聚乳酸

聚乳酸
聚乳酸

聚乳酸

理化性质聚乳酸特性聚乳酸的优点生产方法挤出级树脂的市场应用注塑级树脂的市场应用口腔固定材料眼科材料聚乳酸PLA在生物医药领域的应用电子电器领域的应用一次性用品的应用

聚乳酸CAS号: 31852-84-3

英文名称: 1,3-dioxan-2-one

英文同义词: polytrimethylene carbonate;1,3-Dioxan-2-one homopolymer 中文名称: 聚乳酸

中文同义词: 聚乳酸;聚三亚甲级碳酸酯;1,3-二氧杂环己烷-2-酮均聚物CBNumber: CB51260965

分子式: C4H6O3

分子量: 0

MOL File: 31852-84-3.mol

聚乳酸化学性质

安全信息

聚乳酸性质、用途与生产工艺

理化性质

聚乳酸又称聚羟基丙酸或聚交酯。由乳酸单体缩聚而成的可生物降解的高分子材料。可溶于氯仿、丙酮、二氧六环、二甲基甲酰胺、苯、甲苯等溶剂,不溶于石油醚等饱和烷烃。有良好的生物相容性和血液相容性,体外抗凝血性能好,可被人体降解,以二氧化碳和水排出体外。因此,聚乳酸可制成不同材料,如用熔融挤出法制成纤维作可吸收缝合线;纤维的编织物可作人体组织修补材料;制成薄膜材料用作肌腱组织的防粘连膜、骨膜生长隔离膜、药物缓释载体等。聚乳酸可与其他生物材料复合使用,如与磷酸三钙或碳纤维复合制成板材,可用作接骨板。

聚乳酸PLA的热稳定性好,加工温度170~230℃,有好的抗溶剂性,可用多种方式进行加工,如挤压、纺丝、双轴拉伸、注射、吹塑。由PLA制成的产品除能生物降解外,生物相容性、光泽度、透明性、手感和耐热性好,还具有一定的耐菌性、阻燃性和抗紫外性,还具有PS相似的光泽度和加工性能,因此具有广阔的市场前景,用途十分广泛,可用作包装材料、纤维和非织造物等,目前主要用于服装(内衣、外衣)、建筑、农业、林业、造纸和医疗卫生等领域。

图1为聚乳酸PLA的化学结构式。

聚乳酸特性

聚乳酸简称PLA,是以微生物的发酵产物L-乳酸为单体聚合成的一类聚合物,是一种无毒、无刺激性,具有良好生物相容性,可生物分解吸收,强度高,不污染环境,可

塑性加工成型的高分子材料。具有良好的机械性能,高抗击强度,高柔性和热稳定性,不变色,对氧和水蒸气有良好的透过性,又有良好的透明性和抗菌、防霉性,使用寿命可达2~3年。

PLA的化学结构并不复杂,但由于乳酸分子中存在手性碳原子,有D型和L型之分,使丙交酯、PLA的种类因立体结构不同而有多种,PLA具有优异的生物降解性,废弃后一年内能被土壤中的微生物完全降解,生成CO2和水,对环境不产生污染。PLA本身属脂肪族聚酯,具有通用高分子材料的基本特性,有着良好的机械加工性能,能够胜任大多数合成塑料的用途,可用于制作包装材料、家电外壳或作为可降解纤维材料。聚乳酸(PLA)因其原料为可再生的生物资源,被产业界一致认定为新世纪最有发展前途的新型“生态材料”。

聚乳酸(PLA)是一种真正的生物塑料,30天内在微生物的作用下可彻底降解生成CO2和H2O。缺点是脆性高,热变形温度低(0.46MPa负荷下为54℃),结晶慢,但可分别通过和己内酰胺等共聚和添加结晶促进剂如滑石粉后退火处理加以改性,活性聚乳酸的结晶度可达40%,热变形温度提高到116~121℃。

图2为聚乳酸PLA的产品性能指标图。

聚乳酸的优点

(1)聚乳酸(PLA)是一种新型的生物降解材料,使用可再生的植物资源(如玉米、甘薯、土豆等)所提取的淀粉原料制成。淀粉原料经由发酵过程制成乳酸,再通过化学合成转换成PLA。其具有良好的生物可降解性,使用后能被自然界中微生物完全降解。随着全球温度不断升高,普通塑料的处理方法依然是焚烧火化,造成大量温室气体排入空气中,而PLA塑料则是掩埋在土壤里降解,产生的二氧化碳直接进入土壤有机质或被植物吸收,不会排入空气中,不会造成温室效应。

(2)PLA具有最良好的拉伸强度及延展度,力学性能及物理性能良好。PLA适用于吹塑、注塑、吸塑、压延等多种加工方法,加工方便,应用十分广泛。可用于加工从工业到民用的各种塑料制品、包装食品、快餐饭盒、无纺布、工业及民用布等。进而加工成农用织物、保健织物、抹布、卫生用品、室外防紫外线织物、帐篷布、地垫面等。此外,它也具有与传统薄膜相同的印刷性能,制成各式各样的应用产品。

(3)相容性与可降解性良好。PLA在医药领域应用十分广泛,如可生产一次性输液用具、免拆型手术缝合线等,低分子PLA作药物缓释包装剂等。

(4)聚乳酸除了有生物可降解塑料的基本特性外,还具备有自己独特的特性。传统生物可降解塑料的强度、透明度及对气候变化的抵抗能力皆不如一般的塑料。PLA和石化合成塑料的基本物性类似,也就是说,它可以广泛地用来制造各种应用产品。PLA也拥有良好的光泽性和透明度,和利用PS所制的薄膜相当,是其他生物可降解产品无法提供的。

(5)聚乳酸薄膜具有良好的透气性、透氧性,它也具有隔离气味的特性。病毒及霉菌易依附在生物可降解塑料的表面,故有安全及卫生的疑虑,然而,PLA是唯一具有优良抑菌及抗霉特性的生物可降解塑料。

(6)当焚化聚乳酸PLA时,其燃烧热值与焚化纸类相同,是焚化传统塑料(如PE)的一半,而且焚化PLA绝对不会释放出氮化物、硫化物等有毒气体。人体也含有以单体形态存在的乳酸,这就表示了这种分解性产品具有的安全性。

生产方法

聚乳酸生产是以乳酸为原料,传统的乳酸发酵大多用淀粉质原料,目前美、法、日等国家已开发利用农副产品为原料发酵生产乳酸,进而生产聚乳酸,英文缩写PLA。主要方法有:

(1)直接缩聚法在真空下使用溶剂使脱水缩聚。日本在这方面做了大量的研究,但最终没有成功实现产业化。

(2)二步法使乳酸生成环状二聚体丙交酯,再开环缩聚成PLA。这一技术较为成熟,美国Nature Works公司生产PLA的工艺即为该工艺。中国的海正与中科院共同研制的PLA生产技术也与此相似,主要过程是原料经微生物发酵制得乳酸后,再经过精制、脱水低聚、高温裂解,最后聚合成聚乳酸PLA。

(3)反应挤出制备高相对分子质量聚乳酸PLA 用间歇式搅拌反应器和双螺杆挤出机组合,进行连续的熔融聚合实验,可获得由乳酸通过连续熔融缩聚制得的相对分子质量达150000的PLA。利用双螺杆挤出机将低摩尔质量的乳酸预聚物在挤出机上进一步缩聚,制备出较高摩尔质量的PLA。在反应温度为150℃、催化剂用量为0.5%、螺杆转速为75 r/min时可通过双螺杆反应挤出缩聚法快速有效地提高PLA的摩尔质量,而且反应挤出产物分散系数减小,均匀性变好。通过DSC曲线的比较发现,通过反应挤出

缩聚法制得的PLA结晶度有所降低,这对改善聚乳酸PLA材料在使用过程中表现出较大的脆性是有益的。

以上信息由Chemicalbook的彤彤编辑整理。

挤出级树脂的市场应用

挤出级树脂是聚乳酸PLA的主要用途,主要用于大型超市里新鲜蔬果包装,该类包装已成为欧洲市场链中的重要一员;其次用于一些宣扬安全、节能、环保的电子产品包装上。在这些用途中PLA高透明度、高光泽度、高刚性等优点体现得淋漓尽致,目前已经是PLA应用的主导方向。另外,挤出级树脂在园艺上的应用也开始获得重视,目前在斜坡绿化、沙尘暴治理等领域已有所应用。

然而,PLA的挤出加工却并非易事,仅适合在一些先进的PET挤出成型机上进行加工,且挤出片材的厚度一般只在0.2~1.0mm范围。加工过程对水分含量及加工温度尤其敏感,挤出加工时,一般要求其水分含量要小于50×10-6,这对设备的干燥系统和温控系统又提出了新的要求。加工过程中,如果没有适宜的结晶设备,边料的回收也是一大难题,这也正是市场上有大量PLA边角料在流通的原因。

注塑级树脂的市场应用

在聚乳酸PLA的注塑应用中,较为广泛的是改性后的树脂。尽管纯PLA有着高透明度、高光泽度等优点,但是其硬而脆、加工难度大且不耐热等缺点影响了它在注塑方面的应用。当然,化学、塑料工业界都一直致力于解决这些问题。例如,利用BPM-500这种添加剂可以提高PLA的冲击强度;加入少量一种名为Biomax Strong的乙烯基共聚物可以改进 PLA的韧性;与另一种生物降解树脂PHA共混可以改善PLA的一些性能;另外,日本的科学家们则开发出了一种添加纸浆的耐热PLA树脂。通过以上一些方式改性后的PLA制品牺牲了透明性,但是却改进了PLA在耐热性、柔韧性、抗冲性等方面的缺陷,提高了其加工容易程度,因此应用范围也得到了拓展。

而整体上,相对高昂的成本是阻碍PLA在注塑市场上广泛应用的最大原因。虽然纯树脂通过填充改性可以降低一些成本,但是在保证其性能的前提下,这一措施的作用也有限,如果需要在全生物降解这一前提之下改善PLA性能上的缺陷,比如耐热性能,成本则更高。

口腔固定材料

研究表明,该类可吸收性聚合材料有足够的强度,可以用于颌面部骨折的内固定。国外专家于1976年首次提出引导组织再生术(GTR)概念。一般将膜放在牙周组织与根组织之间的技术称为GTR,主要应用于牙周病治疗与口腔种植。将膜放在骨缺损与龈组织之间的技术称为引导骨组织再生术。聚乳酸PLA膜的优良性能不仅符合上述要求,而且因为可吸收性而适合应用于龈翻瓣术和半厚瓣提升术。也适合应用于口腔种植手术中组织瓣与骨膜的缝合,可增强组织与种植体的适应性。该膜虽有一定缺陷,但PLA-GTR技术已成为治疗种植体骨缺损与牙周炎骨缺损时可选用的成熟方法。

眼科材料

增生性玻璃体视网膜病变是视网膜脱离手术失败的主要原因之一。糖皮质激素和抗代谢药物有抗增殖作用,但由于药物在玻璃体内半衰期短,需反复注射方能维持有效浓度。而将聚乳酸PLA及其共聚物作为眼科材料制成长效缓释系统(DDS)就可能成为治疗增生性玻璃体视网膜病变的较好方法。糖皮质激素是治疗白内障术后炎症反应的常用药物,用含地塞米松60μg与PLA制成直径及厚度为1mm的粒状地塞米松-DDS,证实地塞米松-DDS比地塞米松滴眼液能更有效地减轻术后炎症反应,且无明显的不良反

应,是安全有效的治疗方法,目前此剂型已在眼科临床上使用。另外,青光眼滤过术后抗瘢痕的药物和给药方法很多,但多很不理想。而长效DDS能维持较低的治疗浓度,应是较为理想的给药方法。

聚乳酸PLA在生物医药领域的应用

生物医药行业是聚乳酸PLA最早开展应用的领域。PLA对人体有高度安全性并可被组织吸收,加之其优良的物理力学性能,可应用在生物医药领域,如一次性输液工具、免拆型手术缝合线、药物缓解包装剂、人造骨折内固定材料、组织修复材料、人造皮肤等。高相对分子质量的PLA,有非常高的力学性能,在欧美等国已被用来替代不锈钢,作为新型的骨科内固定材料如骨钉、骨板而被大量使用,其可被人体吸收代谢的特性,使病人免受二次开刀之苦。其技术附加值高,是医疗行业发展前景较好的高分子材料。

电子电器领域的应用

为了节省石油资源,同时减少地球温室效应,进一步拓展由可再生的生物资源制造而来的聚乳酸PLA的应用领域,各国都对PLA在电子电器领域的应用进行了深入研究,并取得了卓越的成效。

经过改性后的聚乳酸PLA,可改善PLA的耐冲性、耐热性、刚性和阻燃性等性能。已广泛用于制造电脑部件、手提笔记本外壳、手机零部件、影碟机壳体、光盘及家电零部件等,PLA与其他树脂、无机材料等材料可进行多元共混复合,生产成具有物理性能优异的新的塑料“合金”,这些材料的特性在抗静电、尺寸稳定性、撕裂强度、压缩强度、拉伸强度、抗冲击强度等方面都具有优良的特性,是较为理想的新型环保合成材料。

一次性用品的应用

聚乳酸PLA对人体绝对无害的特性使得PLA在一次性餐具、食品包装材料等一次性用品领域具有独特的优势。其能够完全生物降解也符合世界各国,特别是欧盟、美国及日本对于环保的高要求。但是采用PLA原料所加工的一次性餐具存在着不耐高温、不耐油及溶剂等缺陷。这样就造成其本身的功能作用大打折扣,以及在运输途中餐具变形、材质变脆,造成大量次品。不过,经过技术发展,目前市场有经过PLA改性后的材料,可以有效克服原来的缺点,有的甚至耐热温度高达120℃以上,可以用作微波炉用具材料。

聚乳酸上下游产品信息

完全生物降解材料聚乳酸的改性及应用

完全生物降解材料聚乳酸的改性及应用 1、聚乳酸 聚乳酸(PLA)是一种具有优良的生物相容性和可生物降解性的合成高分子材料。PLA这种线型热塑性生物可降解脂肪族聚酯是以玉米、小麦、木薯等一些植物中提取的淀粉为最初原料,经过酶分解得到葡萄糖,再经过乳酸菌发酵后变成乳酸,然后经过化学合成得到高纯度聚乳酸。聚乳酸制品废弃后在土壤或水中,30天内会在微生物、水、酸和碱的作用下彻底分解成CO2和H2O,随后在太阳光合作用下,又成为淀粉的起始原料,不会对环境产生污染,因而是一种完全自然循环型的可生物降解材料。 1.1聚乳酸的制备 目前聚乳酸的生产和制备主要有两条路线:(1)间接法即丙交酯开环聚合法(ROP法);(2)直接聚合法(PC法)。两类方法皆以乳酸为原料。丙交酯开环聚合法是先将乳酸缩聚为低聚物,低聚物在高温、高真空等条件下发生分子内酯交换反应,解聚为乳酸的环状二聚体2丙交酯,丙交酯再开环聚合得到聚乳酸,此方法中要求高纯度的丙交酯。直接法使用高效脱水剂使乳酸或其低聚物分子间脱水,以本体或溶液聚合的方式制备聚乳酸。 1.2聚乳酸的基本性质 由于乳酸具有旋光性,因此对应的聚乳酸有三种:PDLA、PLLA、PDLLA(消旋)。常用易得的是PDLLA和PLLA,分别由乳酸或丙交酯的消旋体、左旋体制得。 聚乳酸(PLA)是一种真正的生物塑料,其无毒、无刺激性,具有良好的生物相容性,可生物分解吸收,强度高,不污染环境,可塑性好,易于加工成型。由于聚乳酸优良的生物相容性,其降解产物能参与人体代谢,已被美国食品医药局(FDA)批准,可用作医用手术缝合线、注射用胶囊、微球及埋植剂等。 同时聚乳酸存在的缺点是:(1)聚乳酸中有大量的酯键,亲水性差,降低了它与其它物质的生物相容性;(2)聚合所得产物的相对分子量分布过宽,聚乳酸本身为线型聚合物,这都使聚乳酸材料的强度往往不能满足要求,脆性高,热变形温度低(0146MPa负荷下为54℃),抗冲击性差;(3)降解周期难以控制;(4)价格太贵,乳酸价格以及聚合工艺决定了PLA的成本较高。这都促使人们对聚乳酸的改性展开深入的研究。

聚乳酸简介

单个的乳酸分子中有一个羟基和一个羧基,多个乳酸分子在一起,-OH与别的分子的-COOH脱水缩合,-COOH与别的分子的-OH脱水缩合,就这样,它们手拉手形成了聚合物,叫做聚乳酸. 聚乳酸也称为聚丙交酯,属于聚酯家族。聚乳酸是以乳酸为主要原料聚合得到的聚合物,原料来源充分而且可以再生。聚乳酸的生产过程无污染,而且产品可以生物降解,实现在自然界中的循环,因此是理想的绿色高分子材料。 聚乳酸的热稳定性好,加工温度170~230℃,有好的抗溶剂性,可用多种方式进行加工,如挤压、纺丝、双轴拉伸,注射吹塑。由聚乳酸制成的产品除能生物降解外,生物相容性、光泽度、透明性、手感和耐热性好,还具有一定的耐菌性、阻燃性和抗紫外性,因此用途十分广泛,可用作包装材料、纤维和非织造物等,目前主要用于服装(内衣、外衣)、产业(建筑、农业、林业、造纸)和医疗卫生等领域。 聚乳酸的优点主要有以下几方面:(1)聚乳酸(PLA)是一种新型的生物降解材料,使用可再生的植物资源(如玉米)所提出的淀粉原料制成。淀粉原料经由发酵过程制成乳酸,再通过化学合成转换成聚乳酸。其具有良好的生物可降解性,使用后能被自然界中微生物完全降解,最终生成二氧化碳和水,不污染环境,这对保护环境非常有利,是公认的环境友好材料。关爱地球,你我有责。世界二氧化碳排放量据新闻报道在2030年全球温度将升至60℃,普通塑料的处理方法依然是焚烧火化,造成大量温室气体排入空气中,而聚乳酸塑料则是掩埋在土壤里降解,产生的二氧化碳直接进入土壤有机质或被植物吸收,不会排入空气中,不会造成温室效应。(2)机械性能及物理性能良好。聚乳酸适用于吹塑、热塑等各种加工方法,加工方便,应用十分广泛。可用于加工从工业到民用的各种塑料制品、包装食品、快餐饭盒、无纺布、工业及民用布。进而加工成农用织物、保健织物、抹布、卫生用品、室外防紫外线织物、帐篷布、地垫面等等,市场前景十分看好。(3)相容性与可降解性良好。聚乳酸在医药领域应用也非常广泛,如可生产一次性输液用具、免拆型手术缝合线等,低分子聚乳酸作药物缓释包装剂等。(4)聚乳酸(PLA)除了有生物可降解塑料的基本的特性外,还具备有自己独特的特性。传统生物可降解塑料的强度、透明度及对气候变化的抵抗能力皆不如一般的塑料。(5)聚乳酸(PLA)和石化合成塑料的基本物性类似,也就是说,它可以广泛地用来制造各种应用产品。聚乳酸也拥有良好的光泽性和透明度,和利用聚苯乙烯所制的薄膜相当,是其它生物可降解产品无法提供的。(6)聚乳酸(PLA)具有最良好的抗拉强度及延展度,聚乳酸也可以各种普通加工方式生产,例如:熔化挤出成型,射出成型,吹膜成型,发泡成型及真空成型,与目前广泛所使用的聚合物有类似的成形条件,此外它也具有与传统薄膜相同的印刷性能。如此,聚乳酸就可以应各不同业界的需求,制成各式各样的应用产品。(7)聚乳酸(PLA)薄膜具有良好的透气性、透氧性及透二氧二碳性,它也具有隔离气味的特性。病毒及霉菌易依附在生物可降解塑料的表面,故有安全及卫生的疑虑,然而,聚乳酸是唯一具有优良抑菌及抗霉特性的生物可降解塑料。(8)当焚化聚乳酸(PLA)时,其燃烧热值与焚化纸类相同,是焚化传统塑料(如聚乙烯)的一半,而且焚化聚乳酸绝对不会释放出氮化物、硫化物等有毒气体。人体也含有以单体形态存在的乳酸,这就表示了这种分解性产品具有的安全性。 二、方法和流程 聚乳酸生产是以乳酸为原料,传统的乳酸发酵大多用淀粉质原料,目前美、法、日等国、家已开发利用农副产品为原料发酵生产乳酸,进而生产聚乳酸。由乳酸制聚乳酸生产工艺有:[1]方法 (1)直接缩聚法在真空下使用溶剂使脱水缩聚。日本在这方面做了大量的研究,

聚乳酸

聚乳酸 单个的乳酸分子中有一个羟基和一个羧基,多个乳酸分子在一起,-OH与别的分子的-COOH脱水缩合,-COOH与别的分子的-OH脱水缩合,就这样,它们手拉手形成了聚合物,叫做聚乳酸. 聚乳酸也称为聚丙交酯,属于聚酯家族。聚乳酸是以乳酸为主要原料聚合得到的聚合物,原料来源充分而且可以再生。聚乳酸的生产过程无污染,而且产品可以生物降解,实现在自然界中的循环,因此是理想的绿色高分子材料。 聚乳酸的热稳定性好,加工温度170~230℃,有好的抗溶剂性,可用多种方式进行加工,如挤压、纺丝、双轴拉伸,注射吹塑。由聚乳酸制成的产品除能生物降解外,生物相容性、光泽度、透明性、手感和耐热性好,还具有一定的耐菌性、阻燃性和抗紫外性,因此用途十分广泛,可用作包装材料、纤维和非织造物等,目前主要用于服装(内衣、外衣)、产业(建筑、农业、林业、造纸)和医疗卫生等领域。 一、聚乳酸的优点 聚乳酸的优点主要有以下几方面: (1)聚乳酸(PLA)是一种新型的生物降解材料,使用可再生的植物资源(如玉米)所提出的淀粉原料制成。淀粉原料经由发酵过程制成乳酸,再通过化学合成转换成聚乳酸。其具有良好的生物可降解性,使用后能被自然界中微生物完全降解,最终生成二氧化碳和水,不污染环境,这对保护环境非常有利,是公认的环境友好材料。关爱地球,你我有责。世界二氧化碳排放量据新闻报道在2030年全球温度将升至60℃,普通塑料的处理方法依然是焚烧火化,造成大量温室气体排入空气中,而聚乳酸塑料则是掩埋在土壤里降解,产生的二氧化碳直接进入土壤有机质或被植物吸收,不会排入空气中,不会造成温室效应。 (2)机械性能及物理性能良好。聚乳酸适用于吹塑、热塑等各种加工方法,加工方便,应用十分广泛。可用于加工从工业到民用的各种塑料制品、包装食品、快餐饭盒、无纺布、工业及民用布。进而加工成农用织物、保健织物、抹布、卫生用品、室外防紫外线织物、帐篷布、地垫面等等,市场前景十分看好。 (3)相容性与可降解性良好。聚乳酸在医药领域应用也非常广泛,如可生产一次性输液用具、免拆型手术缝合线等,低分子聚乳酸作药物缓释包装剂等。 (4)聚乳酸(PLA)除了有生物可降解塑料的基本的特性外,还具备有自己独特的特性。传统生物可降解塑料的强度、透明度及对气候变化的抵抗能力皆不如一般的塑料。 (5)聚乳酸(PLA)和石化合成塑料的基本物性类似,也就是说,它可以广泛地用来制造各种应用产品。聚乳酸也拥有良好的光泽性和透明度,和利用聚苯乙烯所制的薄膜相当,是其它生物可降解产品无法提供的。 (6)聚乳酸(PLA)具有最良好的抗拉强度及延展度,聚乳酸也可以各种普通加工方式生产,例如:熔化挤出成型,射出成型,吹膜成型,发泡成型及真空成型,

聚乳酸的基本性质与改性研究

增加其力学强度,同时使降解速度减缓。PLA在高热下不稳定,即使低于熔融温度下加工也会使分子量下降较大。但随分子量升高,材料在加工中的降解速度也会变慢。 PLA具有良好的生物相容性,在生物体内PLA分解成乳酸,经生物酶的分解生成CO2和H2O,从体内排出。临床试验未发现有严重的急性组织反应和毒理反应,但PLLA仍有可能导致一些无菌性炎症反应。如用PLA材料做颧骨固定术后3年会产生无痛的局域肿块,皮下组织也出现降解缓慢的 结晶PLA颗粒,而引发噬菌作用。研究无法确定产生组织反应的真正原因,但PLA降解后产生小颗粒是无菌性炎症反应出现的根本原因。植入部位不同也决定了组织反应类型和强度,植入皮下PLA时炎症发生率偏高,在髓 内固定组织吞噬细胞较少,则反应发生率较低。 PLA是一种完全生物降解的热塑性高分子,具有良好的机械性能,透明性和生物相容性,广泛应用于生物医药行业中。PLA还具有较高的拉伸强度、压缩模量,但PLA还具有取多缺点。具有光学活性的PLA,结晶度较高,降解周期长,脆性大,而消旋PLA强度差,质硬而韧性较差,缺乏柔性和弹性,极易弯曲变形;另外,PLA的化学结构缺乏反应性官能基团,也不具有亲水性,降解速度需要控制。为了改善产品的脆性,调节其生物降解周期,更好地拓宽其应用面,各国研究者纷纷致力于PLA的改性事业。通过对PLA进行增塑、共聚、共混、分子修饰、复合等改性方法可实现对PLA的降解性能、亲水性及力学性能的改进,还可获得成本低廉的产品,从而更好地满足在医

学领域或环保方面的应用需求。 1.2 PLA热力学特性 PLA中碳原子为手性碳原子,因此PLA可分为左旋、右旋和内消旋等种类。其中非立体异构PLA的玻璃化转变温度由共聚单体的性能和聚合度决定。PLA立体异构体共聚物的Tg一般在60℃,与乳酸含量多少无关。 PLA的熔点与聚合物的分子量大小、光纯度、结晶程度等有关。共聚单体纯度也影响合成PLA的熔点。一般情况下,光纯度较高的PLLA的熔点较高,可到180℃,随D型乳酸增大后,合成的内消旋PLA的熔点有明显下降趋势,比如当内消旋异构体含量为2%,Tm下降至160℃,含量升至15%时,熔点降低至127℃。 但当PLLA和PDLA以1:1的比例混合后,形成外消旋PLA,其熔点可提高至230℃。因为混合物中PLLA和PDLA之间发生明显的立体络合,无定形区的链节之间之间相互作用导致该区域高密度的链堆砌,结构更加紧密,导致Tg升高。 1.3 PLA的热稳定性 同PET一样,由于PLA分子链中主要为羟基和羧基脱水缩合形成的酯键,化学活化能低,在高温下易发生化学键断裂反应,使分子量降低。特别是在有水分子存在的情况下,易发生水解反应,使PLA降解速度加快。有实验显示PLA在干燥条件下起始失重温度为285℃,但未经干燥的PLA的起始失重温度降低至260℃。因此在生产过程中水分对PLA的影响不可忽视,

石墨烯_聚乳酸复合材料的制备与性能研究_谢元仲

石墨烯/聚乳酸复合材料的制备与性能研究 谢元仲,徐淑艳,张维丽,孟令馨 (东北林业大学,哈尔滨150040) 摘要:目的制备具有优异阻隔性能及热稳定性的聚乳酸薄膜材料。方法方法在聚乳酸中添加石墨烯对其进行改性。首先采用改进的Hummers 法将鳞片状石墨制备成氧化石墨烯,继而采用热剥离法将氧化石墨烯还原剥离为石墨烯,然后以聚乳酸为基材,还原后的石墨烯为增强相,采用流延法制备石墨烯/聚乳酸复合薄膜,并测试了其结构、热稳定性以及阻隔性能。结果结果红外分析表明,石墨被强氧化剂氧化后形成了以C —OH ,—COOH ,C —O —C 和C =O 等官能团形式存在的石墨层间化合物,还原后获得的石墨烯剥离充分;石墨烯/聚乳酸复合薄膜的热稳定性能和阻隔性能随石墨烯含量的增加而逐渐增强。结论结论在试验参数范围内,石墨烯/聚乳酸复合薄膜的热稳定性和阻隔性能优于聚乳酸薄膜。关键词:石墨烯;聚乳酸;阻隔性能;热稳定性中图分类号:TB484.9 文献标识码:A 文章编号:1001-3563(2016)09-0007-05 Preparation and Properties of Graphene and Polylactic Acid Composites XIE Yuan-zhong ,XU Shu-yan ,ZHANG Wei-li ,MENG Ling-xin (Northeast Forestry University ,Harbin 150040,China ) ABSTRACT :This work was aimed to obtain polylactic acid films with good barrier properties and thermal stability.Graphene was added into polylactic acid to modify it.Graphene oxide was prepared using the flaky graphite by the improved Hummers method.Graphene oxide was reduced to graphene by thermal stripping method.Grapheme/polylactic acid films were prepared with tape casting method,using polylactic acid as the substrate and graphene as the reinforcement.The structure,thermal stability and barrier properties of films were tested.Infra-red spectrogram showed that graphite intercalation compound with COOH,C =O,C —O —C and C —OH functional groups was formed when graphite was oxidized by the strong oxidizer,and graphene stripped sufficiently by reduction.The thermal stability performance and barrier properties of graphene and lactic acid composite films increased with the increasing graphene content.Within the scope of the test parameters,the thermal stability and barrier performance of the graphene/PLA composite films were better than those of polylactic acid film. KEY WORDS :graphene ;polylactic acid ;barrier properties ;thermal stability 收稿日期:2015-11-13 基金项目:中央高校基本科研业务费专项资金(2572015DY06) 作者简介:谢元仲(1989—),男,山东济宁人,东北林业大学硕士生,主攻包装材料阻隔性能。通讯作者:徐淑艳(1976—),女,辽宁朝阳人,博士,东北林业大学副教授,主要研究方向为包装材料。 包装的主要目的是保护内容物免受外界环境(如氧气、水蒸气、油脂等)的侵害,延长物品保质期,这就要求包装材料具有一定阻隔性能,尤其对氧气和水蒸气的阻隔性[1]。另外,高阻隔包装膜还应具有良好的透光性,内容物可见,能很好地展示商品。聚乳酸是 一种可完全生物降解的绿色包装材料,具有良好的力学性能、生物相容性、透光性,广泛应用于各种包装领域[2—5],但是,纯的聚乳酸膜阻隔性能较差,水蒸气和氧气很容易透过薄膜,且热稳定性差,易分解[6—8]。这些缺点使得聚乳酸无法满足作为高阻隔性包装材料的 包装工程 PACKAGING ENGINEERING 第37卷第9期2016年5月 7

聚乳酸的基本性质与改性研究

PLA的基本性质与改性研究 1.1 物理性质[1,9] 无定形PLA的密度为1.248g/cm3,结晶PLLA的密度为1.290g/cm3,因此PLA的密度一般在两者之间。PLA为浅黄色或透明的物质,玻璃化温度约为55℃、熔点约175℃,不溶于水、乙醇、甲醇等,易水解成乳酸[6]。其性质如表1-1所示: 表1-1 PLA的基本性能 Table 1.1 The basic properties of PLA 性能PLLA PDLLA 熔点/℃170-190 <170 玻璃化转变温度/℃50~65 50~60 密度(g/cm3) 1.25~1.29 1.27 溶度参数(MPa0.5) 19~20.5 21.2 拉伸强度(kg/mm2) 12~230 4~5 弹性模量(kg/mm2) 700~1000 150~190 断裂伸长率(%) 12~26 5~10 结晶度(%) 60 / 完全降解时间(月) >24 12~16 乳酸有两种旋光异构体即左旋(L)和右旋(D)乳酸,聚合物有三种立体构型:右旋PLA(PDLA)、左旋PLA(PLLA)、内消旋PLA(PDLLA)。右旋PLA和左旋PLA是两种具有光学活性的有规立构聚合物,比旋光度分别为+157℃、-157℃。在熔融和溶液条件下均可形成结晶,结晶度高达60%左右。内消旋PLA是无定形非结晶材料,T g为58℃,由于内消旋结构打乱了分子链的规整度,无法结晶因此不存在熔融温度。纯的PLA为乳白色半透明粒子,PLA经双向拉伸加工可具有良好的表面光泽性、透明性、高刚性、抗油和耐润滑侵蚀性。 结晶性对PLA材料力学性能和降解性能(包括力学强度衰减、降解速率)的影响很大,PLA性脆、冲击强度差,特别是无定形非晶态的PDLLA力学强度明显低于晶态的PLLA,用特殊增强工艺制备的Φ3.2mmPLLA,PDLLA棒材的最大弯曲强度分别是270MPa和140 MPa,PLLA弯曲强度几乎是PDLLA的2倍。结晶也使降解速度变慢,研究称PDLLA 材料在盐水中降解时,分子量半衰期一般为3至10周,而PLLA由于结晶存在至少为20周。随分子量增大,PLA的力学强度也会随之提高,如PLA要想作为可使用的材料其分子量至少要达到10万左右。PLA材料的另一个突出优点是加工途径广泛,如挤出、纺丝、双轴拉伸等。在加工过程中分子取向不仅会大大增加其力学强度,同时使降解速

聚乳酸介绍

聚乳酸介绍 PLA聚乳酸历史 聚乳酸PLA (Poly lactic acid)一种新的生物塑料材料,早在1932年Dupont的科学家Wallace Carothers在真空中将乳酸进行聚合,产生低分子量的聚合物,但是由于生产成本过高,直到1987年食品公司Cargill开始投资研发新的聚乳酸制造过程,Cargill随后于2001年与Dow合资进行商业化产量名为:Nature-Works的聚乳酸商品。由于聚乳酸材料同时有生体相容性与生物可分解性,因此在所有的可分解性塑料中占有42%的市场。由专利分析来看聚乳酸的用途,2005年DERWENT专利資料库中共有聚乳酸专利1740篇,其中医用专利542篇,设备方面专利517篇,包装方面专利293篇,纤维方面专利419篇。除生物可分解的特性外,聚乳酸的主要优势包括有良好的机械特性与其材料来源,聚乳酸的材料来源为淀粉,在今日原油价格上涨,石油储存量下降的环境之下,除具有环境保护的优势,也同时有能源经济的效益。比较聚乳酸与其他常规塑料的物性发現,聚乳酸的机械性质相當强韧,与聚苯乙烯、聚氯乙烯接近,韧度超过聚丙烯,用于包裝材料、医疗与纤维的潛力相當好,唯一影响其近一步取代塑料包裝材料的障碍是其生产成本,依照制造过程与規模不同,聚乳酸的生產成本目前为 20-28元/公斤,高于目前常规塑料的价格。已商业化生产的生物可分解塑料,可以看出聚乳酸在整個生物可分解塑料占有举足轻重的地位,而Cargill Dow LLC每年14万吨的聚乳酸产量則为世界最高。日本方面三井化學也開始规模化生产,预计该公司2008年聚乳酸的销售量可以超过30000吨。依照Frost Sullivan推测,全世界的生物可分解性塑料在2002年時的市场为12万公吨,到2010年可望成达到每年50.5~70万公吨,而如果按照以上各主要公司所公布的产能扩建预计更是大幅超过此数字,如德国的Inventa Fisher计划将其设备放大至每年80000吨,而Cargill Dow LLC更预计在2009年可以将其聚乳酸产能提升至每年45万公吨,可以看出其強大的商机与市场成长潛力。 什么是生物可分解材料 生物可分解材料(Biodegradable Materials),主要以天然高分子或聚酯种类为基质,一般以可不短重复取得的天然資源,如:微生物、植物、动物,所製成的一种聚合物。传統的塑胶材料不能被微生物分解成H2O和CO2,如:PE、PVC、PS、PP…等。生物可分解材料PLA的制品暴露在空气中时,並不会进行分解。但在有足够的湿度、氧气与适当的微生物条件下.存在的自然掩埋或堆肥环境中经过短短的20~45天,即可被微生物所分解成H2O和CO2,再次回归于自然环境中滋养植物成長。 PLA聚乳酸材料优点 ** 材料天然、无毒,透气性高, PLA制品经由美国FDA认可,可直接与食物接触。 (就算盛裝含有酸性,酒精成份之食材,也不会釋放任何危害人体之物質) ** 使用任何废弃物处理方式(如焚化、掩埋、回收、堆肥)皆不致对环境造成任何影响。 ** 可取代以石油为基質的传统塑胶材料,且有同类传统塑胶制品之物性,使用方法相同。 ** 丢弃后,经堆肥环境及掩埋处理可经由微生物完全分解 100%。

聚乳酸纳米复合材料的制备及性能

聚乳酸纳米复合材料的制备及性能 本文讨论了聚乳酸(PLA)的改性方法一复合改性。主要论述了三种复合类型:聚乳酸/刚性纳米粒子复合材料、聚乳酸/层状硅酸盐纳米复合材料、聚乳酸/碳纳米管复合材料。 标签:聚乳酸;复合材料;生物降解 聚乳酸(PLA)是生物降解塑料中最优异的产品之一,它生物相容性好,无毒无刺激。但其固有缺陷如脆性大、耐热性差、成本高等限制了它的广泛应用。因此聚乳酸改性成为研究焦点。纳米复合改性因操作简单,效果立竿见影而成为聚乳酸改性领域的主要研究方向。 1 聚乳酸纳米复合材料 目前制备的聚乳酸纳米复合材料主要有3类:聚乳酸/刚性纳米粒子复合材料、聚乳酸/层状硅酸盐纳米复合材料、聚乳酸/碳纳米管复合材料。 1.1 聚乳酸/刚性纳米粒子复合材料 用来增强聚乳酸的刚性纳米粒子主要包括SiO2、CaCO3、TiO2等。Li等研究了纳米SiO2对PLA复合材料性能的影响。结果表明改性后PLA复合材料具有高的储能模量和降解速率。周凯等通过熔融共混制备了PLA/CaCO3复合材料,发现CaCO3使PLA的断裂从脆性转变为韧性,复合材料的耐热性和结晶性都得到提高。莊韦等通过原位聚合法制备PLA/TiO2纳米复合材料,结果表明复合材料的玻璃化转变温度和热分解温度提高;拉伸强度、弹性模量、断裂伸长率增大。环氧基笼型倍半硅氧烷(POSS)也可以改性聚乳酸。于静等制备了PLA/POSS 复合材料,发现POSS可以提高PLA的结晶速率、力学性能和降解速率。 1.2 聚乳酸/层状硅酸盐纳米复合材料 层状硅酸盐具有片层结构,片层之间可以容纳聚合物分子。 沈斌等制备了PLA/MMT纳米复合材料,结果表明复合材料力学性能得到改善,结晶度提高。马鹏程等用有机改性蒙脱土(OMMT)制备PLA复合材料,结果表明形成插层还是剥离结构取决于OMMT含量。3%OMMT可以提高PLA 的力学性能和热性能;OMMT增加了PLA熔体强度,在挤出发泡时充当成核剂,降低发泡剂气体向熔体外部的扩散。滑石粉(Talc)也是常见的片层填料。吴越等制备PLA/Talc复合材料,结果表明Talc粒子提高了复合材料的拉伸强度、冲击强度,热稳定性。 1.3 聚乳酸/碳纳米管复合材料

聚乳酸合成及应用研究

聚乳酸合成及应用研究 摘要:综述了聚乳酸的合成方法,介绍了其生产应用现状。 关键词:聚乳酸乳酸丙交酯生物降解材料 随着科学与社会的发展,环境和资源问题越来越受到人们的重视,成为全球性问题。以石油为原料的塑料材料应用广泛,这类材料使用后很难回收利用,造成了目前比较严重的“白色污染”问题。而且石油资源不可再生,大量的不合理使用给人类带来了严重的资源短缺问题。可降解材料的出现,尤其是降解材料的原材料的可再生性为解决这一问题提供了有效的手段。 聚乳酸(PLA)是目前研究应用相对较多的一种,它是以淀粉发酵(或化学合成)得到的以乳酸为基本原料制备得到的一种环境友好材料,它不仅具有良好的物理性能,还具有良好的生物相容性和降解性能。聚乳酸属于脂肪族聚酯化合物。聚乳酸的分子构象存在3种异构体,即左旋的L-PLA,右旋的D-PLA以及内消旋的D,L-PLA。由发酵产生的聚乳酸大部分为L-PLA。PLA 的几种旋光性结构中,L- PLA及D-PLA是半结晶高分子,机械强度较好;D,L-PLA是非结晶高分子,降解快,强度耐久性差。其中L-PLA由于降解产物是左旋乳酸,能被人体完全代谢,无毒、无组织反应。由于不同的聚乳酸的分子构象,对最终产品的性能产生影响,所以在聚乳酸形成时,控制不同分子构象的相对比例,就可得到不同性能的聚合体。 1913年法国人首先用缩聚的方法合成了聚乳酸,其产量、相对分子质量都很低,实际用途不大。1954年,美国Dupont公司用间接法制备出高相对分子质量的聚乳酸,1962年,美国Cyanamid 公司发现聚乳酸具有良好的生物相容性并将聚乳酸应用于医学领域,作为生物降解医用缝线。美国的Dow化学公司和Cargill公司各出资50%组建的CargillDow聚合物公司研制、开发出了新一代PLA树脂及其合金。日本Mitsui Toatsu公司也推出了新一代改进型聚乳酸树脂(商品名为Lacea),并于1994年建成年产100t的发酵设备。目前,美国Chronopol公司开发的PLA树脂已经半商业化,并计划在未来几年内建成世界级PLA生产装置。芬兰纽斯特(Neste)公司开发的聚乳酸产品也已经投入生产。哈尔滨市威力达公司与瑞士伊文达·菲瑟公司就合作建设世界第二大聚乳酸(该项目总投资4亿元,预计投产后每年可生产聚乳酸1万吨)生产基地的技术引进进行新一轮洽谈,并取得实质性进展;双方基本确定引进的方式、时间、价格等事宜;该项目将于2005年内建成投产。 1 聚乳酸的合成方法 1. 1 直接聚合 1.1.1 溶液聚合方法 Hiltunen等研究了不同催化剂对乳酸直接聚合的影响,在适合催化剂和聚合条件下,可制得相对分子质量达3万的聚乳酸。日本Ajioka等开发了连续共沸除水直接聚合乳酸的工艺,PLA相对分子质量可达30万,使日本Mitsui Toatsu化学公司实现了PLA的商品化生产。国内赵耀明1以D,L-乳酸为原料,联苯醚为溶剂,锡粉为催化剂(200目),在130℃、4000Pa条件下共沸回流,通过溶液直接聚合制得相对分子质量为4万的聚合物。秦志中2等用锡粉作催化剂,分阶段升温减压除水,通过本体及溶液聚合制备了相对分子质量达到20万的高分子量聚乳酸;他们的研究表明在直接法制备聚乳酸的过程中,为防止前期带出大量的低聚物,并且确保在聚合反应过程中所生成的水排除干净,宜用低温高真空,中温高真空,高温高真空的工艺路线;还对聚乳酸的降解性能进行了研究。王征3等采用精馏-聚合耦合装置SnCl2·2H2O的催化体系研究了直接聚合过程中温度、时间、压力对聚合物相对分子质量的影响;研究表明延长聚合时间,适当提高反应温度,采用高真空度可以有效降低体系水分含量,从而提高聚合物的相对分子质量。现已可由直接聚合方法制得具有实用价值的PLA聚合物,并且此聚合方法工艺简单,化学原料及试剂用量少,但直接聚合的PLA相对分子质量仍偏低,需进一步提高,才能使其具有更加广泛的用途。 聚乳酸直接聚合的原理: 反应体系中存在着游离乳酸、水、聚酯和丙交酯的平衡反应,其聚合方程式如下:

聚乳酸项目申报材料

聚乳酸项目 申报材料 规划设计/投资分析/产业运营

聚乳酸项目申报材料 近十余年来石油基塑料不加控制的滥用而导致的“白色污染”已成为全球性危害,越来越多的国家或城市开始立法禁止使用一次性不可降解塑料。聚乳酸系乳酸所形成的聚合物,具有可靠的生物安全性、生物可降解性、环境友好性、良好的力学性能及易于加工成形等优点,符合环保要求和人们对高质量产品的需求,因此在聚乳酸在在包装、医药、纺织、日用品、农用地膜等行业具有广阔的应用前景。 该聚乳酸项目计划总投资9496.50万元,其中:固定资产投资6449.34万元,占项目总投资的67.91%;流动资金3047.16万元,占项目总投资的32.09%。 达产年营业收入21523.00万元,总成本费用17199.17万元,税金及附加175.49万元,利润总额4323.83万元,利税总额5095.71万元,税后净利润3242.87万元,达产年纳税总额1852.84万元;达产年投资利润率45.53%,投资利税率53.66%,投资回报率34.15%,全部投资回收期4.43年,提供就业职位329个。 坚持安全生产的原则。项目承办单位要认真贯彻执行国家有关建设项目消防、安全、卫生、劳动保护和环境保护的管理规定,认真贯彻落实“三同时”原则,项目设计上充分考虑生产设施在上述各方面的投资,务

必做到环境保护、安全生产及消防工作贯穿于项目的设计、建设和投产的整个过程。 ......

聚乳酸项目申报材料目录 第一章申报单位及项目概况 一、项目申报单位概况 二、项目概况 第二章发展规划、产业政策和行业准入分析 一、发展规划分析 二、产业政策分析 三、行业准入分析 第三章资源开发及综合利用分析 一、资源开发方案。 二、资源利用方案 三、资源节约措施 第四章节能方案分析 一、用能标准和节能规范。 二、能耗状况和能耗指标分析 三、节能措施和节能效果分析 第五章建设用地、征地拆迁及移民安置分析 一、项目选址及用地方案

聚乳酸综述

聚乳酸(PLA)的合成及改性研究 摘要 介绍聚乳酸(PLA)的基本性质、合成方法及应用范围。综述了国内外PLA的改性研究及目前有关PLA性能改进的方法。概括了PLA在合成改性中需要注意的问题,展望了PLA的发展前景:不断改进、简化和缩短PLA的合成工艺;用新材料、新方法对PLA进行改性,开发出新用途、高性能的PLA材料是PLA的研究方向。 关键词:聚乳酸合成改性 前言 聚乳酸(PLA)是一种以可再生生物资源为原料的生物基高分子,具有良好的生物降解性、生物相容性、较强的机械性能和易加工性。聚乳酸材料的开发和应用,不但可解决环境污染问题,更重要的意义在于为以石油资源为基础的塑料工业开辟了取之不尽的原料资源。 此外,由于它的最终降解产物为二氧化碳和水,可由机体正常的新陈代谢排出体外,是具有广泛应用前景的生物医用高分子材料(如可吸收手术缝合线)、烧伤覆盖物、骨折内固定材料、骨缺损修复材料等。近几年来,有应用到纺织材料、包装材料、结构材料、电子材料、发泡材料等更广泛的领域的研究报道。PLA的应用市场空间和发展潜力巨大,有关它的研究一直是可生物降解高分子材料研究领域的热点。 1、聚乳酸的研究背景 在石油基高分子材料广泛应用的今天,生物基高分子材料因其具有来源不依耐石油、生物相容性好、可生物降解等突出特点越来越受到关注。聚乳酸( PLA) 作为一种可从淀粉分解、发酵制备原料乳酸,再经聚合获得高分子产物的生物基来源、可生物降解高分子材料,具有良好的应用前景。但因聚乳酸性能上存在不足( 韧性差,降解不可控,亲水性差,功能性单一等) ,限制了其更为广泛的应用。因此,研究人员在其结构及性能的基础上进行了大量的改性研究,采用化学合成、物理共混、材料复合等方法,试图在物理机械性能、生物降解性能、表面 润湿性能以及多功能化等方面有所改善或加强,从而扩展聚乳酸的应用领域。聚乳酸(PLA)是由人工合成的热塑性脂肪族聚酯。早在20世纪初,法国人首先用缩聚的方法合成了PLA【1】;在50年代,美国Dupont 公司用间接的方法制备出了相对分子质量很高的PLA;60年代初,美国Cyanamid 公司发现,用PLA 做成可吸收的手术缝合线,可克服以往用多肽制备的缝合线所具有的过敏性;70年代开始合成高分子量的具有旋光性的D 或L 型PLA,用于药物制剂和外科等方面的研究; 80 年代以来,为克服PLA 单靠分子量及分子量分布来调节降解速度的局限,PLA 开始向降解塑料方面发展。 作为石油基塑料的可替代品,其最大的缺点就是脆性大、力学强度较低,亲水性差,在自然条件下它降解速率较慢;因此近年来对PLA 的改性己成为研究的热点。目前国内外对PLA的改性主要有共聚、共混以及制成复合材料等几种方法【2】。2、PLA 市场应用概况

聚乳酸的性能与工艺技术

聚乳酸 聚乳酸(PLA)是利用有机酸乳酸为原料生产的新型聚酯材料,具有胜于现有塑料聚乙烯、聚丙烯、聚苯乙烯等材料的优点,被产业界定为新世纪最有发展前途的新型包装材料,是环保包装材料的-颗明星,在未来-将有望代替聚乙烯、聚丙烯、聚苯乙烯等材料用于塑料制品,应用前景广阔。 聚乳酸的性能 聚乳酸有良好的生物可降解性,使用后能被自然界中微生物完全降解,用它制成的各种制品埋在土壤中6至12个月即可完成自动降解。它使用后的废物埋在土中或水中,可在微生物分解下生成碳酸气和水,它们在阳光下,通过光合作用又会生成起始原料淀粉。这样经过一个循环过程既能重新得到聚乳酸初始原料淀粉,又借助光合作用减少了空气中二氧化碳的含量。 聚乳酸有良好的机械性能及物理性能,适用于吹塑、热塑等各种加工方法,加工方便,应用十分广泛。可用于加工从工业到民用的各种塑料制品、包装食品、快餐饭盒、无纺布、工业及民用布。进耐口工成农用织物、保健织物、抹布、卫生用品、室外防紫外线织物、帐篷布、地垫面等等,市场前景十分看好。 聚乳酸有良好的相容性与可降解性,在医药领域应用也非常广泛,如可生产一次性输液用具、免拆型手术缝合线等,低子聚乳酸作药物缓释包装剂等。 聚乳酸还是一种低能耗产品,比以石油产品为原料生产的聚合物低30%~50%。预计在不可再生的石油资源枯竭期到来之前,石油及其衍生物市场价格暴涨,而可再生的产品必将成为全球范围的紧俏消费品。 聚乳酸的工业化生产 聚乳酸生产是以乳酸为原料,传统的乳酸发酵大多用淀粉质原料,目前美、法、日等国家已开发利用农副产品为原料发酵生产乳酸,进而生产聚乳酸。美国LLC公司生产聚乳酸工艺为:玉米淀粉经水解为葡萄糖,再用乳酸杆菌厌氧发酵,发酵过程用液碱中和生成乳酸,发酵液经净化后,用电渗析工艺,制成纯度达99.5%的L-乳酸。由乳酸制PLA生产工艺有:(1)直接缩聚法,在真空下使用溶剂使脱水缩聚。(2)非溶剂法,使乳酸生成环状二聚体丙交酯,在开环缩聚成PLA。

聚乳酸功能材料小论文

生物可降解塑料-聚乳酸 摘要:本文主要阐述了聚乳酸的合成,改性以及其应用 关键词:聚乳酸合成改性应用 一、前言 目前塑料制品被广泛应用在各个领域,它在给人们生产、生活带来极大方便的同时,“白色污染”也对生态系统造成了严重的威胁。而且,其原料主要来源于石油类不可再生资源,这势必将引起严重的能源和人类生存危机。聚乳酸(PLA)是一种具有优良的生物相容性和可生物降解性的合成高分子材料,这种线型热塑性生物可降解脂肪族聚酯是以玉米、小麦、木薯等一些植物中提取的淀粉为最初原料,经过酶分解得到葡萄糖再经过乳酸菌发酵后变成乳酸然后经过化学合成得到高纯度聚乳酸。聚乳酸制品废弃后在土壤或水中30天内会在微生物、水、酸和碱的作用下彻底分解成CO2和H2O,随后在太阳光合作用下又成为淀粉的起始原料不会对环境产生污染,因而是一种完全自然循环型的可生物降解材料。 由于聚乳酸树脂具有环境保护、循环经济、节约化石类资源、促进石化产业持续发展等多重效果,是近年来开发研究最活跃、发展最快的生物可降解材料,也是目前唯一一种在成本和性能上可与石油基塑料相竞争的植物基塑料。 二、聚乳酸合成 在聚乳酸生产中,生物技术主要体现在乳酸单体生产上,而由乳酸单体生产乳酸聚合物是常规的聚合物合成技术。生物法由植物性原料生产乳酸的关键问题是开发高效、低成本酶催化剂。 聚乳酸的合成主要有两种方法:1、乳酸直接缩聚法。在真空下乳酸脱水缩聚直接得到聚乳酸,该法简单,但得到的聚合物分子量较小,一般小于5000。直接缩聚法的主要特点是合成的聚乳酸不含催化剂,但反应条件相对苛刻,近几年来通过技术创新与改进,直接聚合法取得了一定的进展,但目前在工业上还少

高分子材料题库

光致变色材料 一、填空 1.光致变色材料的光化学过程变色基本原理是:顺反异构反应,氧化还原反应,离解反应,环化反应,氢转移互变异构化反应。 二、问答 1、光致变色的定义和基本特征: 答:定义:光色基团的化合物受一定波长的光照射时发生颜色变化,而在另一波长的光或热的作用下又恢复到原来的颜色,这种可逆的变色现象称为光色互变或光致变色。 基本特征:将变色前的无色状态记A,变色后的有颜色状态为B。 (1)A 和B 在一定条件下都能够稳定存在 (2)A 和B的视觉颜色显著不同 (3)A 和B 之间的颜色变化是可逆的 EV A的作业 一、简答 1、EV A是什么?其中E、V A各是什么? 2、马来酰亚胺接枝改性EV A热熔胶的反应方程式

答案: 1、EV A全称乙烯醋酸乙烯共聚物,其中E是乙烯,V A是醋酸乙烯。 2、

PMMA 一、简答题 1.什么是本体聚合;以PMMA为例写出本体聚合反应机理。 本体聚合系指仅有单体和少量引发剂或在热、光、辐射等条件下进行的聚合反应。 引发剂的分解: 链引发: 链增长: 链终止: A、偶合终止

B、歧化终止 二、填空题 1.在聚合反应中引发剂有主要有__、__、___、___ 有机过氧化物引发剂、无机过氧化物引发剂、偶氮类引发剂、氧化还原类引发剂 三、名词解释 均聚物:由一种单体聚合得到聚合物 共聚物:由两种或两种以上单体得到的聚合物 四、判断题 1.一般认为氧指数<22属于易燃材料(对) 2.聚甲基丙烯酸甲酯分子链呈无规立构,所以它具有很高的结晶度 (错) 聚氨酯涂料 一、填空题 1.聚氨酯是指主链上含有重复的__________基团的大分子化合物,英文名称___________,简称__________。

聚乳酸与聚乳酸纤维特点及生产应用研究学习资料

聚乳酸与聚乳酸纤维特点及生产应用研究 摘要:聚乳酸(PLA)纤维具有很好的生物降解性和生物相容性,由它织成的织物具有丝绸般的光泽和舒适的肌肤触感,快干且抗皱,因此该纤维具有较广阔的发展前景。由于聚乳酸纤维是一种可完全生物降解的合成纤维,因此是一种可持续发展的生态纤维。 关键词:聚乳酸;聚乳酸纤维;特性 一、聚乳酸与聚乳酸纤维 聚乳酸纤维(简称PLA纤维)是以由谷物、甜菜等天然糖类得到的聚乳酸酯为原料,经溶液纺丝或熔融纺丝制得的聚酯合成纤维.目前,商业化生产的PLA 纤维以玉米淀粉发酵而成的乳酸为原料,经脱水聚合反应制成的聚乳酸酯溶液为纺丝液,再进行纺丝加工而成.聚乳酸纤维兼有天然纤维和合成纤维的特点,吸湿排汗均匀、回弹性好,所制成的成衣穿着舒适,并具有抗皱抗紫外等性能,其制品废弃后,在土壤或水中微生物的作用下分解成二氧化碳和水,随后在太阳光合作用下,又会成为淀粉的起始原料。由于这是一个循环过程,因此可减少纤维工业对石油资源的依赖

性,所以PLA纤维又被称为21世纪的环境循环材料。聚乳酸纤维(PLA)的生产原料乳酸是从玉米淀粉中制得,所以也将这种纤维称为玉米纤维。 二、聚乳酸与聚乳酸纤维的生产 (一)聚乳酸的生产 1.聚乳酸的生产原料 聚乳酸的生产原料是乳酸,即-羟基丙酸、2-羟基丙酸。由于乳酸分子中有一个不对称碳原子,所以具有d-型(右旋光)和L-型(左旋光)两种对映体,等量的L-乳酸和d-乳酸混合而成的dL-乳酸不具旋光性。成纤聚乳酸以L-乳酸为单体。 2.聚乳酸的聚合 聚乳酸的聚合方法有两种,一种是减压在溶剂中由乳酸直接聚合的方法,即:乳酸→预聚体→聚乳酸;另一种方法是常压下以环状二聚乳酸为原料聚合得到,即:乳酸→预聚体→环状二聚体→聚乳酸。 3.聚乳酸的合成 聚乳酸有两种合成方法,即丙交酯(乳酸的环状二聚体)的开环聚合和乳酸的直接聚合。丙交酯开环聚合生产工序为:先将乳酸脱水环化制成丙交酯;再将丙交酯开环聚合制得聚乳酸。其中乳酸的环化和提纯是制备丙交酯的难点和关键,这种方法可制得高分

PLA-聚乳酸简介

PLA-聚乳酸简介 聚乳酸,英文名称Polylactic acid 或者Polylactide,简称PLA,由生物发酵生产的乳酸经人工化学合成而得的热塑性聚合物,但仍保持着良好的生物相容性和生物可降解性。不象其他的树脂必须来源于石油,聚乳酸来源于可再生的象玉米、小麦、甘蔗等天然农作物,是一种完全绿色材料,近年来越来越受到全世界的关注。 聚乳酸是由生物发酵生产的乳酸经人工化学合成而得的聚合物,但仍保持着良好的生物相容性和生物可降解性。具有与聚酯相似的防渗透性,同时具有与聚苯乙烯相似的光泽度?清晰度和加工性。并提供了比聚烯烃更低温度的可热合性,可采用熔融加工技术,包括纺纱技术进行加工。因此聚乳酸可以被加工成各种包装用材料,像农业?建筑业用的塑料型材?薄膜,以及化工?纺织业用的无纺布?聚酯纤维等。而PLA的生产耗能只相当于传统石油化工产品的20%—50%,产生的二氧化碳气体则只为相应的50%。 聚乳酸有良好的机械性能及物理性能,适用于吹塑、热塑等各种加工方法,加工方便,应用十分广泛。可用于加工从工业到民用的各种塑料制品、包装食品、快餐饭盒、无纺布、工业及民用布。进而加工成农用织物、保健织物、抹布、卫生用品、室外防紫外线织物、帐篷布、地面垫等等,市场前景十分看好。 聚乳酸有良好的相溶性和可降解性,在医药领域应用也非常广泛,如可生产一次性输液用具、免拆型手术缝合线等,低分子量聚乳酸作药物缓释包装剂等。 聚乳酸是一种全新形态的塑料,它来源于自然循环再生的概念,一个和现今传统塑料正好相反的概念,它不是由有限的石化资源(石油)所制成,而是使用可再生的植物资源(如玉米)所提出的淀粉原料制成。淀粉原料可经由发酵过程制成乳酸,再通过化学合成转换成聚乳酸。90年代由葡萄糖转成乳酸的制造技术已有重大的突破,聚乳酸生产技术的改进降低了聚乳酸的生产成本。 PLA的合成和分子结构式: 聚乳酸的分解: 聚乳酸的分解有两个阶段:经水解反应分解之后再靠微生物分解。在自然环境中首先发生水解,然后,微生物进入组织物内,将其分解成二氧化碳和水。在堆肥的条件下(高温和高湿度),水解反应可轻易完成,分解的速度也较快。在不容易产生水解反映的环境下,分解过程是循序渐进的。传统石化原料会增加二氧化碳的释放,但聚乳酸不会有此现象,在分解过程中产生的二氧化碳,可再次被使用成为植物进行光合作用所需的碳原子。 聚乳酸的特性:聚乳酸除了有生物可降解塑料的基本的特性外,还具备有自己独特的特性。传统生物可降解塑料的强度、透明度及对气候变化的抵抗能力皆不如一般的塑料。聚乳酸和石化合成塑料的基本物性类似,也就是说,它可以广泛地用来制造各种应用产品。聚乳酸也拥有良好的光泽性和透明度,和利用聚苯乙烯所制的薄膜相当,是其它生物可降解产品无法提供的。

相关文档
最新文档