象接触,不受中间介质的影响。 ②测量范围广。常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。 ③构造简单,使用方便。 ④输出信号为电信号,便于远传。 1.热电偶测温基本原理

将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在 回路中形成一个电流,这种现象称为热电效应。热电偶就是利用这一效应来工 S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。 工业用热电偶的测温范围见下表: 在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃,B偶不用补偿导线,用普通的屏蔽线。

红外线测温仪原理及应用

红外线测温仪原理及应用 摘要:测量温度的方法有很多种,温度计大致可以分为接触式测温仪表和非接触式测温仪表两类。其中接触式的有我们熟悉的液体式温度计,热电偶式温度计和 热电阻式温度计等等。 关键词:红外线测温辐射光纤 众所周知,温度是供热,供燃气,通风及空调系统中最重要的参数之一。尤其在热工测量过程中,温度的精准程度往往是决定实验成败的关键。因此,一个精确度高的测温仪器在工程中是必不可少的。因此本文就温度测量工具中的红外线测温仪的原理及应用进行一些介绍。 一,红外测温的理论原理 在自然界中,当物体的温度高于绝对零度时,由于它内部热运动的存在,就会不断的向四周辐射电磁波,其中就包含了波段位于0.75μm~100μm的红外线。他最大的特点是在给定的温度和波长下,物体发射的辐射能有一个最大值,这种物质称为黑体,并设定他的反射系数为1,其他的物质反射系数小于1,称为灰体,由于黑体的光谱辐射功率P(λT)与绝对温度T之间满足普朗克定。说明在绝对温度T下,波长λ处单位面积上黑体的辐射功率为P(λT)。根据这个关系可以得到图1的关系曲线,从图中可以看出: (1)随着温度的升高,物体的辐射能量越强。这是红外辐射理论的出发点,也是单波段红外测温仪的设计依据。 (2)随着温度升高,辐射峰值向短波方向移动(向左),并且满足维恩位移定理,峰值处的波长与绝对温度T成反比,虚线为处峰值连线。这个公式告诉我们为什么高温测温仪多工作在短波处,低温测温仪多工作在长波处。 (3)辐射能量随温度的变化率,短波处比长波处大,即短波处工作的测温仪相对信噪比高(灵敏度高),抗干扰性强,测温仪应尽量选择工作在峰值波长处,特别是低温小目标的情况下,这一点显得尤为重要。 二,红外线测温仪的原理

温度测量仪表标准作业指导书

温度测量仪表标准作业指导书 一、目的 细化和量化温度测量仪表设备的安装、故障排除和校验维护,使温度测量设备正确稳定运行。 二、范围 热电偶、热电阻、双金属温度计等温度测量仪表的安装,维护和故障排除作业 三、作业流程图 四、标准作业指导 第一部分:温度测量仪表安装----以热电偶安装为例 1、作业准备 、作业材料 、热电偶测温原理及结构 1)热电偶测温原理 热电偶测温原理是基于赛贝尔效应,即两种不同成分的导体两端相连构成回路,若两连接端温度不同,则在回路内产生热电流,形成热电势。这个回路产生 的热电势由接触电势和温差电势组成。由于导体材料一定,热电偶产生的热电势 实际上是热电偶两端温度的函数,而且只与温度有关。 2)热电偶的结构 常用的热电偶是由热电极(热偶丝)、绝缘材料(绝缘管)和保护套管等部分构成的。 常用热电偶可分为标准热电偶和非标准热电偶两大类。标准热电偶有国家标准的热电势与温度、容许的误差、标准分度表等。我国从1988年1月1日起,热 电偶全部按IEC国标生产,并指定S、R、B、K、E、J、T7种标准化热电偶为我国 统一设计型热电偶。非标准型热电偶则一般用于特殊场合,国家并没有统一制定 严格的标准。

、热电偶的选型 具体选型流程为:型号的选择—分度号的选择—防爆等级的选—精度等级的选择—安装固定形式的选择—保护管材质的选择—长度或插入深度的选择。 在选择热电偶的时候,要根据所要求的使用温度范围、所需精度、使用气氛、测定对象的性能、响应时间和经济效益等综合因素进行参考。 1)选择测量精度和温度测量范围。 使用温度在1300℃~1800℃,要求精度比较高时,一般选用B型热电偶; 要求精度不高,气氛又允许可用钨铼热电偶,高于1800℃一般选用钨铼热电 偶;使用温度在1000℃~1300℃要求精度又比较高可用S型热电偶和N型热电 偶;在1000℃以下一般用K型热电偶和N型热电偶,低于400℃一般用E型 热电偶;250℃以下及负温测量一般用T型电偶,在低温时T型热电偶稳定而 且精度高。 2)使用环境气氛的选择。 S型、B型、K型热电偶适合于强的氧化和弱的还原气氛中使用,J型和T型热电偶适合于弱氧化和还原气氛,J型和T型热电偶适合于弱氧化和还原气氛,若使 用气密性比较好的保护管,对气氛的要求就不太严格。 3)选择耐久性及热响应性。 线径大的热电偶耐久性好,但响应较慢一些,对于热容量大的热电偶,响应就慢,测量梯度大的温度时,在温度控制的情况下,控温就差。要求响应时间快又要 求有一定的耐久性,选择铠装热电偶比较合适。 4)测量对象的性质和状态对热电偶的选择。 运动物体、振动物体、高压容器的测温要求机械强度高,有化学污染的气氛要求有保护管,有电气干扰的情况下要求绝缘比较高。 2、热电偶的安装 、介质温度的测量 测量介质温度的热电偶通常采用插入式安装方法,配保护套管和固定装置,保护套管直接与被测介质接触。 、基本安装形式 根据固定装置结构的不同,一般采用以下几种安装形式: 1)固定装置为固定螺纹的热电偶,可将其固定在有内螺纹的插座内,它们之间的垫 片作密封用。 2)固定装置采用活动紧固装置,如无固定装置的热电偶(需另外加工一套活动紧固 装置),其安装形式如图2所示。热电偶安装前缠绕石棉绳,由紧固座和紧固螺

非接触式红外测温仪的设计

非接触式红外测温仪的设计 摘要 利用温度测量技术是很常见的,而且在当前问题的检测设备类仍然是一个非常重要的技术。但在某些应用中,需要使用测量与被测物体接触式温度传感器,它需要一个非接触式温度测量来满足测量要求,本文是红外测温仪的设计的实际需要。 红外测温仪是利用黑体辐射定律为基础,是光学理论和微电子学综合发展的现象。与基本的测温方式相比,具有反应时段短、非触碰、不干扰被测温场、使用寿命长、操做简便等一系列优点。 本文阐述了红外测温仪的基本原理和显示方式,指出红外测温系统的中心控制单元以STC89C51单片机。具体列举了该系统的组成和制作方法,给出了硬件理论图和软件的设计流程图。该系统基本由光学系统、光电探测器、显示输出等部份构成。光学系统的红外辐射能量采集物体的红外能量收集在光电探测器转换成相应的电信号的视野。STC89C51单片机担当节制驱动温度量取、接受量取的数据、并按照单片机中的温度值统计算法算出目的温度值再经过LCD把温度显示出来。

关键词: STC89C51单片机;红外测温;LCD显示屏

ABSTRACT The use of temperature measurement technique is common, but in the current issue of the detection device class is still a very important technology. It requires the use of measurement and the object contact temperature sensor, This is the actual need infrared thermometer designed. Infrared thermometer is the use of blackbody radiation law, based on the phenomenon of optical theory and integrated development of microelectronics. Compared with the basic temperature measurement mode, with a short response time, non-touch, no interference is temperature field, long life, easy operation to do a series of advantages. This paper describes the basic principles and display infrared thermometer, noting that the center of the infrared temperature measurement system control unit STC89C51 microcontroller. accepted amount,and calculates the temperature in accordance with the purpose of single-chip temperature values through statistical algorithms and then the temperature LCD display. Keywords: STC89C51 microcontroller;infrared temperature measurement; LCD display

非接触温度计)

成绩评定: 传感器技术 课程设计 题目非接触温度计 院系电子工程学院

摘要 人体温度相对恒定是维持人体正常生命活动的重要条件之一,当体温高于41度或低于35度时将严重影响人体各系统的机能活动,甚至危害生命。很多疾病都可使体温正常调节机能发生障碍而使体温发生变化,如非典型肺炎的首要症状就是发烧。临床上对病人检查体温,观察其变化对诊断疾病或判断某些疾病的预防有重要意义。 在大型集会或各类活动中,由于参加人数众多,如果再入场时能对体温进行检测,则能有效控制各类传染病的交叉传播。非接触式体温计所需测温时间短,不需要与体肤接触,避免了病菌交叉感染,并且可以进行数据记录与判断,非常适合这种情况下使用。 当今世界,随着科学与技术的不断提高,各个领域对方便快捷的自动化的要求不断提高。而本文所研究的红外测温系统由于对被测物体的辐射进行的是非接触无损测量,测量过程中不会扰乱被测部分的温度场,响应快、温度分辨率高。温度测量主要有两种方法:一种是传统的接触式测量,另一种是以红外测温为代表的非接触式测量。传统的温度测量不仅反应速度慢,而且必须与被测物体接触。在人们的日常生活中,测量温度普遍使用水银温度计,反应比较慢,而且水银一旦泄露会产生污染并且有毒。红外测温以红外传感器为核心进行非接触式测量,克服了传统测温的不足,得到了广泛的应用。 自然界一切温度高于绝对零度的物体,都在不停地向外发出红外线。物体发出的红外线能量大小及其波长分布同它的表面温度有密切关系,物体的辐射能量与温度4次方成正比,其辐射能量密度与物体本身的温度关系符合普朗克定律。因此如果通过测量物体辐射出的红外能量的大小就能测定物体的表面温度。微小的温度变化会就会引起明显的辐射能量变化,因此利用红外辐射测量温度的灵敏度很高。 关键词:红外传感器单面机非接触温度计

接触式和非接触式温度传感器详细说明

接触式和非接触式温度传感器区别是什么?它们都有哪些共同点?产品型号表示方法和说明书哪里有下载?温度传感器选择重点考虑哪些方面?(1)被测对象的温度是否需记录、报警和自动控制,是否需要远距离测量和传送。 (2)测温范围的大小和精度要求。(3)测温元件大小是否适当。(4)在被测对象温度随时间变化的场合,测温元件的滞后能否适应测温要求。(5)被测对象的环境条件对测温元件是否有损害。(6)价格如保,使用是否方便。温度传感器的选择主要是根据测量范围,当测量范围预计在总量程之内,可选用铂电阻传感器。较窄的量程通常要求传感器必须具有相当高的基本电阻,以便获得足够大的电阻变化。热敏电阻所提供的足够大的电阻变化使得这些敏感元件非常适用于窄的测量范围。如果测量范围相当大时,热电偶更适用。最好将冰点也包括在此范围内,因为热电偶的分度表是以此温度为基准的。已知范围内的传感器线性也可作为选择传感器的附加条件。 接触式温度传感器详细说明:接触式温度传感器的检测部分与被测对象有良好的接触,又称温度计。温度计通过传导或对流达到热平衡,从而使温度计的示值能直接表示被测对象的温度。一般测量精度较高。在一定的测温范围内,温度计也可测量物体内部的温度分布。但对于运动体、小目标或热容量很小的对象则会产生较大的测量误差,常用的温度计有双金属温度计、玻璃液体温度计、压力式温度计、电阻温度计、热敏电阻和温差电偶等。它们广泛应用于工业、农业、商业等部门。 非接触式温度传感器详细说明:它的敏感元件与被测对象互不接触,又称非接触式测温仪表。这种仪表可用来测量运动物体、小目标和热容量小或温度变化迅速(瞬变)对象的表面温度,也可用于测量温度场的温度分布。最常

接触式测温仪DT-610B

CEM华盛昌接触式测温仪DT-610B DT-610B是一款3-1/2位显示便携式数字温度表,它使用外带的K型热电偶作为温度传感器,用来测量物体的温度,符合国际标准IEC584 温度/电压标准。每台仪表提供一个K型热电偶。 产品参数 测试量程:-50℃~1300℃/-58℉~2000℉/223K~2000K 分辨率:0.1℃/℉ 精确度: 环境操作温度在18~28℃时测量,不包括热电偶探头的误差 ±2℃------------------- -50℃~0℃ ±4℉------------------- -58℉~32℉ ±5K-------------------- 223K~273K ±(0.5%+1℃)-------- 0~1000℃ ±(0.8%+1℃)-------- 1000~1300℃ ±(0.5%+2℉)-------- 32~2000℉ ±(1.0%+2K)--------- 273K~2000K 温度系数:在从0℃~18℃和28℃~50℃时精确度可达到0.1℃ 输入保护:在两个输入柱上最大输入直流60V或交流24V 读数速率:2.5次/秒 输入热电偶探头:标准K型热电偶探头 显示:3-1/2位数字的LCD液晶显示屏,最高读数为1999 电池:标准9V电池(NEDA 1604, IEC 6F22) 探针:K型温度探头(热电偶),最大绝缘温度为260℃(500℉),从0℃~400℃探头精确度为±2.2℃或读数(较大者)±0.75% 接触式测温仪DT-610B应用:本数字式温度计可广泛应用于实验室、制作产业、电路板等不同领域高精度温度测量。尺寸:162*76*38.5mm 重量:210g 上海同倍检测科技有限公司

非接触式电子体温计说明书

178(RC001)型非接触式电子体温计 专用于人体测温.抗击流感专业非接触体温检测仪. 适用于:甲型H1N1流感患者排查。 精确:测量偏差±0.2度。测量时间0.5秒钟。 高温报警:可自由设定报警温度。 存储数据:可存储32个测量数据,便于分析对比。可进行温度修正. 医疗器械生产许可证号:食药监械生产许可证20081646号。 一、新版测温仪产品参数: 精确:测量偏差≤±0.2度。(采用进口红外线探测系统) 快速:测量时间<0.5秒钟。 易用:一键测量,操作方便。 非接触:对人体额头测量,不接触人体皮肤。 长寿命:装2节5号电池,可使用超过10万次,产品使用寿命>300万次。 测量距离:在5~15CM之内都可以适应,无需固定测量距离。 大屏显示:大屏幕液晶显示,白色背光,任何光线下都可以清晰显示。 温度报警:自由设定报警温度。 存储数据:存储32个测量数据,便于分析参考对比。 设置修改:可以修改设置参数,以适应不同肤色的人种(白人、黑人、黄色人种等) 单位转换:使用摄氏度、华氏度可相互转换。 产品用途:

人体体温测量:准确的测量人体体温,替代传统的水银体温计。 皮肤温度测量:测量人体皮肤表面温度,比如可用于断肢再植手术时需要测量皮肤的表面温度。 物体温度测量:测量物体的表面温度,比如可用于茶杯外表的温度的测量。 液体温度量:测量液体的温度,如婴儿洗澡水的温度、奶瓶内牛奶温度等。 技术性能: 1.正常使用条件温度:环境温度:10℃-40℃ 2.电源:DC3V(2粒AA电池) 3.尺寸:196×150×50㎜(长×宽×高) 4.重量:220g 5.测量范围:体温模式:32℃--42.9℃ 表面模式:0℃~60℃ 6.精度:0.2℃ 7.功率:≤50Mw 8.测量距离:5CM-15CM 9.自动关机:5秒 二、图片展示: 三、使用方法: 注意事项: - 遵循此说明书中的保养建议 - 此产品适合于专业用途或是家庭用途 - 产品使用的环境温度一定是在10~40℃. - 产品必须保持干净以及放在干燥的地方. - 请勿将额温枪放在有电击的地方. - 请勿将额温枪放置在极端的温度环境:高于50℃或低于-20℃.

常用温度测量仪表分类

常用温度测量仪表分类文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

温度测量仪表的分类 温度测量仪表按测温方式可分为接触式和非接触式两大类。通常来说接触式测温仪表比较简单、可靠,测量精度较高;但受耐高温材料的限制,不能应用于很高的温度测量。非接触式仪表测温是通过热辐射原理来测量温度的,测温元件不需与被测介质接触,测温范围广,不受测温上限的限制,也不会破坏被测物体的温度场,反应速度一般也比较快;但受到物体的发射率、测量距离、烟尘和水气等外界因素的影响,其测量误差较大。 按工作原理分为膨胀式、电阻式、热电式,辐射式。 玻璃管温度计是根据液体热膨胀原理测温,双金属温度计是根据固体热膨胀原理测温,热电阻根据热阻效应原理测温,热电偶根据热电效应原理测温,辐射高温计根据热辐射原理测温。 一、热电偶 热电偶是工业上最常用的温度检测元件之一。其优点是: ①测量精度高、热惯性小。因热电偶直接与被测对象接触,不受中间介质的影响。 ②测量范围广。常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。 ③构造简单,使用方便。 ④输出信号为电信号,便于远传。 1.热电偶测温基本原理

将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,当导体A 和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个电流,这种现象称为热电效应。热电偶就是利用这一效应来工S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。 工业用热电偶的测温范围见下表: 在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃,B偶不用补偿导线,用普通的屏蔽线。 2、热电偶的结构 一般由热电极、绝缘套管、保护管、接线盒组成。普通型热电偶按其安装时的固定形式可分为固定螺纹连接、固定法兰连接、活动法兰连接无固定装置等多种形式。 热电极:一般金属Φ~,昂贵金属Φ~,长度与被测物质有关,一般为 300~2000mm,通常在350mm左右; 绝缘管:隔离热电偶与被测物,一般在室温下要5MΩ左右; 保护套管:避免受被测介质的化学腐蚀和机械损伤; 接线盒:固定接线座,连接补偿导线。 3、非标准型热电偶 ①铠装热电偶 铠装热电偶将热电偶丝用无机物绝缘及金属套管封装,压实成可挠的坚实组合体,惯性小,挠性、机械强度及耐压性能好,结构坚实可耐强烈的振动和冲击,可用于快速测温或热熔量很小的物体的测温部位,还可用于高压设备测温。 ②钨铼系热电偶

相关文档
最新文档