实验15__气体定压比热测定

实验15__气体定压比热测定
实验15__气体定压比热测定

实验15 气体定压比热测定

一、实验目的

1. 了解气体比热测定装置的基本原理和装置结构。

2. 熟悉本实验中温度、压力、热量、流量的测量方法。

3. 掌握由测量数据计算定压比热的方法。

4. 分析本实验中误差产生的原因及减小误差的可能途径。

二、实验原理

根据定压比热的概念,气体在t ℃时的定压比热表示为

p dq c dt

=

(1)

当式(1)的温度间隔dt 为无限小时,p c 即为某一温度t 时气体的真实定压比热(由于气体的定压比热随温度的升高而增大,所以在给出定压比热的数值时,必须指明是哪个温度下的定压比热)。如果已得出()p c f t =的函数关系,温度由1t 至2t 的过程中所需要的热量即可按下式求得:

22

21

1

()d p q c dt a bt ct t ==+++??

(2)

上式采用逐项积分来求热量十分复杂。在本实验的温度测量范围内(不高于300℃),空气的定压比热与温度的关系可近似认为是线性,即可表示为:

p c a bt =+

(3)

则温度由1t 至2t 的过程中所需要的热量可表示为:

()2

1

d t t q a bt t =+?

(4)

由1t 加热到2t 的平均定压比热容则可表示为:

()2

1

2

1

1

2

21

d 2

t t t p t a bt t t t c

a b

t t ++==+-? (5)

实验中,通过实验装置是湿空气,当湿空气气流由温度1t 加热到2t 时,其中水蒸气的吸热量可用式(4)计算,其中 1.833a =,0.0003111b =,则水蒸气的吸热量为:

()2

1

w w 1.8330.0003111d t t

Q m t t =+?

()()

22

w 21211.8330.0001556kJ/s m t t t t ??=-+-??

(6)

式中:w m ——气流中水蒸气质量,kg/s 。

则干空气的平均定压比热容由下式确定:

()

()

2

1

w w 21w 21()()p

p t pm t Q Q Q c

m m t t m m t t '-=

=

---- (7)

式中:p Q '为湿空气气流的吸热量。

实验装置中采用电加热的方法加热气流,由于存在热辐射,不可避免地有一部分热量散失于环境,其大小取决于仪器的温度状况。只要加热器的温度状况相同,散热量也相同。因此,在保持气流加热前、后的温度仍为1t 和2t 的前提下,当采用不同的质量流量和加热量进行重复测定时,每次的散热量是相同的。于是,可在测定结果中消除这项散热量的影响。设两次测定时的气体质量流量分别为1m 和2m ,加热器的加热量分别为1Q 和2Q ,辐射散热量为Q ?,则达到稳定状况后可以得到如下的热平衡关系:

()11w11w121w1()p pm Q Q Q Q m m c t t Q Q =++?=--++?

()22w22w221w2()p pm Q Q Q Q m m c t t Q Q =++?=--++?

两式相减消去Q ?项,得到:

()()()()

2

1

12w1w212w1w221kJ/(kg )t pm

t Q Q Q Q c m m m m t t ---=

?--+-℃ (8)

三、实验装置

实验所用的设备和仪器仪表由风机、流量计、比热仪本体、电功率调节测量系统共四部分组成,实验装置系统如图1所示。装置中采用湿式流量计2测定气流流量,采用小型鼓风机7作为气源设备,气流流量用节流阀1调整,电加热量使用调压变压器5进行调节,并用功率表4测量。

图1测定空气定压比热容的实验装置

1-节流阀;2-流量计;3-比热仪本体;4-功率表;5-调压变压器;6-稳压器;7-风机

比热容测定仪本体(图2)由内壁镀银的多层杜瓦瓶2、温度计1和8(铂电阻温度计

图2 比热容测定仪结构原理图

1、8-温度计;2-多层杜瓦瓶;3-电加热器; 4-均流网;5-绝缘垫;6-旋流片;7-混流网

或精度较高的水银温度计)、电加热器3、均流网4、绝缘垫5、旋流片6和混流网7组成。气体自进口管引入,温度计1测量空气进口初始温度,离开电加热器的气体经均流网4均流均温,温度计8测量出口温度。该比热仪可测300℃以下气体的定压比热。

四、实验数据处理方法

实验中需要测定干空气的质量流量m 、水蒸气的质量流量w m 、电加热器的加热量(即气流吸热量)p Q '和气流温度等数据,测定方法如下:

1.干空气的质量流量m 和水蒸气的质量流量w m 首先,在不启动电加热器的情况下,通过节流阀把气流流量调节到实验流量值附近,测定流量计出口的气流温度0

t '(由流量计上的温度计测量)和相对湿度?。根据0

t '与?值,由湿空气的焓湿图确定含湿量,并计算出水蒸气的容积成分w y :

w /622

1/622

d y d =

+

(9)

于是,气流中水蒸气的分压力为

w w p y p =

(10)

式中:p ——流量计中湿空气的绝对压力,Pa :

109.81p B h =+?

(11)

式中:B —当地大气压,kPa ;由大气压力计读取。

h ?—流量计上U 型管压力计读数,mm 水柱;

调节变压器到适当的输出电压,开始加热。当实验工况稳定后,测定流量计每通过单位体积气体所需要的时间τ以及其它数据。水蒸气的质量流量计算如下:

w w w 0(/)

kg/s p V m R T τ=

(12) 式中:w R ——水蒸气的气体常数:w 461J/(kg K)R =?

(13)

0T ——绝对温度,K 。

干空气的质量流量计算如下: ()g g 0

/kg/s p V m RT τ=

(14) R ——干空气的气体常数:287J/(kg K)R =?

(15)

2.电加热器的加热量'p Q

电热器加热量可由功率表读出,功率表的读数方法详见说明书。

p p ' 3.6kJ/h Q Q =

(16)

式中:p Q ——功率表读数,W ; 3.气流温度

气流在加热前的温度1t 为大气温度,用室内温度计测量;加热后的温度2t 由比热容测定仪上的温度计测量。

五、实验步骤

1. 启动风机,调节节流阀,使流量保持在额定值附近。测量流量计出口空气的干球温度

0t 和湿球温度w t 。

2. 启动调压变压器,调节到合适的电压,使出口温度计读数升高到预计温度。(可根据

下式预先估计所需电功率:p 12Q t τ=?,式中:W 为电功率(W ),t ?为进出口温差(℃),τ为每流过10升空气所需的时间(s )。

3. 待出口温度稳定后(出口温度在10分钟之内无变化或有微小起伏即可视为稳定),读

出下列数据:

1) 10升气体通过流量计所需时间τ(s ); 2) 比热仪进口温度t 1(℃)和出口温度t 2(℃);

3) 大气压力计读数B (kPa ),流量计中气体表压h ?(mmH 2O ); 4) 电热器的功率Q p (W )。

4. 根据流量计出口空气的干球温度0t 和湿球温度w t 确定空气的相对湿度?,根据?和干

球温度从湿空气的焓湿图(工程热力学附图)中查出含湿量d (g/kg 干空气)。 5. 每小时通过实验装置空气流量:

336/m /h V τ=

(17)

将各量代入式(14)可得出干空气质量流量的计算式:

()()()

()

w g 0110009.8136/kg/h 287273.15y B h m t τ-+??=

+

(18)

6. 水蒸气的流量:

将各量代入式(12)可得出水蒸气质量流量的计算式:

()()

()

w w 010009.8136/kg/h 461.5273.15y B h m t τ+??=

+

(19)

六、计算实例

某一稳定工况实测参数如下:

0t =8℃,w t =7.8℃,f t =8℃,B =99.727kPa ,1t =8℃,2t =240.3℃,

τ=69.96s/10L ,h ?=16mmH 2O 柱,p Q =41.842W ,由0t ,w t 查焓湿图得?=94%,d =6.3g/kg 干空气。计

算如下:

1. 水蒸气的容积成分:

代入式(9),得w 6.3/622

1 6.3/622

y =

+=0.010027

2. 电加热器单位时间放出的热量:

代入式(16),得p

p 3.6 3.641.842150.632Q Q '=?=?= kJ/h 3. 干空气质量流量:

代入式(18),得 ()()()

g 10.010*********.7279.811636/69.96

2878273.15m -??+??=

+0.63048= kg/h

4. 水蒸气质量流量:

代入式(19),得 ()()

w 0.010*********.7279.8136/69.96

461.58273.15m ?+?=

+0.0039755= kg/h

5. 水蒸气吸收的热量为:

()()422w 0.00397551.833240.38 1.55610240.38Q -??=-+?-=?? 1.728 kJ/h

则干空气的平均定压比热容为:

()

240.3

pm 8150.632 1.728 1.01670.63048240.38c -==- kJ/h

七、实验报告

1. 简述实验原理和仪器构成原理。

2. 列表给出所有原始数据记录。

3. 列表给出实验结果(数据处理,要附有例证)。

八、思考题

1. 在本实验中,如何实现绝热?

2. 气体被加热后,要经过均流、旋流和混流后才测量气体的出口温度,为什么?简述均

流网、旋流片和混流网的作用。

3. 尽管在本实验装置中采用了良好的绝热措施,但散热是不可避免的。不难理解,在这

套装置中散热主要是由于杜瓦瓶与环境的辐射造成的。你能否提供一种实验方法(仍利用现有设备)来消除散热给实验带来的误差?

4. 在本实验的温度测量范围内(不高于300℃),空气的定压比热与温度的关系可近似

认为是线性,现在需要确定空气在室温到300℃的定压比热的非线性程度,请问可以用怎样的实验手段实现?

九、注意事项

1. 在空气未流通的情况下,电加热器切勿工作,以免引起局部过热而损坏比热仪。

2. 输入电加热器电压不得超过220V ,气体出口温度最高不得超过300℃。

3.加热和冷却要缓慢进行,防止温度计和比热仪本体因温度骤升骤降而破损;加热时要

先启动风机,再缓慢提高加热器功率,停止试验时应先切断电加热器电源,让风机继续运行15分钟左右(温度较低时,时间可适当缩短)。

实验18 空气绝热指数测定实验

一、实验目的

1. 学习测量空气绝热指数的方法;

2. 培养运用热力学基本理论处理实际问题的能力;

3. 进一步加深对刚性容器充气、放气现象的认识,结合能量方程式和理想气体状态方程

式及过程方程式,求解空气绝热指数k 。

二、实验原理

在热力学中,气体的定压比热容p c 和定容比热容v c 之比被定义为该气体的绝热指数,并以k 表示,即/p v k c c =。

本实验利用定量气体在绝热膨胀过程和定容加热过程中的变化规律来测定空气绝热指数k 。该实验过程的p-v 图,如图1所示。图中AB 为绝热膨胀过程;BC 为定容加热过程。

AB 为绝热过程,A A

B B k

k p V p V = (1)

BC 为定容过程,B C V V = AC 为等温过程,A A C C p V p V =

(2)

将(2)式两边k 次方,得

A A C C ()()k k p V p V =

(3)

比较(1)、(3)两式,可得

C A A B k k

p p p p =

,即A A B C

()k p p p p = 将上式两边取对数,可得

图1

A B A C ln(/)

ln(/)

p p k p p =

(4)

因此,只要测出A 、B 、C 三个状态下的压力A p 、B p 、C p ,且将其代入(4)式,即可求得空气的绝热指数k 。

三、实验装置

本实验的实验装置如图2所示。

实验时如图(3),通过充气阀对刚性容器进行充气,至状态A ,由U 型管差压计测得状态A 的表压h A (mmH 2O ),我们选取容器内一部分气体作为研究对象,其体积为V A ,压力为p A ,温度为T A ,假设通过排气阀放气,使其压力与大气压平衡,恰好此时的气体膨胀至整个容器(体积为V B ),立即关闭排气阀,膨胀过程结束。因为B 0 = p p (大气压力),并且此过程进行得十分迅速,可忽略过程的热交换,因此可认为此过程为定量气体的绝热膨胀过程,即由状态A (p A 、V A 、T A )绝热膨胀至状态B (p B 、V B 、T B )。(注意V B 等于容器体积,V A 为一小于容器体积的假象体积)。处于状态B 的气体,由于其温度低于环境温度,则刚性容器内的气体通过容器壁与环境交换热量,当容器内的气体温度与环境温度相等时,系

V

p

统处于新的平衡状态C (p C 、V C 、T C )。若忽略刚性容器的体积变化,此过程可认为是定容加热过程。此时容器内气体的压力可由U 型差压计测得h C (mmH 2O )。至此,被选为研究对象的气体,从A 经过绝热膨胀过程至B ,又经过定容加热过程至C ,且状态A 、C 所处的温度同为环境温度,实现了图1中所示的过程。

图2 实验设备示意图

图3 气体热力过程示意图

四、实验步骤

1. 对照实物熟悉实验设备,了解实验原理。

2. 由于对装置的气密性要求较高,因此首先应检查装置的气密性。具体方法是通过充气

阀对刚性容器充气至状态A ,使A h =200(2mmH O )左右,过几分钟后观察水柱的变化,若没有变化,说明气密性满足要求;若有变化,则说明装置漏气。此步骤一定要认真进行,否则将给实验结果带来较大的误差。同时读出A h 的值。

3. 右手转动排气阀,在气流流出的声音“啪”消失的同时关上排气阀(实验开始前要多

练习几次)。

4. 待U 型管差压计的读数稳定后,读出C h (大约需5分钟左右的时间)。

5. 重复上述步骤,多做几遍,将实验中采集的数据填在实验数据表格中,并求k 值。

五、计算方法

如果将前述的式(4)直接用于实验计算的话,比较繁琐。因此,针对目前的实验条件,现将式(4)进行适当的简化。

设U 型管差压计的封液(水)的重度为γ=9.81×103(N/m 3),实验时大气压力则为p 0≈104(mmH 2O)。因此,状态A 的压力可表示为p A =p 0 + h A ,状态B 的压力可表示为p B

=p 0,状态点C 的压力可表示为p C = p 0 + h C 。将其代入式(4)得

A 0A

000A A C 0C 0C ln 1ln

ln ln 1h p h p p k p h h h p h p h ??++?

??==+??-+? ++?

?

(5)

实验中由于刚性容器的限制,一般取A h ≈200(mmH 2O ),且C A h h <,因此有C 00h p p +≈,A 0

/1h p ,A C 0A ()/()

1h h p h -+。

所以,按照近似的方法,式(5)可简化为

A 0A

A C 0C A C

/()/()h p h k h h p h h h ==

-+- (6)

这即为利用本实验装置测定空气绝热指数k 的简化(近似)计算公式。

六、实验数据处理方法

室温t 0= ℃,大气压力p 0= mmHg ,湿度φ= %。

七、实验报告

1. 简介实验装置,简述实验原理。

2. 对实验数据进行记录和整理。

3. 分析解答思考题。

八、思考题

1. 漏气对实验结果有何影响?

2. 实验中,充气压力选得过大或过小,对实验结果有何影响?

3. 在定容加热过程中,如何确定容器内的气体温度回到了初温?

4. 若实验中,转动排气阀的速度较慢,这将对实验结果产生何种影响?

5. 本实验所选定的热力系对刚性容器而言是开口变质量热力系,请按开口系统导出(4)

式。

6. 空气绝热指数的实际测量值偏离理论值的误差原因是什么?

(fb212型气体比热容比的测定)实验讲义

(FB212型气体比热容比测定仪)实验讲义 气体比热容比的测定 比热容是物质的重要参量,在研究物质结构、确定相变、鉴定物质纯度等方面起着重要 的作用。本实验将介绍一种较新颖的测量气体比热容的方法。 【实验目的】 测定空气分子的定压比热容与定容比热容之比γ值。 【实验原理】 气体的定压比热容P C 与定容比热容V C 之比 V P C /C =γ,在热力学过程特别是绝热过程中是一个 很重要的参数,测定的方法有好多种。这里介绍一种较新颖的方法,通过测定物体在特定容器中的振动周期来计算γ值。实验基本装置如图1所示,振动物体小球D 的直径比玻璃諧振腔E 直径仅小mm 02.0~01.0 。它能在此精密的玻璃諧振腔E 中上下移动,在储气瓶A 的壁上有一充气孔B ,并插入一根细管,通过它各种气体可 以注入到储气瓶A 中。 钢球D 的质量为m ,半径为 r (直径为d ),当瓶子内压力P 满足下面条件时,钢球 D 处于力平衡状态,这时2 L m g P P r π?=+ ?,式中L P 为大气压强 。为了补偿由于空气阻尼引起振动物体D 振幅的衰减,通过B 管不断注入一个小气压的气流,在精密玻璃諧振腔E 的中央开设有一个小孔C 。当振动物体A 处于小孔下方的半个振动周期时,注入气体使储气瓶A 内压力增大,引起物体D 向上移动,而当物体D 处于小孔上方的半个振动周期时,容器内的气体将通过小孔流出,使储气瓶A 内压力减小从而使物体D 下沉。以后重复上述过程,只要适当控制注入气体的流量,物体D 能在玻璃諧振腔E 的小孔C 上下作简谐振动,振动周 期可利用光电计时装置来测得。 若物体偏离平衡位置一个较小距离dx ,则容器内的压力变化dp ,物体的运动方程为:

一气体定压比热容测定

工程热力学实验 指导书 哈尔滨理工大学 热能与动力工程实验室

实验一 气体定压比热容测定实验 一.实验目的 1. 了解气体比热测定装置的基本原理和构思。 2. 熟悉本实验中测温、测压、测热、测流量的方法。 3. 掌握由基本数据计算出比热值和比热公式的方法。 4. 分析本实验产生误差的原因及减小误差的可能途径。 二.实验原理 引用热力学第一定律解析式,对可逆过程有: pdv du q +=δ 和 vdp dh q -=δ 定压时0=dp p p T h dT vdp dh dT q c ??? ????=??? ??-=??? ??=δ 此式直接由p c 的定义导出,故适用于一切工质。 在没有对外界作功的气体的等压流动过程中: p Q m dh δ1= 则气体的定压比热容可以表示为: ()122 1t t m Q c p t t pm -= kJ/kg ?℃ 式中:m ——气体的质量流量,kg/s ; p Q ——气体在等压流动过程中的吸热量,kJ/s 。 由于气体的实际定压比热是随温度的升高而增大,它是温度的复杂函数。实验表明,理想气体的比热与温度之间的函数关系甚为复杂,但总可表达为: +++=2et bt a c p 式中a 、b 、e 等是与气体性质有关的常数。在离开室温不很远的温度范围内,空气的定压比热容与温度的关系可近似认为是线形的,假定在0-300℃之间,空气真实定压比热与温度之间进似地有线性关系: bt a c p += 则温度由1t 至2t 的过程中所需要的热量可表示为:

()dt bt a q t t ?+=2 1 由1t 加热到2t 的平均定压比热容则可表示为: ()2211 22121t t b a t t dt bt a c t t t t pm ++=-+=? 若以(t 1+t 2)/2为横坐标,21t t pm c 为纵坐标(如下图所示),则可根据不同温度范 围的平均比热确定截距a 和斜率b,从而得出比热随温度变化的计算式bt a +。 大气是含有水蒸气的湿空气。当湿空气气流由温度1t 加热到2t 时,其中水蒸气的吸热量可用式下式计算: ()dt t m Q t t w w ?+=2 10001172.0844.1 式中:w m ——气流中水蒸气质量,kg/s 。 则干空气的平均定压比热容由下式确定: ()()1212)(')(21t t m m Q Q t t m m Q c w w p w p t t pm ---=--= 式中:'p Q ——为湿空气气流的吸热量。 三.实验设备

空气比定压热容的测定

气比定压热容的测定 一、实验目的 (1)了解比热容测定装置的设备组成及各设备的作用,掌握比热容测定方法。 (2)掌握本实验中的温度、压力、流量、热量等的测定方法。 (3)掌握计算比热值和求得比热容公式的方法,并计算空气的比定压热容。 (4)列表示平均比热容与温度的关系,并用方程表示。 二、实验原理 实验台通过在定压条件下加热空气,根据空气温度的变化和流量的大小测出空气的定压比热容,即根据()()[]K kg /kJ 1221?-=t t m Q c p t t p 确定,式中:m 为气体 的质量流量,kg/s ;p Q 为气体在等压流动过程中的吸热量,kJ/s 。 在距室温不很远的温度围,空气的比定压热容与温度的关系可近似认为是线性的,即可近似表示为bt a c p +=,由1t 加热到2t 的平均比热容为 2 )(21122121t t b a t t bt a c t t t t p ++=-+=?,因此,若以221t t +为横坐标,p c 为纵坐标,则可根据不同温度围的平均比热容确定截距a 和斜率 b ,从而得出比热容随温度变化的近似关系式。 (1)空气中水蒸气容积成分iv ?的确定。大气是含有水蒸气的湿空气,当湿 空气的温度由1t 加热到2t 时,根据布置在流量计出口的干湿球温度计读数t 、 w t ,从干湿球温度计的湿度表中查的空气的相对湿度?,再由?和干球温度t 从湿空气的焓湿图查出含湿量d ,则可用下式计算出空气中水蒸气的容积成分(也称为体积分数) %100622/1622/iv ?+=d d ? 式中:d 为含湿量,g (水蒸气)/kg (干空气)。 (2)湿空气的吸热量p Q 的确定。当比热议出口空气温度稳定时,湿空气吸收的热量即为电热器消耗的电功率。功率的测定方法有两种,一种是根据测量的电压和电流计算;另一种由功率表直接测量。吸热量的单位为kJ/s 。 (3)干空气质量流量m 的确定 ) (15.27305.287/1000/10)1()8.9(iv 0+??-??+==t h p T R V p m a a a a τ? 式中:0p 为当地的大气压力,Pa ;a p 为干空气的压力,Pa ;a V 为干空气的体积,

实验一 空气定压比热容测定

实验一 空气定压比热容测定 一、实验目的 1.增强热物性实验研究方面的感性认识,促进理论联系实际,了解气体比热容测定的基本原理和构思。 2.学习本实验中所涉及的各种参数的测量方法,掌握由实验数据计算出比热容数值和比热容关系式的方法。 3.学会实验中所用各种仪表的正确使用方法。 二、实验原理 由热力学可知,气体定压比热容的定义式为 ( )p p h c T ?=? (1) 在没有对外界作功的气体定压流动过程中,p dQ dh M =, 此时气体的定压比热容可表示 为 p p T Q M c )(1??= (2) 当气体在此定压过程中由温度t 1被加热至t 2时,气体在此温度范围内的平均定压比热容可由下式确定 ) (1221 t t M Q c p t t pm -= (kJ/kg ℃) (3) 式中,M —气体的质量流量,kg/s; Q p —气体在定压流动过程中吸收的热量,kJ/s 。 大气是含有水蒸汽的湿空气。当湿空气由温度t 1被加热至t 2时,其中的水蒸汽也要吸收热量,这部分热量要根据湿空气的相对湿度来确定。如果计算干空气的比热容,必须从加热给湿空气的热量中扣除这部分热量,剩余的才是干空气的吸热量。 低压气体的比热容通常用温度的多项式表示,例如空气比热容的实验关系式为 3 16 2 7 4 10 87268.410 02402.410 76019.102319.1T T T c p ---?-?+?-=(kJ/kgK) 式中T 为绝对温度,单位为K 。该式可用于250~600K 范围的空气,平均偏差为0.03%,最大偏差为0.28%。 在距室温不远的温度范围内,空气的定压比热容与温度的关系可近似认为是线性的,即可近似的表示为 Bt A c p += (4) 由t 1加热到t 2的平均定压比热容则为 m t t t t pm Bt A t t B A dt t t Bt A c +=++=-+= ? 2 2 11 22 1 2 1 (5) 这说明,此时气体的平均比热容等于平均温度t m = ( t 1 + t 2 ) / 2时的定压比热容。因此,可以对某一气体在n 个不同的平均温度t m i 下测出其定压比热容c p m i ,然后根据最小二乘法原理,确定

2气体定压比热测定实验指导书9页

气体定压比热测定实验指导书 气体定压比热容的测定实验是工程热力学基本实验之一,实验中涉及温度、压力、热量(电功率)、流量等基本量的测量,计算中用到比热及混合气体(湿空气)方面的基本知识。本实验的目的是增加热物性实验研究方面的感性认识,促进理论联系实际,有利于培养分析问题和解决问题的能力。. 一、实验要求 1.了解气体比热测定装置的基本原理和构思。 2.熟悉本实验中测温、测压、测热、测流量的方法。 3.掌握由基本数据计算出比热值和比热公式的方法。 4.分析本实验产生误差的原因及减小误差的可能途径。 二、实验装置介绍 1、实验所用的设备和仪器仪表由风机、流量计,比热仪本体、电功率调节测量系统共四部分组成,实验装置系统如图1所示。 2、装置中采用湿式流量计测定气流流量,流量计出口的恒温槽用以控制测定仪器出口气流的温度。装置可以采用

小型单级压缩机或其它设备作为气源设备,并用钟罩型气罐维持供气压力稳定。气流流量用调节阀1调整。 3、比热容测定仪本体(图2)由内壁镀银的多层杜瓦瓶2,进口温度计1和出口温度计8(铂电阻温度计或精度较高的水银温度计)电加热器3和均流网4,绝缘垫5,旋流片6和混流网7组成。 4、气体自进口管引入,进口温度计4测量其初始温度,离开电加热器的气体经均流网4均流均温,出口温度计8测量加热终了温度,后被引出。 5、该比热仪可测300℃以下气体的定压比热。 三、实验方法及数据处理 实验中需要测定干空气的质量流量g m 、水蒸气的质量 流量w m 、电加热器的加热量(即气流吸热量)'p Q 和气流温度等数据,测定方法如下: 1.干空气的质量流量g m 和水蒸气的质量流量w m 电加热器不投入,摘下流量计出口与恒温槽连接的橡皮管,把气流流量调节到实验流量值附近,测定流量计出口的气流干球温度0t 和湿球温度w t 温度(或由流量计上的温度 计测量和相对湿度?),根据0t 与w t (或0t 与?值)由湿空气 的焓-湿图确定含湿量d (g /k g ),并计算出水蒸气的容积成分 水蒸气的容积成分计算式:622 /1622/d d y w += (1) d --- 克水蒸汽/千克干空气 . 图1测定空气定压比热容的实验装置系

空气比热容比的实验报告

空气比热容比的测量 实验目的: 1.用绝热膨胀法测定空气的比热容比。 2.观测热力学过程中状态变化及基本物理规律。 3.学习气体压力传感器和电流型集成温度传感器的原理及使用方法。实验原理: 对理想气体的定压比热容C p 和定容比热容C v 之关系由下式表示: C p —C v =R (1) (1)式中,R为气体普适常数。气体的比热容比r值为: r= C p /C v (2) 气体的比热容比现称为气体的绝热系数,它是一个重要的物理量,r值经常出现在热力学方程中。 测量r值的仪器如图〈一〉所示。实验时先关闭活塞C 2 ,将原处于环境大气 压强P 0、室温θ 的空气从活塞C 1 ,处把空气送入贮气瓶B内,这时瓶内空气压 强增大。温度升高。关闭活塞C 1,待稳定后瓶内空气达到状态I(P ,θ ,V 1 ), V 1 为贮气瓶容积。 然后突然打开阀门C 2,使瓶内空气与大气相通,到达状态II(P 1 ,θ ,V 1 ) 后,迅速关闭活塞C 2 ,由于放气过程很短,可认为是一个绝热膨胀过程,瓶内气体压强减小,温度降低,绝热膨胀过程应满足方程: P1V1’=P0V2’(3) 在关闭活塞C 2之后,贮气瓶内气体温度将升高,当升到温度θ 时,原状态为I (P 1,θ ,V 1 )体系改变为状态III(P 2 ,θ ,V 2 ),应满足: P1V1=P0V2(4) 由(3)式和(4)式可得到: r=(log P0-log P1)/(log P2-log P1) 利用(5)式可以通过测量P 0、P 1 和P 2 值,求得空气的比热容比r值。 实验装置:

图〈一〉实验装置中1为进气活塞塞C 1,2为放气活塞C 2 ,3为电流型集成温 度传感器AD590,它是新型半导体温度传感器,温度测量灵敏度高,线性好,测 温范围为-50℃至150℃。AD590接6V直流电源后组成一个稳流源,见图〈二〉,它的测温灵敏度为1μA/℃,若串接5KΩ电阻后,可产生5mv/℃的信号电压,接0~2V量程四位半数字电压表,可检测到最小0.02℃温度变化。4为气体压力传感器探头,由同轴电缆线输出信号,与仪器内的放大器及三位半数字电压表相接。当待测气体压强为环境大气压P 时,数字电压表显示为0;当待测气体压强为 P +10.00KPa时,数字电压表显示为200mv;仪器测量气体压强灵敏度为20mv/KPa,测量精度为5Pa。 实验内容: 1.按图〈一〉接好仪器的电路,AD590的正负极请勿接错。用Forton式 气压计测定大气压强P 0,用水银温度计测环境室温θ 。开启电源, 将电子仪器部分预热20分钟,然后用调零电位器调节零点,把三位半数字电压表表示值调到0。 2.把活塞C 2关闭,活塞C 1 打开,用打气球把空气稳定地徐徐进入贮气瓶

气体定压比热测定实验

气体定压比热测定实验 指导书 气体定压比热的测定是工程热力学的基本实验之一。实验中涉及温度、压力、热量(电功)、流量等基本量的测量;计算中用到比热及混合气体(混空气)方面的知识。本实验的目的是增加热物性研究方面的感性认识,促使理论联系实际,以利于培养同学分析问题和解决问题的能力。 一、实验目的和要求 1. 了解气体比热测定装置的基本原理和构思。 2. 熟悉本实验中的测温、测压、测热、测流量的方法。 3. 掌握由基本数据计算出比热值和求得比热公式的方法。 4. 分析本实验产生误差的原因及减小误差的可能途径。 二、实验装置和原理 装置由风机、流量计、比热仪主体、电功率调节及测量系统等四部分组成(如图一所示)。 图一实验装置 比热仪主体如图二所示。 实验时,被测空气(也可以是其它气体)由风机经湿式气体流量计送入比热仪主体,经加热、均流、旋流、混流后流出。在此过程中,分别测定:空气在流量计

出口处的干、湿球温度(t0,t w由于是湿式气体流量计,实际为饱和状态);气体经比热仪主体的进出口温度(t1,t2);气体的体积流量(V);电热器的输入功率(W);以及实验时相应的大气压(B)和流量计出口处的表压(Δh)。有了这些数据,并查用相应的物性参数,即可计算出被测气体的定压比热(C p m)。 气体的流量由节流阀控制,气体出 度由输入电热器的功率来调节。 本比热仪可测300℃以下的定压比 三、实验步骤和数据处理 1. 接通电源及测量仪表,选择所需 口温度计插入混流网的凹槽中。 2. 摘下流量计上的温度计,开动风 调节节流阀,使流量保持在额定 近。测出流量计出口空气的干球温度( 3. 将温度计插回流量计,调节流量 它保持在额定值附近。逐渐提高电热 率,使出口温度升高至预计温度 可以根据下式预先估计所需电功率: τt W ? ≈12图二比热仪主体式中:W为电热器输入电功率(瓦); Δt为进出口温度差(℃); τ为每流过10升空气所需的时间(秒)。] 4. 待出口温度稳定后(出口温度在10分钟之内无变化或有微小起伏,即可视 为稳定),读出下列数据,每10升空气通过流量计所需时间(τ,秒);比热仪进口温度——即流量计的出口温度(t1,℃)和出口温度(t2℃);当时相应的大气压力(B,毫米汞柱)和流量计出口处的表压(Δh,毫米水柱);电热器的输入功率(W,瓦)。 5. 根据流量计出口空气的干球温度和湿球温度,从湿空气的干湿图查出含湿量(d,克/公斤干空气),并根据下式计算出水蒸气的容积成分:

气体定压比热测定实验指导书

气体定压比热测定实验指导书 气体定压比热容的测定实验是工程热力学基本实验之一,实验中涉及温度、压力、热量(电功率)、流量等基本量的测量,计算中用到比热及混合气体(湿空气)方面的基本知识。本实验的目的是增加热物性实验研究方面的感性认识,促进理论联系实际,有利于培养分析问题和解决问题的能力。. 一、实验要求 1. 了解气体比热测定装置的基本原理和构思。 2. 熟悉本实验中测温、测压、测热、测流量的方法。 3. 掌握由基本数据计算出比热值和比热公式的方法。 4. 分析本实验产生误差的原因及减小误差的可能途径。 二、实验装置介绍 1、实验所用的设备和仪器仪表由风机、流量计,比热仪本体、电功率调节测量系统共四部分组成,实验装置系统如图1所示。 2、装置中采用湿式流量计测定气流流量,流量计出口的恒温槽用以控制测定仪器出口气流的温度。装置可以采用小型单级压缩机或其它设备作为气源设备,并用钟罩型气罐维持供气压力稳定。气流流量用调节阀1调整。 3、比热容测定仪本体(图2)由内壁镀银的多层杜瓦瓶2,进口温度计1和出口温度计8(铂电阻温度计或精度较高的水银温度计)电加热器3和均流网4,绝缘垫5,旋流片6和混流网7组成。 4、气体自进口管引入,进口温度计4测量其初始温度,离开电加热器的气体经均流网4均流均温,出口温度计8测量加热终了温度,后被引出。 5、该比热仪可测300℃以下气体的定压比热。 三、实验方法及数据处理 实验中需要测定干空气的质量流量g m 、水蒸气的质量流量w m 、电加热器的加热量(即气流吸热量)'p Q 和气流温度等数据,测定方法如下: 1.干空气的质量流量g m 和水蒸气的质量流量w m 电加热器不投入,摘下流量计出口与恒温槽连接的橡皮管,把气流流量调节到实验流量值附近,测定流量计出口的气流干球温度0t 和湿球温度

1空气定压比热的测定

实验一空气定压比热的测定 气体定压比热的测定是工程热力学的基本实验之一。实验中涉及温度、压力、热量(电功)、流量等基本量的测量;计算中用到比热及混合气体(湿空气)的方面的基本知识。 一、实验目的 1、了解比热测定装置的基本原理和构思。 2、熟悉本实验中的测温、测压、测热量、测流量的方法。 3、掌握由基本数据计算出比热值和求得比热公式的方法。 4、增加热物性研究方面得感性认识,促进理论联系实际。 5、分析本实验产生误差得原因及减小误差得可能途径。 二、原理及计算 气体定压比热的定义为,在没有对外界做功的气体等压流动过程中, 则气体的热容可表示为。当气体在此等压过程中,由温度t1加热到温度t2时,气体在此温度范围内的平均定压比热值可由下式确定 kJ/kg.K,即单位质量的工质温度升高一度时所吸收的热量。 式中: m—气体的质量流量。㎏/s Qp—气体在等压流动过程中的吸热量。kJ/s 大气是含有水蒸汽的湿空气,当湿空气的温度由t1加热到温度t2时,根据流量计出口空气的干湿球温度计读数,可从湿空气的焓湿图查出含湿量d(即比湿度ω)克/千克干空气,并根据下式计算出水蒸汽的容积成分: 电热器消耗的电功率可由电压和电流的乘积计算。如要考虑电表的内耗,应扣除毫安表的内耗。设毫安表的内阻为RmA欧(Ω),则可得电热器单位时间放出的热量:

J/s 也可由功率表直接读出。 干空气流量(质量流量)为: = ㎏/s 水蒸汽的流量(质量流量)为: =㎏/s 水蒸汽吸收的热量为: = = = J/s 干空气的定压比热为: J/㎏.K 由以上计算过程可以看出,要测量计算气体的定压比热Cpm,需要测定的有关量分别是:

气体定压比热测定

1 干气体定压比热测定实验 干气体定压比热的测定是工程热力学的基本实验之一。实验中涉及温度、压力、热量(电功)、流量等基本量的测量;计算中用到比热及混合气体(混空气)方面的知识。 一、实验目的 1. 了解实验装置的基本原理和结构。 2. 熟悉温度、压力、热量、流量等基本量的测量方法。 3. 掌握由基本数据计算出比热值和求得比热公式的方法。 4. 分析产生误差的原因及减小误差的途径。 二、实验原理 本实验测定的是干空气的定压质量比热P C ,而不是定压容积比热P C ¢。 P C :P =const 时,1kg 气体温度升高1K 时所吸收的热量,kJ/(kg K) ; P C :P =const '时,1Nm 3气体温度升高1K 时所吸收的热量,kJ/(kg K) 。 根据定义,对于1kg 工质, P q C t = D kJ/(kg K) (1) 对于mkg 工质, P Q C m t = D kJ/(kg K) (2) 在这里我们所求的就是干空气的定压质量比热P C ,“干”用下标“g ”表示,即 g P g Q C m t = D kJ/(kg K) (3) 各参数值的测定如下: (1)t ?测定:我们将一定流量的气体通入比热仪,在比热仪中队气体进行加热后气体流出。这样,气体进入比热仪与流出比热仪就存在了温度差t ?,只要我们在比热仪进口设置温度计1t 和出口设置温度计2t ,即可求出21-t t t ?=。 (2)g m 的测定:由于干空气的质量不好测定,我们可以测定空气的质量流量g m kg/s ,干空气符合理想气体定律: g g g P V m R T = kg/s (4) 分母上,g R 为干空气的气体常数,287J/(kg K)g R = ; 0T 为干空气热力学温度,00(273.15)T t K =+ 分子上,g P 为空气中干空气的分压力,根据道尔顿分压定律,

实验 气体定压比热测定

实验 气体定压比热测定 一、实验目的 1. 了解气体比热测定装置的基本原理和装置结构。 2. 熟悉本实验中温度、压力、热量、流量的测量方法。 3. 掌握由测量数据计算定压比热的方法。 4. 分析本实验中误差产生的原因及减小误差的可能途径。 二、实验原理 根据定压比热的概念,气体在t ℃时的定压比热表示为 p dq c dt = (1) 当式(1)的温度间隔dt 为无限小时,p c 即为某一温度t 时气体的真实定压比热(由于气体的定压比热随温度的升高而增大,所以在给出定压比热的数值时,必须指明是哪个温度下的定压比热)。如果已得出()p c f t =的函数关系,温度由1t 至2t 的过程中所需要的热量即可按下式求得: 22 21 1 ()d p q c dt a bt ct t ==+++?? (2) 上式采用逐项积分来求热量十分复杂。在本实验的温度测量范围内(不高于300℃),空气的定压比热与温度的关系可近似认为是线性,即可表示为: p c a bt =+ (3) 则温度由1t 至2t 的过程中所需要的热量可表示为: ()2 1 d t t q a bt t =+? (4) 由1t 加热到2t 的平均定压比热容则可表示为: ()2 1 2 1 1 2 21 d 2 t t t p t a bt t t t c a b t t ++==+-? (5) 实验中,通过实验装置是湿空气,当湿空气气流由温度1t 加热到2t 时,其中水蒸气的吸热量可用式(4)计算,其中 1.833a =,0.0003111b =,则水蒸气的吸热量为: ()2 1 w w 1.8330.0003111d t t Q m t t =+? ()() 22 w 21211.8330.0001556kJ/s m t t t t ??=-+-?? (6) 式中:w m ——气流中水蒸气质量,kg/s 。 则干空气的平均定压比热容由下式确定: () () 2 1 w w 21w 21()()p p t pm t Q Q Q c m m t t m m t t '-= = ---- (7)

气体定压比热的测定

图 2 1 – 多层杜瓦瓶 2 – 电热器 3 – 均流网 4 – 绝缘垫 5 – 旋流片 6 – 混流网 7 – 出口温度计 冷空气 热空气 气体定压比热的测定 一、 实验目的 1.了解气体比热测定装置的基本原理和构思 2.熟悉本实验中的测温、测压、测热、测流量的方法 3.掌握由基本数据计算出比热值和求得比热公式的方法 4.分析本实验产生误差的原因及减小误差的可能途径 二、 实验装置 比热( )。气体的流量由节流阀控制,气体出口温度由输入电热器的功率来调节。本比热 仪可测 300℃以下气体的定压比热。 三、实验步骤 接通电源及测量仪表,选择所需的出口温度计插入混流网的凹槽中。 摘下流量计上的温度计,开动风机,调节节流阀,使流量保持在额定值附近。测出流量计出口空气的 干球温度()和湿球温度()。 将温度计插回流量计,调节流量,使它保持在额定值附近。逐渐提高电热器功率,使出口温度升至预 计温度 [可以预先估计所需电功率: pm C o t w t 图 1 1 – 比热仪主体 2 – 温度计 3 – 流量计 4 –

。式中,W 为电热器输入电功率(瓦);为进出口温度差(℃);为每流过10 升空气所需时间(秒)]。 待出口温度稳定后(出口温度在10分钟之内无变化或有微小起伏,即可视为稳定),读出下列数据:每10升气体通过流量计所需时间(,秒);比热仪进口温度(,℃)-即流量计的出口出口温度;出口温度(,℃);当时相应的大气压力(B ,毫米汞柱)和流量计出口处的表压(,毫米水柱);电热器的输入功率(W ,瓦)。 根据流量计出口空气的干球温度和湿球温度,从湿空气的干湿图查出含湿量(d ,克/公斤干空气),并根据下式计算出水蒸汽的容积成分: 根据电热器消耗的电功率,可算得电热器单位时间放出的热量: KJ/秒 干空气流量(质量流量)为: 公斤/秒 水蒸汽流量为: 公斤/秒 水蒸汽吸收的热量为: KJ/秒 干空气的定压比热为: KJ/(公斤﹒℃) 带入实验数据可得:C p =1.009KJ/(Kg ·K) τt W ?≈12 t ?ττ1t 2t h ?6221622 d d r w += Q W ? =()()() 15.27327.291000/1056.735/106.1314+????+-= =? ? o w o t h B r T R V P G τθθθ()()() 15.2736.131106447.43+?+-??= -o w t h B r τ()() 15.27306.471000/1056.735/106.134+????+= =? ? o w o w w w t h B r T R V P G τ()() 15.2736.13108889.23+?+??= -o w t h B r τ()? +=? ? 21 0001167.04404.0t t w w dt t G Q ()()[]21221200005835.04404 .0t t t t G w -+-=() () 12122 1 t t G Q Q t t G Q C w t t pm --= -= ? ? ? ? ?θθθ

空气比热容比的测定

空气比热容比的测定 气体的定压比热容与定容比热容之比称为气体的绝热指数,它是一个重要的热力学常数,在热力学方程中经常用到,本实验用新型扩散硅压力传感器测空气的压强,用电流型集成温度传感器测空气的温度变化,从而得到空气的绝热指数;要求观察热力学现象,掌握测量空气绝热指数的一种方法,并了解压力传感器和电流型集成温度传感器的使用方法及特性。 【预习重点】 1.了解理想气体物态方程,知道理想气体的等温及绝热过程特征和过程方程。 2.预习定压比热容与定容比热容的定义,进而明确二者之比即绝热指数的定义。 3.认真预习实验原理及测量公式。 【实验目的】 1.用绝热膨胀法测定空气的比热容比。 2.观测热力学过程中状态变化及基本物理规律。 3.了解压力传感器和电流型集成温度传感器的使用方法及特性。 【实验原理】 理想气体的压强P 、体积V 和温度T 在准静态绝热过程中,遵守绝热过程方程:PV γ 等于恒量,其中γ是气体的定压比热容P C 和定容比热容V C 之比,通常称γ=V P C C /为该气体的比热容比(亦称绝热指数)。 如图1所示,我们以贮气瓶内空气(近似为理想气体)作为研究的热学系统,试进行如下实验过程。 (1)首先打开放气阀A ,贮气瓶与大气相通,再关闭A ,瓶内充满与周围空气同温(设为0T )同压(设为0P )的气体。 (2)打开充气阀B ,用充气球向瓶内打气,充入一定量的气体,然后关闭充气阀B 。此时瓶内空气被压缩,压强增大,温度升高。等待内部气体温度稳定,即达到与周围温度平衡,此时的气体处于状态I (1P ,1V ,0T )。 (3)迅速打开放气阀A ,使瓶内气体与大气相通,当瓶内压强降至0P 时,立刻关闭放气阀A ,将有体积为ΔV 的气体喷泻出贮气瓶。由于放气过程较快,瓶内保留的气体来不及与外界进行热交换,可以认为是一个绝热膨胀的过程。在此过程后瓶中的气体由状态I (1P ,1V ,0T )转变为状态II (0P ,2V ,1T )。2V 为贮气瓶容积,1V 为保留在瓶中这部分气体 在状态I (1P ,0T )时的体积。 (4)由于瓶内气体温度1T 低于室温0T ,所以瓶内气体慢慢从外界吸热,直至达到室温 图1 实验装置简图

空气比热容比的测量实验报告

南昌大学物理实验报告课程名称:普通物理实验(2) 实验名称:空气比热容比的测量 学院:专业班级: 学生姓名:学号: 实验地点:座位号: 实验时间:

一、 实验目的: 1. 学习用绝热膨胀法测定空气的比热容比。 2. 观察热力学过程中状态变化及基本物理规律。 3. 学习气体压力传感器和电流型集成温度传感器的原理及使用方法。 二、 实验仪器: 气压计、FD-TX-NCD 空气比热容测定仪。 三、 实验原理: 遵循两条基本原则:其一是保持系统为孤立系统;其二是测量一个系统 的状态参量时,应保证系统处于平衡态。 气体的定压比热容P C 和定容比热容V C 之比称为气体的比热容比,用符号γ 表示(即p V C C γ=),又称气体的绝热系数。 如图所示,实验开始时,首先打开活塞C2,储气瓶与大气相通,当瓶内充满与周围空气同压强同温度的气体后,再关闭活塞C2。 打开充气活塞C1,将原处于环境大气压强为0p 、室温为0T 的空气,用打气球从活塞C1处向瓶内打气,充入一定量的气体,然后关闭充气活塞C1。此时瓶内空气被压缩而压强增大,温度升高,等待瓶内气体温度稳定,即达到与周围温度平衡。此时的气体处于状态I(1p ,1V ,0T ),其中1V 为储气瓶容积。 然后迅速打开放气阀门C2,使瓶内空气与周围大气相通,瓶内气体做绝热膨胀,将有一部分体积为V ?的气体喷泻出储气瓶。当听不见气体冲出的声音,即瓶内压强为大气压强0p ,瓶内温度下降到1T (1T <0T ),此时,立即关闭放气阀门C2,。由于放气过程较快,瓶内保留的气体由状态I(1p ,1V ,0T )转变为状态II (0p ,2V ,1T )。

气体定压比热容的测定

气体定压比热容的测定 测定气体定压比热容的基本测量项目,是测量巳知流量的气体的吸热量(或放热量)和温度变化值。基本方法可以分为两类。一类称为混合法,即预先将气体加热,让它流过量热器时受冷却(达到与量热器热平衡),由量热器测定气体的放热量。另一类称为定流法,即让气体流过量热器时被加热,由量热器测定气体的吸热量,因此,除了要准确测定气体在量热器人口和出口的温度之外,还必须仔细消除量热器热损失的影响或确定它的修正值,才能准确地测定气体的吸热量或放热量.本实验采用定流法测定空气的平均定压比热容。 一、实验原理 气体的定压比热容定义为 p p T h c ??? ????= (2-1) 在没有对外界作功的气体的等压流动过程中,p dQ m dh 1=, 则气体的定压比热容可以表示为 p p T Q m c )(1??= (2-2) 当气体在此等压过程中由温度t 1加热至温度t 2时,气体在此温度范围内的平均定压比热容值可以由下式确定: )(1221t t m Q c p t t pm -= kJ/(kg ·℃) (2-3) 式中,m —— 气体的质量流量kg/s ; Q P —— 气体在等压流动过程中的吸热量,kJ/s 低压气体的定压比热容通常用温度的多项式表示,例如下面空气的定压比热容的实验关系式: c P = 1.02319-1.76019×10-4T+4.02402×l0-7T 2 -4.87268×lO -10T 3 kJ/(kg ·K ) 式中T 为绝对温度,K 。该式用于250~600 K ,平均偏差为0.03%,最大偏差为0.28%。 在离开室温不很远的温度范圈内,空气的定压比热容与温度的关系可近似认为是线性的,即可近似表示为 bt a c p += (2-4) 由t 1加热到t 2的平均定压比热容则表示为 2)(21122121t t b a t t dt bt a c t t t t pm ++=-+=? (2-5) 大气是含有水蒸气的湿空气,当湿空气气流由温度t 1加热到t 2时,其中水蒸气的吸热量可用下式计算:

气体比热容的测量

气体比热容比C 缓冲瓶 P /C V 的测定 (补充讲义) 【实验目的】 1.观测热力学过程中状态变化及基本物理规律。 2.测定多种气体(单原子、双原子、多原子)的定压比热容与定容比热容之比。 【实验原理】 气体的定压比热容C P 与定容比热容C V P C /C =γ之比V 。在热 力学过程特别是绝热过程中是一 个很重要的参数,测定的方法有好 多种。这里介绍一种较新颖的方 法,通过测定物体在特定容器中的 振动周期来计算γ值。 实验基本装置如图所示. 振动物体小球的直径比玻璃管直径仅小0.01~0.02mm。它能在此精密的玻璃管中上下移动,在瓶子的壁上有一小口,并插入一根细管,通过它各种气体可以注入到烧瓶中。 为了补偿由于空气阻尼引起振动物体A 振幅的衰减,通过C 管一直注入一个小气压的气流. 在精密玻璃管B 的中央开设有一个小孔。当振动物体A 处于小孔下方的半个振动周期时,注入气体使容器的内压力增大,引起物体A 向上移动,而当物体A 处于小孔上方的半个振动周期时,容器内的气体将通过小孔流出,使物体下沉。以后重复上述过程,只要适当控制注入气体的流量,物体A 能在玻璃管B 的小孔上下作简谐振动,振动周期可利用光电计时装置来测得。 钢球A 的质量为m,半径为r(直径为d),当瓶子内压力P 满足下面条件时钢球A 处于力平衡状态。 2L r mg P P π+ =, 式中P L 为大气压强。 若物体偏离平衡位置一个较小距离x,则容器内的压力变化ΔP,物体的运动方程为 dP r dt x d m 222π= (1) 因为物体振动过程相当快,所以可以看作绝热过程,绝热方程 (2) 常数=r PV 将(2)式求导数得出:

2.气体定压比热容的测定

实验二 气体定压比热容的测定 一、实验目的 1. 掌握气体比热容测定装置的基本原理,了解辐射屏蔽绝热方法的基本思路; 2. 进一步熟悉温度、压力和流量的测量方法; 3. 测定空气的定压比热容,并与文献中提供的数据进行比较。 二、实验原理 按定压比热容的定义, T q c p p d δ= T c q p p d ?=δ ? ?=2 1 d T T p p T c m Q 气体定压比热容的积分平均值: T m Q T T m Q c p p pm ?= -= ) (12 (1) 式中,Q p 是气体在定压流动过程中由温度T 1被加热到T 2时所吸收的热量(W ),m 是气体的质量流量(kg/s ),△T 是气体定压流动受热的温升(K )。这样,如果我们能准确的测出气体的定压温升△T ,质量流量m 和加热量Q ,就可以求得气体的定压比热容c pm 。 在温度变化范围不太大的条件下,气体的定压比热容可以表示为温度的线性函数,即 c p =a +bT 不难证明,温度T 1至T 2之间的平均比热容,在数值上等于平均温度T m =( T 1+T 2)/2下气体的真实比热容,即 c pm =c p [(T 1+T 2)/2]=a+b T m (2) 据此,改变T 1或T 2,就可以测出不同平均温度下的比热容,从而求得比热容与温度的关系。 三、实验设备 实验所用的设备和仪器主要有风机、流量计、比热仪主体、调压变压器、温度计等。实验时,被测气体由风机经流量计送入比热仪主体,经加热、均流、旋流、混流后流出。在此过程中,分别测定:在流量计出口处的干、湿球温度T 0和T w ,气体流经比热仪主体的进出口温度T 1和T 2;气体的体积流量V ;电加热功率P 以及实验时的大气压p b 和流量计出口处的表压p e 。 气体的流量由节流阀控制,气体出口温度由输入电加热器的功率来调节。本比热仪可测300℃以下气体的定压比热容。 前已指出,提高测量精度的关键是提高Q p 、ΔT 和m 的测量精度,设电加热器的功率为P ,则, P=Q g +Q ζ (3) 其中,Q g 是气体所吸收的热量,Q ζ是损失到环境中的热量。由于杜瓦瓶实际上是一个高度真空的多层瓶,且每一层的内壁上都镀有高反射率的水银。这样,按着传热学理论,通过杜瓦瓶的散热损失将很小,因此在(3)式中的Q ζ 实际上很小,完全可以忽略不计。这样,P=Q g 。如果通入比热仪本体的是纯气体,则Q p =Q g =P 。

空气定压比热测定实验报告

空气定压比热测定实验报告 一、实验原理及过程简述 实验原理: 气体的定压比热定义为: 在没有对外界作出功的气体的等压流动过程中,,则气体的定压比热可表示为: 式中 —气体的质量流量,—气体在定压流动过程中的吸热量, 低压气体的定压比热容通常用温度的多项式表示,例如空气的定压比热容的实验关系式: 在与室温相近的温度范围内,空气的定压比热容与温度的关系可近似看为线性的,可近似表示为: 由T 1加热到T 2的平均比热容 大气是含水蒸气的湿空气,当湿空气气流由T 1加热到T 2时,其中水蒸气的吸热量可用下式计算: 式中,为气流中的水蒸气质量,。于是,干空气的平均定压比热容由下式确定: 为湿空气气流的吸热量。 实验过程: 1、用温湿度计表测量空气的干球温度及相对温度,由湿空气的焓-湿图确定含湿量,并计算出水蒸气的容积成分。 2、调节加热器功率,使出口温度升高至一定温度,当实验工况稳定后测定每10升气体通过流量计所需时间;比热仪进口温度和出口温度;当地大气压力和流量计出口处的表压;电热器的功率W 。 实验中需要计算干空气的质量流量、水蒸气的质量流量,电加热器的放热量,水蒸气吸收热量等数据并记录。 p T h Cp ??? ????=m Q d dh g &&=) (122 1 T T m Q Cpm g T T -= &&m &s kg g Q &s kJ 263101658.01006791.09705.0T T C p --?+?-=K kg kJ ?bT a Cp +=2 )(1 2122 1 2 1T T b a T T dt bT a C T T T T pm ++=-+= ?K kg kJ ?dT m Q T T w w ?-?+=2 1 )105345.06878.1(3&&)](102672.0)(6878.1[2 122312T T T T m w -?+-=-&s kJ w m &s kg ) ()(121221T T m Q Q T T m Q Cpm g w g g T T --=-=&&&&&K kg kJ ?w Q &),(0K T ?w r ),(s τ),(1K T ),(2K T ),(Pa B ),(2O mmH h ?g m &w m &

大学物理空气比热容的测量实验报告

大物实验报告撰写模板2 空气比热容比的测定 在热学中比热容比是一个基本物理量。过去,由于实验测量手段的原因使得对它的测量误差较大。现在通过先进的传感器技术使得测量便得简单而准确。本实验通过压力传感器和温度传感器来测量空气的比热容比。 一、实验目的 1. 用绝热膨胀法测定空气的比热容。 2. 观察热力学过程中状态变化及基本物理规律。 3. 学习气体压力传感器和电流型集成温度传感器的原理及使用方法。 二、实验原理 理想气体定压摩尔热容量和定体摩尔热容量之间的关系由下式表示 R C C v p =- (4-6-1) 其中, R 为普适气体常数。气体的比热容比γ定义为 v p C C = γ (4-6-2) 气体的比热容比也称气体的绝热系数,它是一个重要的物理量,其值经常出现在热力学方程中。 测量仪器如图4-6-1所示。1为进气活塞C 1,2 为放气活塞C 2,3为电流型集成温度传感器,4为气体压力传感器探头。实验时先关闭活塞C 2,将原处于环境大气压强为P 0、室温为T 0的空气经活塞C 1送入贮气瓶B 内,这时瓶内空气压强增大,温度升高。关闭活塞C 1,待瓶内空气稳定后,瓶内空气达到状态Ⅰ(101,,V T P ) ,V 1为贮气瓶容积。 然后突然打开阀门C 2,使瓶内空气与周围大气相通,到达状态Ⅱ(),,220V T P 后,迅速关闭活塞C 2。由于放气过程很短,可认为气体经历了一个绝热膨胀过程,瓶内气体压强减小,温度降低。绝热膨胀过程应满足下述方程 γ γ2011V P V P = (4-6-3) 在关闭活塞C 2之后,贮气瓶内气体温度将升高,当升到温度T 0时,原气体的状态为Ⅰ(101,,V T P )改变为状态Ⅲ(202,,V T P ) ,两个状态应满足如下关系:

空气比热容比的测定

空气比热容比的测定 1、学会一种测定空气比热容比的方法。 2、学会正确使用物理天平和千分尺。 3、掌握直接测量值和间接测量值不确定度的计算。 1、千分尺和物理天平的正确使用方法。 2、气体比热容比的概念和不确定度的计算。 讲解、讨论与演示相结合。 3学时。 比热容是物质的重要参量,在研究物质结构、确定相变、鉴定物质纯度等方面起着重要的作用。气体的定压比热容和定体比热容的比值v p C C 称为比热容比γ。气体的γ值在许多热力学过程特别是绝热过程中是一个很重要的参数。实验中气体的比热容比常通过绝热膨胀法、绝热压缩法等方法来测定。本实验将采用一种比较新颖的方法,即通过测定小球在储气瓶玻璃管中的振动周期来计算空气的γ值。 一、实验目的 1、学会一种测定空气比热容比的方法。 2、学会正确使用物理天平和千分尺。 3、掌握直接测量值和间接测量值不确定度的计算。 二、实验仪器 FB212型气体比热容比测定仪、支撑架、小型气泵、TW-1型物理天平、0-25mm 外径千分尺等。 FB212型气体比热容比测定仪的结构和连接方式如图2所示:

三、实验原理 如图1所示,钢球A 位于精密细玻璃管B 中,其直径仅仅 比玻璃管直径小0.01-0.02mm ,使之能在玻璃管中上下移动, 瓶上有一小孔C ,可以通过导管将待测气体注入到玻璃瓶中。 设小球质量为m ,半径为r ,当瓶内气压P 满足下式时, 小球处于平衡位置: 2 r mg P P L π+ = (2) 设小球从平衡位置出发,向上产生微小正位移x ,则瓶内气体的体积有一微小增量: x r dV 2π= (3) 与此同时瓶内气体压强将降低一微小值dP ,此时小球所受合外力为: dP r F 2π= (4) 小球在玻璃管中运动时,瓶内气体将进行一准静态绝热过程,有绝热方程: C PV =γ (5) 两边微分,得 01=+-PdV V dP V γγγ (6) 将(3)、(4)两式代入(6)式,得: 图1

相关文档
最新文档