电力35组-三相变频电源设计报告

电力35组-三相变频电源设计报告
电力35组-三相变频电源设计报告

三相正弦波变频电源

摘要:本设计由整流滤波电路、DC-AC变换器、检测模块和单片机控制及显示模块4个模块电路构成。系统以英飞凌单片机XE164FN为控制核心,采用规则采样法和DDS实现频率可变的三相交流电SPWM信号输出,实现DC-AC转换,输出频率范围为20~100HZ,输出线电压有效值为36V,最大负载电流有效值为3A。采用互感器对电压、电流进行采样以及反馈,实现了对输出线有效值的控制以及缺相和过流保护,并实时显示电压、电流、频率、功率等。

关键字:变频电源三相正弦波逆变正弦脉宽调制

一.方案论证与比较

1.1 三相逆变主拓扑方案

方案一:采用三个独立的单相逆变器经过一定的连接方式组成三相逆变,该系统可以三相运行,也可以单相独立运行,灵活性较高。

方案二:如图1所示,采用三相三桥臂逆变电路拓扑,同一桥臂上、下两个开关管互补通、断,输出的电压经滤波后得到三相交流电。

方案的选择:采用方案一所用元器件比较多,适用于高压大容量的逆变器。方案二所用元器件少,电路简单,满足题目要求,故本设计采用方案二。

1.2SPWM(正弦脉宽调制)波产生方案

根据题目的要求将交流电经整流后,经过逆变从而产生三相正弦波电源。而实现三相正弦波变频电源的关键在于逆变过程。对于小功率逆变电路一般都采用PWM技术,为了实现正弦波变频电源,本设计采用了SPWM技术。实现SPWM有以下几种方案。

方案一:采用对称规则采样法。规则采样法一般采用三角波作为载波。其原理就是用三角波对正弦波进行采样得到阶梯波,再以阶梯波与三角波的交点时刻控制开关器件的通断,从而实现SPWM法。

方案二:采用自然采样法。以正弦波为调制波,等腰三角波为载波进行比较,在两个波形的自然交点时刻控制开关器件的通断,这就是自然采样法。其优点是所得SPWM波形最接近正弦波。

方案的选择:方案二由于计算繁琐,不适用于数字控制器实现。而对于现在的控制器来说,软件可以生成一个较大的正弦表,使得计算变得简单,减轻单片机的工作量,故本设计采用方案一。

1.3 测量有效值电路方案

方案一:信号经互感器及调理电路处理后直接连接到A/D器件,单片机控制A/D器件首先进行等间隔采样,并将采集到的数据存到RAM中,然后处理采集到的数据,可在程序中判断信号的周期,根据连续信号的离散化公式,做乘除法运算,得到信号的有效值。

方案二:信号经互感器之后先经过真有效值转换芯片AD637,AD637输出信号的有效值模拟电平,然后通过A/D采集送到单片机,直接计算输出电压、电流有效值。

方案三:信号经互感器之后利用峰值检测电路保持为峰值送入单片机,再用正弦波幅值和有效值的关系通过软件计算出有效值。

方案的选择:方案一计算复杂,占用大量单片机资源,给单片机造成很大的负担,且精度不高。方案二需要用到真有效值转换芯片AD637,价格昂贵,成本太高。方案三电路较为复杂,但成本低,精度可以做到很高,故采用方案三。

二.系统总体设计方案和实现框图

2.1 系统总体设计方案

将市电通过隔离变压器输入到交流变频电源系统。隔离变压器的输出经过由整流桥后,产生全波整流信号,全波整流信号经过滤波生成直流电,实现AC-DC的转换。三相逆变器在单片机产生的三相SPWM脉冲的控制下产生三相交流电。逆变器的输出交流电的频率等于SPWM脉冲的基波频率,通过控制DDS模块的可控分频比N,实现对调制正弦波频率的控制。逆变器输出的三相交流电经过缓冲吸收和LC滤波电路,生成三相正弦交流电。利用互感器对输出的相电压、相电流进行采样,并利用过零检测电路结合单片机的捕获端口实现频率的测量。系统根据采样值计算各相交流电的电压有效值、电流有效值,交流电的功率,并进行控制和显示。系统根据得到的各相交流电的有效值,采用PI算法,通过改变调制比控制SPWM脉冲的占空比,实现输出线电压的稳定。

2.2系统实现框图

图错误!不能识别的开关参数。系统框架图

三.理论分析与计算

3.1 SPWM 逆变电源的谐波分析

在调制度a 一定,并且三相共用一个载波信号的情况下,对输出线电压进行频谱分析,可以发现输出线电压的谐波角频率为:

c r n k ωωω=±

式中,n 为奇数时,()3211,k m m =-±=1,2……;

n 为偶数时,61

61{m m k +-=

;61k m =+ ; m =0,1,2……;61k m =+ ;m =1,2…。

由式(3-1)可知输出线电压的频谱没有载波频率c ω的整数倍次谐波分量谐波中幅值较高的谐波分量是2c r ωω±和2c r ωω±。

从上述分析可知:SPWM 波形中所含的谐波主要是角频率为c ω、

2c ω及其附近的谐波。由于本设计采用的是异步调制方式, c

r ωω,所以PWM 波形中所含的主要谐波分量的频率

比基波分量的频率高很多,谐波分量很容易被滤出。

3.2 三相交流电电压、电流有效值和功率的计算

对于负载端采用Y 形连接组成的三相电路,每相交变电压信号输入端相对于Y形连接公共点的电压称为相电压p u ,该输电线称为火线,采样三相四线制的交变电路有三条火线,各相电压信号间的相位差为120o ,火线之间的电压称为线电压l u 。假设输电线上输送的交变电压信号是标准的正弦信号,则

l p

U =

,l p U U 分别表示相电压和线电压的有效值。

因此当线电压的有效值36l U V =,各相相电压的有效值20.78p U V =,每相中的电流称为相电流p i ,火线中的电流成为线电流l i ,在Y 形连接中相电流等于线电流p i =l i 。 每相负载的功率为

p P =

cos p p z

U I Φ

其中,p z I Φ分别表示相电流的有效值、每相中电流和电压的相位差,由于Y 形负载要求负

载严格对称,因此每相中电流和电压的相位差都是相等的。所以三相的总功率为

33cos p p p z

P P U I ==Φ

当Y 形负载为纯阻性负载时,每相中电流和电压都是同相的,即0z Φ=,所以当Y 为形纯阻性负载时,三相的总功率为

3p p

P U I =

由于A D采样得到的是正弦信号的幅值U 、I ,由p U U =p I I =即可得到有效值。

四.软件设计

4.1 单片机主程序流程

单片机产生SPW M波形主程序程序流程图如下图所示(图3-1)

图 错误!未定义书签。 程序流程图

4.2 S PWM 波产生算法

SP WM 波的产生,首先存入单片机的1000点正弦表,读取正弦表每两个点之间的时间间隔既可决定输出正弦波的频率,而正弦表两个点之间时间间隔由定时器T 12决定。对于不同频率计算出正弦表中每两点对应的计数值n ,作为T12的周期值,同时将周期数进行累加,在T 12周期中断时,将累加值取出作为递增角度偏移,并将查表所得正弦值作为比较值赋给比较寄存器。通过外部按键可改变n ,即可改变输出正弦波频率,进而实现变频的功能。

4.3 测量系统软件设计

测量系统软件主程序分为键盘扫描,SPWM 产生,数据计算,测量显示几个部分。

五.测试仪器与测试方法

5.1测量仪器

1.交流调压器:0~250V交流可调;?2.Tektronix TDS1002示波器;

3.FLUKE数字万用表;???

4.滑线式变阻器3个;

5.失真度测试仪。

5.2 测试方法及数据

1)变频电源输出频率范围各相电压有效值之差的测试

(1)测试方法

将调压器的输出调到200V,将负载三相电阻的阻值都调整到30Ω。改变系统的输出频率,将示波器和交流电压表分别接到变频电源某一相的输出端,调节示波器,观察波形是否对称,记录各相的输出的频率值,同时调节交流电压表,记录各相相电压有效值。测量的频率点在20HZ-100HZ之间时, 10HZ一个测量步进。

(2)测试数据及结果分析

表格错误!不能识别的开关参数。各相相电压

频电源输出频率的精确设定最大偏差1%。各相电压的最大偏差为0.2V。

2)输出线电压有效值误差测量

(1)测试方法

I.变频电源的输出频率保持在50HZ,改变调压器使输入电压在198V~242V之间变化,在负载端用交流电压表并联在任意两个负载的输入端,测量这两相的线电压有效值。

II. 变频电源的输出频率保持在50HZ,保持调压器使输入电压在220V,改变负载的电阻值,用交流电流表测量负载电流值,使负载电流从0.5A开始每隔0.5A一个电流步进,直到负载电流达到3A。每调节一次负载电流值,在负载端用交流电压表并联在任意两个负载臂的

输入端,测量这两相的线电压有效值。

表格错误!不能识别的开关参数。AB相间线电压

(2)测量数据及结果分析

可知输出负载电流1.5A恒定,和频率50HZ恒定,输入电压在198V-242V之间变化时,输出线电压的有效值保持在36V,最大偏差为0.083%。

可知输入电压保持220V恒定,输出电压的频率50HZ不变,输出负载电流在0.5A-2A 变化时,输出线电压的有效值保持在36V,最大偏差为0.083%。

3)变频电源输出电压、电流、频率和功率的测量

(1)测量方法

改变自耦调压器的输入电压值,改变变频电源的输出频率。在各相的负载输入端分别用交流电压表,交流电流表测量该相的电压、电流有效值,用示波器测量相电压的输出频率,与系统测量的电压有效值、电流有效值、频率值对比。功率的测量是建立在电压有效值、电流有效值测量的基础上,每相的功率等于该相电流与电压的有效值之积,变频电源的总功率等于三相各相的功率之和。

表格错误!不能识别的开关参数。输出电压、电流、频率和功率测量

(2)测量数据及结果分析

分析可知,变频电源系统能准确测量该变频电源的输出电压、电流、频率和功率,并且显示值和测量值之间的误差绝对值小于5%。

4)相电压失真度测量

(1)测量方法

将变频电源的输出经过适当的衰减后接到失真度测试仪,在同一输出电压下,改变输出频率,用失真度测试仪测量各相相电压的失真度。改变输出电压,再按照上述方法测量几组数据。

(2)测量数据及结果分析

表格错误!不能识别的开关参数。相电压失真度

附录

电路图

图错误!未定义书签。主拓扑电路图

图错误!未定义书签。开关管驱动电路图

图错误!不能识别的开关参数。采样电路图

基于DSP的三相SPWM变频电源的设计

基于DSP的三相SPWM变频电源的设计 变频电源作为电源系统的重要组成部分,其性能的优劣直接关系到整个系统的安全和可靠性指标。现代变频电源以低功耗、高效率、电路简洁等显著优点而备受青睐。变频电源的整个电路由交流-直流-交流-滤波等部分构成,输出电压和电流波形均为纯正的正弦波,且频率 和幅度在一定范围内可调。 本文实现了基于TMS320F28335的变频电源数字控制系统的设计,通过有效利用TMS320F28335丰富的片上硬件资源,实现了SP WM的不规则采样,并采用PID算法使系统产生高品质的正弦波,具有运算速度快、精度高、灵活性好、系统扩展能力强等优点。 系统总体介绍 根据结构不同,变频电源可分为直接变频电源与间接变频电源两大类。本文所研究的变频电源采用间接变频结构即交-直-交变换过程。首先通过单相全桥整流电路完成交-直变换,然后在DSP控制下把直流电源转换成三相SPWM波形供给后级滤波电路,形成标准的正弦波。变频系统控制器采用TI公司推出的业界首款浮点数字信号控制器TMS320F28335,它具有150MHz高速处理能力,具备32位浮点处理单元,单指令周期32位累加运算,可满足应用对于更快代码开发与集成高级控制器的浮点处理器性能的要求。与上一代领先的数字信号处理器相比,最新的F2833x浮点控制器不仅可将性能平均

提升50%,还具有精度更高、简化软件开发、兼容定点C28x TM控制器软件的特点。系统总体框图如图1所示。 图1 系统总体框图 (1)整流滤波模块:对电网输入的交流电进行整流滤波,为变 换器提供波纹较小的直流电压。 (2)三相桥式逆变器模块:把直流电压变换成交流电。其中功率级采用智能型IPM功率模块,具有电路简单、可靠性高等特点。 (3)LC滤波模块:滤除干扰和无用信号,使输出信号为标准正 弦波。 (4)控制电路模块:检测输出电压、电流信号后,按照一定的控制算法和控制策略产生SPWM控制信号,去控制IPM开关管的通断从而保持输出电压稳定,同时通过SPI接口完成对输入电压信号、电流信号的程控调理。捕获单元完成对输出信号的测频。

三相正弦波变频电源课程设计

三相正弦波变频电源设计 1设计任务分析 设计并制作一个三相正弦波变频电源,输出频率范围为20-100Hz,输出线电压有效值为36V,最大负载电流有效值为3A,负载为三相对称阻性负载(Y型接法)。三相正弦波变频电源原理方框图如图1-1所示。 图1-1 三相正弦波变频电源原理框图 2 三相正弦波变频电源系统设计方案选择 2.1 整流滤波电路方案选择 方案一:三相半波整流电路。该整流电路在控制角小于30°时,输出电压和输出电流波形是连续的,每个晶闸管按相序依次被触发导通,同时关断前面已经导通的晶闸管,每个晶闸管导通120°;当控制角大于30°时,输出电压,电流的波形是断续的。 方案二:三相桥式整流电路。该整流电路是由一组共阴极电路和一组共阳极电路串联组成的。三相桥式的整流电压为三相半波的两倍。 三相桥式整流电路在任何时候都有两个晶闸管导通,而且这两个晶闸管中一个是共阴极组的,一个是共阳极组的。他们同时导通,形成导电回路。 比较以上两种方案,方案二整流输出电压高,纹波电压较小且不存在断续现象,同时因电源变压器在正,负半周内部有电流供给负载,电源变压器得到了充分的

利用,效率高,因此选用方案二。滤波电路用于滤波整流输出电压中的纹波,采用负载电阻两端并联电容器C的方式。 2.2 逆变电路方案选择 根据题目要求,选用三相桥式逆变电路 方案一:采用电流型三相桥式逆变电路。在电流型逆变电路中,直流输入是交流整流后,由大电感滤波后形成的电流源。此电流源的交流内阻抗近似于无穷大,他吸收负载端的谐波无功功率。逆变电路工作时,输出电流是幅值等于输入电流的方波电流。 方案二:采用电压型三相桥式逆变电路。在电压型逆变电路中,直流电源是交流整流后,由大电容滤波后形成的电压源。此电压源的交流内阻抗近似于零,他吸收负载端的谐波无功功率。逆变电路工作时,输出电压幅值等于输入电压的方波电压。 比较以上两种方案,电流型逆变器适合单机传动,加,减速频繁运行或需要经常反向的场合。电压型逆变器适合于向多机供电,不可逆传动或稳速系统以及对快速性要求不高的场合。根据题目要求,选择方案二。 2.3 SPWM(正弦脉宽调制)波产生方案选择 在给设计中,变频的核心技术是SPWM波的生成。 方案一:采用SPWM集成电路。因SPWM集成电路可输出三相彼此相位严格互差120°的调制脉冲,随意可作为三相变频电源的控制电路。这样的设计避免了应用分立元件构成SPWM波形发生器离散性,调试困难,稳定性较差。 方案二:采用AD9851DDS集成芯片。AD9851芯片由告诉DDS电路,数据输入寄存器,频率相位数据寄存器,告诉D/A转换器和比较器组成。由该芯片生成正弦波和锯齿波,利用比较器进行比较,可生成SPWM波。 方案三:利用FPGA通过编程直接生成SPWM波。利用其中分频器来改变脉冲信号的占空比和频率,主要是可通过外部按钮发出计数脉冲来改变分频预置数,实现外部动作来控制FPGA的输出信号。

电力电子课程设计--三相变频电源的设计

电力电子课程设计学院:电气与动力工程学院专业:电气工程及其自动化班级: 姓名: 学号: 指导老师: 目录

第一章:课程设计的目的及要求 (1) 1.1课程设计的目的 (1) 1.2课程设计的要求 (1) 1.3课程设计报告基本格式 (3) 第二章:三相变频电源介绍 (3) 第三章MATLAB软件的介绍 (4) 第四章:整流电路的设计 (5) 4.1 整流电路工作原理 (5) 4.2电容滤波的不可控整流 (6) 4.3 整流模块的计算及选型 (10) 第五章:逆变电路的设计 (13) 5.1 逆变电路的工作原理及波形 (13) 5.2 二极管和IGBT参数选择 (16) 第六章:SPWM逆变电路 (18) 第七章:驱动电路 (22) 第八章:MATLAB软件仿真 (22) 第九章:附录及参考文献 (25) 第十章:课程设计的心得体会 (26) 第一章:课程设计的目的及要求

1、课程设计的目的 通过电力电子计术的课程设计达到以下几个目的: 1)培养文献检索的能力,特别是如何利用Internet检索需要的文献资料。 2)培养综合分析问题、发现问题和解决问题的能力。 3)培养运用知识的能力和工程设计的能力。 4)培养运用工具的能力和方法。 5)提高课程设计报告撰写水平。 2、课程设计的要求 题目:三相变频电源的设计 注意事项: 1)根据规定题目进行电力电子装置设计 2)通过图书馆和Internet广泛检索和阅读自己要设计的题目方向的文献资料,确定适应自己的课程设计方案。首先要明确自己课程设计的设计内容。 设计装置(或电路)的主要技术数据 主要技术数据

三相变频电源

三相正弦波变频电源报告 摘要:本系统基于面积等效原理和奈奎斯特定理,采用AC-DC变换的方法,实现了市电到直流电压的转换;采用SPWM逆变器实现本地DC-AC的转换,采用DDS 产生频率可变的SPWM脉冲,实现了本地交流电源的变频;采用MAX197采样、反馈,实现了对本地交流电源有效值的控制以及缺相和过流保护。 关键字:变频电源;三相正弦波;逆变;正弦脉宽调制 Abstract:

三相正弦波变频电源报告 一.方案的选择与论证 1.题目要求及相关指标分析 本题目要求制作以三相正弦波变频电源,输出线电压有效值36V ,输出频率20-100HZ ,各相电压的有效值小于0.5V ,输出负载电流0.5A-3A 时,输出线电压有效值保持在36V ,误差小于5%。基于上述要求本设计采用AC-DC-AC 变换的方法,采用SPWM 控制逆变器实现变频。由于逆变器的开关以及感性、容性负载等对逆变器输出交流信号的延迟较严重,为了及时稳定变频电源的幅度,本设计采用多片A/D 同时采样输出交流信号。 2.方案的比较与选择 1) 正弦波脉宽调制实现方案的选择 (1) 自然采样法 图1 自然采样法 按照SPWM 控制的基本原理,在三角波和正弦波的自然交点时刻控制功率开关器件的通断,这种生成SPWM 波形的方法称为自然采样法,采用硬件实现时的方框图如图1所示。 图1中三角波发生器负责产生符合要求的SPWM 载波信号(三角波),正弦波发生器产生用户需要频率的正弦波信号,电压比较器在三角波和正弦波的自然交点的时刻实现翻转,控制功率开关器件的通断。 自然采样法生成的SPWM 波形很接近正弦波,若采用软件实现自然采样时需要解超越方程,需要花费大量的时间,难以实现实时控制;若采用硬件实现,为了控制逆变器功率器件的死区,需要很复杂的硬件来延时。 (2) 规则采样法 如图 2 所示取三角波两个正峰值之间的时间间隔为一个采样周期c T ,在三角波的负峰值时刻D t 对正弦信号波采样而得到D 点,过D 点作一水平直线和三角波分别交于A 、B 两点,在A 点时刻和B 点时刻控制功率开关器件的通断。可见A 、B 两点间的时间间隔就是脉冲宽度,则规则采样法得到的脉冲宽度为 ()1sin 2 c r d T a t δω=+ a 为调制度,即为三角波和正弦波的峰值之比,且 01a ≤<。r ω表示正弦信号的角频率。

380V,50HZ转变成415V,60HZ三相变频电源

380V,50HZ转变成415V,60HZ三相变频电源 指导老师:欧阳华斯电源 答辩人:400-830-5877 变频电源工作原理图 380V,50HZ转变成415,60HZ三相变频电源 三进三出变频电源(OYHS-98300系列)

型号(OYHS)98310983159832098330983459836098375983100983150输出容量(KVA) 10152030456075100150电路方式IGBT/PWM脉宽调制方式 交流输入 相数三相 波形SINEWAWE 电压380V±15% 频率波动范围50HZ or60HZ±15% 功率因数﹥0.9 交流输出 相数三相 波形SINE WAVE 电压415V,0-520连续可调 频率60HZ,50HZ,40-499.9HZ连续可调 频率稳定率≤0.01% 低档最大电流(A) 27.841.755.683.8125166.7208.3276416高档最大电流(A) 13.920.827.841.762.583.3104.2138208整机性能 电源稳压率﹤1% 负载稳压率﹤1% 波形失真度﹤1% 效率﹥90% 反应时间≤2ms

波峰因子3:1 保护装置具有过压,过流,超载,输入欠压,过高温,短路等多重 保护 显示 显示介面数位式LED显示 电压4位数,数位电压表,解析度0.1V 电流4位数,数位电流表,解析度0.1A 功率4位数,数位瓦特表 频率4位数,数位频率表 环境及其它 冷却装置高速变频风扇冷却,强制冷风 工作温度-10℃to50℃ 相对湿度0~90%(非凝结状态) 海拔高度≤1500m 重量(KG) 2002603204505506607509001350 尺寸 (H*D*W) mm 870*650*50 01100*750*55 1120*750*55 1310*800*60 1430*1100*80 1850*1200*85 注:1以上尺寸不含脚输高度 2可根据顾客要求规格特别定制

课程设计----基于MATLAN的三相正弦波变频电源的仿真设计

毕业设计(论文) 题目三相正弦波变频电源仿真设计专业电气工程及其自动化 二〇〇九年六月二十日

目录 第一章变频器概述 1.1.变频电源的原理 (3) 1.2.变频电源的特点及应用 (3) 1.3.MATLAB简介及仿真技术 (4) 1.4.MATLAB仿真技术在电力电子中的应用 (6) 1.5.本论文完成内容 (8) 第二章变频器硬件设计 2.1整流单元及供电电源 (9) 2.2逆变输出装置及其驱动电路 (10) 2.3滤波输出及过压过流缺相检测与保护 (14) 2.4变频电源的控制 (17) 第三章变频器软件设计 3.1控制模块设计 (21) 第四章变频器的MATLAB仿真 4.1MATLAB在电力电子中的应用 (25) 1电力系统工具箱 (25) 2 MATLAB在变频器中应用及仿真框图 (27) 第五章结语 (34)

摘要:本文采用MATLAB对变频电源进行系统分析。基于Simulink做了系统仿真,并做了原理性的论证。硬件部分采用IT公司的低功耗单片机MSP430F149作为主控器件,IR2130驱动3相功率管。控制方式采用传统的SPWM,用SPWM专用集成芯片SM2001产生SPWM信号以控制IR2130的通断。系统采用PI反馈控制使硬件系统具良好的稳压功能。另外本文在硬件设计中对变频电源的过流,过压,缺相等保护功能进行了阐述。

第一章变频器概述 由于我国市电频率固定为50 Hz,因而对于一些要求频率大于或小于50 Hz的应用场合,则必须设计一个能改变频率的变频电源系统。目前最常用的是三相正弦波变频电源。该电源系统主要由整流、逆变、控制回路3部分组成。其中,整流部分用以实现AC/DC的转换;逆变部分用以实现DC/AC的转换;而控制回路用以调节电源系统输出信号的频率和幅值。 1-1 变频电源的原理 经过AC→DC→AC变换的逆变电源称为变频电源,它有别于用于电机调速用的变频调速控制器,也有别于普通交流稳压电源。变频电源的主要功用是将现有交流电网电源变换成所需频率的稳定的纯净的正弦波电源。理想的交流电源的特点是频率稳定、电压稳定、内阻等于零、电压波形为纯正弦波(无失真)。变频电源十分接近于理想交流电源,因此,先进发达国家越来越多地将变频电源用作标准供电电源,以便为用电器提供最优良的供电环境,便于客观考核用电器的技术性能。变频电源主要有二大种类:线性放大型和PWM开关型HY系列程控变频电源,以微处理器为核心,以多脉宽调制(MPWM)方式制作,用主动元件IGBT模块设计,采用数字分频、D/A转换、瞬时值反馈、正弦脉宽调制等技术, 使单机容量可达100kV A, 以隔离变压器输出来增加整机稳定性, 具有负载适应性强、输出波形品质好、操作简便、体积小、重量轻等特点,具有短路、过流、过载、过热等保护功能,以保证电源可靠运行。 现在使用的变频电源主要采用交一直一交方式,先把工频交流电源通过整流器转换成直流电源,然后再把直流电源转换成频率、电压均可控制的交流电源.变频电源的电路一般由整流、中间直流环节、逆变和控制4个部分组成.整流部分为单相或三相桥式不可控整流器,逆变部分为IGBT三相桥式逆变器,且输出为PWM波形,中间直流环节为滤波、直流储能和缓冲无功功率.变频电源的主电路大体上可分为两类,分别为电压型和电流型。电压型是将电压源的直流变换为交流的变频器,直流回路的滤波器件是电容;电流型是将电流源的直流变换为交流的变频器,其直流回路滤波器件是电感。 1-2 变频电源的特点及应用 20世纪70年代后,大规模集成电路和计算机控制技术的发展,以及现代控制理论的应用,使得交流电力拖动系统逐步具备了宽的调速范围、高的稳速范围、高的稳速精度、快的动态响应以及在四象限作可逆运行等良好的技术性能,在调速性能方面可以与直流电力拖动媲美。在交流调速技术中,变频调速具有绝对优势,并且它的调速性能与可靠性不断完善,价格不断降低,特别是变频调速节电效果明显,而且易于实现过程自动化,深受工业行业的青睐。 交流变频电源调速技术在工业发达国已得到广泛应用。美国有60% -

1000HZ电源、1200HZ电源、1350HZ变频电源、1500HZ电源、2000HZ电源、单相变频电源、三相变频电源

济南能华电源设备有限公司专业研发、制造、销售变频电源、60HZ电源、400HZ中频电源、1000HZ电源、1200HZ电源、1350HZ变频电源、1500HZ电源、2000HZ电源、单相变频电源、三相变频电源、逆变电源、模块电源、开关电源等系列电源,欢迎广大客户来电订购400HZ地面静态电源将50Hz市电逆变为400Hz、115/200V三相交流电源,用于飞机和机载设备供电,是军用和民用机场、飞机维修基地、飞机制造厂及研究所必需的地勤保障设备。根据用户的要求可生产0.5kVA-180kVA静变电源。电压幅值的调节采用空间矢量脉宽调制先进技术(SPWM),使静变电源在输出负载和输入电源改变时仍具有极小的谐波含量,保持很好的动态能。 航空中频静变电源是我们自主研发、设计和制造的,具有当代世界先进水平的机电产品。它对外输出额定频率400Hz、额定电压115/200V的三相交流中频电源,既可用作具有交流供电系统的各种民用和军用飞机的地面支持电源,又可用作飞机制造厂、维修厂、试飞站、研究所的实验电源。可广泛用于机库、机坪、登机桥、电子车间、实验室等有交流市电供应的使用地点,具有波形品质好、体积小、重量轻、噪音低、无污染、运行费用低等优点。可根据用户要求提供固定式、桥挂式和拖车式机组。 性能特点: 提供世界各国标准电压仿真,测试各类电器产品。 提供稳定纯正弦波,以便实验室作各种测试。

具有40~70Hz/50Hz/60Hz/400Hz四档频率选择。 输出电压范围0~150V/0~300V二档选择。 四窗口五功能数字式电表,测量显示Hz,V,A,W,PF。 输出波形失真度低,稳定可靠性高。 400HZ地面静态电源将50Hz市电逆变为400Hz、115/200V三相交流电源,用于飞机和机载设备供电,是军用和民用机场、飞机维修基地、飞机制造厂及研究所必需的地勤保障设备。根据用户的要求可生产0.5kVA-180kVA静变电源。电压幅值的调节采用空间矢量脉宽调制先进技术(SPWM),使静变电源在输出负载和输入电源改变时仍具有极小的谐波含量,保持很好的动态能。 航空中频静变电源是我们自主研发、设计和制造的,具有当代世界先进水平的机电产品。它对外输出额定频率400Hz、额定电压115/200V的三相交流中频电源,既可用作具有交流供电系统的各种民用和军用飞机的地面支持电源,又可用作飞机制造厂、维修厂、试飞站、研究所的实验电源。可广泛用于机库、机坪、登机桥、电子车间、实验室等有交流市电供应的使用地点,具有波形品质好、体积小、重量轻、噪音低、无污染、运行费用低等优点。可根据用户要求提供固定式、桥挂式和拖车式机组。 性能特点: 提供世界各国标准电压仿真,测试各类电器产品。 提供稳定纯正弦波,以便实验室作各种测试。 具有40~70Hz/50Hz/60Hz/400Hz四档频率选择。 输出电压范围0~150V/0~300V二档选择。 四窗口五功能数字式电表,测量显示Hz,V,A,W,PF。 输出波形失真度低,稳定可靠性高。

采用DSP TMS320F28335的三相SPWM变频电源的设计

采用DSP TMS320F28335的三相SPW M变频电源的设计 作者:佚名来源:世界电子元器件发布时间:2009-4-27 12:12:32 [收藏] [评论] 变频电源作为电源系统的重要组成部分,其性能的优劣直接关系到整个系统的安全和可靠性指标。现代变频电源以低功耗、高效率、电路简洁等显著优点而备受青睐。变频电源的整个电路由交流-直流-交流-滤波等部分构成,输出电压和电流波形均为纯正的正弦波,且频率和幅度在一定范围内可调。 本文实现了基于TMS320F28335的变频电源数字控制系统的设计,通过有效利用TMS320F28335丰富的片上硬件资源,实现了SPWM的不规则采样,并采用PID算法使系统产生高品质的正弦波,具有运算速 度快、精度高、灵活性好、系统扩展能力强等优点。 系统总体介绍 根据结构不同,变频电源可分为直接变频电源与间接变频电源两大类。本文所研究的变频电源采用间接变频结构即交-直-交变换过程。首先通过单相全桥整流电路完成交-直变换,然后在DSP控制下把直流电源转换成三相SPWM波形供给后级滤波电路,形成标准的正弦波。变频系统控制器采用TI公司推出的业界首款浮点数字信号控制器TMS320F28335,它具有150MHz高速处理能力,具备32位浮点处理单元,单指令周期32位累加运算,可满足应用对于更快代码开发与集成高级控制器的浮点处理器性能的要求。与上一代领先的数字信号处理器相比,最新的F2833x浮点控制器不仅可将性能平均提升50%,还具有精度更高、简化软件开发、兼容定点C28x TM控制器软件的特点。系统总体框图如图1所示。 图1 系统总体框图 (1)整流滤波模块:对电网输入的交流电进行整流滤波,为变换器提供波纹较小的直流电压。 (2)三相桥式逆变器模块:把直流电压变换成交流电。其中功率级采用智能型IPM功率模块,具有 电路简单、可靠性高等特点。 (3)LC滤波模块:滤除干扰和无用信号,使输出信号为标准正弦波。

380V,50HZ转变成208V,240V,60HZ三相变频电源

380V,50HZ转变成208V,240V,60HZ三相变频电源 指导老师:欧阳华斯电源 答辩人:400-830-5877 变频电源工作原理图 380V,50HZ转变成208V,240V,60HZ三相变频电源 三进三出变频电源(OYHS-98300系列)

型号(OYHS)98310983159832098330983459836098375983100983150输出容量(KVA) 10152030456075100150电路方式IGBT/PWM脉宽调制方式 交流输入 相数三相 波形SINEWAWE 电压380V±15% 频率波动范围50HZ or60HZ±15% 功率因数﹥0.9 交流输出 相数三相 波形SINE WAVE 电压208V,240V,0-520连续可调 频率60HZ,50HZ,40-499.9HZ连续可调 频率稳定率≤0.01% 低档最大电流(A) 27.841.755.683.8125166.7208.3276416高档最大电流(A) 13.920.827.841.762.583.3104.2138208整机性能 电源稳压率﹤1% 负载稳压率﹤1% 波形失真度﹤1% 效率﹥90% 反应时间≤2ms

波峰因子3:1 保护装置具有过压,过流,超载,输入欠压,过高温,短路等多重 保护 显示 显示介面数位式LED显示 电压4位数,数位电压表,解析度0.1V 电流4位数,数位电流表,解析度0.1A 功率4位数,数位瓦特表 频率4位数,数位频率表 环境及其它 冷却装置高速变频风扇冷却,强制冷风 工作温度-10℃to50℃ 相对湿度0~90%(非凝结状态) 海拔高度≤1500m 重量(KG) 2002603204505506607509001350 尺寸 (H*D*W) mm 870*650*50 01100*750*55 1120*750*55 1310*800*60 1430*1100*80 1850*1200*85 注:1以上尺寸不含脚输高度 2可根据顾客要求规格特别定制

关于三相变频电源的外文资料翻译

通过模糊控制器和PI控制器输出电压调节,设计和实现三相PWM 整流器的高性能的直接功率控制 摘要: 本文给出了直接功率控制(DPC)三相PWM整流器,采用了一种新的开关表,并且无电压传感器。瞬时有功功率和无功功率通过选择变换器的最佳状态被直接控制,作为PWM控制变量代替相电流被使用。控制系统的主要目的是保持直流母线电压在所需的水平,而来自电源的输入电流应当是正弦的,各相电压相位符合单位功率因数(UPF)操作。在直流母线电压控制环中,传统的PI和基于模糊逻辑的控制器,被用来提供有功功率指令。一种基于实验系统的DSPACE用作证实DPC的有效性。稳态和动态的结果,说明了操作和控制方案所呈现的性能。结果显示,证实了新的DPC比经典DPC更好。线电流非常接近正弦波(THD<2%)并且通过使用PI和模糊控制器实现直流母线电压良好的调节。此外,模糊逻辑控制器展现出优良暂态性能,良好地抑制负载扰动的影响,和优越的的鲁棒性。 关键词: 直接功率控制 PWM整流器瞬时有功功率直接转矩控制开关表模糊逻辑控制1.引言 大多数的三相整流器,被广泛地用在工业领域和消费产品领域,使用二极管桥电路和散装存储电容。有简单,稳定和低成本的优势。然而,整流二极管,产生单向功率流,低功率因子,功率流,和高层次的输入谐波电流。与有源和无源滤波器分开,最好的解决方案是使用脉冲宽度调制(PWM)调整。三相脉冲宽度调制(PWM)研究在过去的几年迅速发展,由于它的优越性,比如能源的再生能力,直流总线电压覆盖广阔的范围,输入电流低谐波失真。由于转换器有能力来控制输入的正弦波电流,功率因数(UPF)可以容易地操作通过调节伴有前述电源电压。各种控制策略已经提出了在最近的这种类型的PWM整流器产品。它可以被分类为所用的回路控制器或有功/无功功率控制器。在知名间接的有功和无功功率控制方法中,是基于相对于电流矢量方向所述的线电压向量。它被称为电压定向控制(VOC)[1-5]。 VOC保证了高动态,并通过内部电流静态性能控制回路。然而,最终的配置和性能的VOC的系统在很大程度上取决于所施加当前的控制策略的质量。在过去的几年中,一个高利润的新兴控制技术一直是直接功率控制(DPC)和与众所周知直接转矩控制开发相似(DTC),用于可调速驱动器[5-12]。在DPC方案,没有内部电流环路和转换器的开关状态,是通过一个交换表基于瞬时错误作出适当地选择,在命令和估计瞬时有功和无功功率值的估计值,和功率源电压矢量位置[6]或虚拟磁通矢量位置之间[8]。本文提出了一种新的直接功率控制(DPC)的

SYJ-23说明书

1 产品用途 SYJ23系列智能型角行程电动执行机构以三相交流电源为动力,接受标准模拟量4mA~20mA直流电流信号或远程开关量信号,输出轴为0~90°转角位移,通过连杆(底座安装式)或驱动件(法兰安装式)操纵风门档板、蝶阀、球阀等调节机构,执行工业生产过程控制系统的自动调节任务。 SYJ23系列智能型角行程电动执行机构适用于DCS、PLC等自动控制系统,也适用于单回路(或多回路)PID自动调节系统或远方手动控制系统。广泛应用于电力、冶金、化工、食品、造纸、建材、水处理等行业的生产过程控制系统。 2 产品主要功能特点 SYJ23系列智能型角行程电动执行机构是我公司吸收和消化国内外同类产品的先进技术结合国内市场的实际使用要求,自主开发设计制造的一种新型产品,具有多种先进实用功能,是目前尚在大量使用的DKJ型角行程电动执行机构的升级换代产品。 本产品具有如下功能特点: ●三相电机的驱动采用智能变频电源,具有柔性起动功能,可以有效地减少对阀门、风门 等调节机构的冲击。 ●起动电流小,频繁起动,电机也不会发热。 ●与电源接入相序无关,有效避免了因接入电源相序不正确而导致损坏执行机构或调节机 构的情况发生。 ●采用电子式双向过力矩保护功能,力矩保护点设置方便。完善的过电流、过电压、缺相 等保护功能,进一步提高了执行机构运行的可靠性。 ●电控装置为内置伺放一体化结构,可以直接接受4mA~20mA模拟量控制信号或远程无源 接点开关量信号。输入信号采用光电隔离技术。 ●内置三块标准电路板:带CPU的主控板、变频电源功率驱动板和带数码管及操作按钮的 显示控制板。 ●具有就地/远程切换功能,切换至就地时,可直接用面板上的按钮或遥控器操作执行机构。 ●行程调试只要按照显示提示,通过按钮或遥控器操作进行关位置和开位置的选择就能完 成,调试极为简便,且不需要任何调试仪器和设备。 ●采用精密导电塑料电位器作位置检测元件直接检测输出轴转角,精度高。检测元件单独 安装在密封的盒子内,防护性好,维修更换方便。

380V,50HZ转变成380V,60HZ三相变频电源

380V,50HZ转变成380V,60HZ三相变频电源 指导老师:欧阳华斯电源 答辩人:400-830-5877 变频电源工作原理图 380V,50HZ转变成415,60HZ三相变频电源 三进三出变频电源(OYHS-98300系列)

型号(OYHS)98310983159832098330983459836098375983100983150输出容量(KVA) 10152030456075100150电路方式IGBT/PWM脉宽调制方式 交流输入 相数三相 波形SINEWAWE 电压380V±15% 频率波动范围50HZ or60HZ±15% 功率因数﹥0.9 交流输出 相数三相 波形SINE WAVE 电压380V,0-520连续可调 频率60HZ,50HZ,40-499.9HZ连续可调 频率稳定率≤0.01% 低档最大电流(A) 27.841.755.683.8125166.7208.3276416高档最大电流(A) 13.920.827.841.762.583.3104.2138208整机性能 电源稳压率﹤1% 负载稳压率﹤1% 波形失真度﹤1% 效率﹥90% 反应时间≤2ms

波峰因子3:1 保护装置具有过压,过流,超载,输入欠压,过高温,短路等多重 保护 显示 显示介面数位式LED显示 电压4位数,数位电压表,解析度0.1V 电流4位数,数位电流表,解析度0.1A 功率4位数,数位瓦特表 频率4位数,数位频率表 环境及其它 冷却装置高速变频风扇冷却,强制冷风 工作温度-10℃to50℃ 相对湿度0~90%(非凝结状态) 海拔高度≤1500m 重量(KG) 2002603204505506607509001350 尺寸 (H*D*W) mm 870*650*50 01100*750*55 1120*750*55 1310*800*60 1430*1100*80 1850*1200*85 注:1以上尺寸不含脚输高度 2可根据顾客要求规格特别定制

变频电源从哪些环节进行检测的

变频电源从哪些环节进行检测的? 一般情况下,对于空载电流的取值越小其产品的功耗越小。通过试验发现,同类产品,空载电流越小,其产品线圈、壳面温升越小,损耗越小。所以在检测Adaptor类电源时,此参数可作为检测参考值。空载电流大到一定程度,会产生以下不良:如交流声、长时间负载工作造成线圈温度上升直至烧死FUSE、损耗大会多用一些电等等。 2.空载电压:0-300V.取30个点进行测试。保证电压输出稳定准确 3.纹波电压:【轻载纹波、满载纹波、满载发热后的纹波(可进行试验)】纹波不良产品对所使用的用电器会或多或少产生一些影响,所以这几组纹波的检测是有必要作为参考值。(开关电源类) 4.发热(温升):(例GB4943-2001表4A第一、二部分)检验发热、绝缘阻抗状态是否正常。 输入条件:国标提升值为额定输入值的1.1倍,其它机型为1.06倍,额定值≤120VAC无此要求。试验时间:4H 重要公式:线圈温升T℃=R2(234.5+T1)/R1-(T2+234.5) R1:起始初级铜阻T1:起始环境温度 R2:结束初级铜阻T2:结束环境温度 一般情况:线圈温升≤75℃(对Switching Power Supply而言不检测此项)(如果达到85℃,那么可以改铁片、初级圈数、缩小空载电流范围、胶壳材质、零件耐温等,或给客户以85℃的温升来承认。)金属外壳温升≤45℃、其它外壳温升≤50℃ 5. 老化 A(额定输入电压)老化:检验长时间额定条件下的输出、发热、绝缘阻抗状态是否正常。 重要公式:线圈温升T℃=R2(234.5+T1)/R1-(T2+234.5) R1:起始初级铜阻T1:起始环境温度 R2:结束初级铜阻T2:结束环境温度 一般情况:线圈温升≤75℃(对Switching Power Supply而言不检测此项),金属外壳温升≤45℃、其它外壳温升≤50℃ B.(提升输入电压)老化:考虑到电网波动、产品设计缺陷如肖特基、MOS管发热造成壳子变形,元件质量差使用寿命低等因素,输入电压提升到265V做8H或12H老化来了解产品的质量状况。

三相正弦变频电源的软件设计毕业设计论文

本科毕业设计 题目:三相正弦变频电源的软件设计

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

三相正弦变频电源的软件设计 摘要 本文设计了一个AD/DC/AC变频电源系统。该系统利用XC164单片机, 采用SPWM变频控制技术,将直流电压逆变成电压、频率可变的交流输出,电源输出波形近似于正弦波,实现了三相正弦波变频输出。并采用双闭环PID控制,使其输出线电压有效值为36 V,最大输出电流有效值达3 A。此外系统还具有良好的稳压性能和很小的波形失真,并且能够进行自检测、过流、过压、过热和短路保护等功能。 关键字:正弦波脉宽调制;PID; A/D转换;变频电源

Sinusoidal Three-phase Inverter Power Software Design Abstract In this paper, we designed a AD / DC / AC inverter power system. The system uses XC164 microcontroller, using SPWM inverter control technology, reverse DC voltage into a voltage, variable frequency AC output waveform similar to sine wave power output to achieve the three-phase sine wave output inverter. And the use of double-loop PID control, so that the output line voltage RMS to 36 V, the maximum effective value of output current 3 A. System, the regulator also has a good performance and very small waveform distortion, and to carry out self-inspection, over-current, over-voltage, overheating and short circuit protection. Keywords:sinusoidal pulse width modulation; PID control; A/D transformation; frequency-variable power supplier

单相正弦波变频电源

(D题)单相正弦波变频电源 摘要 本设计电路使用NE5532组成一个文氏电桥振荡器,它的特点是起振容易,波形失真很小,频率也很稳定,其震荡频率由电阻电容决定,当电容选定为标准的的104时,电阻为31.8K时频率刚好为50HZ左右。用一个可调电位器作为反馈调节电位器,可以调节振荡器输出的正弦波的幅度,从振荡器出来的正弦波分成4路,2路进入由2个NE5532组成的精密整流电路变成馒头波;2路进入由两个NE5532组成的同步波发生电路变成方波。 本设计的载波振荡器的核心是一块NE555时基电路.它实际上是一个高线性度的三角波发生器,三角波频率由电阻电容决定,当三角波的频率约为20K,能满足SPWM调制电路的要求.为确保三角波的线性度,由三极管为电容充放电回路组成恒流源.三角波信号经三极管的射极输出,分别送到SPWM调制器的同相端和反相端.调制电路实际上是为电压比较器,它把20K的三角波信号和100HZ的馒头波信号进行比较,在两个运放的输出端分别输出二路极性相反的SPWM信号。 关键词:SPWM波文氏电桥 H桥

目录 摘要 (2) 目录 (3) 1 设计任务与要求 (4) 1.1设计任务 (4) 1.2设计要求 (4) 2 方法比较与论证 (4) 2.1方案设计 (4) 2.2方案论证 (4) 2.3方案对比 (4) 3 硬件设计 (5) 3.1 文氏电桥振荡器 (5) 3.2精密整流电路、加法电路 (5) 3.3 SPWM波发生器、同步波发生电路 (6) 3.4时序电路 (7) 3.5 H桥逆变电路 (7) 3.6过流保护电路 (8) 3.7电源电路 (8) 4 系统测试与调试 (9) 4.1信号板电路的调试 (9) 4.2接上H桥联调 (9) 5 设计总结 (10)

三相正弦波变频电源软件设计说明

三相正弦波变频电源 摘要:本设计由整流滤波电路、DC-AC变换器、检测模块和单片机控制及显示模块4个模块电路构成。系统以英飞凌单片机XE164FN为控制核心,采用规则采样法和DDS实现频率可变 的三相交流电SPWM信号输出,实现DC-AC转换,输出频率围为20~100HZ,输出线电压有 效值为36V,最大负载电流有效值为3A。采用互感器对电压、电流进行采样以及反馈,实现了对输出线有效值的控制以及缺相和过流保护,并实时显示电压、电流、频率、功率等。关键字:变频电源三相正弦波逆变正弦脉宽调制 一.方案论证与比较 1.1 三相逆变主拓扑方案 方案一:采用三个独立的单相逆变器经过一定的连接方式组成三相逆变,该系统可以三相运行,也可以单相独立运行,灵活性较高。 方案二:如图1所示,采用三相三桥臂逆变电路拓扑,同一桥臂上、下两个开关管互补通、断,输出的电压经滤波后得到三相交流电。 方案的选择:采用方案一所用元器件比较多,适用于高压大容量的逆变器。方案二所用元器件少,电路简单,满足题目要求,故本设计采用方案二。 1.2 SPWM(正弦脉宽调制)波产生方案 根据题目的要求将交流电经整流后,经过逆变从而产生三相正弦波电源。而实现三相正弦波变频电源的关键在于逆变过程。对于小功率逆变电路一般都采用PWM技术,为了实现正弦波变频电源,本设计采用了SPWM技术。实现SPWM有以下几种方案。 方案一:采用对称规则采样法。规则采样法一般采用三角波作为载波。其原理就是用三角波对正弦波进行采样得到阶梯波,再以阶梯波与三角波的交点时刻控制开关器件的通断,从而实现SPWM法。 方案二:采用自然采样法。以正弦波为调制波,等腰三角波为载波进行比较,在两个波形的自然交点时刻控制开关器件的通断,这就是自然采样法。其优点是所得SPWM波形最接近正弦波。 方案的选择:方案二由于计算繁琐,不适用于数字控制器实现。而对于现在的控制器来

电力电子技术课程设计——三相整流电路、三相逆变电路及PWM控制的逆变电路设计

目录 引言 (03) 第一章电力电子器件的了解 (05) 第一节二极管 (05) 第二节IGBT (06) 第二章三相整流电路的设计 (07) 第一节常用整流电路 (07) 第二节电容滤波整流电路 (07) 第三章三相逆变电路的设计 (11) 第一节逆变电路的最基本工作原理 (11) 第二节三相电压型逆变电路 (12) 第四章PWM控制的逆变电路的设计 (16) 第一节PWM控制的基本原理 (16) 第二节PWM控制的逆变电路 (18) 第五章驱动电路 (21) 第六章器件参数的选择 (22) 第七章MATLAB的仿真及波形分析 (24) 心得体会 (33)

附录 (34) 三相交直交变频电路图 (34) 参考文献 (35)

引言 课程设计的要求 1.题目:三相变频电源的设计 注意事项: ①学生也可以选择规定题目方向外的其它电力电子装置设计,如开关电源、镇流器、UPS电源等, ②通过图书馆和Internet广泛检索和阅读自己要设计的题目方向的文献资料,确定适应自己的课程设计方案。首先要明确自己课程设计的设计内容。 设计装置(或电路)的主要技术数据 ●主要技术数据 输入交流电源: 一组:三相380V,f=50Hz;另一组:单相220V,f=50Hz。 交直变换采用二极管整流桥电容滤波电路,无源逆变桥采用三相桥式电压型逆变主电路,控制方法为SPWM控制原理输出交流: 电流为正弦交流波形,输出频率可调,输出负载为三相星形RL电路,R=10Ω,L=15mH ●设计内容: 1)、整流电路的设计和参数计算及选择(整流电路工作原理、输出波形分析、整流模块的计算及选型、滤波电容参数计算及选型) 2)、三相逆变主电路的设计和参数选择(结合负载阐述三相电压型无源逆变电路的工作原理,分析输出相电压、线电压波形;对开关器件和快恢复二极管进行计算选择及选型)3)、三相SPWM控制及驱动电路的设计:根据SPWM调制原理分析逆变电路的输出相电压、线电压波形;设计驱动电路;

正弦波三相变频电源的设计

三相正弦波变频电源的设计 摘要 本设计分为:三相SPWM信号的生成、逆变回路及其驱动和输出的测量显示。选择电机控制专用DSP TMS320LF2407生成SPWM信号。逆变电路主回路采用智能功率模块(IPM)。输出测量采用电压电流传感器来实现电隔离。为加快速度,采用独立于DSP的PIC单片机实现输出的测量。 关键词:变频;SPWM;DSP;PIC单片机

Abstract The design is about tri-phase sinusoidal frequency conversion power. Three parts are included: generating tri-phase SPWM signal, inverter circuit and its drive circuit, output measuring and display. DSP TMS320F2407 is used as the controller in the system. IPM is used in the Inverter main circuit. Voltage and current sensor is used in the measuring of output, it can insulate the control circuit conveniently.PIC microcontroller is used independently to measure and display output. Key words: frequency conversion , SPWM , DSP , PIC microcontroller

4000a交流变频电源系列操作说明书

APS4000A系列交流变频电源 使 用 说 明 书 版本:01

第一章安全规定 (5) 1.1安全须知 (5) 1.2维护和保养 (5) 第二章安装要点 (6) 2.1拆封和检查 (6) 2.2使用前的准备 (6) 2.3储存和运输 (7) 第三章技术规格 (8) 第四章操作面板介绍 (9) 4.1前面板说明 (9) 4.2后面板说明 (10) 第五章操作说明 (11) 第六章附录资料 (14) 6.1故障检修 (14) 6.2串行口通讯失败的检查 (14) 6.3产品维护 (14) 6.4R S232通讯说明 (15)

第一章安全规定 使用前应该注意的规定和事项!!! 安全标志 高电压警告符号。 高压危险符号。 机体接地符号。 接地符号 1.1 安全须知 ·使用本交流变频电源前,请先完整阅读本操作说明,并充分了解本机所使用的安全标志,以策安全. ·在开启本机的输入电源开关前,请先选择正确的输入电压规格. 为防止意外伤害或死亡发生,必须由专业人员连接各输入或输出线,在搬移和使用机器时,请务必先观察清楚,然后再进行操作. 1.2 维护和保养 使用者的维护 为了防止触电的发生,请不要掀开仪器的盖子。本仪器内部所有的零件绝对不需使用者维护。如果仪器有异常情况发生,请寻求我公司或其指定的经销商给予维护。所附的线路和方块图只供参考之用。 定期维护 交流电源供应器、输入电源线各相关附件等每年至少要仔细检验和校验一次,以保护使用者的安全和仪器的精确性。 使用者的修改 用者不得自行更改机器的线路或零件,如被更改,机器保质期则自动失效并且我公司不负责任。使用未经本公司认可的零件或附件也不给予保证。如发现送回检修的机器被更改,我公司会将机器的电路或零件修复回原来设计的状态,并收取修护费用。

相关文档
最新文档