聚氨酸泡沫塑料基本知识

聚氨酸泡沫塑料基本知识
聚氨酸泡沫塑料基本知识

聚氨酸泡沫塑料基本知识

第一节概述

一、聚氨酯是聚氨基甲酸酯的简称。凡是在高分子链上含有许多重复的氨基甲

酸酯基团的高分子化合物,通称为聚氨基甲酸酯。常用符号:PU。

二、聚氨酯一般由异氰酸酯与多元醇化合物(主要是聚醚多元醇和聚酯多元

醇)相互作用而制得。聚氨酯类聚合物可以分别制成塑料、橡胶、纤维、涂料、粘合剂、人造革等。

三、聚氨酯泡沫具有优良的物理机械性能、声学性能、电学性能、耐化学性能,

尤其是硬质泡沫塑料的导热系数特别低,是一种优质的绝热保温、保冷材料。

四、聚氨酯泡沫塑料的密度大小及软硬程度可以随着原料及配方的不同而改

变,且施工方便,是其它塑料品种无法相比的。到目前为止,除聚烯烃、聚氯乙烯,酚醛、氨基塑料等大吨位的塑料品种外,在某些工业发达国家,聚氨酯泡沫塑料的产量已上升到第六、七位。

第二节聚氨酯硬质泡沫塑料的形成过程

计量和混合

把适当数量和规定料比的两组份配在一起并加以混合。料比是一个计算值,不允许随意变动,尤其不允许增大白料的比例。充分混合是最基本的要求,混匀后才能得到颜色浅、泡孔匀细、性能优的泡沫。混合不匀,再好的原料也得不到合格的泡沫。

乳白时间

聚醚多元醇组份(A料)和异氰酸酯组份(B料)经搅拌后,经过一段诱导期,发泡气体开始形成并扩大成细小的气泡,使发泡混合料表面出现乳白现象。从开始混合到出现乳白现象这一段时间叫做“乳白时间”,乳白时间是发泡料体积膨胀的起点。乳白时间受原料温度、环境温度和空气流动等因素的影响很大,不同的检测人员,所测数据也可能不一样。

凝胶时间(纤维时间、拉丝时间)

乳白时间过后,随着发泡气体的增多,发泡料体积开始膨胀。体系中因发生聚合反应粘度不断增大。在整个发泡过程中,气泡数目保持不变,但气泡体积逐渐增大。当可从发泡体系中探出纤维丝时,我们称之为凝胶时间,或纤维时间、拉丝时间。凝胶时间过后,尽管发泡体系的体积仍在膨胀,但泡孔结构沿着上升方向拉长,这种泡沫强度低,性能劣化,这种泡沫没有利用价值。

不粘时间

当A、B料混合开始至轻触泡沫表面不粘手为止的时间,为不粘时间。不粘时间基本上意味着,发泡体系体积膨胀的终止,但泡沫体系的反应并未终止。固化时间

不粘时间过后,泡沫内部仍在继续进行各种复杂的交链反应,使泡沫性能慢慢达到最终强度,当泡沫达到可开模的强度所经过的时间段,称为脱模时间。

第三节基本概念

自由泡密度、模塑泡密度、整体密度

自由泡密度发泡料在空气中除大气压外不受其他外力作用下自由发泡后芯部密度,模塑泡密度是指模塑泡沫的芯部密度,而整体密度是指整块泡沫的平均密度。因为密度梯度的存在,自由泡整体密度远大于自由泡密度,模塑泡整体密度也大于模塑泡密度。它们的差值,与温度和模具的散热快慢有关,环境温度、模具温度、原料温度越低,模具散热效果越好,差值越大。反之越小。

流动性

流动性包括发泡液的流平性和泡沫的流动性两层含义。流平性是指发泡料在发泡以前的流动性能,以发泡液在乳白时间之内所流动的最大距离来衡量。泡沫的流动性以单位重量泡沫的最大爬升高度来表示。

A、流平性

有人认为,在乳白时间之内,发泡液应均匀的铺平在待发泡空间的底面上。实际要求并不那么严格,因为发泡料在乳白时间之后和凝胶时间之前,仍具有较强的流动性,可补充流平性的不足。在发泡料本身而言,发泡料的粘度和乳白时间对流平性影响较大。

B、泡沫的流动性

泡沫的理想性质应该是:能够充满整个空间,泡沫密度分布均匀,泡孔细密,泡沫物性处处相同。因此,泡沫流动性又可以用泡沫物性(通常以密度)分布系数来衡量。在生产中,泡沫必须能达到下列条件,才可以具有良好的流动性:1、欲填充空间在凝胶时间之前完全填满,凝胶时间之后,虽然泡沫体积仍在

继续膨胀,但这种泡沫物理机械性能很差。一般来说,凝胶时间的90%被

认为是流动时间的上限。

2、泡沫体局部密度增高的现象尽可能少些。

第三节高压机械发泡与手工发泡的比较

了解制品泡沫性能好坏最直观的办法是用透明模具发泡,成型后破坏制品。然后,分成若干测试点,测定性能。然而,这种办法代价昂贵,只适用于新产品开发。在新配方开发、上机试验阶段,如何由手工自由发泡最有效地过渡到高压机械发泡,这是个现实问题,有条件的话,应充分利用流动性、脱模性等试验装置。若无条件,就应注意比较高压机械发泡与手工发泡反应特性的差异。

手工自由发泡,将A、B料的温度控制在20度左右,在塑料烧杯中,以1500-3000转/分钟的转速的搅拌机,搅拌7-8秒后把料倒入敞口容器中自由发泡。

高压发泡时,贮罐内原料温度控制在20度左右,模具40-45度左右。原料经过高压(压力为14-16MPA)撞击式混合后,注入敞口容器,注射时间为零点几秒至1秒钟。发现同一原料,手工发泡与高压机械发泡反应特性有明显差异。高压机械发泡比手工发泡反应速度明显增快,反应时间明显缩短。乳白时间缩短

时,反应速度要相应减低。其主要原因在于:高压发泡机仪表上所指示料温实际

上进混合头前的温度,物料输入混合头,经高压撞击式混合,动能转化为热能。经计算料温可上升7度。另外混合效果远远超过手工发泡中桨式搅拌的效果。物料分子间的混合分散得好,则大大加快了反应进程。

无氟发泡常见问题及解决方案

美国、日本为代表HCFC-141b。

欧洲为代表环戊烷。

综合性能比不上CFC-11。因此会遇到一些问题。

一、流动性:

对发泡料而言,影响流动性的因素有两个:一是乳白时间,一是料液粘度。显然乳白时间越长,料液粘度越低,流平性越好。反之亦然。

但乳白时间太长,往往会导致泡也粗大,导热系数升高,直接影响制品的保温隔热效果,而粘度过低,发泡料容易溢泄,不仅造成浪费,还给后道工序——外观清理造成麻烦。如果发泡液需流经较长的距离(1。5米以上),除了降低料液粘度、延长乳白时间外,也可采取其它措施来改善流平性。如在高压注射枪的出口外接分散器,高压强制料液分散均匀,或者以双枪同进注射,达到流动距离减半之目的。另外,注料后,用气压、油压、行吊等方法使笨重的模具转动或倾斜一定的角度,重力迫使发泡液流往在水平状态下不易流到的角落。

二、泡沫流动性

泡沫的理想性质应该是:能够充满整个空间,泡沫密度分布均匀,泡孔均匀、细密,泡沫物性处处相同。因此,泡沫流动性又可以用泡沫物性(通常以密度)分布系数来衡量。在冰箱生产中,泡沫必须能达到下列条件,才可以认为是流动性良好。

1、欲填充空间在凝胶时间之前完全填满,一般来说拉丝时间的90%被认为是

流动时间的上限。

2、泡沫局部密度增高的现象尽可能少些。

泡沫流动性主要由泡沫所用原料和助剂决定,其中发泡剂的种类影响较大。HCFC-141b和环戊烷的液化温度(即沸点)较高,(常温下CFC-11为23。8度,HCFC-141b为32度,环戊烷为49。2度),在受压状态下液化点更高。因此,在泡沫与待填充空间的交界面上(如冰箱外皮或内胆与泡沫的粘合面),由于散热快,温度较芯部低得多,加上过量填充形成的压力,容易形成一层不发泡或微发泡的硬皮,以至密度分布很不均匀,即泡沫流动性差。为避免该问题的发生,应将冰箱壳体温度和模具温度控制在40±5℃。(本人理解:因为沸点高,因此需要较高的温度来确保。因此,如果散热快,沸点高而受影响更大,发泡效果差)。

三、反应性能自由泡密度

发泡料的反应性能是指特定的温度下的乳白时间、拉丝时间、脱粘时间以及固化时间。自由泡密度是指在空气中发泡料自由发泡(除了大气压不受其他外压)后芯泡密度。箱体容积较小时,应尽量提高泡沫的反应性能,这样有利于得到泡孔细密、导热系数低的泡沫。而当箱体容积较大时,需相应地减缓反应性能,延长料液的流动时间,使泡沫平缓上升,毫无遗漏地填满需填充的空腔。自由泡密度d与模塑泡的芯密度D有关。当D减小,d也应随之减小,反之亦然。

但模塑泡的D值应是一定的,如CFC-11型泡沫为30-32kg/㎡,根据经验,自由泡的密度为23-25 kg/㎡,否则箱体会出现填充不满的现象。而141b和环戊烷型泡沫的D应在35-37kg/㎡,即较CFC-11型泡沫高15%左右,d值一般为24-26 kg/㎡,如果无氟自由泡密度降到24 kg/㎡以下,为了保证D的最小值35

kg/㎡,势必要增加泡沫过填充率,造成发泡压力过大。当箱体密封不严时,溢料现象较为严重。而当d大于26 kg/㎡时,为了保证箱体填充完整,势必要增加泡沫填充量,这时D值可能早已超过37kg/㎡,造成发泡料的浪费。

有些发泡料供应商,为了提高市场竟争力,宣称可生产低密度的141b和环戊烷泡沫(D31-33 kg/㎡),为用户降低泡沫成本,这是没有科学依据的。即使该泡沫的初期物性可达到有关要求,也不能保证长期的稳定性。随着时间的推移,泡孔内的141b或环戊烷由气相慢慢渗入聚氨酯树脂,产生增塑和溶胀效应,造成泡沫的抗压强度下降,泡沫在使用过程中轻则收缩、开裂,重则导致冰箱变形,失去应有的保温性能。

常见问题及其解决方法:

一、填充不满:

1、气泡:将发泡料注入箱体时,因注料方式不合理,体积不断膨胀的泡

沫不是沿着设定的方向流动而是从四面八方挤往一处(如箱体侧面某

部位),而该处无出气孔,被包裹的气体无路可逃,形成气泡;或者

因泡沫在流动方向上遇到体积较大的障碍物,泡沫粘度大,不能很好

地绕过去,在障碍物的后面形成气泡。

检验:用手感觉一下气泡周围的泡沫强度,或测量一下泡沫密度,如果强度与密度与正常无异,则可以确定是气泡所造成。

解决方法:排除障碍物,障碍物往往是人为放进去的垫块,可以通过挪动垫块位置或一分为二等方法减少发泡料的流动阻力;在容易形成气泡的位置,加工一个或若干个出气孔;重新设计注料口位置,有时注料倾斜一定角度也可以。

2、缺料:注入的发泡液偏少,造成空间缺少泡沫,或泡沫末端发软的现

象,这里统称为缺料。

检验:缺料部位的泡沫强度较低,类似于自由泡,泡孔明显拉长,甚至呈纤维状,这是其显著特征,这种泡沫冷冻后严重收缩,甚至开裂。

原因分析:除了操作工误操作外,最常见的原因莫过于温度过低。我国有部分冰箱冰柜厂,工艺条件简陋,生产线上没有加热设施,或者虽设有加热设施,但为了节省能源,降低成本,人为地关闭加热设施。早晨是一天中温度较低的时候,发泡料的发泡率较低,如果发泡料按正常量注入,发生缺料的可能性很大。有经验的操作人员,往往按正常量的110%注入(甚至更高,视实际温度根据经验增加),以确保箱体泡沫质量,待模具温度升至正常温度之后,再恢复到正常量。当然,确保温度是最根本的保证。另外,温度(特别是料温)过高,也有可能造成缺料。料温高,发泡料在反应过程中粘度增长过快,流动困难,导致泡沫最后才能流到的空间缺料。

检验:发泡机温度控制系统工作是否正常。

原料温度是否超标,聚醚与异氰酸酯的温度一般控制在20±1℃。

是否使用了过期的发泡料,如现为夏天,是否使用了冬天的发泡料。

因为冬天的发泡料是根据冬天的气温设计配方的,夏天使用时反应速度过快。

二、溢料

在发泡过程中,发泡料从出气孔或其他结合下缝隙中溢出的现象称为溢料。溢料与箱体上缝隙的密封程度和发泡料本身有关。通常,结合处以海绵双面胶带进行密封,这样,既可保证透气性,又能阻止发泡料的溢出。但由于机械加工精

度不够高,造成结合处缝隙宽度大于海绵胶带的厚度,这时发生溢料是在情理之中的事。

发泡料本身的问题也可造成溢料,如乳白时间过长,粘度很低,以至发泡料如同水一样无孔不漏。另外,由于过填充率增大,发泡压力升高,导致发泡料被迫泄漏。前者可通过升高料温,加快发泡料反应速度来解决。后者,可通过降低注射量来排除。

三、脱壳:

箱体脱模后,泡沫与冰箱外壳或内胆分离的现象称为脱壳,也称其为“分层”、“离泡”等。

原因分析:

1、室温或模温较低

聚氨酯硬泡与其他材料(如极性有机材料和无机材料)的粘结力很强。但发泡料中通常加入水(无氟发泡料中中水量更大)作化学发泡剂。水与发泡料中的主要成分—异氰酸酯发生化学反应,在逸出二氧化碳气体的同时,生成脆性较大的取代脲,取代脲容易在温度较低的泡沫表面或泡沫与钢板的结合面上富集。脆性物质使粘结力大打折扣,甚至下降到零。但当模温或室温较高时,脆性的取代脲进一步与过量的异氰酸酯反应,生成无脆性的缩二脲,泡沫的粘结力得到恢复,因此发泡间室温应保证在15℃以上,模温控制在40℃左右。

检验方法:解剖箱体后,仔细观察脱壳处的钢板或ABS板表面,如果表面附着一层薄薄的残余泡沫,则可断定脱壳是温度低造成的。

2、面材被污染

当内胆(ABS板/铝板)或外壳(钢板)的表面被污染,如表面附着一层灰尘或油污,泡沫不能直接粘结面材,当然会发生“脱壳”现象。灰尘污染很直观,油污通常是微米级的一层,肉眼不易发现,但它实实在在地起到了脱模剂的作用。

检验方法:解剖箱体,仔细观察脱壳处内胆或外皮,若表面非常光滑,则基本可断定为油污作怪。如果经肥皂水清洗干净后,粘结力得到明显改善,则进一步断定罪魁祸首非油污莫属。

3、泡沫填充不足时,也易发生脱壳,这主要是因为密度低,冷冻后收缩造

成的。

四、鼓胀:

脱模后箱体内表面发生膨胀的现象,称为鼓胀。鼓胀主要是因为泡沫固化慢,脱模后仍在继续膨胀而造成,聚氨酯行业称之为“二次发泡”。这种现象在环戊烷发泡中经常遇到。发泡料供应商在发泡料中添加一种对泡沫固化起到强烈促进作用的催化剂,使泡沫固化与脱模达到同步,避免“鼓胀”的发生。当然泡沫生产商,可通过延长脱模时间来解决此问题,但这是以牺牲劳动生产率,增加泡沫生产成本为前提的。另我,用料过量太多也会造成固化慢。过填充率越高,脱模时间越长。

五、泡沫收缩开裂:

自由泡冷冻后收缩,并不说明什么问题。泡沫在冷冻后,封闭泡孔中的气体(如HCFC-141b、环戊烷等),从气态冷凝成液态,泡孔内形成一定的负压。温度越低,负压越大。自由泡密度太小(22-26 kg/㎡),没有足够的强度来抵抗负压,产生一定的收缩,自在情理之中,这就是不填充自由泡的原因。所以,不应

该将自由泡的冷冻收缩率作为一项指标来要求。这里讲的泡沫指的是箱体泡沫,它是在一定的压力下成型的,也称模塑泡沫,密度比较大。环戊烷或141b型泡沫密度都在35 kg/㎡以上,低温下(-30℃左右)收缩率应小于1%,具有足够的尺寸稳定性来抵抗这个负压。有时密度虽然在35 kg/㎡以上,冷冻后仍然出现收缩,甚至脱落、开裂(硬质泡沫粘结在外皮和内胆之间,泡沫轻微收缩时,内胆或外皮会凹陷,严重收缩时,泡沫脱落,开裂)。造成该问题的原因有:

1、泡沫流动性差,导致局部泡沫密度偏低,泡孔拉长,物理机械性能恶化。

2、发泡料重量比失调,一般高氟料的A、B组分重量比为1:1.05-1.10,

HCFC-141b、环戊烷发泡料为1:1.20-1.30,具体数据应由供应商提供,当聚醚组分(A)过量时(泡沫颜色发白),泡沫强度迅速下降,冷冻后容易收缩,这时应立即核对料比,检查A\B组份的管道过滤器是否堵塞。

3、发泡料混合不匀,轻则泡沫颜色变深,泡孔粗大,重则泡沫颜色不匀,出现

不规则的花斑或花纹。这是因为局部A料过量,局部B料过量造成的。此时应立即检查混合头工作是否正常,压力指示是否稳定。

4、机器是否漏油。矿物油类均为弱极性或非极性物质,一旦混入发泡体系中,

起到消泡作用,这种泡沫颜色深,泡孔粗,容易开裂。

全水发泡体系的聚氨脂泡沫塑料

全水发泡聚氨酯泡沫塑料综述 朱吕民 (南京四寰合成材料研究所江苏南京210013) 摘要:首先对CFC替代技术的现状进行了简要的介绍,从全水发泡软质聚氨酯泡沫塑料(包括负压发泡技术、强制冷却技术和液态CO2发泡技术)、全水发泡聚氨酯自结皮泡沫、高水量低密度高回弹聚氨酯泡沫塑料和全水发泡硬质聚氨酯泡沫塑料这几个方面详细论述了全水发泡的工艺特点,并列举了几个实例。 关键词:全水发泡;聚氨酯;泡沫塑料;CFC替代 1 前言 聚氨酯泡沫塑料是聚氨酯合成材料中占主要地位的大品种。2002年全球聚氨酯产量为860万吨;国内聚氨酯合成材料总计100多万吨,其中泡沫塑料占50%左右,以2000年统计,软质泡沫塑料约26万吨占泡沫塑料的60%,硬质泡沫塑料约18万吨占泡沫总量的40%。所以说,聚氨酯泡沫塑料是消耗CFC 和HCFC系列发泡剂的大户。 众所周知,CFC系列产品对大气臭氧层具破坏作用,形成温室效应,使全球气温回暖、皮肤癌患者增多,所以保护人类赖以生存的臭氧层已刻不容缓。 1991年我国参与了国际蒙特利尔公约,限制及禁止使用CFC-11成为我国一项政策性措施。计划到2005年,CFC-11消费减少50%,2008年削减85%,2010年实现CFC-11零消费。2001年12月我国又获蒙特利尔多边基金赠款,作为泡沫行业ODS整体淘汰计划的费用,确保2010年以前全面淘汰CFC。这是一个利好消息,将促进我国PU工业的发展,并能达到与国外先进水平接轨。 PUF用CFC-11的替代品或发泡体系新技术的开发,已成为当今世界聚氨酯工业界进行技术创新的主潮流。 归纳起来有如下几个开发研究领域: 1)HFC系列化学品的开发研究 可用于PU泡沫塑料发泡剂的HFC产品物性见表1。其中被人们看好的是HFC-245fa(1,1,1,3,5-五氟丙烷),HFC-365mfc(1,1,1,3,3-五氟丁烷)及HFC-356(1,1,1,4,4,4-六氟丁烷)三个品种。 表1 可用于PU泡沫塑料发泡剂的HFC产品物性 HFC-152a HFC-134a HFC-365mfc HFC-245fa HFC-356 分子式CH3CHF3 CH2FCF3 CH3CF2CH2CF 3 CF3CH2CHF CF3(CH2)2CF 3 相对分子质量66.05 102.0 148 134 166 沸点/℃-24.7 -26.5 40.2 15.2 24.6 20℃蒸汽压/Pa 5.15 5.72 0.47 1.24 84.1 λ(25℃) /mW·(m·K)-114.3 13.7 10.6 12.2 9.5(20℃) 爆炸极限(V/V)/% 3.8~21.8 无 3.5~9 无无 GWP(CO2=1) 140 1300 840 820 530 大气层中寿命 1.5年14天10.8年7.4年154天 HFC化合物的ODP值为零,GWP值比CFC-11的小得多,且不燃、低毒,在PUF中有较低的气体扩散速度,确保了聚氨酯泡沫塑料的导热系数λ值耐老化性好。但是其成本高,目前靠进口,业界人士难以接受。

聚氨酯发泡工艺简介

聚氨酯发泡工艺简介 聚氨酯硬泡生产工艺硬泡成型工艺聚氨酯硬泡的基本生产方法聚氨酯硬泡一般为室温发泡,成型工艺比较简单。按施工机械化程度可分为手工发泡和机械发泡。根据发泡时的压力,可分为高压发泡和低压发泡。按成型方式可分为浇注发泡和喷涂发泡。浇注发泡按具体应用领域、制品形状又可分为块状发泡、模塑发泡、保温壳体浇注等。根据发泡体系可发为HCFC 发泡体系、戊烷发泡体系和水发泡体系等,不同的发泡体系对设备的要求不一样。按是否连续化生产可分为间歇法和连续法。间歇法适合于小批量生产。连续法适合于大规模生产,采用流水线生产方法,效率高。按操作步骤中是否需预聚可分为一步法和预聚法(或半预聚法)。1.手工发泡及机械发泡在不具备发泡机、模具数量少和泡沫制品的需要量不大时可采用手工浇注的方法成型。手工发泡劳动生产率低,原料利用率低,有不少原料粘附在容器壁上。成品率也较低。开发新配方,以及生产之前对原料体系进行例行检测和配方调试,一般需先在实验室进行小试,即进行手工发泡试验。在生产中,这种方法只适用于小规模现场临时施工、生产少量不定型产品或制作一些泡沫塑料样品。手工发泡大致分几步:(1) 确定配方,计算制品的体积,根据密度计算用料量,根据制品总用料量一般要求过量5%~15%。(2) 清理模具、涂脱模剂、模

具预热。(3) 称料,搅拌混合,浇注,熟化,脱模。手工浇注的混合步骤为:将各种原料精确称量后,将多元醇及助剂预混合,多元醇预混物及多异氰酸酯分别置于不同的容器中,然后将这些原料混合均匀,立即注入模具或需要充填泡沫塑料的空间中去,经化学反应并发泡后即得到泡沫塑料。在我国,一些中小型工厂中手工发泡仍占有重要的地位。手工浇注也是机械浇注的基础。但在批量大、模具多的情况下手工浇注是不合适的。批量生产、规模化施工,一般采用发泡机机械化操作,效率高。2.一步法及预聚法目前,硬质聚氨酯泡沫塑料都是用一步法生产的,也就是各种原料进行混合后发泡成型。为了生产的方便,目前不少厂家把聚醚多元醇或(及)其它多元醇、催化剂、泡沫稳定剂、发泡剂等原料预混在一起,称之为“ 白料”,使用时与粗MDI(俗称“ 黑料” )以双组分形式混合发泡,仍属于“ 一步法”,因为在混合发泡之前没有发生化学反应。早期的聚氨酯硬泡采用预聚法生产。这是因为当时所用的多异氰酸酯原料为TDI-80。由于TDI 粘度小,与多元醇的粘度不匹配;TDI 在高温下挥发性大;且与多元醇、水等反应放热量大,若用一步法生产操作困难,故当时多用预聚法。若把全部TDI 和多元醇反应,制得的端异氰酸酯基预聚体粘度很高,使用不便。硬泡生产中所指的预聚法实际上是“ 半预聚法”。即首先TDI与部分多元醇反应,制成的预聚体中

个聚氨酯基本概念

读懂70个聚氨酯基本概念 1、羟值:1克聚合物多元醇所含的羟基(-OH)量相当于KOH的毫克数,单位mgKOH/g。 2、当量:一个官能团所占的平均分子量。 3、异氰酸根含量:分子中异氰酸根的含量 4、异氰酸酯指数:表示聚氨酯配方中异氰酸酯过量的程度,通常用字母R表示。 5、扩链剂:是指能使分子链延伸、扩展或形成空间网状交联的低分子量醇类、胺类化合物。 6、硬段:聚氨酯分子主链上由异氰酸酯、扩链剂、交联剂反应所形成的链段,这些基团内聚能较大、空间体积较大、刚性较大 7、软段:碳碳主链聚合物多元醇,柔顺性较好,在聚氨酯主链中为柔性链段。 8、一步法:指将低聚物多元醇、二异氰酸酯、扩链剂和催化剂等同时混合后直接注入模具中,在一定温度下固化成型的方法。 9、预聚物法:首先将低聚物多元醇与二异氰酸酯进行预聚反应,生成端NCO基的聚氨酯预聚物,浇注时再将预聚物与扩链剂反应,制备聚氨酯弹性体的方法,称之为预聚物法。10、半预聚物法:半预聚物法与预聚物法的区别是将部分聚酯多元醇或聚醚多元醇跟扩链剂、催化剂等以混合物的形式添加到预聚物中。 11、反应注射成型:又称反应注塑模制RIM(Reaction Injection Moulding),是由分子量不大的齐聚物以液态形式进行计量,瞬间混合的同时注入模具,而在模腔中迅速反应,材料分子量急骤增加,以极快的速度生成含有新的特性基团结构的全新聚合物的工艺。 12、发泡指数:即把相当于在100份聚醚中使用的水的份数定义为发泡指数(IF)。 13、发泡反应:一般是指有水与异氰酸酯反应生成取代脲,并放出CO2的反应。 14、凝胶反应:一般即指氨基甲酸酯的形成反应。 15、凝胶时间:在一定条件下,液态物质形成凝胶所需的时间。 16、乳白时间:在I区即将结束时,在液相聚氨酯混合物料中即出现乳白现象。该时间在聚氨酯泡沫体生成中称为乳白时间(cream time)。 17、扩链系数:是指扩链剂组分(包括混合扩链剂)中氨基、羟基的量(单位:mo1)与预聚体中NCO的量的比值,也就是活性氢基团与NCO的摩尔数(当量数)比值。 18、低不饱和度聚醚:主要针对PTMG开发,PPG的价格,不饱和度降低到0.05mol/kg,接近PTMG的性能,采用DMC催化剂,主要品种Bayer公司Acclaim系列产品。 19、氨酯级溶剂:生产聚氨酯选用溶剂要考虑溶解力、挥发速度,但生产聚氨酯所用的溶剂,应着重考虑到聚氨酯中重NC0基。不能选用与NCO基起反应的醇、醚醇娄等溶剂。溶剂中还不能含水、醇等杂质,不能含有碱类物质,这些都会使聚氨酯变质。酯类溶剂不允许含有水分,也不得含有游离酸和醇,它会与NCO基反应。聚氨酯所用的酯类溶剂,应采用纯度高的“氨酯级溶剂”。即将溶剂与过量异氰酸酯反应,再用二丁胺测定未反应的异氰酸酯量,检验其是否合用。原则是消耗异氰酸酯多者不适用,因为它表明了酯中所含水、醇、酸三者会消耗异氰酸酯的总值,如果以消耗leqNCO基所需要溶剂的克数表示,数值大者稳定性好。异氰酸酯当量低于2500以下的不用作聚氨酯溶剂。溶剂的极性对生成树脂的反应影响很大。极性越大,反应越慢,如甲苯与甲乙酮相差24倍,此溶剂分子极性大,能与醇的羟基形成氢键而使反应缓慢。聚氯酯溶剂选用芳烃溶剂较好,它们的反应速度比酯类、酮类快,如二甲苯。在双纽分聚氨酯施工时,用酯类和酮类溶剂可延长其使用期.在生产涂料时,选片前面提到的“氨酯级溶剂”,对贮存的稳定件有利。酯类溶剂溶解力强,挥发速度适中,低毒而使用较多,环己酮也多使用,烃类溶剂固溶解能力低,较少单独使用,多与其他溶剂并用。 20、物理发泡剂:物理发泡剂就是泡沫细孔是通过某一种物质的物理形态的变化,即通过压缩气体的膨胀、液体的挥发或固体的溶解而形成的。 21、化学发泡剂:化学发泡剂是那些经加热分解后能释放出二氧化碳和氮气等气体,并在聚

聚氨酯硬泡沫配方及计算

聚氨酯硬泡配方及计算方法 一、硬泡组合料里最需要计算的东西是黑白料比例(重量比)是不是合理,另一个正规的说法好像叫“异氰酸指数”是否合理,翻译成土话就是“按重量比例混合的白料和黑料要完全反应完”。因此,白料里所有参与跟-NCO反应的东西都应该考虑在内。理论各组分消耗的-NCO 摩尔量计算如下 ㈠主料:聚醚、聚酯、硅油(普通硬泡硅油都有羟值,因为加了二甘醇之类的稀释,部分泡沫稳定剂型硅油还含有氨基)配方数乘以各自的羟值,然后相加得数Q,S1 = Q÷56100 ㈡水:水的配方量W S2 = W÷9 ㈢参与消耗-NCO的小分子物:配方量为K,其分子量为M,官能度为N S3 =K× N/M(用了两种以上小分子的需要各自计算再相加) S = S1+S2+S3 基础配方所需粗MDI份量[(S×42)÷0.30 ] ×1.05 (所谓异氰酸指数1.05) 其实以上计算只是一个最基本的消耗量,由于黑白料反应过程复杂,实际-NCO消耗量肯定不止这个数,比如有三聚催化剂的情况,到底额外消耗了多少-NCO,这个没人说得清楚。另外,聚醚里有水分,偏高0.1%就很严重;聚醚羟值也是看人家宣传单的,我见过有聚醚羟值范围跨度90mgKOH/g,那个计算数出来后只能参考,不能认真! [试验设计]之“冰箱、冷柜”类 本组合料体系重要要求及说明 1、流动性要好,密度分布“尽量”均匀。首先要考虑粘度,只有体系粘度小了,初期流动性才会好(主份平均粘度6000mPa.S以下,组合料350mPa.S以下),其次体系中的钾、钠杂离子要控制在一个低限(20ppm以内),从而可控制避免三聚反应提前,即:体系粘度过早变大。如果流动性欠佳,发泡料行进至注料口远端就会出现拉丝痕致使泡孔结构橄榄球化,这个位置一定抗不住低温收缩。 2、泡孔细密,导热系数要低。不难理解泡孔细密是导热系数低的第一前提,此时首先考虑加有403或某些芳香胺醚进入体系(它们所起的作用是首先与-NCO反应,其生成物与其它组份互溶、乳化稳定性提升,并保证发泡体系初期成核稳定,也就是避免迸泡,从而使泡孔细密)其次聚醚本身单独发泡其泡孔结构要好(例如以山梨醇为起始的635SA比蔗糖为起始的1050泡孔要细密均匀得多,还有含有甘油为起始剂的835比1050细密,即便是所谓的4110牌号的聚醚,含丙二醇起始的比二甘醇的好。聚醚生产的聚合催化剂不同,所生产出的聚醚性状也有差异:氢氧化钾催化的聚醚分子量分布比二甲胺催化的要窄。另外:聚醚生产时的工艺控制-----温控、抽真空、PO--也就是环氧丙烷流量控制、PO原料质量、后处理等等-----也都会直接影响聚醚发泡的泡孔结构)第三,可以考虑加入一些可以改善泡孔细密度的聚酯成份。第四,适当加入低粘度物调整总体粘度(如210聚醚) 3、耐低温抗收缩性要好。这个无须赘言。一是官能度,总体平均要4以上。其次是发泡体成型后空间交联点分布均匀(直观解释是:主聚醚反应活性尽量相差不大,连续的近似的空间结构要稳定得多。) 4、粘结性好。所谓粘结性表面上是指泡沫体与冰箱、冷柜外壳和内胆之间的粘合,其实是指泡体柔韧性,以及抗收缩性,(水份用量、降低总体羟值,添加柔性结构成分,如210、330N 之类都可以改进泡沫对壳体的粘附性) 5、成本较低。目前冰箱、冷柜行业竞争白热化,性能极佳价格昂贵的组合料没人用的起,所以我们必须为成本考虑(比如芳香聚酯价位要比聚醚的低,可以加一些。) 6、安全性。这是对环戊烷体系的特别要求(至少环戊烷不象F11那样想加多少就加多少,不难理解加多环戊烷的更具有安全隐患)

聚氨酯的种类

①聚氨酯泡沫塑料产量最大的泡沫塑料产品,相对密度大多在0.03~0.06之 间,硬泡热导率仅为软木或聚苯乙烯泡沫塑料的40%左右,有足够的强度、耐油性和粘接能力,是优良的防震、隔热、隔音材料,广泛用于家电保温(冰箱、冷柜、热水器、太阳能热水器、热泵热水器、啤酒保鲜桶、保温箱等)、设备保温(供热管道、原油化工管道、罐体、冷藏运输、客车保温等)、建筑节能(外墙保温、屋面防水保温、冷库、建筑板材、防盗门/车库门、卷帘门等)等隔热保温领域以及包装、装修装饰(装饰板、仿木家具、工艺品等)领域。聚氨酯软质泡沫塑料弹性好,还是理想的座垫、床垫材料。 ②聚氨酯橡胶按其加工方式分混炼型、热塑型和浇铸型三类。混炼型生胶是饱 和的或有少量双键的端羟基聚氨酯,可用普通橡胶的加工方法加工成型,产量较小。热塑型橡胶有全热塑性和半热塑性两种,前者是线型结构,后者有少量交联,它们可以用热塑性塑料的加工方法和设备成型。浇铸型橡胶多采用液态的预聚物与扩链剂迅速混合后浇铸成型或进行喷涂,适应性较强。目前,大约有三分之二的聚氨酯橡胶制品采用浇铸法成型。近年来出现的反应注射成型技术,可从液体单体直接注压而快速反应成型,具有生产效率高、设备投资少以及制件性能好等优点。 ③聚氨酯涂料分双组分和单组分两种:双组分聚氨酯涂料为聚醚型,将多异氰 酸酯和聚醚两组分溶液直接混合使用;单组分聚氨酯涂料为不饱和聚酯型,包括油改性型、湿固化型和封闭型三种。聚氨酯涂料采用喷雾、电沉积、浸渍等方法施工。涂层耐磨,耐汽油、油脂、水和无机酸蒸气,具有高绝缘性和粘附力,长期色泽鲜艳。 ④聚氨酯胶粘剂一般由多异氰酸酯和含羟基聚酯化合物双组分体系组成。可以 含有固化引发剂、粉末填充剂(氧化钛、氧化锌、水泥)、溶剂(丙酮、醋酸乙酯、氯代烃)。应用前将两组分直接混合,贮存期为1~3h。固化时间在室温下不少于24h,或在100~150℃并加压至0.03~0.05MPa下为1~3h固化。 这种胶与各种材料均具有较高的粘接力。固化后对水、矿物脂、燃料、芳烃、大气均稳定。工作温度-200~120℃,价格较昂贵。应用于航空和空间技术、建筑、机械等的金属、塑料、玻璃、陶瓷结构连结,以及聚合物薄膜的复印材料,鞋底和鞋面的胶接等。

聚氨酯泡沫材料及成型方法总结

聚氨酯泡沫材料 一、概况 聚氨酯是聚氨基甲酸酯的简称。凡是在高分子主链上含有许多重复的-NHCOO-基团的高分子化合物统称为聚氨基甲酸酯。一般聚氨酯系由二元或多元有机异氰酸酯(通常为甲苯二异氰酸酯,简称TDI)与多元醇化合物(聚醚多元醇或聚酯多元醇)相互作用而得。由于聚氨酯的结构不同,性能也不一样。利用这种性质,聚氨酯类聚合物可以分别制成塑料、橡胶、纤维、涂料、胶粘剂等。近二十年来,聚氨酯在这几个方面的应用都发展很快,特别是聚氨酯泡沫塑料、聚氨酯橡胶、聚氨酯涂料发展更加迅速。 泡沫塑料是聚氨酯合成材料的主要品种之一,它的主要特征是具有多孔性,因而相对密度较小,质轻,隔热隔音,比强度高,减振等优异特性。根据所用原料不同和配方的变化,可制成软质、半硬质和硬质聚氨酯泡沫塑料几种。 图1 聚氨酯泡沫合成主要原料 聚氨酯泡沫形成的化学机理 多元醇与多异氰酸酯生成聚氨酯的反应,是所有聚氨酯泡沫塑料制备中都存在的反应。发泡过程中的“凝胶反应”一般即指氨基甲酸酯的形成反应。因为泡沫原料采用多官能度原料,得到的是交联网络,这使得发泡体系能够迅速凝胶。基团反应如下: —NCO+—OH→—NHCOO— 在有水存在的发泡体系中,例如聚氨酯软泡发泡体系、水发泡聚氨酯硬泡体系,多异氰酸酯与水的反应不仅生成脲的交联(凝胶反应),而且是重要的产气发泡,

一般是指有水参加的反应。反应。所谓“发泡反应” —NCO+HO+OCN—→—NHCONH—+CO↑22上述几个反应产生大量的热,这些热量可促使反应体系温度迅速增加,是发泡反应在短时间内完成。并且,反应热为物理发泡剂(辅助发泡剂)的气化发泡提供了能量 二、软质聚氨酯泡沫塑料 软质聚氨酯泡沫塑料(简称聚氨酯软泡)是指具有一定弹性的一类柔软性聚氨酯泡沫塑料,它是用量最大的一种聚氨酯产品。聚氨酯软泡的泡孔结构多为开孔的。一般具有密度低、抗氧化老化、耐油耐溶剂、弹性回复好、吸音、透气、保温性能,主要用作家具垫材、交通工具座椅垫材、各种软性衬垫层压复合材料,工业和民用上也把软泡用作过滤材料、隔音材料、防震材料、装饰材料、包装材料及隔热保温材料 发泡原理及工艺 预聚体法发泡工艺原理 预聚体法发泡工艺通常应用于聚醚型泡沫塑料。而聚酯型泡沫塑料因聚酯本身粘度较大,生成预聚体后粘度更大,在发泡时不易操作,一般都不用此法。 预聚体法发泡工艺既是将聚醚多元醇和而异氰酸酯先制成预聚体,然后在预聚体中加入水、催化剂、表面活性剂和其他添加剂,载高速搅拌下混合进行发泡。固化后在一定温度下熟化即软质泡沫塑料。其流程示意图如下 聚醚多元醇

7、详解聚醚型和聚酯型TPU材料的区别

详解聚醚型和聚酯型TPU材料的区别! 聚醚型TPU与聚酯型TPU之间所存在的差异,TPU的软质段可使用多种的聚醇,大致上可分为聚醚系及聚酯系两种。 1、聚醚型(Ether):高强度、耐水解和高回弹性,低温性能好。 2、聚酯型(Ester):较好的拉伸性能、挠曲性能、耐摩损性以及耐溶剂性能和耐较高温度。 软质段的差异,对物性所形成的影响如下:

一、聚醚型TPU与聚酯型TPU之间所存在的差异 1、生产原料及配方差异 (1)聚醚型TPU的生产原料主要有4-4’—二苯基甲烷二异氰酸酯(MDI)、聚四氢呋喃(PTMEG)、1、4—丁二醇(BDO),其中MDI 的用量约在40%左右,PTMEG约占40%,BDO约占20%。 (2)聚酯型的TPU生产原料主要有4-4’—二苯基甲烷二异氰酸酯(MDI)、1、4—丁二醇(BDO)、己二酸(AA),其中MDI的用量约在40%,AA约占35%,BDO约占25% 2、分子质量分布及影响 聚醚的相对分子质量分布遵循Poisson几率方程,相对分子质量分布较窄;而聚酯二元醇的相对分子质量分布则服从Flory几率分布,相对分子质量分布较宽。 软段的分子量对聚氨酯的力学性能有影响,一般来说,假定聚氨酯分

子量相同,其软段若为聚酯,则聚氨酯的强度随作聚酯二醇分子量的增加而提高;若软段为聚醚,则聚氨酯的强度随聚醚二醇分子量的增加而下降,不过伸长率却上升。这是因为聚酯型软段本身极性就较强,分子量大则结构规整性高,对改善强度有利,而聚醚软段则极性较弱,若分子量增大,则聚氨酯中硬段的相对含量就减小,强度下降。 3、力学性能比较 聚醚、聚酯等低聚物多元醇组成软段。软段在聚氨酯中占大部分,不同的低聚物多元醇与二异氰酸酯制备的聚氨酯性能各不相同。极性强的聚酯作软段得到的聚氨酯弹性体及泡沫的力学性能较好。因为,聚酯制成的聚氨酯含极性大的酯基,这种聚氨酯内部不仅硬段间能够形成氢键,而且软段上的极性基团也能部分地与硬段上的极性基团形成氢键,使硬相能更均匀地分布于软相中,起到弹性交联点的作用。在室温下某些聚酯可形成软段结晶,影响聚氨酯的性能。聚酯型聚氨酯的强度、耐油性、热氧化稳定性比PPG聚醚型的高,但耐水解性能比聚醚型的差。 4、水解稳定性比较 聚酯型热塑性聚氨酯用碳化二亚胺进行保护后,耐水解性有所提高。聚醚酯型热塑性聚氨酯和聚醚型热塑性聚氨酯在高温下的耐水解性最好。

硬质聚氨酯泡沫塑料(新版)

硬质聚氨酯泡沫塑料(新版) Safety management is an important part of enterprise production management. The object is the state management and control of all people, objects and environments in production. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0651

硬质聚氨酯泡沫塑料(新版) 硬质聚氨酯泡沫塑料是一种绝热防腐高分子合成材料,用作防腐保温保冷层,它导热系数低、密度小、强度高、吸水性小、绝热、绝缘、隔音效果好、化学稳定性能好,作为一种绝热材料,广泛应用于石油、化工、运输、建筑、日常生活等领域,如输油和辅热水管道、油库、贮罐、冷库、空调、冰箱、集中供热供汽管道等设施的保温保冷。有数据显示,用硬质聚氨酯泡沫塑料保温的管道比传统的管道可减少热损失35%,节约了大量能源,减少了维修费用。另外,它还具有优良的防水防腐性脂,可直接埋入地下或水中,使用寿命可达20~30年以上,使用温度-190~120℃。 聚氨酯泡沫塑料有聚酯与聚醚型之分。通常聚酯在强度、耐温性能等方面较聚醚型为好,但因聚酯原料成本高,所以在应用上受

到限制。 1.硬质聚氨酯泡沫塑料的主要性能 硬质聚氨酯泡沫塑料1000℃火焰温度下燃烧5s后离火,在1~2s内自熄。耐浓度小于10%的无机酸,不耐高浓度的无机酸;耐中等浓度的碱液;耐汽油、机油,耐酮、耐酯,不耐醇。 各种绝热材料性能对比见表5—1。 表5-1各种绝热材料性能 项目 聚氨酯硬质泡沫塑料 聚苯乙烯 泡沫玻璃 聚氯乙然泡沫 软木 密度/kg·m-3 50 50

聚酯和聚醚TPU的性能比较

聚醚型TPU与聚酯型TPU之间所存在的差异 TPU的软质段可使用多种的聚醇,大致上可分为聚醚系及聚酯系两种。 聚醚型(Ether):高强度、耐水解和高回弹性,低温性能好。 聚酯型(Ester):较好的拉伸性能、挠曲性能、耐摩损性以及耐溶剂性能和耐较高温度。 软质段的差异,对物性所形成的影响如下: 抗拉强度聚酯系> 聚醚系 撕裂强度聚酯系> 聚醚系 耐磨耗性聚酯系> 聚醚系 耐药品性聚酯系> 聚醚系 透明性聚酯系> 聚醚系 耐菌性聚酯系< 聚醚系 湿气蒸发性聚酯系< 聚醚系 低温冲击性聚酯系< 聚醚系 1、生产原料及配方差异 (1)聚醚型TPU的生产原料主要有4-4’—二苯基甲烷二异氰酸酯(MDI)、聚四氢呋喃(PTMEG)、1、4—丁二醇(BDO),其中MDI的用量约在40%左右,PTMEG约占40%,BDO约占20% (2)聚酯型的TPU生产原料主要有4-4’—二苯基甲烷二异氰酸酯(MDI)、1、4—丁二醇(BDO)、己二酸(AA),其中MDI的用量约在40%,AA约占35%,BDO约占25%

2、分子质量分布及影响 聚醚的相对分子质量分布遵循Poisson几率方程,相对分子质量分布较窄;而聚酯二元醇的相对分子质量分布则服从Flory几率分布,相对分子质量分布较宽。 软段的分子量对聚氨酯的力学性能有影响,一般来说,假定聚氨酯分子量相同,其软段若为聚酯,则聚氨酯的强度随作聚酯二醇分子量的增加而提高;若软段为聚醚,则聚氨酯的强度随聚醚二醇分子量的增加而下降,不过伸长率却上升。这是因为聚酯型软段本身极性就较强,分子量大则结构规整性高,对改善强度有利,而聚醚软段则极性较弱,若分子量增大,则聚氨酯中硬段的相对含量就减小,强度下降。 3、力学性能比较: 聚醚、聚酯等低聚物多元醇组成软段。软段在聚氨酯中占大部分,不同的低聚物多元醇与二异氰酸酯制备的聚氨酯性能各不相同。极性强的聚酯作软段得到的聚氨酯弹性体及泡沫的力学性能较好。因为,聚酯制成的聚氨酯含极性大的酯基,这种聚氨酯内部不仅硬段间能够形成氢键,而且软段上的极性基团也能部分地与硬段上的极性基团形成氢键,使硬相能更均匀地分布于软相中,起到弹性交联点的作用。在室温下某些聚酯可形成软段结晶,影响聚氨酯的性能。聚酯型聚氨酯的强度、耐油性、热氧化稳定性比PPG聚醚型的高,但耐水解性能比聚醚型的差。 4、水解稳定性比较: 聚酯型热塑性聚氨酯用碳化二亚胺进行保护后,耐水解性有所提高。聚醚酯型热塑性聚氨酯和聚醚型热塑性聚氨酯在高温下的耐水解性最好。 聚酯易受水分子的侵袭而发生断裂,且水解生成的酸又能催化聚酯的进一步水解。聚酯种类

推荐-硬质聚氨酯泡沫塑料

硬质聚氨酯泡沫塑料 硬质聚氨酯泡沫塑料是一种绝热防腐高分子合成材料,用作防腐保温保冷层,它导热系数低、密度小、强度高、吸水性小、绝热、绝缘、隔音效果好、化学稳定性能好,作为一种绝热材料,广泛应用于石油、化工、运输、建筑、日常生活等领域,如输油和辅热水管道、油库、贮罐、冷库、空调、冰箱、集中供热供汽管道等设施的保温保冷。有数据显示,用硬质聚氨酯泡沫塑料保温的管道比传统的管道可减少热损失35%,节约了大量能源,减少了维修费用。另外,它还具有优良的防水防腐性脂,可直接埋入地下或水中,使用寿命可达20~30年以上,使用温度-190~120℃。 聚氨酯泡沫塑料有聚酯与聚醚型之分。通常聚酯在强度、耐温性能等方面较聚醚型为好,但因聚酯原料成本高,所以在应用上受到限制。1.硬质聚氨酯泡沫塑料的主要性能 硬质聚氨酯泡沫塑料1000℃火焰温度下燃烧5s后离火,在1~2s内自熄。耐浓度小于10%的无机酸,不耐高浓度的无机酸;耐中等浓度的碱液;耐汽油、机油,耐酮、耐酯,不耐醇。 各种绝热材料性能对比见表5—1。 表5-1各种绝热材料性能项目聚氨酯硬质泡沫塑料聚苯乙烯泡沫玻璃聚氯乙然泡沫软木密度/kg·m-~19060~70240~250导热系数/W·(m·K)-10.023~ 0.0260.0430.055~0.0600.0430.058耐热度/℃+130+75+400+80+100耐寒度 /℃-110-80-270-35吸水率体积/%0.20.4<0.20.3压缩强度 /MPa≥0.20.18>0.50.18自熄性自熄易燃不燃易燃燃烧2.硬质聚氨酯泡沫塑料原

料的性质、规格与选择 硬质聚氨酯泡沫塑料是以多元羟基化合物和异氰酸酯为主要原料。在催化剂、发泡剂的作用下,经加成聚合发泡而成。主要反应力异氰酸酯与多元羟基化合物中的羟基反应生成聚氨酯。催化剂主要有叔胺和有机锡等。发袍反应为异氰酸酯与水反应,产生二氧化碳气体和脲。反应产物脲及叔胺等物对此反应有催化作用。反应所产生的二氧化碳气体被用来发泡。但水发泡的最大缺点是耗费昂贵的异氰酸酯。也常用低沸点氟氯烷化合物(即F-113等),利用聚合过程中的反应热汽化,使物料在逐步固化前形成泡沫,发泡剂用量可根据所需泡沫体密度来决定。 (1)聚酯。硬质泡沫聚氨酯所用的聚酯,其羟值通常控制在300~500之间。456聚酯指标如下。 (2)Ⅲ型阻火聚醚:是三羟基含磷含氯阻火聚醚。由于分子结构中引入了磷、氯,产品具有阻火性。Ⅲ型阻火授醚质量指标见表5—2。 Ⅲ型阻火授醚质量指标指标名称一级品二级品外观黄色透明稠状液体黄色透明稠状液体羟值(KOH)/mg·g-1500±20485±35酸值(KOH)/mg·g-1≤5≤5含磷 量/%≥3.9≥3.5水分/%≤0.2≤0.4 (3)交联剂N-403乙二胺聚醚。化学名尔四(聚乙—羟丙基)乙二胺。其质量指标如下。 外观淡黄色至棕色透明黏稠液体水分/%≤0.2羟值(KOH)/mg·g-1770±35此交联剂可代替部分有机胺催化剂,又可代替其他羟基聚醚。它有增进分子结构交联,改进泡沫固化速度,减少泡沫塑料脆性的作用。

聚氨酯发泡胶的制作工艺

聚氨酯发泡胶的制作工艺 其他回答共1条 聚氨酯硬泡生产工艺硬泡成型工艺聚氨酯硬泡的基本生产方法聚氨酯硬泡一般为室温发泡,成型工艺比较简单。按施工机械化程度可分为手工发泡和机械发泡。根据发泡时的压力,可分为高压发泡和低压发泡。按成型方式可分为浇注发泡和喷涂发泡。浇注发泡按具体应用领域、制品形状又可分为块状发泡、模塑发泡、保温壳体浇注等。根据发泡体系可发为HCFC 发泡体系、戊烷发泡体系和水发泡体系等,不同的发泡体系对设备的要求不一样。按是否连续化生产可分为间歇法和连续法。间歇法适合于小批量生产。连续法适合于大规模生产,采用流水线生产方法,效率高。按操作步骤中是否需预聚可分为一步法和预聚法(或半预聚法)。1.手工发泡及机械发泡在不具备发泡机、模具数量少和泡沫制品的需要量不大时可采用手工浇注的方法成型。手工发泡劳动生产率低,原料利用率低,有不少原料粘附在容器壁上。成品率也较低。开发新配方,以及生产之前对原料体系进行例行检测和配方调试,一般需先在实验室进行小试,即进行手工发泡试验。在生产中,这种方法只适用于小规模现场临时施工、生产少量不定型产品或制作一些泡沫塑料样品。手工发泡大致分几步:(1) 确定配方,计算制品的体积,根据密度计算用料量,根据制品总用料量一般要求过量5%~15%。(2) 清理模具、涂脱模剂、模具预热。(3) 称料,搅拌混合,浇注,熟化,脱模。手工浇注的混合步骤为:将各种原料精确称量后,将多元醇及助剂预混合,多元醇预混物及多异氰酸酯分别置于不同的容器中,然后将这些原料混合均匀,立即注入模具或需要充填泡沫塑料的空间中去,经化学反应并发泡后即得到泡沫塑料。在我国,一些中小型工厂中手工发泡仍占有重要的地位。手工浇注也是机械浇注的基础。但在批量大、模具多的情况下手工浇注是不合适的。批量生产、规模化施工,一般采用发泡机机械化操作,效率高。2.一步法及预聚法目前,硬质聚氨酯泡沫塑料都是用一步法生产的,也就是各种原料进行混合后发泡成型。为了生产的方便,目前不少厂家把聚醚多元醇或(及)其它多元醇、催化剂、泡沫稳定剂、发泡剂等原料预混在一起,称之为“ 白料”,使用时与粗MDI(俗称“ 黑料” )以双组分形式混合发泡,仍属于“ 一步法”,因为在混合发泡之前没有发生化学反应。早期的聚氨酯硬泡采用预聚法生产。这是因为当时所用的多异氰酸酯原料为TDI-80。由于TDI 粘度小,与多元醇的粘度不匹配;TDI 在高温下挥发性大;且与多元醇、水等反应放热量大,若用一步法生产操作困难,故当时多用预聚法。若把全部TDI 和多元醇反应,制得的端异氰酸酯基预聚体粘度很高,使用不便。硬泡生产中所指的预聚法实际上是“ 半预聚法”。即首先TDI与部分多元醇反应,制成的预聚体中NCO 的质量分数一般为20%~25%。由于TDI大大过量,预聚体的粘度较低。预聚体再和聚酯或聚醚多元醇、发泡剂、表面活性剂、催化剂等混合,经过发泡反应而制得硬质泡沫塑料。预聚法优点是:发泡缓和,泡沫中心温度低,适合于模制品;缺点是:步骤复杂、物料流动性差,对薄壁制品及形状复杂的制品不适用。自从聚合MDI 开发成功后,TDI 已基本上不再用作硬质泡沫塑料的原料,一步法随之取代了预聚法。浇注成型工艺浇注发泡是聚氨酯硬泡常用的成型方法,即就是将各种原料混合均匀后,注入模具或制件的空腔内发泡成型。聚氨酯硬泡的浇注成型可采用手工发泡或机械发泡,机械发泡可采用间歇法及连续法发泡方式。机械浇注发泡的原理和手工发

聚醚聚氨酯

聚醚聚氨酯配方技术专题,聚氨酯预聚物,聚氨酯复合板,单组 分聚氨酯泡沫类技术资料 [A32232-0529-0001] 一种生物质聚氨酯胶黏剂的制备方法 [摘要] 本发明公开了一种生物质聚氨酯胶黏剂的制备方法,首先在105~120℃温度下将100重量份的聚醚酯多元醇真空脱水1~3小时,然后加入异氰酸酯15~45重量份,在60~90℃温度下反应20~45分钟后,再加入0.1~0.5重量份催化剂和适量溶剂,常压下继续反应1~4小时,得到生物质聚氨酯胶黏剂。本发明采用的竹粉等生物质原料廉价易得,可以完全代替以石油资源为原料的多元醇,生产成本低,生产工艺简单,产品性能指标良好,具有市场竞争力。 [A32232-0420-0002] 单组分湿固化高强度聚氨酯胶粘剂 [摘要] 本发明的名称为单组分湿固化高强度聚氨酯胶粘剂。属于单组分湿固化聚氨酯胶粘剂技术领域。它主要是现有单组分湿固化聚氨酯胶粘剂存在拉伸强度和撕裂强度不高及室温贮存稳定性不好的问题。它主要特征包括:8~20重量份由聚醚多元醇、扩链剂、异氰酸酯、催化剂、稀释剂制成的聚氨酯预聚物(Ⅱ),其中扩链剂的用量占聚氨酯预聚物(Ⅱ)用量的45%~50%;20~50重量份由聚醚多元醇、扩链剂、异氰酸酯、稀释剂制成的聚氨酯预聚物(Ⅰ),其中扩链剂的用量占聚氨酯预聚物(Ⅰ)用量的50%~60%;30~60重量份的聚氨酯胶用增塑剂、填料和催化剂。本发明具有拉伸强度达13.3MPa、撕裂强度达54.7KN/m、室温贮存期达2年的特点,主要用于高档汽车装车及维修。 [A32232-0008-0003] 亲水性聚氨酯涂料及制备方法 本发明涉及一种亲水性聚氨酯涂料及制备方法。其特征在于该涂料由20~30%(重量)的多异氰酸酯、15~25%(重量)的环氧乙烷与环氧丙烷的聚醚多元醇、5~10%(重量)的蓖麻油及其它辅助试剂等在0.08~0.18%(重量)的缓凝剂的存在下,用简单工艺制备而得。本发明的涂料具有溶剂型涂料的优越性能,但很容易在水中分散乳化,故所用的施工用具与容器可用水清洗,这一发明将减轻溶剂对人体的刺激,降低施工成本,减少对环境的污染。[A32232-0395-0004] 含受阻酚的聚氨酯阻尼材料及其制备方法 [摘要] 一种含受阻酚的聚氨酯阻尼材料及其制备方法,属于减震材料领域。该阻尼材料包含聚氨酯基质、受阻酚、扩链剂、固化剂和增强填料,受阻酚含量为聚氨酯基质、扩链剂和固化剂总量的10~200%重量份,增强填料的含量为聚氨酯基质、扩链剂和固化剂总量的0~60%重

聚酯与聚醚差异

TPU酯类与醚类的差异 TPU酯类与醚类的差异 本报告的目的在于明确TPU的大致划分方法与分类,并将聚酯型聚氨酯弹性体与聚醚型聚氨酯弹性体单独列出着重加以分析与比较。旨在明了其各自特性,以及二者之间性能方面存在差异的原因,并以此作为日后针对性选择用料的依 据。 一、TPU简介 热塑性聚氨酯弹性体简称TPU,又称PU热塑料,是一种由低聚物多元醇软段与二异氰酸酯-扩链剂硬段构成的线性嵌段共聚物。 TPU的分子内含有-NH-COO-基团,其很多特性取决于长链二元醇的种类,其硬度用硬段做比例来调节,它的光老化性可加光稳定剂来加以改善,同时也取决于异氰酸酯是芳香族还是脂肪族。 二、TPU的分类 TPU (Thermoplastic Polyurethane)按不同的标准进行分类。按软段结构可分为聚酯型、聚醚型和丁二烯型,它们分别含有酯基、醚基和丁烯基;按硬段结构分为氨酯型和氨酯脲型,它们分别由二醇扩链或二胺扩链获得。按有无交联可分为纯热塑性和半热塑性。前者是纯线性结构,无交联键;后者含有少量脲基甲酸酯等交联键。 按合成工艺分为本体聚合和溶液聚合。在本体聚合中,又可按有无预反应分为预聚法和一步法: 预聚法是将二异氰酸酯与大分子二醇先行反应一定时间,再加扩链剂生成TPU;一步法二异氰酸酯与大分子二醇和扩链剂同时混合反应生成TPU。溶液聚合是将二异氰酸酯先溶于溶剂中,再加入大分子二醇令其反应一定时间,最后加入扩链剂生成TPU。 按制品用途可分为异型件(各种机械零件)、管材(护套、棒型材)和薄膜(薄片、薄板),以及胶粘剂、涂料和纤维等。 三、聚醚型TPU与聚酯型TPU之间所存在的差异 TPU的软质段可使用多种的聚醇,大致上可分为聚醚系及聚酯系两种。 聚醚型(Ether):高强度、耐水解和高回弹性,低温性能好。聚酯型(Ester):较好的拉伸性能、挠曲性能、耐摩损性以及耐溶剂性能和耐较高温度。软质段的差异,对物性所形成的影响如下: 抗拉强度聚酯系 > 聚醚系 撕裂强度聚酯系 > 聚醚系 耐磨耗性聚酯系 > 聚醚系 耐药品性聚酯系 > 聚醚系 透明性聚酯系 > 聚醚系 耐菌性聚酯系 < 聚醚系 湿气蒸发性聚酯系 < 聚醚系 低温冲击性聚酯系 < 聚醚系 1、生产原料及配方差异: (1)聚醚型TPU的生产原料主要有4-4’—二苯基甲烷二异氰酸酯(MDI)、聚四氢呋喃(PTMEG)、1、4—丁二醇(BDO),其中MDI的用量约在40%左右,PTMEG约占40%,BDO约占20%

聚氨酯基础知识

聚氨酯树脂 第一节 概 述 1937年,德国化学家Otto Bayer 及其同事用二或多异氰酸酯和多羟基化合物通过聚加成反应合成了线形、支化或交联型-聚合物,即聚氨酯,标志着聚氨酯的开发成功。其后的技术进步和产业化促进了聚氨酯科学和技术的快速发展。最初使用的是芳香族多异氰酸酯(甲苯二异氰酸酯),60年代以来,又陆续开发出了脂肪族多异氰酸酯。聚氨酯树脂在涂料、黏合剂及弹性体行业取得了广泛、重要的应用。据有关文献报道,在全球聚氨酯产品的消耗总量中,北美洲和欧洲占到70%左右,美国人均年消耗聚氨酯材料约5.5kg ,西欧约4.5kg 。而我国的消费水平还很低,年人均不足0.5kg ,具有极大发展空间。 聚氨酯(polyurethane)大分子主链上含有许多氨基甲酸酯基( NH C O O )。它由二(或多)异氰酸酯、二(或多)元醇与二(或多)元胺通过逐步聚合反应生成,除了氨基甲酸酯 基(简称为氨酯基, NH C O O )外,大分子链上还往往含有醚基(O )、酯基(O O )、脲基(NH C O NH -)、酰胺基(NH C O )等基团,因此大分子间很容易生成氢键。 聚氨酯是综合性能优秀的合成树脂之一。由于其合成单体品种多、反应条件温和、专一、可控、配方调整余地大及其高分子材料的微观结构特点,可广泛用于涂料、黏合剂、泡沫塑料、合成纤维以及弹性体,已成为人们衣、食、住、行以及高新技术领域必不可少的材料之一,其本身已经构成了一个多品种、多系列的材料家族,形成了完整的聚氨酯工业体系,这是其它树脂所不具备的。 第二节 聚氨酯的合成单体 一、多异氰酸酯 多异氰酸酯可以根据异氰酸酯基与碳原子连接的结构特点,分为四大类:芳香族多异氰酸酯(如甲苯二异氰酸酯,即TDI )、脂肪族多异氰酸酯(六亚甲基二异氰酸酯,即HDI )、芳脂族多异氰酸酯(即在芳基和多个异氰酸酯基之间嵌有脂肪烃基-常为多亚甲基,如苯二亚甲基二异氰酸酯,即XDI)和脂环族多异氰酸酯(即在环烷烃上带有多个异氰酸酯基,如异佛尔酮二异氰酸酯,即IPDI )四大类。芳香族多异氰酸酯合成的聚氨酯树脂户外耐候性差,易黄变和粉化,属于“黄变性多异氰酸酯”,但价格低,来源方便,在我国应用广泛,如TDI 常用于室内涂层用树脂;脂肪族多异氰酸酯耐候性好,不黄变,其应用不断扩大,欧、美等发达国家已经成为主流的多异氰酸酯单体;芳脂族和脂环族多异氰酸酯接近脂肪族多异氰酸酯,也属于“不黄变性多异氰酸酯”。 1.芳香族多异氰酸酯 聚氨酯树脂中90%以上属于芳香族多异氰酸酯。同芳基相连的异氰酸酯基团对水和羟基的活性比脂肪基异氰酸酯基团更活泼。基于TDI 的聚氨酯由于高的苯环密度,其力学性能也较脂肪族多异氰酸酯的聚氨酯更为优异。以下是一些常用的产品。 (1)甲苯二异氰酸酯(tolulene diisocyanate ,TDI ) 甲苯二异氰酸酯是最早开发、应用最广、产量最大的二异氰酸酯单体;根据其两个异氰酸酯(—NCO )基团在苯环上的位置不同,可分为2,4-甲苯二异氰酸酯(2,4-TDI,简称2,4-体)和2,6-甲苯二异氰酸酯(2,6-TDI ,2,6-体)。

聚氨酯泡沫塑料高化实验报告

聚氨酯泡沫塑料的制备 2011011743 分1 黄浩 一、实验目的 1. 了解制备聚氨酯泡沫塑料的反应原理。 2. 了解各组份的作用及影响。 二、实验原理 本实验是使用聚醚与异氰酸酯扩链生成预聚体,并利用水和异氰酸酯的反应来发泡并进一步延长分子链,最终生成多孔松软的发泡塑料。 聚氨酯泡沫塑料的合成可分为三个方面: 1. 预聚体的合成。由二异氰酸酯单体与聚醚330N反应生成含异氰酸酯端基的聚氨酯预聚体。 2. 发泡与扩链。在预聚体中加入适量的水,异氰酸酯端基与水反应生成氨基甲酸,随机分解生成一级胺与CO2,放出的CO2气体上升膨胀,在聚合物中形成气泡,并且生成的一级胺可与聚氨酯、二异氰酸酯进一步发生扩链反应。 3. 交联固化。游离的异氰酸酯基与脲基上的活泼氢反应,使分子链发生交联形成体型网状结构。在本实验中,合成的是软质泡沫塑料,交联反应相对较少,但也存在。 聚氨酯泡沫塑料的软硬取决于所用的羟基聚醚或聚酯,使用较高分子量及相应较低羟值的线型聚醚或聚酯时,得到的产物交联度较低,制得的是线性聚氨酯,为软质泡沫塑料;若用短链或支链的多羟基聚醚或聚酯,所得聚氨酯的交联密度高,为硬质泡沫塑料,伸长率

小于10%,复原慢;此外还有半硬质泡沫塑料,性能在上述两种之间。除了软硬之外,泡沫塑料还有开孔和闭孔之分,前者类似于海绵,具有相互联通的小孔结构,而后者则是由高聚物包裹起来的气囊所构成。 在发泡塑料中,多孔结构可以由聚合本身放出,也可以加入发泡剂,如碳酸氢铵、挥发性溶剂,或者直接在预聚物中吹入气体。聚氨酯属于聚合反应本身产生气体,异氰酸酯可以与任何带有活泼氢的物质反应,当与水反应时,会产生二氧化碳和有机胺类,后者会继续与异氰酸酯反应,即扩链。 在泡沫塑料的制备过程中,也会使用催化剂,二价的有机锡、锌盐或三级胺,都能活化异氰酸酯。 聚氨酯泡沫塑料有三种制备方法,分别是预聚体法、半预聚体法和一步法,前两者是 先聚合、扩链生成预聚体,再进行发泡、交联等,适于制备硬质泡沫塑料。本实验是使用 一步法,所有料一次加入,扩链、发泡、交联同时进行,对配方和条件要求较高。 三、实验背景 聚氨基甲酸酯分子中具有强极性基团,使它与聚酰胺有某些类似之处,聚合物中存在着氢键,使它具有高强度、耐磨、耐溶剂等特点,而且可通过改变单体的结构、分子量等,在很大范围内调节聚氨酯的性能,使之在塑料、橡胶、涂料、粘合剂、合成纤维等领域中有着广泛的用途。 聚氨酯可以制成纤维、涂料、橡胶、热塑弹性体、粘合剂、生物医用材料: 聚氨酯涂料由于其漆膜的粘附性很好,可用来保护金属、橡皮、皮革、纸张和木材。聚氨酯橡胶具有特别好的耐磨性、撕裂强度、耐臭氧、紫外线和油,因此用来生产汽车和飞机轮胎。聚氨酯泡沫塑料具有软质和硬质之分,这与所用原料、合成工艺以及用途要求有关。由于内部气孔的存在,可以有效阻断(吸收)声波、热辐射,因此它们具有保温、绝热和隔音等性能。聚氨酯粘合剂具有高度的极性和活泼性,这是由于其分子中含有异氰酸酯基和氨基甲酸酯基所致,因而对多种材料具有极高的粘附性能。聚氨酯由于具有良好的细胞相容性,而且纯的聚合物无毒无害,因此可用作生物医用材料,如人工髓核等。 四、实验药品 1. 聚醚330N:由甘油与环氧乙烷和环氧丙烷在碱性条件下聚合及精制而成,是一种 高活性的三羟基聚醚,无色至微黄色透明粘稠液体,分子量在5000左右,本实验的聚醚

相关文档
最新文档