几种新型半导体发光材料的分析研究进展

几种新型半导体发光材料的分析研究进展
几种新型半导体发光材料的分析研究进展

几种新型半导体发光材料的研究进展

摘要:概述了三种新型半导体发光材料氮化镓、碳化硅、氧化锌各自的特性, 评述了它们在固态照明中的使用情况,及其研究现状,并对其未来的发展方向做出了预测。

关键词:LED发光二极管;发光材料;ZnO,SiC,GaN

1引言

在信息技术的各个领域中,以半导体材料为基础制作的各种各样的器件,在人们的生活中几乎无所不及,不断地改变着人们的生活方式、思维方式,提高了人们的生活质量,促进了人类社会的文明进步。它们可用作信息传输,信息存储,信息探测,激光与光学显示,各种控制等等。半导体照明是一种基于半导体发光二极管新型光源的固态照明,是21世纪最具发展前景的高技术领域之一,已经成为人类照明史上继白炽灯、荧光灯之后的又一次飞跃。固态照明是一种新型的照明技术,它具有电光转换效率高、体积小、寿命长、安全低电压、节能、环保等优点。发展固态照明产业可以大规模节约能源,对有效地保护环境,有利于实现我国的可持续发展具有重大的战略意义。从长远来看,新材料的开发是重中之重。发光材料因其优越的物理性能、必需的重要应用及远大的发展前景而在材料行业中备受关注。

本文综述了近几年来对ZnO,SiC,GaN三种新型半导体发光材料的研究进展。2几种新型半导体发光材料的特征及发展现状

在半导体的发展历史上,1990年代之前,作为第一代的半导体材料以硅<包括锗)材料为主元素半导体占统治地位.但随着信息时代的来临,以砷化镓

2.1氮化镓(GaN>

2.1.1氮化镓的一般特征

GaN 是一种宽禁带半导体(Eg=3.4 ev>,自由激子束缚能为25mev,具有宽的直接带隙,Ⅲ族氮化物半导体InN、GaN 和A lN 的能带都是直接跃迁型, 在性质上相互接近, 它们的三元合金的带隙可以从1.9eV连续变化到6.2eV,这相应于覆盖光谱中整个可见光及远紫外光范围.实际上还没有一种其他材料体系具有如此宽的和连续可调的直接带隙.

GaN是优良的光电子材料,可以实现从红外到紫外全可见光范围的光发射和红、黄、蓝三原色具备的全光固体显示,强的原子键,高的热导率和强的抗辐射能力,其光跃迁几率比间接带隙的高一个数量级.GaN具有较高的电离度,在Ⅲ-V 的化合物中是最高的(0.5或0.43>.在大气压下,GaN一般是六方纤锌矿结构.它的一个原胞中有4个原子,原子体积大约为GaAS的一半.GaN是极稳定的化合物,又是坚硬的高熔点材料,熔点约为1700?C.文献[1]列出了纤锌矿GaN和闪锌矿GaN的

GaN 室温禁带宽度为3. 4 eV ,是优良的短波长光电子材料,其发光特性一般是在低温(2 K、12 K、15 K或77 K>下获得的[2,3],文献[4,5]较早地报道了低温下纤锌矿结构GaN 的荧光(PL> 谱,文献[6]报道了闪锌矿结构GaN 的阴极荧光光谱。通过在低温(2K> 下对高质量的GaN 材料进行光谱分析,观察到A、B、C三种激子,它们分别位于(3. 474 ±0 . 002> eV、(3 . 480 ±0 . 002> eV和(3 . 490 ±0. 002> eV

[7]GaN的光学特性,可在蓝光和紫光发射器件上应用.作为一种宽禁带半导体材料,GaN能够激发蓝光的独特物理和光电属性使其成为化合物半导体领域最热的研究领域,近年来在研发和商用器件方面的快速发展更是使得GaN基相关产业充满活力。当前,GaN 基的近紫外、蓝光、绿光发光二极管已经产业化,激光器和光探测器的研究也方兴未艾。

2.1.2氮化镓研究的发展现状

阻碍GaN 研究的主要困难之一是缺乏晶格及热胀系数匹配的衬底材料.

SiC与GaN晶格匹配较好,失配率仅为3.5%,但SiC价格昂贵.蓝宝石与

GaN有14%的

晶格失配,但价格比SiC便宜,而且通过在其上面生长过渡层也能获得高质量的Ga N薄膜,因而蓝宝石是氮化镓基材料外延中普遍采用的一种衬底材料,因为其耐热、透明、可大面积获得,并具有与GaN 相似的晶体结构.一般都选用c面- (0001>作为衬底,但蓝宝石与GaN的失配率仍较高,难以获得高质量的GaN薄膜.

对于GaN材料,虽然长期以来衬底单晶没有解决,异质外延缺陷密度相当高,但是器件水平已可实用化。

第一个基于GaN 的LED 是20 世纪70 年代由Pankove 等人研制的,其结构为金属- 半导体接触型器件. 在提高了GaN 外延层质量和获得了高浓度p型GaN之后,Amano 等首先实现了GaN pn 结蓝色发光管. 其后Nakamura 等在进一步提高材料质量,特别是大大提高了p 型GaN 的空穴浓度后,报告了性能更佳的GaN pn 结蓝色发光管,其外量子效率达0.18 %.随着1993年GaN材料的P型掺杂突破,GaN 基材料成为蓝绿光发光材料的研究热点. 1994年,Nakamura开发出第一个蓝色InGaNPAlGaN双异质结(DH> LED. 1995年及其后两年,Nakamura等人又实现了蓝色、绿色、琥珀色、紫色以及紫外光InGaN量子阱LED[8] ,把蓝绿光氮化镓基发光管的发光效率提高到10 %左右,亮度超过10个烛光,寿命超过100000 h.1995年日亚化学所制成Zcd蓝光<450nmLED),绿光12cd(520nmLED>。日本1998年制定一个采用宽禁带氮化物材料开发LED的7年规划,其目标是到2005年研制密封在

荧光管内、并能发出白色光的高能量紫外光LED,这种白色LED的功耗仅为白炽灯的1/8,是荧光灯的1/2,其寿命是传统荧光灯的50倍~100倍。这证明GaN材料的研制工作已取相当成功,并进入了实用化段.InGaN系混晶的生成,

InGaN/AlGaN双质结LED,InGaN单量子阱LED,InGaN多量子阱LED等相继开发成功.6cd的InGaN-SQW-LED高亮度纯绿茶色、2cd高亮度蓝色LED已制作出来,今后,与AlGaP、AlGaAs系红色LED组合形成亮亮度全色显示就可实现.这样三原色混成的白色光光源也打开新的应用领域,以高可靠、长寿命LED为特征的时代就会到来。日光灯将会被LED所替代。LED将成为主导产品,GaN晶体管也将随材料生长和器件工艺的发展而迅猛发展,成为新一代大功率器件.

目前,GaN基蓝绿光发光二极管己商品化,GaN基LD也有商品出售,最大输出功率为0.5W.GaN LED的应用非常普遍,在交通信号灯里、彩色视频广告牌上、甚至闪光灯里都可能会见到它的身影。GaN LED的成功不仅仅引发了光电行业中的革命。它还帮助人们投入更多的资金和注意力来发展大功率高频率GaN晶体管。以GaN基半导体材料为基础所发展起来的固态白光照明技术有希望发展成为未来照明的主题技术,根据已有发展计划,有能在2020年前取代白纸等和白炽灯,比较固态照明技术对节环保、改善照明等具有重要意义,并将会形成500亿美元产值的巨大新兴产业。但在目前的技术水平下,获得一定尺寸和厚度的实用化的GaN体单晶十分困难,并且价格昂贵.GaN单晶至今未形成大规模商品化,缺乏合适的衬底材料,蓝宝石也不是理想的衬底材料,其次是突破p型掺杂优化,目前实现的Mg掺杂工艺复杂,设备昂贵,难以操作.这些问题影响了GaN电子器件和光电器件的进一步研究开发,是国内外争相研究的焦点问题.目前的主流制作GaN结晶方法是MOCVD法.因此,寻找和选择最适合的GaN的衬底材料一直是国际研究的主要热点之一.专家们预计,GaN基LED及功率晶体管、蓝色激光器,一旦在衬底等关键技术领域取得突破,其产业化进程将会长驱直入。

2.2氧化锌(ZnO>

2.2.1氧化锌的一般特征

ZnO作为一种宽带隙半导体材料,室温禁带宽度为3.37ev,自由激子束缚能为

60mev.ZnO具有铅锌矿结构, a=0.32533 nm, c=0.52073 nm, z=2[9],空间群为C46V-P63mc,Zn按照六方紧密堆积,每个Zn2+周围有4个氧原子,构成[Zn-O4]四面体,四面体之间以顶角相互连结,四面体的1个面与+c(0001>面平行,见图4a。Zn2+在c轴方向的分布是不对称的,它不是位于2个氧原子层的中间,而是偏靠近于+c方向,见图4b[10]。

图4 ZnO晶体结构

(a> c,p,p′面之间的晶向关系和Zn-O4四面体

(b>[Zn-O4]四面体在(1010>的Zn2+晶向 (Zn与O 原子在c轴方向的分布是不对称的>.氧化锌的结晶形态为六方单锥类,对称型为L6P,L6为z轴,显露晶面为六方单锥,六方柱,单面,见图5所示.

图5 ZnO晶体理论上的极性生长形态

ZnO是一种优良的多功能材料.作为压电材料的ZnO压敏陶瓷,因其优良的非线性导电特性、大电流和高能量承受能力等优点而被广泛应用于抑制电力系统雷过电压和操作过电压,抑制电磁脉冲和噪音,防止静电放电等方面.ZnO单晶在可见光透过率达到90 %,在室温下(或低温下> ZnO 及纳M ZnO 光致发光谱( PL> 普遍存在2个较宽的发光带,在520 nm附近的宽绿色发光带和在380 nm附近一系

列施主束缚激子峰的紫色发光带[11].绿色发光带有时也存在丰富的结构[12].关于绿色发光带一般被认为是杂质或缺陷态(O空缺、Zn填隙>的发光,但是相关机理还有待进一步研究.文献[13]报道目前常在制备时添加一些有效物质,通过不同制备方法和条件处理,使ZnO表面吸附或包裹上一层“外衣”,以改善其无规则的表面层,钝化表面以减少缺陷及悬键,可有效提高其可见光或紫外发射强度(达一个量级以上>,通常,ZnO 表面有吸附物质(如反应副产品,溶剂分子,溶解的气体等> ,使其表面产生大量缺陷态及悬键,淬灭光发射,影响ZnO 的光学、电学等方面的性质,因此这种处理能有效改善ZnO 的表面态.自室温下激光激发ZnO纳M微晶膜观测到紫外激光发射行为以来,ZnO 的激光发射一直是研究的热点,ZnO的蓝带,特

别是近紫外激光发射特征,以及相当高的激子结合能(60meV> 和增益系数

(300cm- 1 > ,使其成为重要而优异的蓝、紫外半导体激光材料.ZnO作为透明电极和窗口材料而被用于太阳能电池,且因其辐射损伤小,特别适合在太空中使用。此外,ZnO还是制造声表面波(体波>器件的理想材料.ZnO是一致熔融化合物,熔点高达2248K.并且在高温下ZnO的挥发性很强,到1773K就会发生严重的升华现象,因此晶体的生长较为困难。

2.2.2氧化锌研究的发展现状

早在2O世纪6O年代,人们就开始研究ZnO体单晶的生长,国内外对于ZnO的研究一直是近几年半导体材料研究的热点, 无论是薄膜ZnO、纳MZnO或是体单晶ZnO, 文献[14]很好地总结了2003年之前的国外ZnO晶体的研究与发展状况。随着高质量、大尺寸单晶ZnO 生产已经成为可能,单晶ZnO 通过加工可以作为GaN 衬底材料. ZnO 与GaN 的晶体结构、晶格常量都很相似,晶格失配度只有2. 2 %(沿〈001〉方向> 、热膨胀系数差异小,可以解决目前GaN 生长困难的难题. GaN 作为目前主要的蓝、紫外发光半导体材料,在DVD 播放器中有重要的应用,由于世界上能生产ZnO单晶的国家不多,主要是美国、日本,

所以ZnO单晶生产具有巨大的市场潜力.近年来,材料制备技术的突破,纳MZnO半导体的制备、性能及其应用成为材料学的一个研究热点.

随着光电技术的进步,ZnO作为第三代半导体以及新一代蓝、紫光材料,引起了人们的广泛关注,特别是P型掺杂技术的突破,凸显了ZnO在半导体照明工程

中的重要位.尤其是与GaN相比,ZnO具有很高的激子结合能(60meV>,远大于

GaN(21meV>的激子结合能, 具有较低的光致发光和受激辐射阈值[15]。本征ZnO是一种n型半导体,必须通过受主掺杂才能实现p型转变,但是由于氧化锌中存在较多本征施主缺陷,对受主掺杂产生自补偿作用,并且受主杂质固溶度很低,因此,p型ZnO的研究已成为国际上的研究热点。

最近,中国科学院上海硅酸盐研究所采用常压超声喷雾热解法、通过氮和铟共掺杂, 成功地制备出p型ZnO薄膜,其电学性能远远超过国际上的最好水平<电阻率降低了2个数量级,霍尔迁移率提高了2-3个数量级)。在此基础上,又制备出具有p-ZnO/n-ZnO双层结构的ZnO同质p-n结。这些研究成果对于试制新型氧化锌短波长发光器件、深入研究ZnO薄膜晶体生长和掺杂机理、拓宽氧化锌薄膜应用领域等方面具有重要意义.从2005年6月, 国家特种矿物材料工程技术研究中心( 桂林> 采用温差水热法在大直径的高压釜中生长出了15.0 mm×15.6 mm ×6.1 mm的ZnO晶体, 晶体透明, 颜色为浅黄绿, 晶体呈六边形厚板状.这是我国在ZnO晶体研究方面取得的最新进展。对于国外, 日本、美国和俄罗斯目前均有50.8mmZnO晶片出售.2005年1月, 日本率先研制成功基于氧化锌同质PN结的电致发光LED,这种氧化锌蓝色发光管同现有的GaN产品相比, 预计亮度将是10倍而价格和能耗则只有1/10。

2.3碳化硅(SiC>

2.3.1碳化硅的一般特征

SiC是宽带隙半导体,室温下带隙为2.2eV (3C-SiC>~3.3eV (4H-SiC> ~

3.023eV(6H-SiC>[16].通过对具有相对最小带隙的3C2SiC (214eV>直至具有最大带隙的2H2SiC (3135eV> 的能带结构的研究发现,它们所有的价带-导带跃迁都有声子参与,也就是说这些类型的SiC半导体都是间接带隙半导体[17].根据沿c轴方向Si-C双原子层堆垛顺序的不同,SiC的晶体结构可以分为包括立方 (3C>,六方 (2H、4H、6H、…> 以及菱方 (15R、21R、…> 等等的200多种.它们在能量上很接近,结构上由六角双层的不同堆积形成.最常见的形式是3C(闪锌矿结构ZB>.目前器件上用得最多的是3C-SiC、4H-SiC和6H-SiC.图1(a>、(b>、(c>是它们在截面上硅和碳原子的排列示意图[18]。

图1 SiC晶体结构示意图

(a>3C-SiC晶体结构示意图,其中每个晶位都是等价的(k代表立方对称性>;

(b>4H-SiC晶体结构示意图,其中一半的晶位具有立方对称性 (k>,另一半具有六方对称(h>;

(c>6H-SiC晶体结构示意图,其中三分之二的晶位具有立方对称性 (k1,k2>,另三分之一具有六方对称性(h>

在SiC晶格中,以四面体形式键合在一起的Si-C双原子层可以占据晶格中A、B、C三个可能位置的任何一个。ABC三种位置排列的多种可能性导致了具有不同堆垛周期性从而具有不同晶格对称性的SiC晶体结构。在考虑实际杂质的掺入以及电子输运性质时,晶格整体对称性的影响是很重要的。对各种晶体结构的SiC的硅原子或碳原子来说,它们的第一近邻是完全一样的,但其第二近邻和第三近邻却有不同的配位结构,导致了不等价晶位的产生。带间的光吸收使不同类型的SiC 具有其特征颜色, 如6H-SiC呈绿色, ,4H-SiC呈黄绿色,这些类型

的SiC都具有单轴对称性[19] , 它们所呈现的各种不同颜色,是从导带底到其它能量较高的空能级间的电子跃迁造成的.未掺杂的3C-SiC呈浅黄色, 掺杂的3C-SiC 呈黄绿色, 这种颜色变化是由于自由载流子带内优先吸收红光而造成的.

碳化硅独有的力学,光学,电学,和热属性使它在各种技术领域具有广泛的应用.SiC是目前发展最为成熟的宽禁带半导体材料,它有效的发光来源于通过杂质能级的间接复合过程.因此,掺入不同的杂质,可改变发光波长,其范围覆盖了从红到紫的各种色光.实验上发现SiC与氮化物可形成一种稳定单晶结构的固溶体,晶格常数与6H-SiC基本匹配,当组分x达到一定值时,将发生间接带隙向直接带隙的转变.一旦变成直接带隙,其发光性能将大幅变化,在短波长发光和超高亮度二极管方面有巨大的应用潜力.同时SiC具有高热导率、高电子饱和漂移速度和大临界击穿电压等特点,成为研制高频大功率、耐高温、抗辐照半导体微电子器件和电路的理想材料.

2.3.2碳化硅研究的发展现状

SiC蓝光LED是唯一商品化的SiC器件,各种SiC多型体的LED覆盖整个可见光和近紫外光区域. 6H-SiC纯绿光(530nm>的LED通过注入Al或液相外延得到[20],蓝光二极管是N-Al杂质对复合发光, 4H-SiC蓝光二极管是N-B杂质对复合发光.美国Cree公司是最早研究和生产SiC晶体和晶片的公司,其研制的蓝光LED发光中心为

470nm,发光功率达到18微瓦.他们在1997年到1998年之间就可以生产2到3英寸的SiC晶片。该公司后来同日本著名的日亚化学公司合作生产蓝光和紫光LED器件。最近几年,欧盟和法国分别启动基于SiC的半导体器件重大工程,极大地推动了SiC 研究在欧洲的进度.

SiC作为第三代宽禁带半导体的典型代表, 无论是单晶衬底质量、导电的外延层和高质量的介质绝缘膜和器件工艺等方面, 都比较成熟或有可以借鉴的SiC 器件工艺作参考, 由此可以预测在未来的宽禁带半导体器件中, SiC将担任主角, 独霸功率和微电子器件市场.我国在SiC单晶和基片研究方面落后国外5到8年的时间.山东大学晶体材料国家重点实验室利用自行设计的坩埚和温场, 稳定、重复地生长出了直径大于50.8 mm的6H- SiC晶体,晶体厚度大于20 mm。中国科学院物理研究所成功生长出直径为50.8 mm、厚度为25.4 mm, 具有较高质量的6H多型SiC单晶.除LED外, SiC器件还处于研制阶段.一方面SiC材料,特别是3C-SiC中的各种缺陷影响器件性能. 另一方面与器件相关的工艺使得SiC的优势尚未得到开发.

3 小结

1)作为新一代宽禁带半导体, GaN,SiC,ZnO的共同特点是它们的禁带宽度

在3.3到3.5 eV之间,是Si的三倍, GaAs的两倍.由于它们的一些特殊性质和

潜在应用而备受关注.

2)GaN 及其相关的固熔体合金可以实现带隙1.9eV(InN>到6.2eV(AlN>连

续可调,是实现整个可见光波段和紫外光波段发光和制作短波长半导体激光器的理想材料。目前GaN材料的研制工作已取相当成功,并进入了实用化阶段。一

旦GaN 在衬底等关键技术领域取得突破,其产业化进程将会取得长足发展,有

望在将来取代传统的白炽灯,成为主要的照明工具。

3)SiC和ZnO体单晶不但具有优异的光学、电学等性质,还具有其它材料无法比拟的优势——同质外延, 预计亮度将是GaN LED的10倍而价格和能耗则只有1/10。随着对半导体材料性能的不断探索,进一步完善材料作用原理和器件工艺水平,碳化硅和氧化锌会是将来紫光LED的主要材料。

实验讲义-半导体材料吸收光谱测试分析2015

半导体材料吸收光谱测试分析 一、实验目的 1.掌握半导体材料的能带结构与特点、半导体材料禁带宽度的测量原理与方法。 2.掌握紫外可见分光光度计的构造、使用方法和光吸收定律。 二、实验仪器及材料 紫外可见分光光度计及其消耗品如氘灯、钨灯,玻璃基ZnO薄膜。 三、实验原理 1.紫外可见分光光度计的构造、光吸收定律 (1)仪器构造:光源、单色器、吸收池、检测器、显示记录系统。 a.光源:钨灯或卤钨灯——可见光源,350~1000nm;氢灯或氘灯——紫外光源,200~360nm。 b.单色器:包括狭缝、准直镜、色散元件 色散元件:棱镜——对不同波长的光折射率不同分出光波长不等距; 光栅——衍射和干涉分出光波长等距。 c.吸收池:玻璃——能吸收UV光,仅适用于可见光区;石英——不能吸收紫外光,适用于紫外和可见光区。 要求:匹配性(对光的吸收和反射应一致) d.检测器:将光信号转变为电信号的装置。如:光电池、光电管(红敏和蓝敏)、光电倍增管、二极管阵列检测器。 紫外可见分光光度计的工作流程如下: 0.575 光源单色器吸收池检测器显示双光束紫外可见分光光度计则为: 双光束紫外可见分光光度计的光路图如下:

(2)光吸收定律 单色光垂直入射到半导体表面时,进入到半导体内的光强遵照吸收定律: x x e I I?- =α d t e I I?- =α 0(1) I0:入射光强;I x:透过厚度x的光强;I t:透过膜薄的光强;α:材料吸收系数,与材料、入射光波长等因素有关。 透射率T为: d e I I T?- = =α t (2) 则 d e T d? = =?α α ln ) /1 ln( 透射光I t

8、半导体材料吸收光谱测试分析

半导体材料吸收光谱测试分析 一、实验目的 1.掌握半导体材料的能带结构与特点、半导体材料禁带宽度的测量原理与方法。 2.掌握紫外可见分光光度计的构造、使用方法和光吸收定律。 二、实验仪器及材料 紫外可见分光光度计及其消耗品如氘灯、钨灯、绘图打印机,玻璃基ZnO 薄膜。 三、实验原理 1.紫外可见分光光度计的构造、光吸收定律 UV762双光束紫外可见分光光度计外观图: (1)仪器构造:光源、单色器、吸收池、检测器、显示记录系统。 a .光源:钨灯或卤钨灯——可见光源,350~1000nm ;氢灯或氘灯——紫外光源,200~360nm 。 b .单色器:包括狭缝、准直镜、色散元件 色散元件:棱镜——对不同波长的光折射率不同分出光波长不等距; 光栅——衍射和干涉分出光波长等距。 c .吸收池:玻璃——能吸收UV 光,仅适用于可见光区;石英——不能吸收紫外光,适用于紫外和可见光区。 要求:匹配性(对光的吸收和反射应一致) d .检测器:将光信号转变为电信号的装置。如:光电池、光电管(红敏和蓝敏)、光电倍增管、二极管阵列检测器。 紫外可见分光光度计的工作流程如下: 光源 单色器 吸收池 检测器 显示 双光束紫外可见分光光度计则为:

双光束紫外可见分光光度计的光路图如下: (2)光吸收定律 单色光垂直入射到半导体表面时,进入到半导体内的光强遵照吸收定律: x x e I I ?-=α0 d t e I I ?-=α0 (1) I 0:入射光强;I x :透过厚度x 的光强;I t :透过膜薄的光强;α:材料吸收系数,与材料、入射光波长等因素有关。 透射率T 为: d e I I T ?-==α0 t (2)

高分子材料典型力学性能测试实验

《高分子材料典型力学性能测试实验》实验报告 学号姓名专业班级 实验地点指导教师实验时间 在这一实验中将选取两种典型的高分子材料力学测试实验,即拉伸实验及冲 击试验作为介绍。 实验一:高分子材料拉伸实验 一、实验目的 (1)熟悉高分子材料拉伸性能测试标准条件、测试原理及其操作,了解测 试条件对测定结果的影响。 (2)通过应力—应变曲线,判断不同高分子材料的性能特征。 二、实验原理 在规定的实验温度、湿度和实验速率下,在标准试样(通常为哑铃形)的 两端沿轴向施加载荷直至拉断为止。拉伸强度定义为断裂前试样承受最大载荷与试样的宽度和厚度的乘积的比值。实验不仅可以测得拉伸强度,同时可得到断裂伸长率和拉伸模量。 玻璃态聚合物在拉伸时典型的应力-应变曲线如下:

是在较低温度下出现的不均匀拉伸,所以又称为冷拉。 将试样夹持在专用夹具上,对试样施加静态拉伸负荷,通过压力传感器、 形变测量装置以及计算机处理,测绘出试样在拉伸变形过程中的拉伸应力—应变曲线,计算出曲线上的特征点如试样直至断裂为止所承受的最大拉伸应力(拉伸强度)、试样断裂时的拉伸应力(拉伸断裂应力)、在拉伸应力-应变曲线上屈服 点处的应力(拉伸屈服应力)和试样断裂时标线间距离的增加量与初始标距之比(断裂伸长率,以百分数表示)。所涉及的相关计算公式: (1)拉伸强度或拉伸断裂应力或拉伸屈服应力或偏置屈服应力σt σt 按式(1)计算: (1) 式中σt—抗拉伸强度或拉伸断裂应力或拉伸屈服应力或偏置屈服应力,MPa; p—最大负荷或断裂负荷或屈服负荷或偏置屈服负荷,N; b—实验宽度,mm;d—试样厚度,mm。 (2)断裂伸长率εt εt 按式(2)计算: 式中εt——断裂伸长率,%;

半导体材料能带测试及计算

半导体材料能带测试及计算 对于半导体,是指常温下导电性能介于导体与绝缘体之间的材料,其具有一定的带隙(E g)。通常对半导体材料而言,采用合适的光激发能够激发价带(VB)的电子激发到导带(CB),产生电子与空穴对。 图1. 半导体的带隙结构示意图。 在研究中,结构决定性能,对半导体的能带结构测试十分关键。通过对半导体的结构进行表征,可以通过其电子能带结构对其光电性能进行解析。对于半导体的能带结构进行测试及分析,通常应用的方法有以下几种(如图2): 1.紫外可见漫反射测试及计算带隙E g; 2.VB XPS测得价带位置(E v); 3.SRPES测得E f、E v以及缺陷态位置; 4.通过测试Mott-Schottky曲线得到平带电势; 5.通过电负性计算得到能带位置. 图2. 半导体的带隙结构常见测试方式。 1.紫外可见漫反射测试及计算带隙 紫外可见漫反射测试 2.制样:

背景测试制样:往图3左图所示的样品槽中加入适量的BaSO4粉末(由于BaSO4粉末几乎对光没有吸收,可做背景测试),然后用盖玻片将BaSO4粉末压实,使得BaSO4粉末填充整个样品槽,并压成一个平面,不能有凸出和凹陷,否者会影响测试结果。 样品测试制样:若样品较多足以填充样品槽,可以直接将样品填充样品槽并用盖玻片压平;若样品测试不够填充样品槽,可与BaSO4粉末混合,制成一系列等质量分数的样品,填充样品槽并用盖玻片压平。 图3. 紫外可见漫反射测试中的制样过程图。 1.测试: 用积分球进行测试紫外可见漫反射(UV-Vis DRS),采用背景测试样(BaSO4粉末)测试背景基线(选择R%模式),以其为background测试基线,然后将样品放入到样品卡槽中进行测试,得到紫外可见漫反射光谱。测试完一个样品后,重新制样,继续进行测试。 ?测试数据处理 数据的处理主要有两种方法:截线法和Tauc plot法。截线法的基本原理是认为半导体的带边波长(λg)决定于禁带宽度E g。两者之间存在E g(eV)=hc/λg=1240/λg(nm)的数量关系,可以通过求取λg来得到E g。由于目前很少用到这种方法,故不做详细介绍,以下主要来介绍Tauc plot法。 具体操作: 1、一般通过UV-Vis DRS测试可以得到样品在不同波长下的吸收,如图4所示; 图4. 紫外可见漫反射图。

实验一 半导体材料的缺陷显示及观察资料讲解

实验一半导体材料的缺陷显示及观察

实验一半导体材料的缺陷显示及观察 实验目的 1.掌握半导体的缺陷显示技术、金相观察技术; 2.了解缺陷显示原理,位错的各晶面上的腐蚀图象的几何特性; 3.了解层错和位错的测试方法。 一、实验原理 半导体晶体在其生长过程或器件制作过程中都会产生许多晶体结构缺陷,缺陷的存在直接影响着晶体的物理性质及电学性能,晶体缺陷的研究在半导体技术上有着重要的意义。 半导体晶体的缺陷可以分为宏观缺陷和微观缺陷,微观缺陷又分点缺陷、线缺陷和面缺陷。位错是半导体中的主要缺陷,属于线缺陷;层错是面缺陷。 在晶体中,由于部分原子滑移的结果造成晶格排列的“错乱”,因而产生位错。所谓“位错线”,就是晶体中的滑移区与未滑移区的交界线,但并不是几何学上定义的线,而近乎是有一定宽度的“管道”。位错线只能终止在晶体表面或晶粒间界上,不能终止在晶粒内部。位错的存在意味着晶体的晶格受到破坏,晶体中原子的排列在位错处已失去原有的周期性,其平均能量比其它区域的原子能量大,原子不再是稳定的,所以在位错线附近不仅是高应力区,同时也是杂质的富集区。因而,位错区就较晶格完整区对化学腐蚀剂的作用灵敏些,也就是说位错区的腐蚀速度大于非位错区的腐蚀速度,这样我们就可以通过腐蚀坑的图象来显示位错。 位错的显示一般都是利用校验过的化学显示腐蚀剂来完成。腐蚀剂按其用途来分,可分为化学抛光剂与缺陷显示剂,缺陷显示剂就其腐蚀出图样的特点又可分为择优的和非择优的。 位错腐蚀坑的形状与腐蚀表面的晶向有关,与腐蚀剂的成分,腐蚀条件有关,与样品的性质也有关,影响腐蚀的因素相当繁杂,需要实践和熟悉的过程,以硅为例,表1列出硅中位错在各种界面上的腐蚀图象。 二、位错蚀坑的形状 仅供学习与交流,如有侵权请联系网站删除谢谢2

材料测试与分析总复习

XRD复习重点 1.X射线的产生及其分类 2.X射线粉晶衍射中靶材的选取 3.布拉格公式 4.PDF卡片 5.X射线粉晶衍射谱图 6.X射线粉晶衍射的应用 电子衍射及透射电镜、扫描电镜和电子探针分析复习提纲 透射电镜分析部分: 4.TEM的主要结构,按从上到下列出主要部件 1)电子光学系统——照明系统、图像系统、图像观察和记录系统;2)真空系统; 3)电源和控制系统。电子枪、第一聚光镜、第二聚光镜、聚光镜光阑、样品台、物镜光阑、物镜、选区光阑、中间镜、投影镜、双目光学显微镜、观察窗口、荧光屏、照相室。 5. TEM和光学显微镜有何不同? 光学显微镜用光束照明,简单直观,分辨本领低(0.2微米),只能观察表面形貌,不能做微区成分分析;TEM分辨本领高(1A)可把形貌观察,结构分析和成分分析结合起来,可以观察表面和内部结构,但仪器贵,不直观,分析困难,操作复杂,样品制备复杂。 6.几何像差和色差产生原因,消除办法。 球差即球面像差,是由于电磁透镜的中心区域和边缘区域对电子的折射能力不符合预定的规律而造成的。减小球差可以通过减小CS值和缩小孔径角来实现。 色差是由于入射电子波长(或能量)的非单一性造成的。采取稳定加速电压的方法可以有效的减小色差;适当调配透镜极性;卡斯汀速度过滤器。 7.TEM分析有那些制样方法?适合分析哪类样品?各有什么特点和用途? 制样方法:化学减薄、电解双喷、竭力、超薄切片、粉碎研磨、聚焦离子束、机械减薄、离子减薄; TEM样品类型:块状,用于普通微结构研究; 平面,用于薄膜和表面附近微结构研究; 横截面样面,均匀薄膜和界面的微结构研究; 小块粉末,粉末,纤维,纳米量级的材料。 二级复型法:研究金属材料的微观形态; 一级萃取复型:指制成的试样中包含着一部分金属或第二相实体,对它们可以直接作形态检验和晶体结构分析,其余部分则仍按浮雕方法间接地观察形态; 金属薄膜试样:电子束透明的金属薄膜,直接进行形态观察和晶体结构分析; 粉末试样:分散粉末法,胶粉混合法 思考题: 1.一电子管,由灯丝发出电子,一负偏压加在栅极收集电子,之后由阳极加速,回答由灯丝到栅极、由栅极到阳极电子的折向及受力方向? 2.为什么高分辨电镜要使用比普通电镜更短的短磁透镜作物镜? 高分辨电镜要比普通电镜的放大倍数高。为了提高放大倍数,需要短焦距的强磁透镜。透镜的光焦度1/f与磁场强度成H2正比。较短的f可以提高NA,使极限分辨率更小。 3.为什么选区光栏放在“象平面”上? 电子束之照射到待研究的视场内;防止光阑受到污染;将选区光阑位于向平面的附近,通过

宽禁带半导体

半导体材料种类繁多,分类方法各不相同,一般将以硅(Si)、锗(Ge)等为代表的元素半导体材料称为第一代半导体材料;以砷化镓(GaAs)、磷化铟(InP)、磷化镓(GaP)等为代表的化合物半导体材料称为第二代半导体材料;以碳化硅(SiC)、氮化镓(GaN)、氮化铝(AlN)、氧化锌(ZnO)、金刚石为代表的宽禁带半导体材料称为第三代半导体材料[1]。以硅材料为代表的第一代半导体材料的发展是从20世纪50年代开始,它取代了笨重的电子管,导致了以集成电路为核心的微电子工业的发展和整个IT产业的飞跃,广泛应用于信息处理和自动控制等领域[2]。 20世纪90年代以来,随着移动无限通信的飞速发展和以光纤通信为基础的信息高速公路和互联网的兴起,第二代半导体材料开始兴起。由于其具有电子迁移率高、电子饱和漂移速度高等特点,适于制备高速和超高速半导体器件,目前基本占领手机制造器件市场[3]。 当前,电子器件的使用条件越来越恶劣,要适应高频、 大功率、耐高温、抗辐照等特殊环境。为了满足未来电子器件需求,必须采用新的材料,以便最大限度地提高电子元器件的内在性能。近年来,新发展起来了第三代半导体材料--宽禁带半导体材料,该类材料具有热导率高、电子饱和速度高、击穿电压高、介电常数低等特点[4],这就从理论上保证了其较宽的适用范围。目前,由其制作的器件工作温度可达到600℃以上、抗辐照1×106rad;小栅宽GaNHEMT器件分别在4GHz下,功率密度达到40W/mm;在8GHz,功率密度达到30W/mm;在18GHz,功率密度达到9.1W/mm;在40GHz,功率密度达到10.5W/mm;在80.5GHz,功率密度达到2.1W/mm,等。因此,宽禁带半导体技术已成为当今电子产业发展的新型动力。从目前宽禁带半导体材料和器件的研究情况来看,研究重点多集中于碳化硅(SiC)和氮化镓(GaN)技术,其中SiC技术最为成熟,研究进展也较快;而GaN技术应用广泛,尤其在光电器件应用方面研究比较深入[5]。氮化铝、金刚石、氧化锌等宽禁带半导体技术研究报道较少,但从其材料优越性来看,颇具发展潜力,相信随着研究的不断深入,其应用前景将十分广阔。 1宽禁带半导体材料 1.1碳化硅单晶材料 在宽禁带半导体材料领域就技术成熟度而言,碳化硅是这族材料中最高的,是宽禁带半导体的核心。SiC材料是IV-IV族半导体化合物,具有宽禁带(Eg:3.2eV)、高击穿电场(4×106V/cm)、高热导率(4.9W/cm.k)等特点[6]。从结构上讲,SiC材料属硅碳原子对密排结构,既可以看成硅原子密排,碳原子占其四面体空位;又可看成碳原子密排,硅占碳的四面体空位[7]。对于碳化硅密排结构,由单向密排方式的不同产生各种不同的晶型,业已发现约200种[8]。目前最常见应用最广泛的是4H和6H晶型。4H-SiC特别适用于微电子领域,用于制备高频、高温、大功率器件;6H-SiC特别适用于光电子领域,实现全彩显示。 第一代、第二代半导体材料和器件在发展过程中已经遇到或将要遇到以下重大挑战和需求[9,10]: (1)突破功率器件工作温度极限,实现不冷却可工作在300℃~600℃高温电子系统。 (2)必须突破硅功率器件的极限,提高功率和效率,从而提高武器装备功率电子系统的性能。 (3)必须突破GaAs功率器件的极限,在微波频段实现高功率密度,实现固态微波通讯系统、雷达、电子对抗装备更新换代。 (4)必须拓宽发光光谱,实现全彩显示、新的光存储、紫外探测以及固态照明。 随着SiC技术的发展,其电子器件和电路将为系统解决上述挑战奠定坚实基础。因此SiC材料的发展将直接影响宽禁带技术的发展。 SiC器件和电路具有超强的性能和广阔的应用前景,因此一直受业界高度重视,基本形成了美国、 欧洲、日本三足鼎立的局面。目前,国际上实现碳化硅单晶抛光片商品化的公司主要有美国

半导体测试技术实践

半导体测试技术实践总结报告 一、实践目的 半导体测试技术及仪器集中学习是在课堂结束之后在实习地集中的实践性教学,是各项课间的综合应用,是巩固和深化课堂所学知识的必要环节。学习半导体器件与集成电路性能参数的测试原理、测试方法,掌握现代测试设备的结构原理、操作方法与测试结果的分析方法,并学以致用、理论联系实际,巩固和理解所学的理论知识。同时了解测试技术的发展现状、趋势以及本专业的发展现状,把握科技前进脉搏,拓宽专业知识面,开阔专业视野,从而巩固专业思想,明确努力方向。另外,培养在实际测试过程中发现问题、分析问题、解决问题和独立工作的能力,增强综合实践能力,建立劳动观念、实践观念和创新意识,树立实事求是、严肃认真的科学态度,提高综合素质。 二、实践安排(含时间、地点、内容等) 实践地点:西安西谷微电子有限责任公司 实践时间:2014年8月5日—2014年8月15日 实践内容:对分立器件,集成电路等进行性能测试并判定是否失效 三、实践过程和具体内容 西安西谷微电子有限责任公司专业从事集成电路测试、筛选、测试软硬件开发及相关技术配套服务,测试筛选使用标准主要为GJB548、GJB528、GJB360等。 1、认识半导体及测试设备

在一个器件封装之后,需要经过生产流程中的再次测试。这次测试称为“Final test”(即我们常说的FT测试)或“Package test”。在电路的特性要求界限方面,FT测试通常执行比CP测试更为严格的标准。芯片也许会在多组温度条件下进行多次测试以确保那些对温度敏感的特征参数。商业用途(民品)芯片通常会经过0℃、25℃和75℃条件下的测试,而军事用途(军品)芯片则需要经过-55℃、25℃和125℃。 芯片可以封装成不同的封装形式,图4显示了其中的一些样例。一些常用的封装形式如下表: DIP: Dual Inline Package (dual indicates the package has pins on two sides) 双列直插式 CerDIP:Ceramic Dual Inline Package 陶瓷 PDIP: Plastic Dual Inline Package 塑料 PGA: Pin Grid Array 管脚阵列

高分子材料测试技术答案 青岛科技大学考试复习资料

聚合物结构与性能 1.非晶体聚合物的力学三态,说明各自分子运动特点,并用曲线表示出来。 力学三态:玻璃态、高弹态和粘流态称为聚合物的力学三态 玻璃态:温度低,链段的运动处于冻结,只有侧基、链节、链长、键角等局部运动,形变小; 高弹态:链段运动充分发展,形变大,可恢复; 粘流态:链段运动剧烈,导致分子链发生相对位移,形变不可逆。 2.晶态聚合物的力学状态及其转变 在轻度结晶的聚合物中,少量的晶区起类似交联点的作用,当温度升高时,其中非晶区由玻璃态转变为高弹态,可以观察到 Tg 的存在,但晶区的链段由于受晶格能的限制难以运动,使其形变受到限制,整个材料表现为由于非晶区的高弹态而具有一定的韧性,由于晶区的存在具有一定的硬度。 若晶区的Tm>T f (非晶区),则当晶区熔融后,非晶区已进入粘流态,不 呈现高弹态; 若TmT f 时才进入 粘流态。 3.聚合物的分子运动具有以下特点 (1)运动单元的多重性(2)聚合物分子的运动是一个松弛过程:(3)聚合物的分子运动与温度有关 4.玻璃化温度的影响因素 (1)聚合物的结构(a) 主链结构(b) 侧基或侧链(c) 分子量(d) 化学交联 (2)共聚、共混与增塑 (3)外界条件 红外光谱分析思考题 1.红外光谱的定义 当样品受到频率连续变化的红外光照射时,分子吸收了某些频率的辐射,并由其振动或转动运动引起偶极矩的净变化,产生分子振动和转动能级从基态到激发态的跃迁,使相应于这些吸收区域的透射光强度减弱。记录物质对红外光的吸收程度(或透过程度)与波长或波数关系曲线,就得到红外光谱 形变

半导体材料能带测试及计算

半导体材料能带测试及计算对于半导体,是指常温下导电性能介于导体与绝缘体之间的材料,其具有一定的带隙(E g)。通常对半导体材料而言,采用合适的光激发能够激发价带(VB)的电子激发到导带(CB),产生电子与空穴对。 图1. 半导体的带隙结构示意图。 在研究中,结构决定性能,对半导体的能带结构测试十分关键。通过对半导体的结构进行表征,可以通过其电子能带结构对其光电性能进行解析。对于半导体的能带结构进行测试及分析,通常应用的方法有以下几种(如图2): 1.紫外可见漫反射测试及计算带隙E g; 2.VB XPS测得价带位置(E v); 3.SRPES测得E f、E v以及缺陷态位置; 4.通过测试Mott-Schottky曲线得到平带电势; 5.通过电负性计算得到能带位置.

图2. 半导体的带隙结构常见测试方式。 1.紫外可见漫反射测试及计算带隙 紫外可见漫反射测试 2.制样: 背景测试制样:往图3左图所示的样品槽中加入适量的BaSO4粉末(由于BaSO4粉末几乎对光没有吸收,可做背景测试),然后用盖玻片将BaSO4粉末压实,使得BaSO4粉末填充整个样品槽,并压成一个平面,不能有凸出和凹陷,否者会影响测试结果。 样品测试制样:若样品较多足以填充样品槽,可以直接将样品填充样品槽并用盖玻片压平;若样品测试不够填充样品槽,可与BaSO4粉末混合,制成一系列等质量分数的样品,填充样品槽并用盖玻片压平。 图3. 紫外可见漫反射测试中的制样过程图。 1.测试:

用积分球进行测试紫外可见漫反射(UV-Vis DRS),采用背景测试样(BaSO4粉末)测试背景基线(选择R%模式),以其为background测试基线,然后将样品放入到样品卡槽中进行测试,得到紫外可见漫反射光谱。测试完一个样品后,重新制样,继续进行测试。 ?测试数据处理 数据的处理主要有两种方法:截线法和Tauc plot法。截线法的基本原理是认为半导体的带边波长(λg)决定于禁带宽度E g。两者之间存在E g(eV)=hc/λg=1240/λg(nm)的数量关系,可以通过求取λg来得到E g。由于目前很少用到这种方法,故不做详细介绍,以下主要来介绍Tauc plot法。 具体操作: 1、一般通过UV-Vis DRS测试可以得到样品在不同波长下的吸收,如图4所示; 图4. 紫外可见漫反射图。 2. 根据(αhv)1/n = A(hv – Eg),其中α为吸光指数,h为普朗克常数,v为频率,Eg为半导体禁带宽度,A为常数。其中,n与半导体类型相关,直接带隙半导体的n取1/2,间接带隙半导体的n为2。

宽禁带半导体功率器件

综 述 宽禁带半导体功率器件 刘海涛 陈启秀 (浙江大学信电系功率器件研究所,杭州310027) 摘要 阐述了宽禁带半导体的主要特性与Si C、金刚石等主要宽禁带半导体功率器件的最新发展动态及其存在的主要问题,并对其未来的发展作出展望。 关键词 宽禁带半导体 功率器件 碳化硅 金刚石 W ide Bandgap Sem iconductor Power D ev ices L iu H aitao,Chen Q ix iu (Institu te of P o w er D ev ices,Z hej iang U niversity,H ang z hou310027) Abstract T he p ap er p resen ts the m ain characteristics of w ide bandgap sem iconduc2 to rs,and elabo rates the latest developm en t of Si C and diam ond pow er devices.A t the sam e ti m e,the fu tu re developm en t of Si C and diam ond pow er devices is fo rcasted. Keywords W ide bandgap sem iconducto r Pow er devices Si C D iam ond 1 引 言 由于Si功率器件已日趋其发展的极限,尤其在高频、高温及高功率领域更显示出其局限性,因此开发研制宽带半导体器件已越来越被人们所关注。所谓宽带半导体(W B G)主要是指禁带宽度大于212电子伏特的半导体材料,包括 —O、 —S、 —Se、 —N、Si C、金刚石以及其他一些化合物半导体材料。这些材料一般均具有较宽的禁带、高的击穿电场、高的热导率、高的电子饱和速率,因此他们比Si及GaA s更适合于制作高温、高频及高功率器件。其中John son优值指数(JFOM=E c v s 2Π,E c 为临界电场;v s为电子饱和速率)、Keyes优值指数(KFOM=Κ[C v s 4ΠΕ]1 2,其中C为光速;Ε为介电常数)和B aliga优值指数(B FOM=ΕΛE G3,其中E G为禁带宽度,Λ为迁移率)分别从功率频率能力、耐热能力及导通功率损耗三方面说明了这一科学事实[1]。表1[2]列出了常见宽带半导体与Si,GaA s的比较。 由表1可知宽禁带半导体具有许多优点: 1)W B G具有很高的热导率(尤其是Si C与金刚石),使得它们能够迅速转移所产生的热量,广泛用于高温及高功率领域;2)由于W B G的禁带宽度很大,因此相应器件的漏电流极小,一般比Si半导体器件低10~14个数量级,有利于制作CCD器件及高速存储器;3)W B G具有比普通半导体更低的介电常数及更高的电子饱和速率,使之比Si,GaA s更适合于制作毫米波放大器及微波放大器。除此之外,W B G还具有负的电子亲和势及很高的异质结偏置电势,使得它们特别适合于阴极发射的平板显示器。 鉴于近几年Si C与金刚石材料的生长技术及氧化、掺杂、欧姆接触等工艺的成熟,使得Si C与金刚石器件得到了突飞猛进的发展,下面我们将主要评述Si C及金刚石的最新发展。 2 Si C功率器件 近年来Si C功率器件的研究引起了世界科学界的高度重视,尤其是美国、欧洲等发达国

高分子材料分析与测试

期末复习作业 一、 名词解释 1. 透湿量 透湿量即指水蒸气透过量。 薄膜两侧的水蒸气压差和薄膜厚度一 定, 温度一定的条件下1山2聚合物材料在24小时内所透过的蒸 汽量(用 v 表示) 2. 吸水性 吸水性是指材料吸收水分的能力。 通常以试样原质量与试样失水 后的 质量之差和原质量之比的百分比表示; 也可以用单位面积的 试样吸收 水分的量表示;还可以用吸收的水分量来表示。 3. 表观密度 对于粉状、 片状颗粒状、 纤维状等模塑料的表观密度是指单位体 对于泡沫塑料的表观密度是指单位体积的泡沫塑料在规定温度 4、拉伸强度 在拉伸试验中, 保持这种受力状态至最终, 就是测量拉伸力直至 应 力,用 t 表示) 5、弯曲强度 试样在弯曲过程中在达到规定挠度值时或之前承受的最大弯曲 应力 (用 f 表示) 积中的质量(用 a 表示) 和相对湿度时的重量,故又称体积密度或视密度(用 a 表示) 材料断裂为止, 所承受的最大拉伸应力称为拉伸强度 极限拉伸

6、压缩强度 指在压缩试验中试样所承受的最大压缩应力。 它可能是也可能不 7、屈服点 应力—应变曲线上应力不随应变增加的初始点。 8、细长比 14、压缩应变 是试样破裂的瞬间所承受的压缩应力(用 e 表示) 指试样的高度与试样横截面积的最小回转半径之比(用 表示) 9、断裂伸长率 断裂时伸长的长度与原始长度之比的百分数(用 t 表示) 10、弯曲弹性模量 比例极限内应力与应变比值(用 E f 表示) 11、压缩模量 指在应力—应变曲线的线性范围内压缩应力与压缩应变的比值。 由于直线与横坐标的交点一般不通过原点, 因此可用直线上两点 的应力差与对应的应变差之比表示(用 E e 表示) 12、弹性模量 在负荷—伸长曲线的初始直线部分, 材料所承受的应力与产生相 应的应变之比(用 E 表示) 13、压缩变形 指试样在压缩负荷左右下高度的改变量(用 h 表示) 指试样的压缩变形除以试样的原始高度(用 表示)

南京大学宽禁带半导体第三作业

第三次作业 1. 金属与半导体的接触类型强烈依赖于其功函数之差,请阐述其对应关系,但 对p型掺杂的宽禁带半导体而言,金属功函数已无法满足实现其欧姆接触的要求,请以p型氮化镓为例说明人们是如何实现其欧姆接触的。 2. 半导体的表面态对最终金属与半导体接触的性质有较大影响,例如人们在实 际应用中往往发现金属与宽禁带半导体的接触势垒的高低往往与金属的功函数依赖关系较小,这主要是由于高密度的表面态的存在对电子或空穴的陷阱作用所导致的表面费米能级的钉扎现象所致,这将导致欧姆接触或肖特基接触性能变差,请以氮化镓为例说明研究人员如何通过控制氮化镓的表面性质去优化其肖特基接触特性和欧姆接触特性的? 3. 氮化镓与氧化锌作为极性半导体,其Ga/Zn面与N/O面具有完全不同的性 质,请阐述这两种不同的表面对材料生长、掺杂、光学性质以及电接触性质(包括肖特基与欧姆接触)的影响,说明产生这些差异的物理原因。 4. 半导体薄膜中的霍尔迁移率与载流子浓度随着测量温度的变化规律强烈依赖 于薄膜中的掺杂浓度,请分别就低浓度、中等浓度与重掺杂的情形加以阐述,并说明其物理原因。在表征蓝宝石上异质外延氮化镓与氧化锌薄膜的霍尔效应测量中,其测量到的载流子浓度往往表现出更为复杂的变化规律,这主要是由于低温下位于薄膜与蓝宝石之间的界面存在高缺陷密度的高导层的贡献,请阐述这一现象,并以公式说明人们是如何去解决这一问题的。 5. 半导体薄膜中的迁移率大小是表征半导体材料晶体质量与电学性能的关键参 数,这主要是由于半导体中的位错密度对迁移率具有严重的影响。而从光学性质来说,半导体中的位错线往往也是电子或空穴的陷阱,导致深能级发光

新型半导体发光材料分析及发展

西安工程大学产品造型材料与工艺 半 导 体 发 光 材 料 氮 化 镓 学校:西安工程大学 班级:13级工设01班 姓名:陈龙 学号:41302020103 日期:2015 05 10

新型半导体发光材料氮化镓(GaN)分析及发展 摘要:概述了新型半导体发光材料氮化镓的特性, 评述了它在固态照明中的使用情况,及其研究现状,并对其未来的发展方向做出了预测。 关键词:LED发光二极管;发光材料 GaN 1引言 在信息技术的各个领域中,以半导体材料为基础制作的各种各样的器件,在人们的生活中几乎无所不及,不断地改变着人们的生活方式、思维方式,提高了人们的生活质量,促进了人类社会的文明进步。它们可用作信息传输,信息存储,信息探测,激光与光学显示,各种控制等等。半导体照明是一种基于半导体发光二极管新型光源的固态照明,是21世纪最具发展前景的高技术领域之一,已经成为人类照明史上继白炽灯、荧光灯之后的又一次飞跃。固态照明是一种新型的照明技术,它具有电光转换效率高、体积小、寿命长、安全低电压、节能、环保等优点。发展固态照明产业可以大规模节约能源,对有效地保护环境,有利于实现我国的可持续发展具有重大的战略意义。从长远来看,新材料的开发是重中之重。发光材料因其优越的物理性能、必需的重要应用及远大的发展前景而在材料行业中备受关注。 本文综述了近几年来对GaN新型半导体发光材料的研究进展。 2新型半导体发光材料氮化镓(GaN)的特征及发展现状 在半导体的发展历史上,1990年代之前,作为第一代的半导体材料以硅(包括锗)材料为主元素半导体占统治地位.但随着信息时代的来临,以砷化镓(GaAs)为代表的第二代化合物半导体材料显示了其巨大的优越性.而以氮化物(包括SiC、ZnO等宽禁带半导体)为第三代半导体材料,由于其优越的发光特征正成为最重要的半导体材料之一.以下对其中一种很有发展前景的新型发光材料做简要介绍. 2.1 氮化镓(GaN) 2.1.1 氮化镓的一般特征 GaN 是一种宽禁带半导体(Eg=3.4 ev),自由激子束缚能为25mev,具有宽的直接带隙,Ⅲ族氮化物半导体InN、GaN 和A lN 的能带都是直接跃迁型, 在性质上相互接近, 它们的三元合金的带隙可以从1.9eV连续变化到6.2eV,这相应于覆盖光谱中整个可见光及远紫外光范围.实际上还没有一种其他材料体系具有如此宽的和连续可调的直接带隙. GaN是优良的光电子材料,可以实现从红外到紫外全可见光范围的光发射和红、黄、蓝三原色具备的全光固体显示,强的原子键,高的热导率和强的抗辐射能力,其光跃迁几率比间接带隙的高一个数量级.GaN具有较高的电离度,在Ⅲ-V的化合物中是最高的(0.5或0.43).在大气压下,GaN一般是六方纤锌矿结构.它的一个原胞中有4个原子,原子体积大约为GaAS的一半.GaN是极稳定的化合物,又是坚硬的高熔点材料,熔点约为1700?C.文献[1]列出了纤锌矿GaN和闪锌矿GaN的特性

宽禁带半导体ZnO材料的调研开题报告

山东建筑大学毕业论文开题报告表班级: 姓名: 论文题目宽禁带半导体ZnO的调研一、选题背景和意义 Zn0是一种新型的II-VI族宽禁带半导体材料,具有优异的晶格、光电、压电和介电特性,和III-V族氮化物及II-VI族硒化物比具有很多潜在的优点。首先,它是一种直接带隙宽禁带半导体,室温下的禁带宽度为,与GaN()相近,而它的激子结合能()却比GaN()高出许多,因此产生室温短波长发光的条件更加优越;而且ZnO薄膜可以在低于500℃温度下获得,不仅可以减少材料在高温西制备时产生的杂质和缺陷,同时也大大简化了制备工艺;同时ZnO来源丰富,价格低廉,又具有很高的热稳定性和化学稳定性。ZnO在UV、蓝光LED和LDS器件等研究方面被认为是最有希望取代GaN的首选材料,ZnO已经成为国内外半导体材料领域一个新的研究热点。国内外有很多科研团队都在进行ZnO的研究.虽然Zn0暂时不能完全取代si 在电子产业中的基础地位,但是ZnO以其特殊的性质成为Si电路的补充。 国内外对于ZnO的研究一直是近几年半导体材料研究的热点。无论是薄膜ZnO、纳米ZnO或是体单晶ZnO,文献很好地总结了2003年之前的国外ZnO晶体的研究与发展状况。随着高质量、大尺寸单晶ZnO 生产已经成为可能,单晶ZnO通过加工可以作为GaN衬底材料。ZnO与GaN的晶体结构、晶格常量都很相似。晶格失配度只有2.2%(沿〈001〉方向)、热膨胀系数差异小,可以解决目前GaN生长困难的难题。GaN作为目前主要的蓝、紫外发光半导体材料,在DVD播放器中有重要的应用。由于世界上能生产ZnO单晶的国家不多,主要是美国、日

本。所以ZnO单晶生产具有巨大的市场潜力。近年来,材料制备技术的突破,纳米ZnO半导体的制备、性能及其应用成为材料学的一个研究热点。 本文介绍了ZnO薄膜具有的许多优异特性,优良的压电性、气敏性、压敏性和湿敏性,且原料廉价易得。这些特点使其在表面声波器件(SAW)、太阳能电池、气敏元件等领域得到广泛的应用。随着对ZnO紫外受激发射特性的研究和P型掺杂的实现,ZnO作为光电材料在紫外探测器、LED、LD等领域也有着巨大的应用潜力。另外本文还介绍了纳米氧化锌的许多优点和在许多方面的应用。 目前,我国各类氧化锌处于供不应求的状况,而以活性氧化锌和纳米氧化锌取代传统氧化锌是不可阻挡的趋势,可见,今后纳米氧化锌必会有非常广阔的市场前景。 二、课题关键问题及难点 要深入研究该方面的知识,就要涉猎很多方面的知识。作为本科学生,如何在现有知识的基础上,阅读并理解有关书目、文献,总结归纳相关理论和研究方法,是本课题首先要解决的关键问题。 首先,要了解氧化锌作为宽禁带半导体的特性,然后再细致的查找氧化锌薄膜的诸多性质和这些性质在哪些方面的应用。同时要寻找纳米氧化锌材料与普通氧化锌材料相比有哪些优点、在发展中存在的问题和以后的研究方向。查询相关资料并阅读和理解之后,合理的安排介绍氧化锌作为宽禁带半导体材料的性质和应用。 三、文献综述 当前,电子器件的使用条件越来越恶劣,要适应高频、大功率、耐高温、抗辐照等特殊环境。为了满足未来电子器件需

高分子材料分析测试与研究方法复习材料.doc

一. 傅里叶红外光谱仪 1. 什么是红外光谱图 当一束连续变化的各种波长的红外光照射样品时,其中一部分被吸收,吸收的这部分光能就转变为分子的振动能量和转动能量;另一部分光透过,若将其透过的光用单色器进行色散,就可以得到一谱带。若以波长或波数为横坐标,以百分吸收率或透光度为纵坐标,把这谱带记录下来,就得到了该样品的红外吸收光谱图,也有称红外振-转光谱图 2. 红外光谱仪基本工作原理 用一定频率的红外线聚焦照射被分析的试样,如果分子中某个基团的振动频率与照射红外线相同就会产生共振,这个基团就吸收一定频率的红外线,把分子吸收的红外线的情况用仪器记录下来,便能得到全面反映试样成份特征的光谱,从而推测化合物的类型和结构。 3. 红外光谱产生的条件 (1) 辐射应具有能满足物质产生振动跃迁所需的能量; (2) 辐射与物质间有相互偶合作用。 4. 红外光谱图的三要素 峰位、峰强和峰形 5. 红外光谱样品的制备方法 1) 固体样品的制备 a. 压片法 b. 糊状法: c. 溶液法 2) 液体样品的制备 a. 液膜法 b. 液体吸收池法 3) 气态样品的制备: 气态样品一般都灌注于气体池内进行测试 4) 特殊样品的制备—薄膜法 a. 熔融法 b. 热压成膜法

c. 溶液制膜法 6. 红外对供试样品的要求 ①试样纯度应大于98%,或者符合商业规格,这样才便于与纯化合物的标准光谱或商业光谱进行对照,多组份试样应预先用分馏、萃取、重结晶或色谱法进行分离提纯,否则各组份光谱互相重叠,难予解析。 ②试样不应含水(结晶水或游离水) 水有红外吸收,与羟基峰干扰,而且会侵蚀吸收池的盐窗。所用试样应当经过干燥处理。 ③试样浓度和厚度要适当 使最强吸收透光度在5~20%之间 7. 红外光谱特点 1)红外吸收只有振-转跃迁,能量低; 2)应用范围广:除单原子分子及单核分子外,几乎所有有机物均有红外吸收;3)分子结构更为精细的表征:通过红外光谱的波数位置、波峰数目及强度确定分子基团、分子结构; 4)分析速度快; 5)固、液、气态样均可用,且用量少、不破坏样品; 6)与色谱等联用(GC-FTIR)具有强大的定性功能; 7)可以进行定量分析; 二. 紫外光谱 1. 什么是紫外-可见分光光度法?产生的原因及其特点? 紫外-可见分光光度法也称为紫外-可见吸收光谱法,属于分子吸收光谱,是利用某些物质对200-800 nm光谱区辐射的吸收进行分析测定的一种方法。紫外-可见吸收光谱主要产生于分子价电子(最外层电子)在电子能级间的跃迁。该方法具有灵敏度高,准确度好,使用的仪器设备简便,价格廉价,且易于操作等优点,故广泛应用于无机和有机物质的定性和定量测定。 2. 什么是吸收曲线?及其吸收曲线的特点? 测量某种物质对不同波长单色光的吸收程度,以波长为横坐标,吸光度为纵坐标作图,可得到一条曲线,称为吸收光谱曲线或光吸收曲线,它反映了物质

实验一半导体材料的缺陷显示及观察

实验一半导体材料的缺陷显示及观察 实验目的 1.掌握半导体的缺陷显示技术、金相观察技术; 2.了解缺陷显示原理,位错的各晶面上的腐蚀图象的几何特性; 3.了解层错和位错的测试方法。 一、实验原理 半导体晶体在其生长过程或器件制作过程中都会产生许多晶体结构缺陷,缺陷的存在直接影响着晶体的物理性质及电学性能,晶体缺陷的研究在半导体技术上有着重要的意义。 半导体晶体的缺陷可以分为宏观缺陷和微观缺陷,微观缺陷又分点缺陷、线缺陷和面缺陷。位错是半导体中的主要缺陷,属于线缺陷;层错是面缺陷。 在晶体中,由于部分原子滑移的结果造成晶格排列的“错乱”,因而产生位错。所谓“位错线”,就是晶体中的滑移区与未滑移区的交界线,但并不是几何学上定义的线,而近乎是有一定宽度的“管道”。位错线只能终止在晶体表面或晶粒间界上,不能终止在晶粒内部。位错的存在意味着晶体的晶格受到破坏,晶体中原子的排列在位错处已失去原有的周期性,其平均能量比其它区域的原子能量大,原子不再是稳定的,所以在位错线附近不仅是高应力区,同时也是杂质的富集区。因而,位错区就较晶格完整区对化学腐蚀剂的作用灵敏些,也就是说位错区的腐蚀速度大于非位错区的腐蚀速度,这样我们就可以通过腐蚀坑的图象来显示位错。 位错的显示一般都是利用校验过的化学显示腐蚀剂来完成。腐蚀剂按其用途来分,可分为化学抛光剂与缺陷显示剂,缺陷显示剂就其腐蚀出图样的特点又可分为择优的和非择优的。 位错腐蚀坑的形状与腐蚀表面的晶向有关,与腐蚀剂的成分,腐蚀条件有关,与样品的性质也有关,影响腐蚀的因素相当繁杂,需要实践和熟悉的过程,以硅为例,表1列出硅中位错在各种界面上的腐蚀图象。 二、位错蚀坑的形状 当腐蚀条件为铬酸腐蚀剂时,<100>晶面上呈正方形蚀坑,<110>晶面上呈菱形或矩形蚀坑,<111>晶面上呈正三角形蚀坑。(见图1)。

宽禁带半导体光电材料研究进展

宽禁带半导体光电材料的研究及其应用 宽禁带半导体材料(Eg大于或等于3.2ev)被称为第三代半导体材料。主要包 括金刚石、SiC、GaN等。和第一代、第二代半导体材料相比,第三代半导体材料具有禁带宽度大,电子漂移饱和速度高、介电常数小、导电性能好,具有更高的击穿电场、更高的抗辐射能力的特点,其本身具有的优越性质及其在微波功率器件领域应用中潜在的巨大前景,非常适用于制作抗辐射、高频、大功率和高密度集成的电子器件。 以氮化镓(GaN)为代表的Ⅲ族氮化物作为第三代半导体材料,是一种良好的直 接宽隙半导体光电材料,其室温禁带宽度为3.4eV,它可以实现从红外到紫外全可见光范围的光辐射。近年来已相继制造出了蓝、绿色发光二极管和蓝色激光器等光电子器,这为实现红、黄、蓝三原色全光固体显示,制备大功率、耐高温、抗腐蚀器件,外空间紫外探测,雷达,光盘存储精细化、高密度,微波器件高速化等奠定了基础。 氮化镓和砷化镓同属III-V族半导体化合物,但氮化镓是III-V族半导体化合物中少有的宽禁带材料。利用宽禁带这一特点制备的氮化镓激光器可以发出蓝色激光,其波长比砷化镓激光器发出的近红外波长的一半还要短,这样就可以大大降低激光束聚焦斑点的面积,从而提高光纪录的密度。与目前常用的砷化镓激光器相比,它不仅可以将光盘纪录的信息量提高四倍以上,而且可以大大提高光信息的存取速度。这一优点不仅在光纪录方 面具有明显的实用价值,同时在光电子领域的其他方面也可以得 到广泛应用。虽然人们早就认识到氮化镓的这一优点,但由于氮 化镓单晶材料制备上的困难以及难于生长出氮化镓PN结,氮化 镓发光器件的研究很长时间一直没有获得突破。经过近20年的 努力,1985年通过先进的分子束外延方法大大改善了氮化镓材

半导体发光材料

半导体发光材料具有优异的光电催化及光电转化活性等特性, 已应用于光学材料, 太阳能材料,压电晶体和激光材料等领域。近年来,由于纳米材料科学的兴起人们对半导体发光材料的制备方法,性能及其应用进行了大量的研究,取得了重要的成就。 ZnSe半导体发光材料的研究进展 美国贝尔实验室在所制备的CdSe纳米粉体中发现,随着CdSe颗粒尺寸的减小发光带的波长逐渐变小,通过控制CdSe纳米颗粒的大小,制得了可在红、绿、蓝光之间变化的可调谐发光管。 1991年,美国3M公司研制成功了世界上第一个ZnSe基电泵浦蓝绿色激光器,引 起了国际上学术界极大的轰动。 近年来,对ZnSe基蓝绿色半导体激光器的研究,取得了里程碑式的研究成果。用ZnSe材料制成的半导体蓝色激光器和发光二极管在水下通讯、通信、复印、高密度的信息储存、高分辨率的图像显示、信号指示以及医学、基础研究、环境检测、战地生 化检测等方面有着极为广阔的应用前景。蓝色激光器用于彩色高分辨率的图像传真,在海底等一些特殊环境下通信更为安全可靠以蓝色激光取代目前激光打印机上普遍采 用的红外激光或红色激光,由于其感应灵敏度的提高,可使打印速度提高一到二个量级。 在当前材料科学研究中ZnSe 半导体发光材料的制备技术倍受关注,追求获得成分纯正、结晶良好、光电性能稳定、低欧姆接触电阻、长寿命的ZnSe材料,成为21世 纪引人注目的焦点。经过40 多年的漫长探索,人们打破传统的“热平衡生长”材料制备方法,ZnSe材料的制备技术已取得了长足的进步。 尽管ZnSe基蓝绿色半导体激光器在四到五年内,连续工作时间由秒级提高到现 在的400h,工作电压也由最初的20v左右降低到目前的3.7v取得了长足的进步与发 展!但如何获得高净空浓度的p型掺杂,实现良好的低阻欧姆接触,延长器件使用寿命,使之达到实用化,仍然存在大量的课题,还需要不懈的努力与探索。 LED用半导体发光材料的产业现状 半导体技术在引发微电子革命之后,又在孕育一场新的产业革命——照明革命, 其标志就是用半导体光源逐步替代白炽灯和荧光灯。

相关文档
最新文档