数值传热学第四章编程题

数值传热学第四章编程题
数值传热学第四章编程题

4-5迭代法求解节点温度。

说明:此处给出的是C++程序代码,使用牛顿迭代法,迭代收敛精度1.0e-6;程序运行结果附后。

/*NHT 4-5 newton

*created on 2012-10-19 by Sanye

*/

#include

#include

#include

using namespace std;

int main()

{ double funT=1.0,dfunT=1.0,temp1=1.0,temp2=1.0;

double T=20.0;//primary value

int i=0; //for TEST!

cout<<"primary T= "<

while(fabs(funT/dfunT)>=1.0e-6)

{ i++;

if(i==1&&(T<=20.0))T=100.0;//in case unreasonable T;

temp1=pow(T-20.0,0.25);temp2=pow(T-20.0,-0.75);

funT=0.5*T-80+2*T*temp1-40*temp1;

dfunT=0.5+2*temp1+0.5*T*temp2-10*temp2;

T=T-funT/dfunT;

cout<<" step "<

}

cout<<"total steps: "<

cout<<"\tT[1]= "<<100<<"\tT[2]= "<<0.5*(T+130)<<"\tT[3]= "<

<

return 0;

}

运行结果:

4-12 编写TDMA算法程序验证其正确性。

说明:此处给出的是C++程序代码,程序运行结果附后。

*Created on 2012-10-19 by Sanye

*/

#include

#include

#include

#include

#include "TDMA.h"

using namespace std;

int main()

{ int num=10;//num: number of T points;

vector A,B,C,D,T_before,T_after;

int rand_temp1,rand_temp2;

/*Generate A,B,C,D,T_before Randomly*/

for(int i=0;i

{ rand_temp1=rand()%10;

rand_temp2=rand()%20;

A.push_back((1.0+rand_temp1/2.0));

B.push_back(rand_temp2/(rand_temp1+3.0)/5.0+1.0);

C.push_back(rand_temp1*rand_temp2/10.0+2.0);

T_before.push_back(sqrt(i*i+1.0)*11.0-20.0);

}B[0]=0.0;C[num-1]=0.0;

for(int i=0;i

{ double temp;

if(i==0) temp=A[0]*T_before[0]-B[0]*T_before[1];

else if(i==num-1) temp=A[num-1]*T_before[num-1]-C[num-1]*T_before[num-1-1];

else temp=A[i]*T_before[i]-B[i]*T_before[i+1]-C[i]*T_before[i-1];

D.push_back(temp);

}

/*Get T_after*/

T_after.resize(num);

T_after=TDMA(A,B,C,D);

/*Calculate T_err*/

vector T_err;

for(int i=0;i

/*Cout T*/

cout.setf(ios::fixed);

cout.precision(4);

for(int i=0;i

cout<<"T_before["<

计算传热学中国石油大学(华东)第四章大作业

取步长δx=0.02。已知x=0,Φ=0;x=1,Φ=1.令k=ρu/Γ计算结果图表: 程序及数据结果: 追赶法: #include #include #include #define N 49 void tdma(float a[],float b[],float c[],float f[],float x[]); void main(void) { int i; float x[49]; float k; printf("请输入k值:\n",k); scanf("%f",&k); static float a[N],b[N],c[N],f[N]; a[0]=0; a[48]=2+0.02*k; b[0]=4; b[48]=4; c[0]=2-0.02*k; c[48]=0; f[0]=0; f[48]=2-0.02*k; for(i=1;i

a[i]=2+0.02*k; b[i]=4; c[i]=2-0.02*k; f[i]=0; } tdma(a,b,c,f,x); for(i=0;i=0;i--) x[i]=P[i]*x[i+1]+Q[i]; return; } 结果: (1)k=-5 请输入k值: -5 x[0]=0.095880 x[1]=0.182628 x[2]=0.261114 x[3]=0.332126 x[4]=0.396375 x[5]=0.454504 x[6]=0.507098 x[7]=0.554683 x[8]=0.597736 x[9]=0.636688 x[10]=0.671931 x[11]=0.703818 x[12]=0.732667 x[13]=0.758770

传热学辐射传热课后习题及答案.doc

Q. 2 第八章 黑体辐射基本定律 8-1、一电炉的电功率为1KW,炉丝温度为847°C,直径为Immo 电炉的效率为0.96。试确 定所需 炉丝.的最短长度。 <273 + 847丫 〃 八* 前 ------------ jvdL = 0.96 x 10 解:5.67x1 1°° 7 得 L=3.61m 8-5、在一空间飞行物的外壳上有一块向阳的漫射面板。板背面可以认为是绝热的,向阳面 得到的 太阳投入辐射GT300W 〃疟。该表面的光谱发射率为:时£(") = 0.5; 人>2彻时£(人)二°? 2。试确定当该板表而温度处于稳态时的温度值。为简化计算,设太 阳的辐射能均集中在0?2即刀 之内。 解:由 UOOJ 得 T=463K 8-6、人工黑体腔上的辐射小孔是一个直径为20mm 的圆,辐射力场=3.72 x " W /帚。 一个辐射热流计置于该黑体小孔的正前方l=0.5m,处,该热流计吸收热量的面积为 1.6'10一5 "己问该热流计 所得到的黑体投入辐射是多少? L. =^ = 1.185xlO 5W/m 2 解: 人 A O = T = 6.4x10-5 r L h .A = 312W 所得投入辐射能量为37.2X6.4X10-5 = 2.38x IO” w 8-15、已知材料AB 的光谱发射率林久)与波K 的关系如附图所示,试估计这两种材料的发射 那 £随温度变化的特性,并说明理由。 解:A 随稳定的降低而降低;B 随温度的降低而?升高。 理由:温度升高,热辐射中的短波比例增加。 8-16、一?选择性吸收表面的光谱吸收比随人变化的特性如附图所示,试计算当太阳投入辐射 为 G=8()0W//H 2时,该表面单位面积上所吸收的太阳能量及对太阳辐射的总吸收比。 1-4

数值传热学陶文铨第四章作业

4-1 解:采用区域离散方法A 时;网格划分如右图。内点采用中心差分 23278.87769.9 T T T === 22d T T=0dx - 有 i+1i 12 2+T 0i i T T T x ---=? 将2点,3点带入 32122 2+T 0T T T x --=? 即321 209T T -+= 432322+T 0T T T x --=?4321322+T 0T T T x --=? 即4 321 209 T T T -+-= 边界点4 (1)一阶截差 由x=1 1dT dx =,得 431 3 T T -= (2)二阶截差 11B M M q x x x T T S δδλλ -=++ 所以 434111. 1. 36311 T T T =++ 即 431 22293 T T -= 采用区域离散方法B 22d T T=0dx - 由控制容积法 0w e dT dT T x dT dT ????--?= ? ????? 所以代入2点4点有 322121011336 T T T T T ----= 即 239 028T T -=

544431011363 T T T T T ----= 即 34599 02828T T T -+= 对3点采用中心差分有 432 32 2+T 013T T T --=?? ??? 即 23499 01919 T T T -+= 对于点5 由x=1 1dT dx =,得 541 6 T T -= (1)精确解求左端点的热流密度 由 ()2 1 x x e T e e e -= -+ 所以有 ()22 20.64806911x x x x dT e e q e e dx e e λ -====- +=-=++ (2)由A 的一阶截差公式 21 0.247730.743113 x T T dT q dx λ =-=-= =?= (3)由B 的一阶截差公式 0 0.21640 0.649213 x dT q dx λ =-=-= = (4)由区域离散方法B 中的一阶截差公式: 210.108460.6504()B B T T dT dx x δ-?? ==?= ? ?? 通过对上述计算结果进行比较可得:区域离散B 有控制容积平衡法建立的离散方程与区域离散方程A 中具有二阶精度的格式精确度相当! 4-3 解:将平板沿厚度方向3等分,如图

第二章 传热习题答案

【2-1】一食品冷藏室由内层为19 mm 厚的松木,中层为软木层,外层为51 mm 厚的混凝土所组成。内壁面温度为-17.8 ℃,混凝土外壁面温度为29.4 ℃。松木、软木和混凝土的平均热导率分别为, 3, W/(m ·K),要求该冷藏室的热损失为15W/m 2。求所需软木的厚度及松木和软木接触面处的温度。 解:三层平壁的导热。 1)所需软木的厚度2b 由 ∑=-=3141i i i b T T q λ 得 151 .0019.00433.0762.0051.08.174.29152+++=b 解得: m b 128.02= 2)松木和软木接触面处的温度3T 由 151 .0019 .08.17153+==T q 解得:9.153-=T ℃ 解题要点:多层平壁热传导的应用。 【2-2】为减少热损失,在外径为150 mm 的饱和蒸汽管道外加有保温层。已知保温材料的热导率λ=+ 198 T(式中T 为℃),蒸汽管外壁温度为180 ℃,要求保温层外壁温度不超过50 ℃,每米管道由于热损失而造成蒸汽冷凝的量控制在1×10-4 kg/(m ·s)以下,问保温层厚度应为多少(计算时可假定蒸汽在180 ℃下冷凝)。 解:保温层平均热导率为: )./(126.02 501801098.1103.04K m W =+??+=-λ 由于本题已知的是蒸汽管道外壁面温度,即保温层内壁面温度,故为一层导热。

由 )()(21 221r r Ln T T L Q -=λπ 得: )()(21 221r r Ln T T L Q -=πλ (1) 式中:m W L Wr L Q /9.2011 103.20191013 4=???==- 将其及其它已知数据代入式(1)得: )075 .0()50180(126.029.2012r Ln -??=π 解得:m r 125.02= mm m 5005.0075.0125.0==-=∴δ壁厚 解题要点:单层圆筒壁热传导的应用。 【2-8】烤炉内在烤一块面包。已知炉壁温度为175 ℃,面包表面的黑度为,表面温度为100 ℃,表面积为 5 m 2,炉壁表面积远远大于面包表面积。求烤炉向这块面包辐射 传递的热量。 解:两物体构成封闭空间,且21S S <<,由下式计算辐射传热量: W T T S Q 0.65)448373(0645.085.01067.5) (448424111012-=-????=-=-εσ 负号表示炉壁向面包传递热量。 解题要点:辐射传热的应用,两个灰体构成的封闭空间。 【2-10】在逆流换热器中,用初温为20 ℃的水将1.25 kg/s 的液体[比热容为 kJ/(kg ·K)、密度为850 kg/m 3 ]由80 ℃冷却到30 ℃。换热器的列管直径为Φ25 mm ×2.5 mm,水走管内。水侧和液体侧的对流传热系数分别为850 W/(m 2·K )和1 700W/(m 2·K ),污垢热阻可忽略。若水的出口温度不能高于50 ℃,求水的流量和换热器的传热面积。

数值传热学第五章作业

5-2 解:根据课本p158式(5—1a )得一维稳态无源项的对流-扩散方程如下所示: 2 2x x u ??Γ =??φ φρ (取常物性) 边界条件如下: L L x x φφφφ====,; ,00 由(5—2)得方程的精确解为: 1 1)/(00--=--?Pe L x Pe L e e φφφφ Γ=/uL Pe ρ 将L 分成15等份,有:?=P Pe 15 对于中心差分、一阶迎风、混合格式和QUICK 格式分别分析如下: 1) (CD)中心差分 节点离散方程: 2 )5.01()5.01(1 1-?+?++-=i i i P P φφφ 10,2 =i 2) 一阶迎风 节点离散方程: ? -?++++=P P i i i 2)1(1 1φφφ 10,2 =i 3) 混合格式 当1=?P 时,节点离散方程:2 )5.01()5.01(1 1-?+?++-= i i i P P φφφ ,10,2 =i 当10,5=?P 时,节点离散方程: 1-=i i φφ , 10,2 =i 4) QUICK 格式,节点离散方程: ??? ???--++++++= +-?? -??+?)336(8122121 1111i i i i i i P P P P P φφφφφφ, 2=i ?? ????---++++++= +--? ? -??+?)35(8122121 12111i i i i i i i P P P P P φφφφφφφ, 2≠i

用matlab 编程如下:(本程序在x/L=0-1范围内取16个节点进行离散计算,假设y(1)= 0φ=0,y(16)=L φ=1,程序中Pa 为?P ,x 为题中所提的x/L 。由于本程序假设 y(1)=0φ=0,y(16)=L φ=1,所以 y y y y y y L =--=--=--0 10 )1()16()1(00φφφφ) Pa=input('请输入Pa=') x=0:1/15:1 Pe=15*Pa; y=(exp(Pe*x)-1)/(exp(Pe)-1) plot(x,y,'-*k') %精确解 hold on y(1)=0,y(16)=1; for i=2:15 y(i)=((1+0.5*Pa)*y(i-1)+(1-0.5*Pa)*y(i+1))/2; end plot(x,y(1:16),'-or') %中心差分 hold on for i=2:15 y(i)=((1+Pa)*y(i-1)+y(i+1))/(2+Pa); end plot(x,y(1:16),'-.>g') %一阶迎风 hold on for i=2:15 if Pa==1 y(i)=((1+0.5*Pa)*y(i-1)+(1-0.5*Pa)*y(i+1))/2; else y(i)=y(i-1) end end plot(x,y(1:16),'-+y') %混合格式 hold on for i=2:15 if i==2 y(i)=y(i+1)/(2+Pa)+(1+Pa)*y(i-1)/(2+Pa)+(Pa/(2+Pa))*(6*y(i)-3*y(i-1)-3*y(i+1))/8 else y(i)=y(i+1)/(2+Pa)+(1+Pa)*y(i-1)/(2+Pa)+(Pa/(2+Pa))*(5*y(i)-y(i-1)-y(i-2)-3*y(i+1))/8 end end plot(x, y(1:16),'-

传热学思考题参考答案(陶文铨第四版)

传热学思考题参考答案 第一章: 1、用铝制水壶烧开水时,尽管炉火很旺,但水壶仍安然无恙。而一旦壶内的水烧干后水壶很快就被烧坏。试从传热学的观点分析这一现象。 答:当壶内有水时,可以对壶底进行很好的冷却(水对壶底的对流换热系数大),壶底的热量被很快传走而不至于温度升得很高;当没有水时,和壶底发生对流换热的是气体,因为气体发生对流换热的表面换热系数小,壶底的热量不能很快被传走,故此壶底升温很快,容易被烧坏。 2、什么是串联热阻叠加原则,它在什么前提下成立?以固体中的导热为例,试讨论有哪些情况可能使热量传递方向上不同截面的热流量不相等。 答:在一个串联的热量传递过程中,如果通过每个环节的热流量都相同,则各串联环节的总热阻等于各 串联环节热阻的和。例如:三块无限大平板叠加构成的平壁。例如通过圆筒壁,对于各个传热环节的传 热面积不相等,可能造成热量传递方向上不同截面的热流量不相等。 第二章: 1、扩展表面中的导热问题可以按一维问题处理的条件是什么?有人认为,只要扩展表面细长,就可按一维问题处理,你同意这种观点吗? 答:条件:(1)材料的导热系数,表面传热系数以及沿肋高方向的横截面积均各自为常数(2)肋片温度在垂直纸面方向(即长度方向)不发生变化,因此可取一个截面(即单位长度)来分析(3)表面上的换热热阻远远大于肋片中的导热热阻,因而在任一截面上肋片温度可认为是均匀的(4)肋片顶端可视为绝热。并不是扩展表面细长就可以按一维问题处理,必须满足上述四个假设才可视为一维问题。 2、肋片高度增加引起两种效果:肋效率下降及散热表面积增加。因而有人认为随着肋片高度的增加会出现一个临界高度,超过这个高度后,肋片导热热流量会下降,试分析该观点的正确性。 答:的确肋片高度增加会导致肋效率下降及散热表面积增加,但是总的导热量是增加的,只是增加的部分的效率有所减低,所以我们要选择经济的肋片高度。 第三章: 1、由导热微分方程可知,非稳态导热只与热扩散率有关,而与导热系数无关。你认为对吗?答:错,方程的边界条件有可能与λ有关,只有当方程为拉普拉斯方程和边界条件为第一边界条件时才与λ无关。 2、对二维非稳态导热问题,能否将表面的对流换热量转换成控制方程中的内热源产生的热量? 答:不能,二维问题存在边界微元和内边界微元,内边界微元不一定与边界换热,所以不存在源项。 第四章: 1、在第一类边界条件下,稳态无内热源导热物体的温度分布与物体的导热系数是否有关?为什么? 答:无关,因为方程为拉普拉斯方程,边界为第一边界条件均与λ无关。 2、非稳态导热采用显式格式计算时会出现不稳定性,试述不稳定性的物理含义。如何防止这种不稳定性? 答:物理意义:显示格式计算温度时对时间步长和空间步长有一定的限制,否则会出现不合

数值传热学部分习题答案

习题4-2 一维稳态导热问题的控制方程: 022=+??S x T λ 依据本题给定条件,对节点2 节点3采用第三类边界条件具有二阶精度的差分格式,最后得到各节点的离散方程: 节点1: 1001=T 节点2: 1505105321-=+-T T T 节点3: 75432=+-T T 求解结果: 852=T ,403=T 对整个控制容积作能量平衡,有: 02150)4020(15)(3=?--?=?+-=?+x S T T h x S q f f B 即:计算区域总体守恒要求满足 习题4-5 在4-2习题中,如果25 .03)(10f T T h -?=,则各节点离散方程如下: 节点1: 1001=T 节点2: 1505105321-=+-T T T 节点3: 25.03325.032)20(4015])20(21[-?+=-?++-T T T T 对于节点3中的相关项作局部线性化处理,然后迭代计算; 求解结果: 818.822=T ,635.353=T (迭代精度为10-4) 迭代计算的Matlab 程序如下: x=30; x1=20; while abs(x1-x)>0.0001 a=[1 0 0;5 -10 5;0 -1 1+2*(x-20)^(0.25)]; b=[100;-150; 15+40*(x-20)^(0.25)]; t=a^(-1)*b; x1=x; x=t(3,1);

end tcal=t 习题4-12的Matlab程序 %代数方程形式A i T i=C i T i+1+B i T i-1+D i mdim=10;%计算的节点数 x=linspace(1,3,mdim);%生成A、C、B、T数据的基数; A=cos(x);%TDMA的主对角元素 B=sin(x);%TDMA的下对角线元素 C=cos(x)+exp(x); %TDMA的上对角线元素 T=exp(x).*cos(x); %温度数据 %由A、B、C构成TDMA coematrix=eye(mdim,mdim); for n=1:mdim coematrix(n,n)=A(1,n); if n>=2 coematrix(n,n-1)=-1*B(1,n); end if n

传热学第五版课后习题答案(1)汇编

传热学习题_建工版V 0-14 一大平板,高3m ,宽2m ,厚0.2m ,导热系数为45W/(m.K), 两侧表面温度分别为w1t 150C =?及w1t 285C =? ,试求热流密度计热流量。 解:根据付立叶定律热流密度为: 2 w2w121t t 285150q gradt=-4530375(w/m )x x 0.2λλ??--??=-=-=- ? ?-???? 负号表示传热方向与x 轴的方向相反。 通过整个导热面的热流量为: q A 30375(32)182250(W)Φ=?=-??= 0-15 空气在一根内经50mm ,长2.5米的管子内流动并被加热,已知空气的平均温度为85℃,管壁对空气的h=73(W/m 2.k),热流密度q=5110w/ m 2, 是确定管壁温度及热流量?。 解:热流量 qA=q(dl)=5110(3.140.05 2.5) =2005.675(W) πΦ=?? 又根据牛顿冷却公式 w f hA t=h A(t t )qA Φ=??-= 管内壁温度为: w f q 5110t t 85155(C)h 73 =+ =+=? 1-1.按20℃时,铜、碳钢(1.5%C )、铝和黄铜导热系数的大小,排列它们的顺序;隔热保温材料导热系数的数值最大为多少?列举膨胀珍珠岩散料、矿渣棉和软泡沫塑料导热系数的数值。 解: (1)由附录7可知,在温度为20℃的情况下, λ 铜 =398 W/(m ·K),λ 碳钢 =36W/(m ·K), λ 铝 =237W/(m ·K),λ 黄铜 =109W/(m ·K). 所以,按导热系数大小排列为: λ 铜 >λ 铝 >λ 黄铜 >λ钢 (2) 隔热保温材料定义为导热系数最大不超过0.12 W/(m ·K). (3) 由附录8得知,当材料的平均温度为20℃时的导热系数为: 膨胀珍珠岩散料:λ=0.0424+0.000137t W/(m ·K) =0.0424+0.000137×20=0.04514 W/(m ·K); 矿渣棉: λ=0.0674+0.000215t W/(m ·K) =0.0674+0.000215×20=0.0717 W/(m ·K);

第四章导热题的数值解法

第四章导热问题的数值解法 1 、重点内容:①掌握导热问题数值解法的基本思路; ②利用热平衡法和泰勒级数展开法建立节点的离散方程。 2 、掌握内容:数值解法的实质。 3 、了解内容:了解非稳态导热问题的两种差分格式及其稳定性。 §4—1导热问题数值求解的基本思想及内节点方程的建立由前述 3 可知,求解导热问题实际上就是对导热微分方程在定解条件下的积分求解,从而获得分析解。但是,对于工程中几何形状及定解条件比较复杂的导热问题,从数学上目前无法得出其分析解。随着计算机技术的迅速发展,对物理问题进行离散求解的数值方法发展得十分迅速,并得到广泛应用,并形成为传热学的一个分支——计算传热学(数值传热学),这些数值解法主要有以下几种: (1)有限差分法( 2 )有限元方法( 3 )边界元方法 数值解法能解决的问题原则上是一切导热问题,特别是分析解方法无法解决的问题。如:几何形状、边界条件复杂、物性不均、多维导热问题。 一.分析解法与数值解法的异同点: ?相同点:根本目的是相同的,即确定① t=f(x , y , z) ;② 。 ?不同点:数值解法求解的是区域或时间空间坐标系中离散点的温度分布代替连续的温度场;分析解法求解的是连续的温度场的分布特征,而不是分散点的数值。 数值求解的基本思路及稳态导热内节点离散方程的建立 二.解法的基本概念 ?实质 对物理问题进行数值解法的基本思路可以概括为:把原来在时间、空间坐标系中连续的物理量的场,如导热物体的温度场等,用有限个离散点上的值的集合来代替,通过求解按一定方法建立起来的关于这些值的代数方程,来获得离散点上被求物理量的值。该方法称为数值解法。 这些离散点上被求物理量值的集合称为该物理量的数值解。 2 、基本思路:数值解法的求解过程可用框图 4-1 表示。 由此可见: 1 )物理模型简化成数学模型是基础; 2 )建立节点离散方程是关键; 3 )一般情况微分方程中,某一变量在某一坐标方向所需边界条件的个数等于该变量在该坐标方向最高阶导数的阶数。 ?数值求解的步骤 如图 4-2 ( a ),二维矩形域内无内热源、稳态、常物性的导热问题采用数值解法的步骤如下:(1)建立控制方程及定解条件 控制方程:是指描写物理问题的微分方程 针对图示的导热问题,它的控制方程(即导热微分方程)为:( a ) 边界条件: x=0 时, x=H 时, 当 y=0 时,

传热学第四版课后题标准答案第十章

传热学第四版课后题答案第十章

————————————————————————————————作者:————————————————————————————————日期:

第十章 思考题 1、 所谓双侧强化管是指管内侧与管外侧均为强化换热表面得管子。设一双侧强化管用内径 为d i 、外径为d 0的光管加工而成,试给出其总传热系数的表达式,并说明管内、外表面传热系数的计算面积。 01 10 00011011110 00010111112)/ln(1 1 12)/ln(1βπβπηβληβηβππληβπo d d d h d d d d h k d h d d d h t 算面积为管外表面传热系数得计 算面积为管内表面传热系数得计传热系数:得以管内表面为基准得= 答:由传热量公式:++= + +?Θ 2、 在圆管外敷设保温层与在圆管外侧设置肋片从热阻分析的角度有什么异同?在什么情 况下加保温层反而会强化其传热而肋片反而会削弱其传热? 答:在圆管外敷设保温层和设置肋片都使表面换热热阻降低而导热热阻增加,而一般情况下保温使导热热阻增加较多,使换热热阻降低较少,使总热阻增加,起到削弱传热的效果;设置肋片使导热热阻增加较少,而换热热阻降低较多,使总热阻下降,起到强化传热的作用。但当外径小于临界直径时,增加保温层厚度反而会强化传热。理论上只有当肋化系数与肋面总效率的乘积小于1时,肋化才会削弱传热。 3、 重新讨论传热壁面为平壁时第二题中提出的问题。 答:传热壁面为平壁时,保温总是起削弱传热的作用,加肋是否起强化传热的作用还是取决于肋化系数与肋面总效率的乘积是否人于1。 4、推导顺流或逆流换热器的对数平均温差计算式时做了一些什么假设,这些假设在推导的哪些环节中加以应用?讨论对大多数间壁式换热器这些假设的适用情形。 5、对于22112211221m1q c q c q c q c q c c q m m m m m =<≥及、 三种情形,画出顺流与逆流时冷、热流体温度沿流动方向的变化曲线,注意曲线的凹向与c q m 相对大小的关系。 6、进行传热器设计时所以据的基本方程是哪些?有人认为传热单元数法不需要用到传热方程式,你同意吗? 答:换热器设计所依据的基本方程有: m m m t KA t t c q t t c q ?=" -'="-'=)()(22221111φ 传热单元法将传热方程隐含在传热单元和效能之中。 7、在传热单元数法中有否用到推导对数平均温差时所做的基本假设,试以顺流换热器效能的计算式推导过程为例予以说明。 答:传热单元数法中也用到了推导平均温差时的基本假设,说明略o 8、什么叫换热器的设计计算,什么叫校核计算?

数值传热学报告

数 值 传 热 学 近代发展及数值方法 建环:屈锐 2011年10月5日

数值传热学的发展史及数值方法 一、计算传热学的发展史 首先,计算传热学(Numerical Heat Transfer)与计算流体动力学(Computational Fluid Dynamics)之间的关系密切,可以认为,他们的主要研究内容是一致的,因此,计算传热学的发展史很大程度上也就是计算流体动力学的发展史,但他们之间还有不少区别,流体动力学的一个主要研究内容是讨论无粘流动及跨、超音速流动数值计算中的一些特殊问题。应用计算机和数值方法求解流动及传热问题在全世界范围内逐渐形成规模而且得出有益的结果,大致始于60年代,故从60年代起,可以把数值传热学的发展过程分为3个阶段: 1、萌芽初创阶段 主要有以下重大事件: (1)交错网格的提出。初期的数值传热学出现的两大困难之一是,网格设置不当时会得出具有不合理的压力场的解。1965年美国科学家首先提出了交错网格的思想,有效解决了这一难题,促使了求解NS 方程的原始变量法的发展。 (2)对流项差分迎风格式的再次确认。初期发展遇到的另一难题是

对流项采用中心差分时,对流速较高的情况的计算会得出振荡的解,1966年,科学家撰稿介绍了迎风格式在求解可压缩流体及非稳态层流流动中的作用,使流动与对流换热问题的求解建立在一个健壮的数值方法上发展。 (3)世界上第一本介绍流体及计算传热学的杂志于1966年创刊。(4)求解抛物型流动的P-S方法出现。由于受到计算机资源的限制,边界层类型问题的数值计算得到更多的关注,如何把有限个节点数目都充分利用起来成为了一个重要的问题。 (5)1969年Spalding在英国帝国理工学院创建了CHAM,旨在把他们研究组的成果推广应用到工业界。 (6)1972年SIMPLE算法问世。所谓分离式的求解方法应运而生,这个算法的基本思路是,在流场迭代求解的任何一个层次上,速度场都必须满足质量守恒方程,这一思想被以后的大量数值计算实例证明,是保证流场迭代计算收敛的一个十分重要的原则。 1974年美国学者提出了采用微分方程来生成适体坐标的方法。由于有限元法对不规则区域有很强的适应性,有限差分法与有限容积法则对复杂区域的适应能力很差,但对于流动问题的数值处理则要比有限元法容易得多。TTM方法的提出,为有限差分法与有限容积法处理不规则边界问题提出了一条崭新的道路。 2、开始走向工业应用阶段

数值传热学习题集

简答题集锦 1.流动与传热数值模拟的基本任务是什么? (把原来在时间域及空间域上连续的物理量的场,如速度场和压力场,用一系列有限个离散点上的变量值的集合来代替,通过一定的原则和方式建立起关于这些离散点上场变量之间关系的代数方程组,然后求解代数方程组获得场变量的近似值CFD可以看做是在流动基本方程(质量守恒方程飞动量守恒方程、能量守恒方程)控制下对流动的数值模拟。通过这种数值模拟,我们可以得到极其复杂问题的流场内各个位置上的基本物理量(如速度、压力、温度、浓度等)的分布,以及这些物理量随时间的变化情况,确定旋涡分布特性、空化特性及脱流区等。) 2.数值模拟过程如何实现,主要步骤是那些? (建模、网格划分、坐标系、数学方程、求解、后处理) a.建立反映工程问题或物理过程本质的数学模型; b.选择与计算区域的边界相适应的坐标系; c.建立网格; d.建立离散方程; e.求解代数方程组; f.后处理,显示计算结果

3.建立离散方程有哪些主要方法?比较说明各种方法的优缺点?(有限差分、有限体积、有限元、有限分析等)

4什么叫控制方程?常见的控制方程有哪几个?各用在什么场合? 5试写出控制方程的通用形式,并说明通用形式中各项的意义?(写明通式,以及各个方程中通式的表达形式)

6推导x 方向的动量控制方程中的源项u S 的表达式。由此证明当密度和黏度为常数时,u S 变为0。 X 方向N-S 方程: Mx S x w z u z x v y u y divu x u x x p Dt Du +??+ ????+ ??+ ????+ +????+??- =)][()]( [)2(μ μλμ ρ )()())()())())()()()()()][()]( [)2(gradu div divu x z w y v x u x gradu div S divu x z w y v x u x S S divu x z w y v x u x gradu div S x w z x v y x u x z u z y u y x u x S x w z u z x v y u y divu x u x Mx u Mx Mx Mx μλμ μλμλμμμμμμμμμ μλμ +??+??+??+????=++?? +??+??+????=+?? +??+??+????+=+????+????+????+????+????+????= +??+ ????+ ??+ ????++????((()()( 因为0 =??+ ??+ ??z w y v x u ρρρ 推 得: =??+??+??z w y v x u 所以:Su= 0)()=?? +??+??+????divu x z w y v x u x λμ ( 7区域离散为分几种,说明各自的特点。 (内节点法、外节点法) 先节点后界面

传热学_杨茉_部分习题与解答

第一章: 1-1 对于附图所示的两种水平夹层,试分析冷、热表面 间热量交换的方式有何不同?如果要通过实验来测定夹层中流体的导热系数,应采用哪一种布置? 解:(a )中热量交换的方式主要有热传导和热辐射。 (b )热量交换的方式主要有热传导,自然对流和热辐射。 所以如果要通过实验来测定夹层中流体的导热系数,应采用( a )布置。 1-2 一炉子的炉墙厚13cm ,总面积为20m 2 ,平均导热系数为 1.04w/m 〃k ,内外壁温分别是520 ℃及50 ℃。试计算通过炉墙的热损失。如果所燃用的煤的发热量是 2.09 ×10 4 kJ/kg ,问每天因热损失要用掉多少千克煤? 解:根据傅利叶公式 每天用煤 1-3 在一次测定空气横向流过单根圆管的对流换热实验中,得到下列数据:管壁平均温度t w = 69 ℃,空气温度t f = 20 ℃,管子外径d= 14mm ,加热段长80mm ,输入加热段的功率8.5w ,如果全部热量通过对流换热传给空气,试问此时的对流换热表面传热系数多大? 解:根据牛顿冷却公式

1-4宇宙空间可近似的看作0K 的真空空间。一航天器在太空中飞行,其外表面平均温度为250K ,表面发射率为0.7 ,试计算航天器单位表面上的换热量? 解:航天器单位表面上的换热量 1-5附图所示的空腔由两个平行黑体表面组成,孔腔内抽成真空,且空腔的厚度远小于其高度与宽度。其余已知条件如图。表面 2 是厚δ= 0.1m 的平板的一侧面,其另一侧表面 3 被高温流体加热,平板的平均导热系数λ=17.5w/m ? K ,试问在稳态工况下表面3 的t w3 温度为多少? 解: 表面1 到表面2 的辐射换热量= 表面2 到表面3 的导热量 第二章:

【免费下载】数值传热学第五章作业

5-2解:根据课本p158式(5—1a )得一维稳态无源项的对流-扩散方程如下所示: (取常物性)22x x u ??Γ=??φφρ边界条件如下:L L x x φφφφ====,;,00由(5—2)得方程的精确解为: 11)/(00--=--?Pe L x Pe L e e φφφφΓ=/uL Pe ρ将分成15等份,有:L ?=P Pe 15对于中心差分、一阶迎风、混合格式和QUICK 格式分别分析如下:1)(CD)中心差分节点离散方程: 2)5.01()5.01(11-?+?++-=i i i P P φφφ10,2 =i 2) 一阶迎风节点离散方程: ?-?++++=P P i i i 2)1(11φφφ10,2 =i 3)混合格式当时,节点离散方程:,1=?P 2)5.01()5.01(11-?+?++-=i i i P P φφφ10,2 =i 当时,节点离散方程: , 10,5=?P 1-=i i φφ10,2 =i 4)QUICK 格式,节点离散方程: , ??????--++++++=+-??-??+?)336(81221211111i i i i i i P P P P P φφφφφφ2=i , ?? ????---++++++=+--?? -??+?)35(812212112111i i i i i i i P P P P P φφφφφφφ2≠i 、管路敷设过程中,要加强交底。管线敷设技术中敷设原则:在分线盒处,、电气课件其在正常工况下与过度写重要设备高中资料试试卷技术指导。对于调试、电气设备调试高中资组高中资料试卷安全,并试卷保护装置动作,并且做到准确灵活。对于差

数值传热学chapter_1

主讲陶文铨 西安交通大学能源与动力工程学院热流中心CFD-NHT-EHT CENTER 2009年9月7日,西安 数值传热学 第一章绪论

课程简介 1. 教材-《数值传热学》第二版,2001 2. 学时-45学时理论教学;10学时程序教学 3. 考核-平时作业/计算机大作业: 考试-40/60;考查-60/40 4. 方法-开放,参与,应用 5. 助手-郭东之,周文静,李兆辉

有关的主要国外期刊 1.Numerical Heat Transfer, Part A-Applications; Part B- Fundamentals 2.International Journal of Numerical Methods in Fluids. https://www.360docs.net/doc/b06444191.html,puter & Fluids 4.Journal of Computational Physics 5.International Journal of Numerical Methods in Engineering 6.International Journal of Numerical Methods in Heat and Fluid Flow https://www.360docs.net/doc/b06444191.html,puter Methods of Applied Mechanics and Engineering 8.Engineering Computations 9.Progress in Computational Fluid Dynamics 10. Computer Modeling in Engineering & Sciences (CMES) 11.ASME Journal of Heat Transfer 12.International Journal of Heat and Mass Transfer 13.ASME Journal of Fluids Engineering 14.International Journal of Heat and Fluid Flow 15.AIAA Journal

相关文档
最新文档