移动通信综合实验16QAM调制解调与信道分析

移动通信综合实验16QAM调制解调与信道分析
移动通信综合实验16QAM调制解调与信道分析

南昌大学实验报告

学生姓名:学号:专业班级:

实验类型:□验证□综合 设计□创新实验日期: 2018/6/23 实验成绩:

一、实验名称

实验八 16QAM调制解调与信道分析

二、实验目的

(1) 掌握QAM及解调原理与特性

(2) 了解星座图的原理及用途

(3) 分析高斯、瑞利、莱斯信道

三、实验内容

(1) 设计16QAM调制解调算法

(2) 比较GMSK和16QAM在高斯、莱斯和瑞利信道条件下的误码性能

(3) 撰写实验报告。

四、实验原理

正交振幅调制是用两个独立的基带数字信号对两个相互正交的同频载波进行抑制载波的双边带调制,利用这种已调信号在同一带宽内频谱正交的性质来实现两路并行的数字信息传输。

正交振幅调制信号的一般表示式为

16QAM是指包含16种符号的QAM调制方式,产生的框图如图1.

图 1 16QAM调制

相干解调原理如图2.

图 2 16QAM解调

五、实验步骤

(1) 16QAM调制与解调算法

先产生所需的二进制基带信号:

%% 产生的随机二进制数据流

M = 16; %信号的星座尺寸

k = log2(M); %每个符号的比特数

n = 30000; %处理的比特数目

numSamplesPerSymbol = 1; %过采样因子

%% 创建二进制数据流作为列向量

rng default%使用缺省随机数发生器

dataIn = randi([0 1],n,1); %产生的二进制矢量数据

%% 将二进制信号转为整数值信号

dataInMatrix = reshape(dataIn,length(dataIn)/k,k);%数据整形成二进制4元组

dataSymbolsIn = bi2de(dataInMatrix); %转换为整数

使用MATLAB函数qammod()进行QAM的调制

%% 使用16-QAM调制

dataMod = qammod(dataSymbolsIn',M,'bin'); %二进制编码、相位偏移=0

scatterplot(dataMod)

title('未加噪声的星座图')

axis([-4 4 -4 4])

在信号中加入噪声

%% 添加高斯白噪声

EbNo = 10; % 当信道SNR计算的EB/N0=10dB

snr = EbNo + 10*log10(k) - 10*log10(numSamplesPerSymbol);

%% 将信号通过AWGN信道

rxSignal = awgn(dataMod,snr,'measured');

显示星座图

%% 使用scatterplot功能展示星座图

sPlotFig = scatterplot(rxSignal ,1,0,'g.');

hold on

scatterplot(dataMod,1,0,'k*',sPlotFig)

title('加了噪声的星座图')

使用MATLAB函数qamdemod ()进行QAM的解调

%% 16-QAM解调

dataSymbolsOut = qamdemod(rxSignal ,M,'bin');

%% 将整数值信号转为二进制信号

dataOutMatrix = de2bi(dataSymbolsOut,k);

dataOut = dataOutMatrix(:); %返回的数据列矢量

计算解调后的误码率

%% 计算系统的误码率(BER)

[numErrors,ber] = biterr(dataIn,dataOut);

fprintf('\nThe binary coding bit error rate = %5.2e, based on %d errors\n', ...

ber,numErrors)

运行效果如图3

图 3 运行效果图

(2) QAM在高斯、莱斯和瑞利信道条件下的误码性能

思路:先产生16QAM信号,然后先通过高斯信道引入噪声,再送入莱斯和瑞利信道后输出,通过给定不同的信噪比,画出误码率曲线。效果结果如图4所示,代码见附录1。

图 4 16QAM经过各信道的误码率

其中用到的各信道模型如下,并可以通过使用Y = FILTER(CHAN, X)来模拟信道Chanon 对信号X的影响。

A.高斯信道:AWGN:在某一信号中加入高斯白噪声

y = awgn(x,SNR) 在信号x中加入高斯白噪声。信噪比SNR以dB为单位。x的强度假定为0dBW。如果x是复数,就加入复噪声。

y = awgn(x,SNR,SIGPOWER) 如果SIGPOWER是数值,则其代表以dBW为单位的信号强度;如果SIGPOWER为'measured',则函数将在加入噪声之前测定信号强度。

y = awgn(x,SNR,SIGPOWER,STATE) 重置RANDN的状态。

y = awgn(…,POWERTYPE) 指定SNR和SIGPOWER的单位。POWERTYPE可以是'dB'或'linear'。如果POWERTYPE是'dB',那么SNR以dB为单位,而SIGPOWER以dBW为单位。

如果POWERTYPE是'linear',那么SNR作为比值来度量,而SIGPOWER以瓦特为单位。

B.瑞利信道:RAYLEIGHCHAN(TS, FD, TAU, PDB)

TS—为输入信号的采样周期

FD—就是Doppler频偏,以Hz为单位,与速率的换算关系为v×fc/c,fc是载频

TAU—输入的信道参数,一个向量,包含了各径的延时,以s为单位

PDB—输入的信道参数,一个向量,包含了各径的功率(当然是均值啦,实际产生的能量都是以此为均值的随机量),以dB为单位。

C.莱斯信道:RICIANCHAN(TS, FD, K)

TS—是输入信号的采样时间,以秒为单位。

FD—是最大的多普勒频移,赫兹。

K—是线性尺度上的Rice K-因子。

(3) GMSK在高斯、莱斯和瑞利信道条件下的误码性能

思路:先产生GMSK信号,然后先通过高斯信道引入噪声,再送入莱斯和瑞利信道后输出,通过给定不同的信噪比,画出误码率曲线。效果结果如图5所示,代码见附录2。

图 5 GMSK经过各信道的误码率

本次程序设计的各信道模型用到了MATLAB自带的模型类。

A.GMSK生成器:

comm.GMSKModulator(BitInput,PulseLength, SamplesPerSymbol)

? BitInput—指定是否将输入比特或整数。默认是false。

当为false,step方法要求输入带符号的整数或双精度型数据值的-1或1的列向量。

当为true,step方法要求输入带符号的整数或双精度型数据值的0或1的列向量? PulseLength—脉冲长度,默认的是4。

指定的长度的高斯脉冲形状在符号间隔作为实的正整数,GMSK为4.

? SamplesPerSymbol—每个输出符号的样本数目,默认的是8。

指定上采样系数输出为实数、正数,标量整数值。上采样系数的数目是的step方法用于产生每个输入样本的输出采样。

B.高斯信道生成器:

comm.AWGNChannel('NoiseMethod','SNR')

? NoiseMethod—噪声的方法

'Signal to noise ratio (Eb/No)','Signal to noise ratio (Es/No)','Signal to noise ratio (SNR)'或者,'Variance'

? SNR—信号功率与噪声功率之比的分贝值

C.莱斯信道生成器:

comm.RicianChannel(

'SampleRate',1e6,...

'KFactor',2.8,...

'MaximumDopplerShift',50,...

'DopplerSpectrum',doppler('Bell', 8),...

'RandomStream','mt19937ar with seed', ...

'Seed',73, ...

'PathGainsOutputPort',true);

? SampleRate—输入信号取样速率(Hz) ,此属性的默认值是1Hz。

? KFactor—RicianK因子(标量或矢量线性尺度),该位的默认值3

如果KFactor是一个标量,那么第一离散路径是具有Kras系数的Rice k-因子的莱斯衰落过程。剩下的离散路径是独立的瑞利衰落过程。如果KFactor是行向量,则对应于K因子向量的正元素的离散路径是具有由该元素指定的瑞斯K因子的莱斯衰落过程。与K因子向量的零值元素相对应的离散路径是瑞利衰落过程

? MaximumDopplerShift—最大多普勒频移(赫兹),属性的默认值是0.001赫兹。

多普勒频移适用于信道的所有路径。当将最大值DoppReSHIFT设置为0时,通道对整个输入保持静态。可以使用RESET方法生成新的通道实现。

? DopplerSpectrum—多普勒频谱

指定所述多普勒频谱的形状(路径)的信道。

? RandomStream—随机数流源,此属性的默认值是Global stream。

将随机数流的源指定为Global stream| mt19937ar的种子。

? Seed—初始种子的mt19937ar随机数流,默认值73

? PathGainsOutputPort—输出信道路径增益,此属性默认值是FALSE

将此属性设置为true输出通道路径增益的衰落过程的基础。

E.瑞利信道生成器:

comm.RayleighChannel(...

'SampleRate',1e6, ...

'MaximumDopplerShift',30, ...

'DopplerSpectrum',doppler('Bell', 8),...

'RandomStream','mt19937ar with seed', ...

'Seed',73, ...

'PathGainsOutputPort',true);

?属性与莱斯信道相同

六、思考及体会

通过本次实验,对各信道的模型有了一定的了解,通过误码率曲线图直观的看到了不同信道对信号的影响,为之后的学习提供了形象的解释。

附录1

%% ---------------------- QAM ---------------------- %%

M = 16; %信号的星座尺寸

k = log2(M); %每个符号的比特数

n = 30000; %处理的比特数目

numSamplesPerSymbol = 1; %过采样因子

%% 创建二进制数据流作为列向量

rng default %使用缺省随机数发生器

dataIn = randi([0 1],n,1); %产生的二进制矢量数据

dataMod = qam_mod(dataIn); % 数据调制

for N = -50:20

%% 高斯

% 添加高斯白噪声

snr = N;

% 将信号通过AWGN信道

rxSignal_Gauss = awgn(dataMod,snr,'measured'); %信噪比以dB为单位

% 16-QAM解调

dataOut_Gauss = qam_demod(rxSignal_Gauss);

% 计算系统的误码率(BER)

[numErrors, ber] = biterr(dataIn,dataOut_Gauss);

% fprintf('\nThe binary coding bit error rate = %5.2e, based on %d errors\n',ber,numErrors) plot(snr,ber,'r^')

hold on

%% 瑞利

% 获得瑞利信道函数

Rayleigh_chan = rayleighchan(1/10000,100); %采样频率1/10000,最大多普勒频移100

% 将信号通过Rayleigh信道

rxSignal_Rayleigh = filter(Rayleigh_chan, rxSignal_Gauss);

% 16-QAM解调

dataOut_Rayleigh = qam_demod(rxSignal_Rayleigh);

% 计算系统的误码率(BER)

[numErrors, ber] = biterr(dataIn,dataOut_Rayleigh);

% fprintf('\nThe binary coding bit error rate = %5.2e, based on %d errors\n',ber,numErrors) plot(snr,ber,'g*')

hold on

%% 莱斯

% 获得莱斯信道函数

Rician_chan = ricianchan(1/10000,100,1);

% 将信号通过Rician信道

rxSignal_Rician = filter(Rician_chan, rxSignal_Gauss);

% 16-QAM解调

dataOut_Rician = qam_demod(rxSignal_Rician);

% 计算系统的误码率(BER)

[numErrors, ber] = biterr(dataIn,dataOut_Rician);

% fprintf('\nThe binary coding bit error rate = %5.2e, based on %d errors\n',ber,numErrors) plot(snr,ber,'b.')

hold on

end

xlabel('信噪比SNR'),ylabel('误码率BER');

legend('高斯','瑞利','莱斯, K=5dB','Location','NorthEastOutside')

title('16QAM 下的误码率 -- SXF')

hold off

scatterplot(dataMod)

title('16QAM - 调制信号星座图 -- SXF')

axis([-4 4 -4 4])

附录2

%% ---------------------- GMSK ---------------------- %%

n = 300; %处理的比特数目

sps = 8; %每个符号的采样

%% 创建二进制数据流作为列向量

rng default %使用缺省随机数发生器

dataIn = randi([0 1],n,1); %产生的二进制矢量数据

% 创建GMSK调制器

gmskMod = comm.GMSKModulator('BitInput',true,'PulseLength',4, 'SamplesPerSymbol',sps); % 创建GMSK解调器

gmskDeMod = comm.GMSKDemodulator('BitOutput',true,'PulseLength',4,

'SamplesPerSymbol',sps);

% 数据调制

modSigGMSK = step(gmskMod, dataIn);

% 误码率器

hError = comm.ErrorRate('ReceiveDelay', gmskDeMod.TracebackDepth);

for N=-50:20

%% 高斯

snr = N;

% 创建高斯信道器

hAWGN = comm.AWGNChannel('NoiseMethod','Signal to noise ratio (SNR)','SNR',snr);

% 将信号通过AWGN信道

rxSignal_Gauss = step(hAWGN, modSigGMSK);

% GMSK解调

dataOut_Gauss = step(gmskDeMod, rxSignal_Gauss);

% 计算系统的误码率(BER)

errorStats = step(hError, dataIn, dataOut_Gauss);

fprintf('Error rate = %f\nNumber of errors = %d\n',errorStats(1), errorStats(2))

figure(3)

plot(snr,errorStats(1),'r^')

hold on

%% 瑞利

RayleighChan = comm.RayleighChannel(...

'SampleRate',1e6, ...

'MaximumDopplerShift',30, ...

'DopplerSpectrum',doppler('Bell', 8),...

'RandomStream','mt19937ar with seed', ...

'Seed',73, ...

'PathGainsOutputPort',true);

% 将信号通过瑞利信道

[rxSignal_Rayleigh, PathGains1] = step(RayleighChan,rxSignal_Gauss); %将通过AWGN信道的信号再通过瑞利信道 modSigGMSK

% GMSK解调

dataOut_Rayleigh = step(gmskDeMod, rxSignal_Rayleigh);

% 计算系统的误码率(BER)

errorStats = step(hError, dataIn, dataOut_Rayleigh);

fprintf('Error rate = %f\nNumber of errors = %d\n', errorStats(1), errorStats(2))

plot(snr,errorStats(1),'b.')

hold on

%% 莱斯

ricianChan = comm.RicianChannel(...

'SampleRate',1e6,...

'KFactor',2.8,...

'MaximumDopplerShift',50,...

'DopplerSpectrum',doppler('Bell', 8),...

'RandomStream','mt19937ar with seed', ...

'Seed',73, ...

'PathGainsOutputPort',true);

% 将信号通过莱斯信道

[rxSignal_Rician, RicianPathGains1] = step(ricianChan,rxSignal_Gauss); %将通过AWGN信道的信号再通过莱斯信道 modSigGMSK

% GMSK解调

dataOut_Gauss = step(gmskDeMod, rxSignal_Rician);

% 计算系统的误码率(BER)

errorStats = step(hError, dataIn, dataOut_Gauss);

fprintf('Error rate = %f\nNumber of errors = %d\n', errorStats(1), errorStats(2))

plot(snr,errorStats(1),'g*')

hold on

end

xlabel('信噪比SNR'),ylabel('误码率BER');

legend('高斯','瑞利','莱斯, K=5dB','Location','NorthEastOutside')

title('GMSK 下的误码率 -- SXF')

移动通信实验报告

邮电大学 移动通信实验报告 班级: 专业: : 学号:

班序号: 一、实验目的 (2) 1、移动通信设备观察实验 (2) 2、网管操作实验 (3) 二、实验设备 (3) 三、实验容 (3) 1、TD_SCDMA系统认识 (3) 2、硬件认知 (3) 2.1移动通信设备 (3) 2.2 RNC设备认知 (4) 2.3 Node B设备(基站设备) (6) 2.4 LMT-B软件 (7) 2.5通过OMT创建基站 (8) 四、实验总结 (20) 一、实验目的 1、移动通信设备观察实验 1.1 RNC设备观察实验 a) 了解机柜结构 b) 了解RNC机框结构及单板布局 c) 了解RNC各种类型以及连接方式 1.2 基站设备硬件观察实验 a) 初步了解嵌入式通信设备组成 b) 认知大唐移动基站设备EMB5116的基本结构 c) 初步分析硬件功能设计

2、网管操作实验 a) 了解OMC系统的基本功能和操作 b) 掌握OMT如何创建基站 二、实验设备 TD‐SCDMA 移动通信设备一套(EMB5116基站+TDR3000+展示用板卡)电脑 三、实验容 1、TD_SCDMA系统认识 全称是时分同步的码分多址技术(英文对应Time Division-Synchronous Code Division Multiple Access)。 TD_SCDMA系统是时分双工的同步CDMA系统,它的设计参照了TDD(时分双工)在不成对的频带上的时域模式。运用TDSCDMA这一技术,通过灵活地改变上/下行链路的转换点就可以实现所有3G对称和非对称业务。合适的TDSCDMA时域操作模式可自行解决所有对称和非对称业务以及任何混合业务的上/下行链路资源分配的问题。 TD_SCDMA系统网络结构中的三个重要接口(Iu接口、Iub接口、Uu接口),认识了TD_SCDMA系统的物理层结构,熟悉了TD_SCDMA系统的六大关键技术以及其后续演进LTE。

移动通信实验指导书解剖

移动通信实验指导书 王明志主编 信息学院

前言 移动通信是上一世纪末三大新兴通信技术(移动通信、光纤通信、卫星通信)之一。它使人类实现了随时随地快速可靠地进行各种信息的交换。移动通信集各种通信最新技术之大成,是一种较为理想的通信方式。 针对不断发展的新技术,高等院校通信专业的课程设置也在不断更新,实验手段也在不断发展。我们针对移动通信实验课与移动通信技术、设备现状,设计了相关实验,编写了这套教材。本教材是根据多年从事移动通信教学和工程实验,并在考了国内外有关文献和资料的基础上编写而成。 移动通信网络是一个非常庞大、复杂的网络,涉及当今通信领域的方方面面。为了让高等院校通信专业的学生对移动通信技术有一个全面的了解,“移动通信课程”的开设适应了这一形势的要求。另一方面,在让学生对移动通信系统有一个较全面了解的同时,对其中关键技术的学习或深入地掌握是必要的。对于这一部分知识点的学习,一方面可以通过理论课堂的学习获得,另一方面可以通信实验的环境进行加强。ZH7005B多体制移动通信实验平台为学生们了解当今移动通信技术的发展提供了一个良好的实验平台。 在多体制移动通信实验平台中,设计了一个通用的信道硬件平台,它能支持多种模式的移动通信网络。对目前常见的移动通信技术的关键部分“空中接口技术”,学生能有一个全面的了解: 1.最小频移键控(MSK) 2.高斯最小频移键控(GMSK) 3.π/4差分四相相移键控(π/4DQPSK) 4.CDMA/DS码分多址通信技术 5.CDMA/DS-IS95码分多址通信技术 6.跳频通信技术

目录实验一QPSK传输系统实验 实验二OQPSK传输系统实验 实验三/4DQPSK传输系统实验实验四MSK传输系统实验 实验五GMSK传输系统实验 实验六16QAM传输系统实验 实验七64QAM传输系统实验 实验八CDMA传输系统实验 附录HDB3测试码序列的改进

移动应用开发-实验报告

实验一Android开发基础 实验时间:2018.3.16 实验地点:X501 一、实验目的 1. 掌握Android开发环境的搭建; 2. 了解Android SDK的安装、配置、使用; 3. 熟悉开发工具Android Studio的使用; 4. 了解创建项目并熟悉文件目录结构; 二、实验学时 2学时/次,共2学时 三、实验环境 Android Studio;JDK1.7;PC机 四、实验容和要求 1.Android Studio安装 (1) Android Studio的下载与安装 前提准备工作:安装JDK 并配置JDK 环境变量。 请使用传统的JAVA_HOME 环境变量名称。很多人会被提醒JVM 或者JDK 查找失败,几乎都是因为JDK 版本或者没有使用JAVA_HOME 这个环境变量名称的原因。 ①Android Studio可以从中文社区进行下载,网址为https://www.360docs.net/doc/ad14811288.html,/。在浏览器中打开该网址,如图1-1所示。 图1-1 Android Studio官方 ②选择合适的平台,进行下载,如图1-2所示。

图1-2 Java platform(JDK) ③安装之前,要确定JDK版本必须是1.7或以上,否则安装之后会报错。双击Android Studio的安装文件,按照提示一步步安装,具体参考教材。不出意外的话,看到图1-3所示的界面,说明Android Studio已经安装成功了。 图1-3 Android Studio已经安装成功 2. 配置Android Studio 安装Android Studio完成之后,运行Android Studio。每一次安装,都会显示图1-4所示的这个界面,用以选择导入Android Studio的配置文件。 第一个选项:使用以前版本的配置文件夹。 第二个选项:导入某一个目录下的配置文件夹。 第三个选项:不导入配置文件夹。 如果你以前使用过Android Studio,可以选择到以前的版本。如果你是第一次使用,可以选择第三项。 图1-4 导入Android Studio配置文件

《移动通信技术》实验教学大纲(18.6)教学文案

《移动通信技术》实验教学大纲(18.6)

《移动通信技术》实验教学大纲 1.实验课程号: B453L07500 2.课程属性:(限选) 3.实验属性:非独立设课 4.学时学分:总学时36,实验学时10 5.实验应开学期:秋季 6.先修课程:数据通信与计算机网络,信号与系统,通信原理等。 一、课程的性质与任务 本实课程是移动通信技术的配套实验课,要求通过实验课的练习与实践使 学生加深对现代移动通信技术的基本概念和基本原理的理解,并掌握典型通信 系统的基本组成和基本技术,以适应信息社会对移动通信高级工程技术人才的 需求。 二、实验的目的与基本要求 通过实验使学生对比较抽象的移动通信理论内容产生一个具体的感性认 识,通过具体的实验操作使学生达到“知其然,且知其所以然”,从而提高分析 问题、解决问题的能力。 三、实验考核方式及办法 实验成绩评分办法:实验成绩占课程成绩的15%。 四、实验项目一览表 移动通信技术实验项目一览表 序实验项目实验实验适用学 号名称类型要求专业时 1 数字调制与解调技术验证性必做信息工程/电子信息工程 2 2 扩频技术验证性必做信息工程/电子信息工程 2 3 抗衰落技术验证性必做信息工程/电子信息工程 2 4 GSM通信系统实验综合性必做信息工程/电子信息工程 2 5 CDMA通信系统实验综合性必做信息工程/电子信息工程 2

五、实验项目的具体内容:

实验一数字调制与解调技术 1.本次实验的目的和要求 通过本实验了解QPSK, OQPSK,MSK,GMSK调制原理及特性、解调原理及载波在相干及非相干时的解调特性。将它们的原理及特性进行对比,掌握它们的差别。掌握星座图的概念、星座图的产生原理及方法。 2.实验内容 1)观察I、Q两路基带信号的特征及与输入NRZ码的关系。 2)观察IQ调制解调过程中各信号变化。 3)观察解调载波相干时和非相干时各信号的区别。 4)观察各调制信号的区别。 5)观察QPSK、OQPSK、MSK、GMSK基带信号的星座图,并比较各星 座图的不同及他们的意义。 3.需用的仪器 移动通信原理实验箱(主控&信号源模块、软件无线电调制模块10号模块、软件无线电解调模块11号模块),示波器。 4.实验步骤 1)准备:阅读实验教程,了解QPSK, OQPSK,MSK,GMSK的调制解调原 理; 2)QPSK调制及解调实验 (1)按实验要求完成所有连线,形成调制解调电路。 (2)QPSK调制。设置主控菜单,选择QPSK调制及解调;用示波器观测10号模块的TP8(NRZ-I)和TP9(NRZ-Q)测试点,观测基带信号经过串并变换后输出的两路波形,与输入信号对比;示波器探头接10号模块TH7(I-Out)和 TH9(Q-Out),调节示波器为XY模式,观察QPSK星座图;示波器探头接10号模块TH7(I-Out)和TP3(I),对比观测I路成形波形的载波调制前后的波形;示波器探头接10号模块TH9(Q-Out)和TP4(Q),对比观测Q路成形波形的载波调制前后的波形;示波器探头接10模块的TP1,观测I路和Q路加载频后的叠加信号,即QPSK调制信号。

移动通信实验指导书

目录 移动通信系统实验指导 (1) 实验一:AWGN信道中BPSK调制系统的 BER仿真计算 (2) 实验二:移动信道建模的仿真分析 (4) 实验三: CDMA通信系统仿真 (5)

移动通信系统实验指导 上机实验是移动通信课程的重要环节,它贯穿于整个“移动通信”课程教学过程中。本课程的实验分为3个阶段进行,它要求学生根据教科书的内容,在MATLAB仿真平台上并完成相应系统及信道建模仿真,帮助学生直观的了解移动通信系统的相关工作原理。最后要求学生根据实验内容完成实验报告。 试验的软件环境为Microsoft Windows XP + MATLAB。

实验一:AWGN信道中BPSK调制系统的 BER仿真计算 一、实验目的 1.掌握二相BPSK调制的工作原理 2.掌握利用MATLAB进行误比特率测试BER的方法 3.掌握AWGN信道中BPSK调制系统的BER仿真计算方法 二、实验原理 1.仿真概述及原理 在数字领域进行的最多的仿真任务是进行调制解调器的误比特率测试,在相同的条件下 进行比较的话,接收器的误比特率性能是一个十分重要的指标。误比特率的测试需要一个发送器、一个接收器和一条信道。首先需要产生一个长的随机比特序列作为发送器的输入,发送器将这些比特调制成某种形式的信号以便传送到仿真信道,我们在传输信道上加上一定的可调制噪声,这些噪声信号会变成接收器的输入,接收器解调信号然后恢复比特序列,最后比较接收到的比特和传送的比特并计算错误。 误比特率性能常能描述成二维图像。纵坐标是归一化的信噪比,即每个比特的能量除以噪声的单边功率谱密度,单位为分贝。横坐标为误比特率,没有量纲。

移动通信实验报告

实验一 m序列产生及特性分析实验 一、实验目得 1.了解m序列得性质与特点; 2。熟悉m序列得产生方法; 3.了解m序列得DSP或CPLD实现方法。 二、实验内容 1。熟悉m序列得产生方法; 2.测试m序列得波形; 三、实验原理 m序列就是最长线性反馈移存器序列得简称,就是伪随机序列得一种。它就是由带线性反馈得移存器产生得周期最长得一种序列。 m序列在一定得周期内具有自相关特性.它得自相关特性与白噪声得自相关特性相似。虽然它就是预先可知得,但性质上与随机序列具有相同得性质.比如:序列中“0”码与“1”码等抵及具有单峰自相关函数特性等。 五、实验步骤 1.观测现有得m序列。 打开移动实验箱电源,等待实验箱初始化完成.先按下“菜单”键,再按下数字键“1”,选择“一、伪随机序列”,出现得界面如下所示: ?再按下数字键“1"选择“1m序列产生”,则产生一个周期为15得m序列。 2。在测试点TP201测试输出得时钟,在测试点TP202测试输出得m序列。 1)在TP201观测时钟输出,在TP202观测产生得m序列波形。

图1-1 数据波形图

实验二 WALSH序列产生及特性分析实验 一.实验目得 1。了解Walsh序列得性质与特点; 2。熟悉Walsh序列得产生方法; 3.了解Walsh序列得DSP实现方法。 二.实验内容 1.熟悉Walsh序列得产生方法; 2.测试Walsh序列得波形; 三。实验原理 Walsh序列得基本概念 Walsh序列就是正交得扩频序列,就是根据Walsh函数集而产生.Walsh函数得取值为+1或者—1。图1-3—1展示了一个典型得8阶Walsh函数得波形W1。n阶Walsh函数表明在Walsh函数得周期T内,由n段Walsh函数组成.n阶得Walsh函数集有n个不同得Walsh函数,根据过零得次数,记为W0、W1、W2等等。 t 图2-1 Walsh函数 Walsh函数集得特点就是正交与归一化,正交就是同阶不同得Walsh函数相乘,在指定得区间积分,其结果为0;归一化就是两个相同得Walsh函数相乘,在指定得区间上积分,其平均值为1。 五、实验步骤 1。观测现有得Walsh序列波形 打开移动实验箱电源,等待实验箱初始化完成. 先按下“菜单"键,再按下数字键“1”,选择“一、伪随机序列”,出现得界面如下所示:

移动通信 实验 解扩实验

实验十二解扩实验 一.实验目的: 1、通过本实验掌握载波已调信号m序列解扩原理及方法,掌握解扩前后信号在时 域及频域上的变化。 2、通过本实验掌握载波已调信号GOLD序列解扩原理及方法,掌握解扩前后信号在 时域及频域上的变化。 二.实验内容: 1、观察解扩时本地扩频码与扩频时扩频码的同步情况。 2、观察已调信号在解扩前后的频域变化。 三.基本原理: m序列解扩的是在接收到的RF信号上进行的,其实解扩的原理很简单,即用一个与发送端完全相同的m序列与接收到的信号直接相乘就可以完成信号的解扩,两个m序列的相位必须一致,即接收端产生的m序列必须进行捕获和跟踪,以使其速率和相位与发送端m序列保持一致。 四.实验原理: 1、实验模块简介 (1)CDMA发送模块: 本模块的主要功能:产生PN31伪随机序列,将伪随机序列或外部输入的其它数字序列扩频,扩频增益为32,扩频后输出码速率为512kbps,可输出两条不同扩 频码信号。 (2)CDMA接收模块: 本模块的主要功能:完成10.7MHz射频信号的选频放大,当本地扩频码设置为与发送端扩频码相同时,可完成扩频码的捕获及跟踪,进而完成射频信号的解扩。 (3)IQ调制解调模块: 本模块的主要功能:产生调制及解调用的正交载波;完成射频正交调制及小功率线性放大;完成射频信号正交解调。 2、扩频后的PSK已调信号分为三路送入CDMA接收模块中,分别与结婚搜模块中产 生的m序列的超前、同相、滞后序列相乘。在扩频码没有捕获到时,同相支路的捕获输出为低电平,扣码电路工作,每周期扣掉1/4个码元,使发送端和接收端的两个PN序列产生相对滑动,当滑动到两个序列的相位差小于一个码元时,电平,扣码电路停止工作,系统进入跟踪状态。此时超前-滞后支路产生的复合相关特性出现,经低通滤波后控制VCO,使收发端PN序列完全同步,此后跟踪过程一直存在,维持PN序列的同步。 PN码同相支路的相乘信号经带通滤波后即为解扩后的信号。该信号时一个基带信元的PSK调制信号,扩频码调制部分已经被去除。 五.实验步骤: (一)m序列扩频实验 1、在实验箱上正确安装CDMA发送模块、CDMA接收模块及IQ调制解 调模块 2、正确连线,检查无误后打开电源 3、将发送模块上“GOLD1 SET”拨码开关拨为全“0”,将接收模块上“GOLD SET” 拨码开关拨为全“0”,按复位键以完成设置。 4、示波器探头接接收模块“输出2”测试点,调整“幅度”电位器使该点信号电压

北邮移动通信课程设计综述

信息与通信工程学院移动通信课程设计 班级: 姓名: 学号: 指导老师: 日期:

一、课程设计目的 1、熟悉信道传播模型的matlab 仿真分析。 2、了解大尺度衰落和信干比与移动台和基站距离的关系。 3、研究扇区化、用户、天线、切换等对路径损耗及载干比的影响。 4、分析多普勒频移对信号衰落的影响,并对沿该路径的多普勒频移进行仿真。 二、课程设计原理、建模设计思路及仿真结果分析 经过分析之后,认为a 、b 两点和5号1号2号在一条直线上,且小区簇中心与ab 连线中心重合。在此设计a 、b 之间距离为8km ,在不考虑站间距的影响是默认设计基站间距d 为2km ,进而可求得a 点到5号基站距离为2km ,b 点到2号基站距离为2km ,则小区半径为3/32km,大于1km ,因而选择传播模型为Okumura-Hata 模型,用来计算路径损耗;同时考虑阴影衰落,本实验仿真选择阴影衰落是服从0平均和标准偏差8dB 的对数正态分布。实验仿真环境选择matlab 环境。 关于路径损耗——Okumura-Hata 模型是根据测试数据统计分析得出的经验公式,应用频率在150MHz 到1 500MHz 之间,并可扩展3000MHz;适用于小区半径大于1km 的宏蜂窝系统,作用距离从1km 到20km 经扩展可至100km;基站有效天线高度在30m 到200m 之间,移动台有效天线高度在1m 到10m 之间。其中Okumura-Hata 模型路径损耗计算的经验公式为: terrain cell te te te c p C C d h h h f L ++-+--+=lg )lg 55.69.44()(lg 82.13lg 16.2655.69α 式中,f c (MHz )为工作频率;h te (m )为基站天线有效高度,定义为基站天线实际海拔高度与天线传播范围内的平均地面海拔高度之差;h re (m )为终端有效天线高度,定义为终端天线高出地表的高度;d (km ):基站天线和终端天线之间的水平距离;α(h re ) 为有效天线修正因子,是覆盖区大小的函数,其数字与所处的无线环境相关,参见以下公式: 22(1.1lg 0.7)(1.56lg 0.8)(), 8.29(lg1.54) 1.1(), 300MHz,3.2(lg1.75) 4.97(), 300MHz,m m m m f h f dB h h dB f h dB f α---??-≤??->?中、小城市()=大城市大城市 C cell :小区类型校正因子,即为:

移动通信实验室建设

通信工程专业教学 移动通信实验室建设方案 2012 年5 月

一、建设移动通信实验室的必要性 随着通信技术与经济全球化的发展,人类已进入信息化社会。在信息化社会中,人们对通信的需求与依赖日益增强。移动通信是通信发展的一座里程碑,在我国具用广阔的运用领域与市场。当前,我国移动用户总数已超过固话用户总数。移动通信在我国既是通信发展的热点,又是通信发展的重点,发展规模与速度十分迅速,前景看好。 通信实验室是高校培养通信专业人才的实验基地。为了培养适应信息化社会需求的高素质通信专业技术人才,建设移动通信实验室对于高校通信专业特别是通信类高校是完全必要的,也是非常及时的。 二、移动通信实验室的地位与作用 移动通信实验室是一种扩延型专业实验室。它对于学习现代数字传输技术、培养学生综合运用知识解决实际问题的能力、扩大学生视野与知识面、提高学生的专业素质具用重要意义。移动通信实验室在通信实验室体系结构中的地位与作用,如下图所示: 由上图可看出,移动通信实验室是通信实验室体系结构中十分重要的组成部分。 三、通信实验室建设步骤 为了使通信实验室的建设配置合理、能适应通信技术发展的需要,必须按照严格的步骤进行。否则会因为仓促建设,造成建非所用、实验设备技术落后、教学资源严重浪

费等状况。通信实验室建设可参照以下几步进行: (1)根据学校学科建设的要求及在本专业上的建设力度,规划本专业的建设重点,其中包括实验室的建设方向。 (2)在确定今后实验室的建设要求后,再根据目前已有实验室的配置及今后的招生规模制定相应实验室的建设方案,并将方案提交专家组审议(专家组一般需请 外单位的一些专家组成)及学校领导审批。 (3)根据审批结果进行经费的申请与落实情况。 (4)实验室的场地准备:根据实验开设的规模确定场地大小。 (5)对实验室建设需配置的仪表进行订购:学生用仪表一般以中档为主,可配置一定量的高档仪表如存贮示波器、误码仪、话路特性测量仪、频谱分析仪等。 (6)对老实验的改造,如果是将设备少量的增加,则设备的型号与原有的实验设备应尽可能在在型号上保持一致。如果筹建新实验室或老实验室作大规模的改造 建设,需进行大量的调查、研究。 (7)在进行调查时,通过向相关教学设备供货商发技术咨询函或通过向兄弟院校进行调究的方式进行设备咨询,这时间一般需持续半年到一年。在可能情况下, 向相关设备供应商索取实验设备与实验指导书,进行实际考查,以核实实验设 备的技术先进性、设备的可使用性、实验的可实施性等进行详细调查。 (8)委托招标单位进行招标:在招标时应将学校对设备的要求描述清楚,防止买非所需。在招标过程中一般需与欲购的设备供应商保持密切联系,这样可以做到 以较低的价格获取性能优异的设备。同时还应强调“眼见为实”,不要随意相 信设备供应商许诺的“升级条款”,很多技术不是一跃而就的,有些技术必须 依靠长期的技术积累才能掌握。最后不能以价低中标的原则进行采购。对招标 后的单位需对其技术培训和售后服务提出一定要求,这样才能保证实验课程的 顺利开设。 (9)设备验货:对购买的设备要进行严格的检验,保证购进设备的质量。 四、实验内容 实验一、GMSK调制实验; 实验二、GMSK解调实验; 实验三、GMSK在非线性信道下的性能; 实验四、π/4DQPSK调制实验; 实验五、π/4DQPSK解调实验; 实验六、m序列的产生与相关性测量实验; 实验七、Gold序列的产生和相关性测量实验; 实验八、Walsh码正交性测量实验; 实验九、卷积编码器、译码器实验; 实验十、传统交织编码抗突发错误性能测量实验;

移动通信 GSM实验报告

深圳大学实验报告 课程名称:移动通信 实验项目名称GSM模块配置/设备呼叫/设备短信收发学院:信息工程 专业:通信工程 指导教师: 报告人:学号:班级: 1 实验时间: 实验报告提交时间: 教务处制

实验目的与要求: GSM模块配置1. 了解GSM模块的特点; 2. 了解配置GSM模块的AT命令。GSM 设备短信收发1.了解GSM网络中短消息业务的组成结构;2. 了解GSM网络中短消息收发的过程; 3. 熟悉短消息的数据格式; 4. 熟悉GSM模块进行短信收发的AT命令。 GSM 设备呼叫1.了解GSM网络中话音呼叫的过程; 2. 熟悉用本移动实验箱作为主叫和被叫用户进行语音呼叫;3.熟悉GSM模块进行语音呼叫的AT命令 实验原理:

实验过程及内容: GSM模块配置:1、GSM模块测试(无需插入SIM卡)2、GSM通信速率设置(例:修改GSM模块速率为9600bps)3、GSM模块命令返回结果码数字或字符模式4、GSM模块命令结果码控制5、GSM模块命令回显模式6、保存设置7、版本信息GSM设备短信收发:1.收发短信的准备(1)在PC机上收发短信(2)设置GSM 模块命令返回结果码为字符模式;(3)设置短消息中心(4)设置短信存储区域2.用AT命令控制GSM接收短信过程如下(1)GSM模块接收短消息(2)用TEXT模式读取短消息(3)用PDU模式读取短消息(4)删除短消息3.用AT命令控制GSM 发送短信过程如下(1)用TEXT模式发送英文短消息(2)用PDU模式发送中文短消息4.用配套软件发送短信(中文,英文,中英文混合) GSM设备呼叫:(一)在移动实验箱上进行呼叫(二)在PC机上进行呼叫(1)主叫呼叫和挂机实验:(2)被叫接续实验:(3)GSM模块作为被叫,可以进行摘机和挂机

移动通信实验报告

实验一GSM通信系统实验(全球数字移动通信系统) 一、实验目的 通过本实验将正交调制及解调的单元实验串起来,让学生建立起GSM通信系统的概念,了解GSM通信系统的组成及特性。 二、实验内容 1、搭建GSM数据通信系统。 2、观察GSM通信系统各部分信号。 三、基本原理 由于GSM是一个全数字系统,话音和不同速率数据的传输都要进行数字化处理。为了将源数据转换为最终信号并通过无线电波发射出去,需要经过几个连续的过程。相反,在接收端需要经过一系列的反过程来重现原始数据。下面我们主要针对数据的传输过程进行描述。 信源端的主要工作有 1、信道编码 信道编码用于改善传输质量,克服各种干扰因素对信号产生的不良影响,但它是以增加比特降低信息量为代价的。 信道编码的基本原理是在原始数据上附加一些冗余比特信息,增加的这些比特是通过某种约定从圆熟数据中经计算产生的,接收端的解码过程利用这些冗余的比特来检测误码并尽可能的纠正误码。如果收到的数据经过同样的计算所得的冗余比特同收到的不一样时,我们就可以确定传输有误。根据传输模式不同,在无线传输中使用了不同的码型。 GSM使用的编码方式主要有块卷积码、纠错循环码、奇偶码。块卷积码主要用于纠错,当解调器采用最大似然估计方法时,可以产生十分有效的纠错结果,纠错循环码主要用于检测和纠正成组出现的误码,通常和块卷积码混合使用,用于捕捉和纠正遗漏的组误差。奇偶码是一种普遍使用的最简单的检测误码的方法。 2、交织 在移动通信中这种变参的信道上,比特差错通常是成串发生的。这是由于持续较长的深衰落谷点会影响到相继一串的比特。但是,信道编码仅在检测和校正单个差错和不太长差错

《移动通信技术》实验教学大纲(18.6)

《移动通信技术》实验教学大纲 1.实验课程号:B453L07500 2.课程属性:(限选) 3.实验属性:非独立设课 4.学时学分:总学时36,实验学时10 5.实验应开学期:秋李 6.先修课程:数据通信与计算机网络,信号与系统,通信原理等。 一、课程的性质与任务 本实课程是移动通信技术的配套实验课,要求通过实验课的练习与实践使学生加深对现代移动通信技术的基本概念和基本原理的理解,并掌握典型通信系统的基本组成和基本技术,以适应信息社会对移动通信高级工程技术人才的需求。 二、实验的目的与基本要求 通过实验使学生对比较抽象的移动通信理论容产生一个具体的感性认识,通过具体的实验操作使学生达到“知其然,且知英所以然”,从而提髙分析问题、解决问题的能力。 三、实验考核方式及办法 实验成绩评分办法:实验成绩占课程成绩的15%。 四、实验项目一览表 移动通信技术实验项目一览表 序实验项目实验实验适用学 号名称类型要求专业时 1数字调制与解调技术验证性必做信息工程/电子信息工程 2 2扩頻技术验证性必做信息工程/电子信息工程 2 3抗衰落技术脸证性必做信息工程/电子信息工程2 4GSM通信系统实验综合性必做信息工程/电子信息工程2 5CDMA通信系统实验综合性必做信息工程/电子信息工程2 五、实验项目的具体容:

实验一数字调制与解调技术 1.本次实验的目的和要求 通过本实验了解QPSK. OQPSK.MSK.GMSK调制原理及特性、解调原理及载波在相干及非相干时的解调特性。将它们的原理及特性进行对比,掌握它们的差别。掌握星座图的槪念、星座图的产生原理及方法。 2.实验容 1)观察I、Q两路基带信号的特征及与输入NRZ码的关系。 2)观察IQ调制解调过程中各信号变化。 3)观察解调载波相干时和非相干时各信号的区别。 4)观察各调制信号的区别。 5)观察QPSK、OQPSK、MSK、GMSK基带信号的星座图,并比较各星座图的不同及他 们的意义。 3.需用的仪器 移动通信原理实验箱(主控&信号源模块、软件无线电调制模块10号模块、软件无线电解调模块11号模块),示波器。 4.实验步骤 1)准备:阅读实验教程,了解QPSK. OQPSK.MSK.GMSK的调制解调原理: 2)QPSK调制及解调实验 (1)按实验要求完成所有连线,形成调制解调电路。 (2)QPSK调制。设置主控菜单,选择QPSK调制及解调:用示波器观测10号模块的TP8(NRZ-I)和TP9(NRZ-Q)测试点,观测基带信号经过串并变换后输出的两路波形,与输入信号对比:示波器探头接10号模块TH7(I-Out)和TH9(Q-Out),调廿示波器为XY模式,观察QPSK星座图;示波器探头接10号模块TH7(I-Out)和TP3(I),对比观测I路成形波形的载波调制前后的波形:示波器探头接10号模块TH9(Q-Out)和TP4(Q),对比观测Q路成形波形的载波调制前后的波形;示波器探头接10模块的TP1,观测I路和Q路加载频后的叠加信号,即QPSK调制信号。 (3)QPSK相干解调实验。用示波器观测10号模块的TH3(DIN1), 11号模块的TH4(Dout),适当调右11号模块压控偏宜电位器W1来改变载波相位,对比观测原始基带信号和解调输出信号的波形;用示波器观测10号模块的TH1(BSIN),11号模块的TH5(BS-out), 对比观测原始时钟信号和解调恢复时钟信号的波形:用示波器对比观测原始I路信号与解调后I路信号的波形,以及原始Q路信号与解调后Q路信号的波形。 3)OQPSK调制及解调实验。选择OQPSK调制模式,实验步骤同2) 4)MSK调制及相干解调实验。

移动通信练习题+答案

1.(√)所谓移动通信,是指通信双方或至少有一方处于运动中进行信息交换的通信方式。 2.(×)邻道干扰是指相邻或邻近的信道(或频道)之间的干扰,是由于一个弱信号串扰强信号而造成的干扰。(强信号串扰弱信号) 3.(√)移动通信的信道是指基站天线、移动用户天线和两幅天线之间的传播路径。 4.(×)电波的自由空间传播损耗是与距离的立方成正比的。(平方) 5.(×)由于多径传播所引起的信号衰落,称为多径衰落,也叫慢衰落。 6.【】(×)移动通信中,多普勒频移的影响会产生附加的调频噪声,出现接收信号的失真。 7.(√)莱斯分布适用于一条路径明显强于其他多径的情况。在接收信号中没有主导分量时,莱斯分布就转变为瑞利分布。 8.(×)在多径衰落信道中,由于时间色散导致发送信号产生的衰落效应是快衰落和慢衰落。(频率色散)P39 9.(√)分集接收的基本思想,就是把接收到的多个衰落独立的信号加以处理,合理地利用这些信号的能量来改善接收信号的质量。 10.(√)在实际工程中,为达到良好的空间分集效果,基站天线之间的距离一般相当于10多个波长或更多。 11.(×)GSM移动通信系统中,每个载频按时间分为16个时隙,也就是16个物理信道.8 12.(√)GSM中的逻辑信道分为专用信道和公共信道两大类。 13.(×)GSM中的同频干扰保护比要求C/I>-9dB,工程上一般增加3dB的余量。9 14.(×)GSM中的广播控制信道BCCH和业务信道TCH一样可通过跳频方式提高抗干扰性能。P261 15.(√)跳频就是有规则地改变一个信道的频隙(载频频带)。跳频分为慢跳频和快跳频。在GSM的无线接口上采用的是慢跳频技术。 16.(√)GPRS是指通用分组无线业务,是基于GSM网络所开发的分组数据技术,是按需动态占用频谱资源的。P293

移动通信实习报告_实习报告.doc

移动通信实习报告_实习报告移动通信实习报告: 在学院的统一安排下,我上午在暑假期间为25个工作日的时间,中国移动通信集团吉林分公司完成夏季管理实习。中国移动通信集团公司,吉林移动通信公司是根据国务院管理,邮电分营,电信改革的精神要求,8月12日,1999年从企业分离,独立运作,管辖8个市分公司,中国移动通信集团,业务部门三个单位的40个县(市)直属的全资附属公司。在保持与国际先进技术的开发力度,同时提供多种业务应用的同步,始终坚持以沟通,从内心的想法和追求顾客满意。目前,全省客户超过200万,并具有覆盖面广,在全省建立高品质的沟通,业务丰富,服务一流的综合通信网络,网络容量3.98万。gsm移动通信网络已经推出,在五大洲70多个国家超过140个移动运营商的国际漫游服务。正在大力发展gprs 技术,移动数据和多媒体服务,并积极推动第三代移动通信网络演进。为了要了解该通信公司的实际运作模式,熟悉通信公司的运作模式,知识学习在实际工作中进行测试,清楚了解他们的业务定位,良好的实习到明年的就业准备与的吉林移动人力资源接触,通过在人力资源处和办公室两次采访,我的mishu柯实践办公厅放在我的部门主要负责人是公司领导的日程安排,帮助以导致该公司的战略和发展规划,起草有关文件规定,企业职能及其他综合事务的协调。 我跟随在吉林移动相关领导,青岛海尔集团参观,访问期间,丰富我的经验,提高自己的能力,我有一个新的企业文化,核心竞争力的理解,是否引入crm管理系统的分析和研究,所以我有crm管理系统的深刻理解,在参与吉林移动客户的短消息系统的可行性研究和发展,这样我就可以应用他们学到了什么,以提高综合能力;在吉林移动我系统全面了解历史移动数据服务的方向和未来,其全面的概念有了更深的理解,积极关注。实习,我付出与领导和同事沟通,发展自己的团队合作精神,增强集体荣誉感。我相信,在25个工作日内实习,将成为我的生活,华丽的运动,提高青年,跳跃的音符!第一章是企业文化的价值观和行为规范。企业文化,包括企业的宗旨,企业理念,企业价值观,企业精神。企业形象是企业文化的外在表现。企业文化涉及企业战略,企业管理的深层次问题。良好的企业文化,将企业的发展提供了源源不断的动力。企业文化正在逐步形成了集团在某些情况下,企业的各种资源,因此它具有唯一性和不可模仿性。我到吉林移动实习,由有关公司领导的陪同下,我来到杨屏已久的青岛海尔集团,海尔人的访问和研究,所到之处,是挑战自我,勇于创新,文化氛围无止境的追求卓越的感染。在多年的发展过程中,海尔形成了自己独特的企业文化,这也是快速发展的海尔文化提供源源不断的动力。海尔文化三个层面,物质文化-系统的行为,文化-核心价值观。创新是海尔企业文化的灵魂,海尔发布创新的翻译,指出了,战略创新,创新的概念为指导,创新做保障组织机制的方向对技术创新的依托,以产品创新,市场创新的目的。苟日新,熏陶,但也是新的,这是海尔文化,这是海尔常胜经久不衰的法宝。在吉林移动近一个月的实践,使我获得了企业文化更深入的了解。 加强企业文化建设是移动通信企业建立现代企业制度,以应对国内和国际市场竞争的考验,企业的核心竞争力的内在需求的快速增长。全面实施企业文化战略,文化资源的开发,形成共同的价值观和员工的行为准则,并为企业的持续健康发展的需要,提供了一个重要保证。企业文化应该是企业文化为导向,以生产和经营理念,为企业发展战略和员工的环保意识渗透到企业文化的企业和员工行为守则,反映在个人形象的整体形象和工作人员。建设一

移动通信原理课程设计_实验报告_321321资料

电子科技大学 通信抗干扰技术国家级重点实验室 实验报告 课程名称移动通信原理 实验内容无线信道特性分析; BPSK/QPSK通信链路搭建与误码性能分析; SIMO系统性能仿真分析 课程教师胡苏 成员姓名成员学号成员分工 独立完成必做题第二题,参与选做题SIMO仿 真中的最大比值合并模型设计 参与选做题SIMO仿真中的 等增益合并模型设计 独立完成必做题第一题 参与选做题SIMO仿真中的 选择合并模型设计

1,必做题目 1.1无线信道特性分析 1.1.1实验目的 1)了解无线信道各种衰落特性; 2)掌握各种描述无线信道特性参数的物理意义; 3)利用MATLAB中的仿真工具模拟无线信道的衰落特性。 1.1.2实验内容 1)基于simulink搭建一个QPSK发送链路,QPSK调制信号经过了瑞利衰 落信道,观察信号经过衰落前后的星座图,观察信道特性。仿真参数:信源比特速率为500kbps,多径相对时延为[0 4e-06 8e-06 1.2e-05]秒,相对平均功率为[0 -3 -6 -9]dB,最大多普勒频移为200Hz。例如信道设置如下图所示:

1.1.3实验仿真 (1)实验框图 (2)图表及说明 图一:Before Rayleigh Fading1 #上图为QPSK相位图,由图可以看出2比特码元有四种。

图二:After Rayleigh Fading #从上图可以看出,信号通过瑞利信道后,满足瑞利分布,相位和幅度发生随机变化,所以图三中的相位不是集中在四点,而是在四个点附近随机分布。 图三:Impulse Response #从冲激响应的图可以看出相位在时间上发生了偏移。

移动通信参数表..

一. 移动通信参数表 参数缩写含义解释参数缩写含义解释 1 TCH 业务信道23 BSIC 基站色码 2 BCCH 广播控制信道24 CA 小区置配 3 CCCH 公共控制信道25 HSN 跳频序列 4 RACH 随机接入信道26 MA 移动配置 5 AGCH 接入允许信道27 MAIO 移动培植指数偏移 6 PCH 寻呼控制信道28 FN 帧号码 7 DCCH 专用控制信道29 TSC 训练序列码 8 CBCH 小区广播信道30 TN 时隙号 9 SDCCH 独立专用控制信道31 PD 协议识别语 10 SACCH 慢速随路控制信道32 TI 处理识别语 11 SCH 同步信道33 IMSI 国际移动用户识别 12 CM 连接管理34 TMSI 临时移动用户识别 13 MM 移动管理35 IMEI 国际移动设备识别 14 RR 无线资源管理36 MCC 国际移动码 15 DTX 非连续发送(由话音激活)37 MNC 移动网号 16 OMC 操作维护中心38 LAC 位置区号码 17 MS 手机39 PLMN 公共陆地移动网 18 BS 基站40 TA 时间提前 19 SIM 用户识别模块41 RXLEV 平均的接收电平 20 ARFCN 频道(载频)序号42 RXQUAL 信道接收质量 21 Um 基站子系统与MS间接口43 TXPWR 发信功率电平 22 C2 小区重选信道质量标准参数44 C1 路径损耗原则参数 二. 参数详述 (一) 频道配置参数 GSM网和TACS网一样都采用等间隔频道配置方法。 1. 工作频段、频段间隔、频道序列及频点 数字公用陆地蜂窝移动通信网采用900Mhz频段。 MS发,BS收:890 –915 Mhz (上行) BS发,MS收:935-960MHz(下行) 载频间隔为200kHz,共124个无线载频,在每端留有200 kHz的保护带。 按照国家规定,邮电部门占用905 –909MHz(上行) / 950 –954 MHz(下行); 连通公司占用909 –915 MHz(上行)/ 954 –960 MHz(下行); 10MHz频带共有49个频道(载频),序号(ARFCN)为76 –124 。注:但如果邮电部门将ETACS的模拟网退频将继续扩频。GSM在900MHZ共有16MHZ 频段. 频道标称中心频率与序号的关系由以下公式确定: 基站收:Fl(n)=890.200MHz + (n+1)x 0.200MHz

中国移动通信实习总结

中国移动通信实习总结 在学院的统一安排下,我上午在暑假期间为25个工作日的时间,中国移动通信集团吉林分公司完成夏季管理实习。中国移动通信集团公司,吉林移动通信公司是根据国务院管理,邮电分营,电信改革的精神要求,8月12日,1999年从企业分离,独立运作,管辖8个市分公司,中国移动通信集团,业务部门三个单位的40个县(市)直属的全资附属公司。在保持与国际先进技术的开发力度,同时提供多种业务应用的同步,始终坚持以沟通,从内心的想法和追求顾客满意。目前,全省客户超过200万,并具有覆盖面广,在全省建立高品质的沟通,业务丰富,服务一流的综合通信网络,网络容量万。GSM移动通信网络已经推出,在五大洲70多个国家超过140个移动运营商的国际漫游服务。正在大力发展GPRS技术,移动数据和多媒体服务,并积极推动第三代移动通信网络演进。为了要了解该通信公司的实际运作模式,熟悉通信公司的运作模式,知识学习在实际工作中进行测试,清楚了解他们的业务定位,良好的实习到明年的就业准备与的吉林移动人力资源接触,通过在人力资源处和办公室两次采访,我的Mishu柯实践办公厅放在我的部门主要负责人是公司领导的日程安排,帮助以导致该公司的战略和发展规划,起草有关文件规定,企业职能及其他综合事务的协调。 我跟随在吉林移动相关领导,青岛海尔集团参观,访问

期间,丰富我的经验,提高自己的能力,我有一个新的企业文化,核心竞争力的理解,是否引入CRM管理系统的分析和研究,所以我有CRM管理系统的深刻理解,在参与吉林移动客户的短消息系统的可行性研究和发展,这样我就可以应用他们学到了什么,以提高综合能力;在吉林移动我系统全面了解历史移动数据服务的方向和未来,其全面的概念有了更深的理解,积极关注。实习,我付出与领导和同事沟通,发展自己的团队合作精神,增强集体荣誉感。我相信,在25个工作日内实习,将成为我的生活,华丽的运动,提高青年,跳跃的音符!第一章是企业文化的价值观和行为规范。企业文化,包括企业的宗旨,企业理念,企业价值观,企业精神。企业形象是企业文化的外在表现。企业文化涉及企业战略,企业管理的深层次问题。良好的企业文化,将企业的发展提供了源源不断的动力。企业文化正在逐步形成了集团在某些情况下,企业的各种资源,因此它具有唯一性和不可模仿性。我到吉林移动实习,由有关公司领导的陪同下,我来到杨屏已久的青岛海尔集团,海尔人的访问和研究,所到之处,是挑战自我,勇于创新,文化氛围无止境的追求卓越的感染。在多年的发展过程中,海尔形成了自己独特的企业文化,这也是快速发展的海尔文化提供源源不断的动力。海尔文化三个层面,物质文化-系统的行为,文化-核心价值观。创新是海尔企业文化的灵魂,海尔发布创新的翻译,指出了,战略

MIMO信道容量的仿真分析

数字移动通信与个人通信论文题目:MIMO系统信道容量的研究 学生姓名李其信 学号201120952 院系信息科学与技术学院 专业信号与信息处理

MIMO系统信道容量的研究 李其信 (西北大学信息科学与技术学院,陕西西安710127) 摘要:本文首先对MIMO技术进行了简要介绍。其次,从信息论角度研究了MIMO系统的信道容量,对 平均分配天线发射功率下的几种典型系统(SISO、MISO、SIMO、MIMO)的平均信道容量进行了分析和比 较,并对两类特殊的MIMO信道(全1信道和正交信道)的容量进行了特殊的分析,得到了信道容量的计 算公式。同时给出了当发射天线和接收天线数很大时的MIMO信道极限容量的估算方法。 关键词:多输入多输出(MIMO)系统;信道容量; 中图分类号:文献标识码:A文章编号:1001-2400(2XXX)0X-0-0 Research on the Capaity for MIMO System LI QI-xin ( College of Information Science and T echnology, Northwest University, Xi’a n 710127, China) Abstract: In this paper,firstly,it gives a brief introduction of MIMO technology. Secondly,some average capacities of several typical systems,such as SlSO,MISO,SIMO,MIMO,are theoretically analyzed and simulated from the point ofview of information theory.The difference among those typical systems is compared and the relationship between the capacity and different schemes of distributing power are discussed.And two types of special MIMO channel (all channels and orthogonal channel) capacity for a special analysis was calculated channel capacity.It gives the limit estimating method when the mumber of the transmitting and receiving antennas of MIMO. Key W ords: MIMO(Multiple-Input Multiple-Output) channel capacity 随着信息技术,尤其是互联网技术的迅猛发展,信息的载体形式由传统的文字形式向多媒体形传统的无线通信系统是采用单一发射天线和单一接收天线的通信系统,即所谓的SISO天线系统。SISO天线系统在信道容量上具有一个通信上不可突破的瓶颈--Shannon容量限制。不管采用何种调制技术、编码策略或其他方法,无线信道总是给无线通信作了一个实际的物理限制。这一点在当前无线通信市场中形势尤为严峻,因为用户对更高的数据率的需求是非常迫切的[1-3],必须进一步提高无线通信系统的容量。可以实现这个目标的方法有很多,如加大系统发射功率、设置更多的基站、拓宽带宽和提高频谱利用效率等。加大系统发射功率姑且不论可能引起人的健康状况的变化,对硬件设计者来说这也是非常困难的,因为功放器件在大功率区域下的线性工作特性是很难设计的。另外,散热及发射功率的加大所引起的功率消耗也是移动终端要考虑的问题。增设基站意味着采用更多的蜂窝,这是提高容量代价最大的办法。由于目前的实际无线应用市场仍是在UMTS和WLAN之间,是微波频带(UMTS大约为2GHz,WLAN技术的ISM频带为2~5GHz),加大带宽,如利用毫米波频带,就会导致与现行系统具有非常大的兼容性问题,其代价也是很昂贵的,因此更高频段的使用在近期内不是提高无线通信系统容量的最佳方法。 目前在众多的信号处理技术中,最引人注目的是MIMO技术[4],研究表明在多径环境中,采用收发多天线空时编码系统(MIMO系统)在不增加信号带宽及发射功率的前提下可以使频谱效率得以成 1

相关文档
最新文档