考研数学洛必达法则求极限

考研数学洛必达法则求极限
考研数学洛必达法则求极限

前面介绍了求极限的四则运算法则在函数分解、抓大头和极限敛散性讨论等三个方面的应用。下面我们继续深入剖析洛必达法则的使用条件。首先要明确使用洛必达法则的三个条件:

虽然洛必达法则使用方便,但是一不小心就会陷入陷阱,导致误用乱用错用。主要原因还是在于没有把握住洛必达法则使用的这三个条件,尤其是后面两个条件:可导性、求导后极限存在性。我们通过例题来展示洛必达法则的正确使用过程、相关结论及考生需要格外注意的易错点。

1. 洛必达法则可导性检验

在整个过程中,使用了两次洛必达,最后一步直接代值计算。如果这个题是选择题,那么可能90%以上的考生都会很幸运的拿到分数,但是并没有几个人是真正做对的,因为上面的过程是误用了洛必达法则。作为一道解答题,我们应该如何正确去解决这道题,首先分析上面的过程错在哪?

由此,我们给出大家洛必达法则的使用规则:

(1).当极限式中函数存在n阶导数,则使用洛必达至出现n-1阶导,最后一步一般是凑导数定义;

(2).当极限式中函数存在n阶连续导数,则可以使用洛必达至出现n阶导。

2. 洛必达法则求导后极限存在性讨论

针对第三个条件,大家要正确理解下面两个命题:

使用洛必达法则求极限的几点注意_图文(精)

硬闲洛密达法则求极限的儿点涅枣 口杨黎霞 (江南大学江苏?无锡214122 摘要如果当圹+口或r+*时,两个函数删与,M都趋于零或都趋于无穷大。那么极限l/m葡可能存在,也可能不存在。洛 ‘::, 必达法则是计算此类未定式极限行之有效的方法.然而。对于本科一年级的初学者来讲,若盲目使用此法则.会导致错误。本文就使用该法则解题过程中的几点注意作了分析与探讨。 关键词洛必达法则 极限未定式等价无穷小代换 变量代换 中图分类号:0172 文献标识码:A 在高等数学里.极限是大一新生一开始就要接触而且非常重要的内容。其中有一类未定式的极限不能用“商的极限等于极限的商”这一法则.而要用洛必达法则。洛必达法则内容很简单.使用起来也方便有效。但在具体使用过程中。一旦疏忽了以下几点.解题就可能出错。 首先,只有分子、分母都趋于零或都趋于无穷大时,才能直接使用洛必达法则。 其次,每次使用洛必达法则前都要检验是否满足次法则条件。只要满足此法则条件.就可连续使用此法则.直到求出结果或为无穷大。

例如:t/mx"。:坛,n.垡!;!j:以,n墨王翌::!.≥芝三:…:lira墨}==D(n仨z+ ,-.-e’r_? e’ Jr--JO e‘r_?e。 此题用了n次法则。 再者,使用洛必达法则求极限是应及时化简,主要指代数、三角恒等变形,约去公因子。具有极限不为零的因子分离出来,等价无穷小代换,变量代换等。下面通过例子说明。 土- 例:鲤【(J慨。7I叫】‘=塑【(J+÷eL÷】=纫型±笋=姆 号等力 此题先用了变量代换。当变量x趋于。时.t趋于0.这一点要注意。 例:矗。卑=f溉!堡:型Jim r.zim掣=f讹丝车堑 =lim S,ec气-I=li,n.]+co.sx-一2 本题用了多种方法:提出极限存在但不为零的因子。等价无穷小代换。洛必达法则,三角恒等变形约分等。 (J呵+{,一、/瓦芦 fJ目:lim———生—r_—一若直接使用洛必达法则,其分子

考研数学知识点总结

考研数学考点与题型归类分析总结 1高数部分 1.1高数第一章《函数、极限、连续》 求极限题最常用的解题方向: 1.利用等价无穷小; 2.利用洛必达法则 型和 ∞ ∞ 型直接用洛必达法则 ∞ 0、0∞、∞1型先转化为 型或 ∞ ∞ 型,再使用洛比达法则; 3.利用重要极限,包括1 sin lim = → x x x 、e x x x = + → 1 ) 1( lim、e x x x = + ∞ → ) 1(1 lim; 4.夹逼定理。 1.2高数第二章《导数与微分》、第三章《不定积分》、第四章《定积分》 第三章《不定积分》提醒:不定积分?+ =C x F dx x f) ( ) (中的积分常数C容易被忽略,而考试时如果在答案中少写这个C会失一分。所以可以这样加深印象:定积分?dx x f) (的结果可以写为F(x)+1,1指的就是那一分,把它折弯后就是?+ =C x F dx x f) ( ) (中的那个C,漏掉了C也就漏掉了这1分。 第四章《定积分及广义积分》解题的关键除了运用各种积分方法以外还要注意定积分与不定积分的差异——出题人在定积分题目中首先可能在积分上下限上做文章: 对于?-a a dx x f) (型定积分,若f(x)是奇函数则有?-a a dx x f) (=0; 若f(x)为偶函数则有?-a a dx x f) (=2?a dx x f ) (; 对于?20)( π dx x f型积分,f(x)一般含三角函数,此时用x t- = 2 π 的代换是常用方法。 所以解这一部分题的思路应该是先看是否能从积分上下限中入手,对于对称区间上的积分要同时考虑到利用变量替换x=-u和利用性质0 = ?-a a奇函数、? ?= - a a a0 2偶函数 偶函数。在处理完积分上下限的问题后就使用第三章不定积分的套路化方法求解。这种思路对于证明定积分等式的题目也同样有效。 1.3高数第五章《中值定理的证明技巧》 用以下逻辑公式来作模型:假如有逻辑推导公式A?E、(A B)?C、(C D E)?F,由这样一组逻辑关系可以构造出若干难易程度不等的证明题,其中一个可以是这样的:条件给出A、B、D,求证F。 为了证明F成立可以从条件、结论两个方向入手,我们把从条件入手证明称之为正方向,把从结论入手证明称之为反方向。 正方向入手时可能遇到的问题有以下几类:1.已知的逻辑推导公式太多,难以从中找出有用的一个。如对于证明F成立必备逻辑公式中的A?E就可能有A?H、A?(I K)、(A B) ?M等等公式同时存在,

浅析洛必达法则求函数极限

本科学年论文论文题目:用洛必达法则求极限的方法 学生姓名:卫瑞娟 学号: 1004970232 专业:数学与应用数学 班级:数学1002班 指导教师:严惠云 完成日期: 2013 年 3月 8 日

用洛必达法则求未定式极限的方法 内容摘要 极限运算是微积分学的基础,在众多求极限方法中,洛必达法则是一种简单而又方便的求极限方法。但在具体使用过程中,一旦疏忽,解题就很可能出错。本文就针对利用此法则求极限的过程及解题过程中常见问题,对洛必达法则求函数极限的条件及范围、应用、何时失效做了整体分析与探讨,并举例说明。除此之外,还介绍了除洛必达法则之外其他求函数极限的方法以及同洛必达法则的比较,最后对洛必达法则进行小结。 关键词:洛必达法则函数极限无穷小量

目录 一、洛必达法则求极限的条件及适用范围 (1) (一)洛必达法则定理 (1) (二)洛必达法则使用条件 (2) 二、洛必达法则的应用 (2) (一)洛必达法则应用于基本不定型 (2) (二)洛必达法则应用于其他不定型 (3) 三、洛必达法则对于实值函数失效问题 (5) (一)使用洛必达法则后极限不存在 (5) (二)使用洛必达法则后函数出现循环 (6) (三)使用洛必达法则后函数越来越复杂 (6) (四)使用洛必达法则中求导出现零点 (6) 四、洛必达法则与其他求极限方法比较 (6) (一)洛必达法则与无穷小量替换求极限法 (7) (二)洛必达法则与利用极限运算和已知极限求极限 (8) (三)洛必达法则与夹逼定理求极限 (9) 五、洛必达法则求极限小结 (10) (一)洛必达法则条件不可逆 (10) (二)使用洛必达法则时及时化简 (11) (三)使用洛必达法则前不定型转化 (11) 参考文献 (13)

考研数学讲解之洛必达法则失效的情况及处理方法

洛必达法则失效的情况及处理方法 【本章定位】 此部分内容不需要特别掌握,关键是要用这部分的讲解来让读者记住使用泰勒展开式的重要性! 。 洛必达法则是计算极限的一种最重要的方法,我们在使用它时,一定要注意到该法则是极限存在的充分条件,也就是说洛必达法则 )()(lim )()(lim x g x f x g x f a x a x ''=→→的三个条件: (1)0)(lim =→x f a x (或∞),0)(lim =→x g a x (或∞); (2))(x f 和)(x g 在a x =点的某个去心邻域内可导; (3)A x g x f a x =''→)()(lim (或∞)。 其中第三个条件尤其重要。 其实,洛必达法则的条件中前两条是一望即知的,所以我们在解题过程中可以不用去细说,而第三个是通过计算过程的尝试验证来加以说明的,由于验证结束,结论也出来了,也就更加没有细说的必要了。所以在利用洛必达法则解题过程中,往往只用式子说话,不必用文字来啰嗦的。 而对于极限问题?+∞→x x x x x 0d sin 1lim 来说,因为x x g x f x x sin lim )()(lim +∞→+∞→=''不存在(既不是某个常数,也不是无穷 大),而可知洛必达法则的第三个条件得不到验证。此时,我们只能说洛必达法则对本问题无效,绝对不能因此而说本问题之极限不存在。 实际上,我们利用“将连续问题离散化”的方法来处理,可以断定这个极限是存在的。 【问题1】求极限?+∞→x x x x x 0d sin 1lim 。 【解】对于任何足够大的正数x ,总存在正整数n ,使ππ)1(+<≤n x n ,也就是说总存在正整数n ,使r n x +=π,其中π<≤r 0。 这样+∞→x 就等价于∞→n ,所以

99考研数学一真题及答案详解

1997年全国硕士研究生入学统一考试数学一试题 一、填空题(本题共5分,每小题3分,满分15分.把答案在题中横线上.) (1)201 3sin cos lim (1cos )ln(1) x x x x x x →+=++. (2)设幂级数0 n n n a x ∞=∑的收敛半径为3,则幂级数11 (1)n n n na x ∞ +=-∑的收敛 区间为. (3)对数螺线e θ ρ=在点2(,)(, )2 e π π ρθ=处的切线的直角坐标方程为. (4)设12243311A t -?? ??=????-?? ,B 为三阶非零矩阵,且0AB =,则t =. (5)袋中有50个乒乓球,其中20个是黄球,30个是白球,今有两 人依次随机地从袋中各取一球,取后不放回,则第二个人取得黄球的概率是. 二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (1)二元函数 22 , (,)(0,0),(,)0, (,)(0,0)xy x y x y f x y x y ?≠?+=??=? 在点(0,0)处() (A)连续,偏导数存在(B)连续,偏导数不存在 (C)不连续,偏导数存在(D)不连续,偏导数不存在

(2) 设在区间 [,] a b 上 ()0,()0,()0, f x f x f x '''><>令 12(),()()b a S f x dx S f b b a ==-?, 31 [()()]()2 S f a f b b a =+-,则() (A)123S S S <<(B)213S S S << (C)312S S S <<(D)231S S S << (3)2sin ()sin ,x t x F x e tdt π +=?设则()F x () (A)为正常数(B)为负常数(C)恒为零(D)不为常数 (4) 设 111122232333,,,a b c a b c a b c ααα????????????===?????????????????? 则三条直线 1110a x b y c ++=,2220a x b y c ++=, 3330a x b y c ++=(其中220,1,2,3i i a b i +≠=)交于一点的充要条件是 () (A)123,,ααα线性相关 (B)123,,ααα线性无关 (C)秩123(,,)r ααα=秩12(,)r αα (D)123,,ααα线性相关,12,αα线性无关 (5)设两个相互独立的随机变量X 和Y 的方差分别为4和2,则随机变量32X Y -的方差是 () (A)8(B)16(C)28(D)44 三、(本题共3小题,每小题5分,满分15分.) (1)计算2 2 (),I x y dV Ω =+???其中Ω为平面曲线22, 0y z x ?=?=?绕z 轴旋转一

第一讲:数列的极限函数的极限与洛必达法则的练习题答案

第一讲:数列的极限函数的极限与洛必达法则的练习题答案 一、单项选择题(每小题4分,共24分) 3. 若()0lim x x f x →=∞,()0 lim x x g x →=∞,则下列正确的是 ( ) A . ()()0lim x x f x g x →+=∞??? ? B . ()()0lim x x f x g x →-=∞??? ? C . ()() 01lim 0x x f x g x →=+ D . ()()0 lim 0x x kf x k →=∞≠ 解: ()()000lim lim x x x x k kf x k f x k →→≠==?∞∞ ∴选D 6.当n →∞时, 1k n 与1k n 为等价无穷小,则k=( ) A .12 B .1 C .2 D .-2 解:2 211sin lim lim 1,21 1n n k k n n k n n →∞→∞=== 选C 二 、填空题(每小题4分,共24分) 8.2112lim 11x x x →??-= ?--? ? 解:原式()()()112lim 11x x x x →∞-∞+--+ 111lim 12 x x →==+ 10 .n =

解:原式n ≡有理化 32n ==无穷大分裂法 11.1201arcsin lim sin x x x e x x -→??+= ?? ? 解:11220011sin 1,lim 0lim sin 0x x x x e e x x -→→≤=∴=又00arcsin lim lim 1x x x x x x →→== 故 原式=1 12.若()220ln 1lim 0sin n x x x x →+= 且0sin lim 01cos n x x x →=-,则正整数n = 解: ()222200ln 1lim lim sin n n x x x x x x x x →→+?= 20420,lim 02 n x n x n x →<>2,4,n n ∴>< 故3n = 三、计算题(每小题8分,共64分) 14.求0 x → 解:原式有理化 0x →0tan (1cos )1lim (1cos )2 x x x x x →-=?- 0tan 111lim lim 222 x x x x x x →∞→=?==

洛必达法则求极限教学

洛必达法则求极限教学 摘要:本文结合教学实际对洛必达法则及其在求未定式极限方面的应用进行了分析,同时还分析了学生易错的洛必达法则求函数极限失效的情况。 关键词:洛必达法则;未定式;极限 求极限是微积分中的一项非常基础和重要的工作。教学中发现对于普通的求极限问题,学生解决起来问题不大,但是对于形如:■,■,∞-∞,0·∞,∞0,1∞,00的7种未定式,学生虽然能联系到洛必达法则,但是经常出错。 一、洛必达法则及应用 (一)洛必达法则 若函数f(x)与函数g(x)满足下列条件: 1. (或∞),(或∞); 2.f(x)与g(x)在x=a点的某个去心邻域内可导; 3. (或∞)。则 洛必达法则所述极限结果对下述六类极限过程均适用: 。 (二)洛必达法则的应用 1. 基本类型:未定式直接应用法则求极限 解:这是■型未定式。直接运用洛必达法则有 解:这个极限是■型未定式,于是 2. 未定式的其他類型:0·∞、∞-∞、00、∞0、1∞型极限的

求解 除了■型或■这两种未定式外,还可以通过转化,来解其他未定式。 解:这是∞-∞型,设法化为■型: 解:这是1∞未定式 解:这是∞0未定式,经变形得, 故 例6 求 解:这是0·∞型未定式,可变形为,成了■ 型未定式,于是 解:这是00型未定式,由对数恒等式知,xx=exInx,运用例8可得 二、洛必达法则对于实值函数的失效问题 洛必达法则可谓是在求不定式极限中作用最为显赫的一种方法,当然,它也有失效的时候。“失效”的原因则是因为题目本身不满足可以使用洛必达法则的几个条件。所以,在要使用洛必达法则时,要检验该题目是否符合洛必达法则条件,洛必达法则失效的基本原因有以下几种。 (一)使用洛必达法则后,极限不存在(非∞),也就是不符合洛必达法则的条件(3) 例8 计算 解:,而不存在,

(完整版)洛必达法则巧解高考压轴题

洛必达法则巧解高考压轴题 洛必达法则: 法则1 若函数f(x) 和g(x)满足下列条件: (1) ()lim 0x a f x →= 及()lim 0x a g x →=; (2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0; (3)()() lim x a f x l g x →'=', 那么 ()()lim x a f x g x →=()()lim x a f x l g x →'='。 00 型 法则2 若函数f(x) 和g(x)满足下列条件: (1) ()lim x a f x →=∞及()lim x a g x →=∞; (2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0; (3)()() lim x a f x l g x →'=', 那么 ()()lim x a f x g x →=()()lim x a f x l g x →'='。 ∞∞ 型 注意: ○1将上面公式中的x→a,x→∞换成x→+∞,x→-∞,x a +→,x a -→洛必达法则 也成立。 ○ 2若条件符合,洛必达法则可连续多次使用,直到求出极限为止。 典例剖析 例题1。 求极限 (1)x x x 1ln lim 0 +→ (∞∞型) (2)lim x ?p 2 sin x -1cos x (00型) (3) 20 cos ln lim x x x → (00 型) (4)x x x ln lim +∞→ (∞∞型) 变式练习: 求极限(1)x x x )1ln(lim 0+→ (2)a x a x a x --→sin sin lim (3)x e e x x x sin lim 0-→- (4)22 )2(sin ln lim x x x -→ππ 例题2。 已知函数R m x e x m x f x ∈+-=,)1()(2

用洛必达法则求下列极限

习题 3 2
1 用洛必达法则求下列极限 (1) lim ln(1 x)
x0 x (2) lim e x ex
x0 sin x (3) lim sin x sin a
xa x a (4) lim sin 3x
x tan5x
(5) lim ln sin x x ( 2x)2
2
(6) lim xm am xa x n a n
(7) lim ln tan 7x x0 ln tan 2x
(8) lim tan x x tan 3x
2
1
ln(1 )
(9) lim
x
x arc cot x
(10) lim ln(1 x2 ) x0 sec x cos x
(11) lim x cot 2x
x0
1
(12) lim x 2e x2 x0
(13) lim x 1
2 x2 1
1 x 1
(14) lim (1 a ) x x x
(15) lim xsin x x0
(16) lim ( 1 )tan x
x0 x

1
解 (1) lim ln(1 x) lim 1 x lim 1 1
x0 x
x0 1
x0 1 x
(2) lim e x ex lim e x ex 2 x0 sin x x0 cos x
(3) lim sin x sin a lim cos x cos a
xa x a
xa 1
(4) lim sin 3x lim 3cos 3x 3 x tan 5x x 5sec2 5x 5
(5) lim ln sin x lim
cot x
1 lim csc2 x 1
x ( 2x)2 x 2( 2x) (2) 4 x 2
8
2
2
2
(6) lim x m a m lim mxm1 mxm1 m a mn xa x n a n xa nx n1 na n1 n
(7) lim
ln tan 7x
lim
1 tan 7x
sec2
7x 7
7
lim
tan 2x 7
lim
sec2 2x 2 1
x0 ln tan 2x x0 1 sec2 2x 2 2 x0 tan 7x 2 x0 sec2 7x 7
tan 2x
(8) lim tan x lim sec2 x 1 lim cos2 3x 1 lim 2 cos 3x( sin 3x) 3
x tan 3x x sec2 3x 3 3 x cos2 x 3 x 2 cos x( sin x)
2
2
2
2
lim cos 3x lim 3sin 3x 3
x cos x
x sin x
2
2
1 ( 1 )
ln(1 1 )
1 1
(9) lim
x lim x
x2 lim 1 x2 lim 2x lim 2 1
x arc cot x x
1
x x x 2 x 1 2x x 2
1 x2
(10) lim ln(1 x2 ) lim cos x ln(1 x2 ) lim x2 (注
x0 sec x cos x x0 1 cos2 x
x0 1 cos2 x
lim
2x
lim x 1
x0 2 cos x( sin x) x0 sin x
cosx ln(1 x2)~x2)
(11) lim x cot 2x lim x lim 1 1
x 0
x0 tan 2x x0 sec2 2x 2 2
(12)
1
1
lim x 2e x2
e x2 lim
lim
et
lim
et

x0
x0 1 t t t 1
x2
(注
当 x0 时

用洛必达法则求下列极限

1 用洛必达法则求下列极限 (1) lim ln(1 x)
x0 x (2) lim e x ex
x0 sin x (3) lim sin x sin a
xa x a (4) lim sin 3x
x tan5x
(5) lim ln sin x x ( 2x)2
2
(6) lim xm am xa x n a n
(7) lim ln tan 7x x0 ln tan 2x
(8) lim tan x
x
tan 3x
2
ln(1 1 )
(9) lim
x
x arc cot x
(10) lim ln(1 x2 ) x0 sec x cos x
(11) lim x cot 2x
x0
1
(12) lim x 2e x2 x0
(13) lim x 1
2 x2 1
1 x 1
(14) lim (1 a ) x x x
(15) lim xsin x x0
(16) lim ( 1 )tan x
x0 x

1
解 (1) lim ln(1 x) lim 1 x lim 1 1
x0 x
x0 1
x0 1 x
(2) lim e x ex lim e x ex 2 x0 sin x x0 cos x
(3) lim sin x sin a lim cos x cos a
xa x a
xa 1
(4) lim sin 3x lim 3cos 3x 3 x tan 5x x 5sec2 5x 5
(5) lim ln sin x lim
cot x
1 lim csc2 x 1
x ( 2x)2 x 2( 2x) (2) 4 x 2
8
2
2
2
(6) lim x m a m lim mxm1 mxm1 m a mn xa x n a n xa nx n1 na n1 n
(7) lim
ln tan 7x
lim
1 tan 7x
sec2
7x 7
7
lim
tan 2x 7
lim
sec2 2x 2 1
x0 ln tan 2x x0 1 sec2 2x 2 2 x0 tan 7x 2 x0 sec2 7x 7
tan 2x
(8) lim tan x lim sec2 x 1 lim cos2 3x 1 lim 2 cos 3x( sin 3x) 3
x tan 3x x sec2 3x 3 3 x cos2 x 3 x 2 cos x( sin x)
2
2
2
2
lim cos 3x lim 3sin 3x 3
x cos x
x sin x
2
2
1 ( 1 )
ln(1 1 )
1 1
(9) lim
x lim x
x2 lim 1 x2 lim 2x lim 2 1
x arc cot x x
1
x x x 2 x 1 2x x 2
1 x2
(10) lim ln(1 x2 ) lim cos x ln(1 x2 ) lim x2 (注
x0 sec x cos x x0 1 cos2 x
x0 1 cos2 x
lim
2x
lim x 1
x0 2 cos x( sin x) x0 sin x
cosx ln(1 x2)~x2)
(11) lim x cot 2x lim x lim 1 1
x 0
x0 tan 2x x0 sec2 2x 2 2
(12)
1
1
lim x 2e x2
e x2 lim
lim
et
lim
et

x0
x0 1 t t t 1
x2
(注
当 x0 时

2020年考研数学:大纲常考知识点总

2020年考研数学:大纲常考知识点总结2015年考研数学:大纲常考知识点总结 1、两个重要极限,未定式的极限、等价无穷小代换 这些小的知识点在历年的考察中都比较高。而透过我们分析,假如考极限的话,主要考的是洛必达法则加等价无穷小代换,特别针对数三的同学,这儿可能出大题。 2、处理连续性,可导性和可微性的关系 要求掌握各种函数的求导方法。比如隐函数求导,参数方程求导等等这一类的,还有注意一元函数的应用问题,这也是历年考试的一个重点。数三的同学这儿结合经济类的一些试题进行考察。 3、微分方程:一是一元线性微分方程,第二是二阶常系数齐次/非齐次线性微分方程 对第一部分,考生需要掌握九种小类型,针对每一种小类型有不同的解题方式,针对每个不同的方程,套用不同的公式就行了。对于二阶常系数线性微分方程大家一定要理解解的结构。另一块对于非齐次的方程来说,考生要注意它和特征方程的联系,有齐次为方程可以求它的通解,当然给出的通解大家也要写出它的特征方程,这个变化是咱们这几年的一个趋势。这一类问题就是逆问题。 对于二阶常系数非齐次的线性方程大家要分类掌握。当然,这一块对于数三的同学来说,还有一个差分方程的问题,差分方程不作为咱们的一个重点,而且提醒大家一下,学习的时候要注意,差分方程的解题方式和微方程是相似的,学习的时候要注意这一点。 4、级数问题,主要针对数一和数三 这部分的重点是:一、常数项级数的性质,包括敛散性;二、牵扯到幂级数,大家要熟练掌握幂级数的收敛区间的计算,收敛半径与和函数,幂级数展开的问题,要掌握一个熟练的方法来进行计算。对于幂级数求和函数它可能直

接给咱们一个幂级数求它的和函数或者给出一个常数项级数让咱们求它的和,要转化成适当的幂级数来进行求和。 5、一维随机变量函数的分布 这个要重点掌握连续性变量的这一块。这里面有个难点,一维随机变量函数这是一个难点,求一元随机变量函数的分布有两种方式,一个是分布函数法,这是最基本要掌握的。另外是公式法,公式法相对比较便捷,但是应用范围有一定的局限性。 6、随机变量的数字特征 要记住一维随机变量的数字特征都要记熟,数字特征很少单独性考察,往往和前面的一维随机变量函数和多维随机变量函数和第六章的数理统计结合进行考察。特别针对数一的同学来说,考察矩估计和最大似然估计的时候会考察无偏性。 7、参数估计 这一点是咱们经常出大题的地方,这一块对咱们数一,数二,数三的考生来讲,包含两块知识点,一个是矩估计,一个是最大似然估计,这两个集中出大题。

洛必达法则泰勒公式

洛必达法则泰勒公式 一、洛必达法则在第一章第七节中我们曾经讨论过无穷小的比较问题,并且已经知道两个无穷小之比的极限可能存在,也可能不存在,既使它存在也不能用商的极限运算法则去求解.而由无穷大与无穷小的关系知,无穷大之比的极限问题也是如此.在数学上,通常把无穷小之比的极限和无穷大之比的极限称为未定式,并分别简记为和.由于在讨论上述未定式的极限时,不能应用商的极限运算法则,这或多或少地都会给未定式极限的讨论带来一定的困难.今天在这里我们应用导数的理论推出一种既简便又重要的未定式极限的计算方法,并着重讨论当时,型未定式极限的计算,关于这种情形有以下定理.定理1设(1) 当时,函数及都趋于零;(2)在点的某去心邻域内,及都存在,且;(3)存在(或为无穷大),则.也就是说,当存在时,也存在,且等于;当为无穷大时,也是无穷大.这种在一定条件下,通过分子分母分别求导,再求极限来确定未定式极限的方法称为洛必达(L’Hospital)法则.下面我们给出定理1的严格证明:分析由于上述定理的结论是把函数的问题转化为其导数的问题,显然应考虑微分中值定理.再由分子和分母是两个不同的函数,因此应考虑应用柯西中值定理.证因为求极限与及的取值无关,所以可以假定.于是由条件(1)和(2)知,及在点的某一邻域内是连续的.设是这邻域内一点,则在以及为端点的区间上,函数和满

足柯西中值定理的条件,因此在和之间至少存在一点,使得等式(在与之间)成立.对上式两端求时的极限,注意到时,则.又因为极限存在(或为无穷大),所以.故定理1成立.注若仍为型未定式,且此时和能满足定理1中和所要满足的条件,则可以继续使用洛必达法则先确定,从而确定和,即.且这种情况可以继续依此类推.例1求.分析当时,分子分母的极限皆为零,故属于型不定式,可考虑应用洛必达法则.解、注最后一个求极限的函数在处是连续的.例2求.解、注例2中我们连续应用了两次洛必达法则.例3求.解、例4求、解、注(1) 在例4中,如果我们不提出分母中的非零因子,则在应用洛必达法则时需要计算导数,从而使运算复杂化.因此,在应用洛必达法则求极限时,特别要注意通过提取因子,作等价无穷小代换,利用两个重要极限的结果等方法,使运算尽可能地得到简化.课后请同学们自己学习教材136页上的例10 .(2) 例4中的极限已不是未定式,不能对它应用洛必达法则,否则要导致错误的结果.以后在应用洛必达法则时应特别注意,不是未定式,不能应用洛必达法则.对于时的未定式有以下定理.定理2设(1)当时,函数及都趋于零;(2) 当时,与都存在,且;(3)存在(或为无穷大),则.同样地,对于(或)时的未定式,也有相应的洛必达法则.定理3设(1)当(或)时,函数及都趋于无穷大;(2)在点的某去心邻域内(或当时),及都存在,且;(3)存在(或为无穷大),则.例5求、解、

赛氪考研:如何解释洛必达法则

如何解释洛必达法则 洛必达是法国中世纪的王公贵族,他喜欢并且酷爱数学,后拜伯努利为师学习数学。但洛必达法则并非洛必达本人研究。由于当时伯努利境遇困顿,生活困难,而学生洛必达又是王公贵族,洛必达表示愿意用财物换取伯努利的学术论文,伯努利也欣然接受。此篇论文即为影响数学界的洛必达法则,也是我们今天要讲的内容。 洛必达法则最犀利的地方在于大大简化了极限运算,尤其是不定型的极限。这种化繁为简的技术手段从来都是深受喜爱的。常见的教科书中,洛必达法则的证明大都利用柯西中值定理,证明过程非常抽象,实际意义不明显。我们在给出其几何意义之前,先看看书本上的定义吧。 00型不定式极限的洛必达法则为: 若函数()f x 和()g x 满足下列条件: ⑴ ()lim 0x a f x →=,()lim 0x a g x →=; ⑵在点 a 的某去心邻域内两者都可导,且()'0g x ≠; ⑶() () ''lim x a f x A g x →=(A 可为实数,也可为±∞), 则()()()() ''lim lim x a x a f x f x g x g x →→= 直观理解 极限()()lim x a f x g x →作为无穷小的比较,其本质是分子与分母“比阶”,也就是比谁 在自变量 x a →的过程中,趋于0的速度更快。数学中,前辈们给“谁趋于0的速度 快”这一描述起了优雅的名字,分别为“同阶无穷小、等价无穷小、高阶无穷小和低阶无穷 小”。 就像分子分母在跑道上进行趋于0或者∞ 的赛跑,我们旁观者想搞清楚:(1)谁赢了(极限是大于一还是小于一);(2)他们是差不多同时撞线还是领先者领先好几个身位到达终点(同阶还是高阶),同时撞线时差了多少(同阶的话极限到底是几)。但问题在于

考研数学:极限计算法则——洛必达法则

考研数学:极限计算法则——洛必达法则 洛必达法则是计算极限最常用的方法之一,也是历年考研数学的一个高频考点,不仅能算出具体函数的极限,对于抽象函数求极限也同样适用。在大学阶段,同学们最喜欢一洛到底,但是洛必达法则也是有底线的,并不是所有的极限都能用洛必达求出来,接下来就介绍一下洛必达法则,正确认识洛必达,才可以理解其定理及科学有效地使用,吃透定理后进而找到它们的解题思路,才不至于在做这一题型时感到无从下手。 一、关于洛必达法则 洛必达法则有两类,分别是x a →和x →∞,现归为一种情况x → 进行介绍,定理如下:设(),)f x g x (满足ⅰ)()0lim ()0x f x g x →= 或∞∞ⅱ)(),)f x g x (在 的某去心邻域内可导且()0 g x '≠ⅲ)()lim () x f x g x →'' 存在或为∞则有()()lim lim .()()x x f x f x g x g x →→'=' 关于该法则需要注意的有两点: ①在使用洛必达法则时一定要注意检验条件,三个条件缺一不可,否则很容易得到错误的结果;②使用洛必达法则之前一定先对极限式化简(等替或者四则运算的函数分解). 二、下面分别对每个条件进行分析:对于条件一,只需保证极限是00或∞∞ 的分式形式;对于条件二,需保证可导性,当已知极限式中的函数存在n 阶导数时,只能使用洛必达法则至出现1n -阶导数(如至n 阶,不能保证连续性),最后一步一般凑导数的定义;当已知极限式中的函数存在n 阶连续导数时,可以使用洛必达法则至出现n 阶导数。

例:已知 ()f x 二阶可导,求20))2)lim .h f x h f x h f x h →++--(((解:2 00000))2) lim ))lim 2)()())lim 21)()1)()lim lim 22(). h h h h h f x h f x h f x h f x h f x h h f x h f x f x f x h h f x h f x f x h f x h h f x →→→→→++--''+--=''+-+--=''+---=+-''=(((((((((分析:二阶可导,可洛至一阶,之后凑二阶导数定义; 若该题中,已知 ()f x 二阶连续可导,解题过程如下;解:2 000))2) lim ))lim 2))lim 2 (). h h h f x h f x h f x h f x h f x h h f x h f x h f x →→→++--''+--=''''++-=''=(((((((对于条件三,需保证求导之后的极限必须存在或为∞(后者情况较少),即当()lim ()x f x A g x →'=' 或∞时,方可使用洛必达。易错点如下:()lim ()x f x g x →'' 不存在,不能()lim () x f x g x →? 不存在;()lim x f x → 存在,不能()lim x f x →'?' 存在;正确说法为:()lim ()x f x g x → 存在()lim .()x f x g x →'?≠∞'

考研数学高数部分重难点总结

考研数学高数部分重难点总结 1高数部分 1.1 高数第一章《函数、极限、连续》 1.2 求极限题最常用的解题方向:1.利用等价无穷小; 2.利用洛必达法则,对于00型和 ∞ ∞ 型的题目直接用洛必达法则,对于∞ 0、0 ∞、∞ 1型的题目则是先转化为 00型或∞ ∞型,再使用洛比达法则;3.利用重要极限,包括 1sin lim =→x x x 、e x x x =+→1 )1(lim 、e x x x =+ ∞ →)1(1lim ;4.夹逼定理。 1.3 高数第二章《导数与微分》、第三章《不定积分》、第四章《定积分》 第二章《导数与微分》与前面的第一章《函数、极限、连续》、后面的第三章《不定积分》、第四章《定积分》都是基础性知识,一方面有单独出题的情况,如历年真题的填空题第一题常常是求极限;更重要的是在其它题目中需要做大量的灵活运用,故非常有必要打牢基础。 对于第三章《不定积分》,陈文灯复习指南分类讨论的非常全面,范围远大于考试可能涉及的范围。在此只提醒一点:不定积分 ?+=C x F dx x f )()(中的积分常数C 容易 被忽略,而考试时如果在答案中少写这个C 会失一分。所以可以这样建立起二者之间的联系以加深印象:定积分?dx x f )(的结果可以写为F(x)+1,1指的就是那一分,把它折弯后就 是 ?+=C x F dx x f )()(中的那个C,漏掉了C 也就漏掉了这1分。 第四章《定积分及广义积分》可以看作是对第三章中解不定积分方法的应用,解题的关键除了运用各种积分方法以外还要注意定积分与不定积分的差异——出题人在定积分题目中首先可能在积分上下限上做文章:对于 ? -a a dx x f )(型定积分,若 f(x)是奇函数则有 ? -a a dx x f )(=0;若f(x)为偶函数则有?-a a dx x f )(=2?a dx x f 0)(;对于?2 )(π dx x f 型 积分,f(x)一般含三角函数,此时用x t -= 2 π 的代换是常用方法。所以解这一部分题的 思路应该是先看是否能从积分上下限中入手,对于对称区间上的积分要同时考虑到利用变量

洛必达法则解决高考导数问题

洛必达法则简介: 法则1 若函数f(x) 和g(x)满足下列条件:(1) ()lim 0x a f x →= 及()lim 0x a g x →=; (2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0; (3)() () lim x a f x l g x →'=', 那么 ()() lim x a f x g x →=() () lim x a f x l g x →'='。 法则2 若函数f(x) 和g(x)满足下列条件:(1)()lim 0x f x →∞ = 及()lim 0x g x →∞ =; (2)0A ?,f(x) 和g(x)在(),A -∞与(),A +∞上可导,且g '(x)≠0; (3)() () lim x f x l g x →∞ '=', 那么 () ()lim x f x g x →∞=() () lim x f x l g x →∞'='。 法则3 若函数f(x) 和g(x)满足下列条件:(1) ()lim x a f x →=∞及()lim x a g x →=∞; (2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0; (3)() () lim x a f x l g x →'=', 那么 ()() lim x a f x g x →=() () lim x a f x l g x →'='。 利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: ○1将上面公式中的x→a,x→∞换成x→+∞,x→-∞,x a + →,x a - → 洛必达法则也 成立。 ○ 2洛必达法则可处理00,∞∞ ,0?∞,1∞ ,0∞,00,∞-∞型。 ○ 3在着手求极限以前,首先要检查是否满足00,∞∞ ,0?∞,1∞ ,0∞,00,∞-∞型定式,否则滥用洛必达法则会出错。当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限。 ○ 4若条件符合,洛必达法则可连续多次使用,直到求出极限为止。 二.高考题处理 1.(2010年全国新课标理)设函数2 ()1x f x e x ax =---。 (1) 若0a =,求()f x 的单调区间; (2) 若当0x ≥时()0f x ≥,求a 的取值范围

用洛必达法则求下列极限(学习资料)

习题3-2 1. 用洛必达法则求下列极限: (1)x x x ) 1ln(lim 0+→; (2)x e e x x x sin lim 0-→-; (3)a x a x a x --→sin sin lim ; (4)x x x 5tan 3sin lim π →; (5)2 2 )2(sin ln lim x x x -→ ππ ; (6)n n m m a x a x a x --→lim ; (7)x x x 2tan ln 7tan ln lim 0+→; (8)x x x 3tan tan lim 2 π → ; (9)x arc x x cot ) 11ln(lim ++∞→; (10)x x x x cos sec ) 1ln(lim 20-+→; (11)x x x 2cot lim 0 →; (12)2 1 2 lim x x e x →; (13)?? ? ??---→1112lim 21x x x ; (14)x x x a )1(lim +∞→; (15)x x x sin 0 lim +→;

(16)x x x tan 0)1 (lim +→. 解 (1)111 lim 111 lim )1ln(lim 000=+=+=+→→→x x x x x x x . (2)2cos lim sin lim 00=+=--→-→x e e x e e x x x x x x . (3)a x a x a x a x a x cos 1cos lim sin sin lim ==--→→. (4)5 3 5sec 53cos 3lim 5tan 3sin lim 2- ==→→x x x x x x ππ. (5)81 2csc lim 41)2()2(2cot lim )2(sin ln lim 22 2 22 -=---=-?-=-→ →→x x x x x x x x πππππ. (6)n m n m n m a x n n m m a x a n m na mx nx mx a x a x -----→→= = =--1 11 1lim lim . (7)177sec 22sec lim 277tan 2tan lim 272 2sec 2tan 17 7sec 7tan 1 lim 2tan ln 7tan ln lim 22002200=??==????=+→+→+→+→x x x x x x x x x x x x x x . (8))sin (cos 23 )3sin (3cos 2lim 31cos 3cos lim 3133sec sec lim 3tan tan lim 2 222 222 2 x x x x x x x x x x x x x x -?-==?=→ →→→ππππ 3sin 3sin 3lim cos 3cos lim 2 2 =---=-=→ → x x x x x x ππ . (9)122lim 212lim 1lim 11 )1 (111 lim cot arc )11ln(lim 222 2==+=++=+- ?+ =++∞→+∞→+∞→+∞→+∞→x x x x x x x x x x x x x x x . (10)x x x x x x x x x x x 22 022020cos 1lim cos 1)1ln(cos lim cos sec )1ln(lim -=-+=-+→→→(注: cos x ?ln(1+x 2)~x 2) 1sin lim )sin (cos 22lim 00==--=→→x x x x x x x . (11)2 1 22sec 1lim 2tan lim 2cot lim 2000 = ?==→→→x x x x x x x x .

相关文档
最新文档