谈谈大跨度空间结构的发展

谈谈大跨度空间结构的发展
谈谈大跨度空间结构的发展

简介:近二十余年来,各种类型的大跨空间结构在美、日、欧等发达国家发展很快。建筑物的跨度和规模越来越大,目前,尺度达150m以上的超大规模建筑已非个别;结构形式丰富多彩,采用了许多新材料和新技术,发展了许多新的空间结构形式。本文就此介绍了大跨度空间结构的发展。

关键字:大跨度空间,结构发展,大跨度空间结构

一、综述

近二十余年来,各种类型的大跨空间结构在美、日、欧等发达国家发展很快。建筑物的跨度和规模越来越大,目前,尺度达150m以上的超大规模建筑已非个别;结构形式丰富多彩,采用了许多新材料和新技术,发展了许多新的空间结构形式。例如1975年建成的美国新奥尔良“超级穹顶”(Superdome),直径207m,长期被认为是世界上最大的球面网壳;现在这一地位已被1993年建成直径为222m的日本福冈体育馆所取代,但后者更著名的特点是它的可开合性:它的球形屋盖由三块可旋转的扇形网壳组成,扇形沿圆周导轨移动,体育馆即可呈全封闭、开启1/3或开启2/3等不同状态。1983年建成的加拿大卡尔加里体育馆采用双曲抛物面索网屋盖,其圆形平面直径135m,它是为1988年冬季奥运会修建的,外形极为美观,迄今仍是世界上最大的索网结构。70年代以来,由于结构用织物材料的改进,膜结构或索-膜结构(用索加强的膜结构)获得了发展,美国曾建造许多规模很大的气承式索-膜结构;1988年东京建成的“后乐园”棒球馆,也采用这种结构,技术尤为先进,其近似圆形平面的直径为202m;美国亚特兰大为1996年奥运会修建的“佐治亚穹顶”(Geogia Dome,1992年建成)采用新颖的索穹顶结构,其准椭圆形平面的轮廓尺寸达192mX241m。许多宏伟而富有特色的大跨度建筑已成为当地的象征性标志和著名的人文景观。

可以这样说,大跨空间结构是最近三十多年来发展最快的结构形式。世界各国为大跨度空间结构的发展投入了大量的研究经费。这些研究工作为各国大跨度建筑的蓬勃发展奠定了坚实的理论基础和技术条件。

我国大跨度空间结构的基础原来比较薄弱,但随着国家经济实力的增强和社会发展的需要,近十余年来也取得了比较迅猛的发展。工程实践的数量较多,空间结构的类型和形式逐渐趋向多样化,相应的理论研究和设计技术也逐步完善。以北京亚运会(1990)、哈尔滨冬季亚运会(1996)、上海八运会(1997)、广州九运会(2001)的许多体育建筑为代表的一系列大跨空间结构——作为我国建筑科技进步的某种象征在国内外都取得了一定影响。

种种迹象说明,我国虽然尚是一个发展中国家,但由于国大人多,随着国力的不断增强,要建造更多更大的体育、休闲、展览、航空港、机库等大空间和超大空间建筑物的需求十分旺盛,而且这种需求量在一定程度上可能超过许多发达国家。2008奥运场馆建设为我国大跨空间结构的发展提供了巨大的机遇,也是展示我国建筑科技水平的重要场所,有关工程界和设计、研究部门积极性空前高涨,正在进行充分的理论和技术准备。我相信,各种类型的大跨空间结构,将在奥运场馆建设中取得广泛应用。

大跨空间结构的类型和形式十分丰富多彩,习惯上分为如下这些类型:钢筋混凝土薄壳结构;平板网架结构;网壳结构;悬索结构;膜结构和索-膜结构;近年来国外用的较多的“索穹顶”(Cable Dome)实际上也是一种特殊形式的索-膜结构;混合结构(Hybrid Structure),通常是柔性构件和刚性构件的联合应用。

平板网架和网壳结构,还包括一些未能单独归类的特殊形式,如折板式网架结构、多平面型网架结构、多层多跨框架式网架结构等,总起来可称为空间网格结构。这类结构在我国发展很快,且持续不衰。悬索结构、膜结构和索-膜结构等柔性体系均以张力来抵抗外荷载的作用,可总称为张力结构。

二、空间网格结构

网壳结构的出现早于平板网架结构。在国外,传统的肋环型穹顶已有一百多年历史,而

第一个平板网架是1940年在德国建造的(采用Mero体系)。中国第一批具有现代意义的网壳是在50和60年代建造的,但数量不多。当时柱面网壳大多采用菱形“联方”网格体系,1956年建成的天津体育馆钢网壳(跨度52m)和l961年同济大学建成的钢筋混凝土网壳(跨度40m)可作为典型代表。球面网壳则主要采用肋环型体系,1954年建成的重庆人民礼堂半球形穹顶(跨度46.32m)和1967年建成的郑州体育馆圆形钢屋盖(跨度64m)可能是仅有的两个规模较大的球面网壳。自此以后直到80年代初期,网壳结构在我国没有得到进一步的发展。

相对而言,平板网架结构自60年代后期起获得较多应用,1967年建成的首都体育馆和1973年建成的上海体育馆是早期成功采用平板网架结构的杰出代表,对这种结构形式在其后一段时期的持续发展有很大影响。80年代后期北京为迎接1990亚运会兴建的一批体育建筑中,多数仍采用平板网架结构。

随着经济和文化建设需求的扩大和人们对建筑欣赏品位的提高,在设计日益增多的各式各样大跨度建筑时,设计者越来越感觉到结构形式的选择余地有限,无法满足日益发展的对建筑功能和建筑造型多样化的要求。这种现实需求对网壳结构、悬索结构等多种空间结构形式的发展起了良好的刺激作用。由于网壳结构与网架结构的生产条件相同,国内已具备现成的基础,因而从80年代后半期起,当相应的理论储备和设计软件等条件初步完备,网壳结构就开始了在新的条件下的快速发展。各种形式的网壳,包括球面网壳、柱面网壳、鞍形网壳(或扭网壳)、双曲扁网壳和各种异形网壳,以及各种网壳的组合形式均得到了应用;还开发了预应力网壳、斜拉网壳、拱支网壳、局部双层网壳等新的结构体系。

同时,平板网架结构并未停止其自身的发展。这种目前来看已比较简单的结构有它自己广泛的使用领域,跨度不拘大小;而且近几年在诸如工业厂房、飞机库等一些重要领域扩大了应用范围。十分明显,包括网架和网壳在内的空间网格结构是我国近十余年来发展最快,应用最广的空间结构类型。这类结构体系整体刚度好,技术经济指标优越,可提供丰富的建筑造型,因而受到建设者和设计者的喜爱。我国网架企业的蓬勃发展也为这类结构提供了方便的生产条件。据估计,近几年我国每年建造的网架和网壳结构达数百万平方米建筑面积,相应钢材用量约20万t。这么大的数字是任何其它国家无法比拟的,无愧于“网架王国”这一称号。

如此大的发展势头自然也会带来一些问题。尤其是在市场需求带动下,大量小型网架企业雨后春笋般成立起来,难免良莠不齐,设计也非总由有经验人士担任。因而大力加强行业管理,切实把握住设计制作和安装质量,是促进我国空间结构进一步健康发展的重要课题。

三、张力结构

中国现代悬索结构的发展始于50年代后期和60年代,世界上最早的现代悬索屋盖是美国于1953年建成的Raleigh体育馆,采用以两个斜放的抛物线拱为边缘构件的鞍形正交索网。我国1961年建成的北京工人体育馆和1967年建成的浙江人民体育馆两个悬索结构无论从规模大小或技术水平来看在当时都可以说是达到了国际上较先进水平。但此后我国悬索结构的发展停顿了较长一段时间。一直到80年代,由于大跨度建筑的发展而提出的对空间结构形式多样化的要求,这种形式丰富的轻型结构重新引起了人们的热情,工程实践的数量有较大增长,应用形式趋于多样化,理论研究也相应地开展起来。

张拉式膜(或索-膜)结构自80年代以来在发达国家获得极大发展。这种体系与索网结构类似,张紧在刚性或柔性边缘构件上,或通过特殊构造支承在若干独立支点上,通过张拉建立预应力并获得确定形状。张拉式索膜体系具有重量极轻,安装方便,在大跨度和超大跨度建筑中极具应用前景。近几年我国膜结构发展很快,不少体育场挑蓬和许多中小型建筑采用张拉式或骨架支承式的膜结构,有一些工程是比较成功的,但总体上与国外先进水平比较尚有一定差距。主要表现在结构形式还比较拘谨和匠气,缺少大胆创新之作,说明新颖的建

筑构思与先进的结构创造之间还没有很好地结合起来。这也许与当前的设计体制有一定关系。我们的设计部门对膜结构这一新技术还不够熟悉,难于作出创新的设计方案;一旦确定采用膜结构时,实际上包括设计在内都交给膜结构企业去操作。在正常情况下,建筑师应当是始终对整个设计保持控制的。

我们的差距还表现在膜结构产品的质量上。膜材的剪裁和加工不够精细,零配件和连接件相对地显得粗糙。这与企业的技术力量和设备条件直接有关。

另外,迄今我国的膜结构大都采用半永久性膜材(聚酯纤维+PVC涂层)建造。永久性膜材(玻璃纤维+PTFE涂层)在制作安装时要求更高的技术水平,对国内企业来说尚有一定难度。外国企业实力雄厚,技术力量强,但由于价格上的原因,迄今尚未取得中国市场的主要份额。现在有的外国企业计划在中国建厂,届时国内企业所具有的价格优势将不复存在,他们将面临更为严峻的竞争局面。

至于所谓的“张拉集成系统”或“全张拉结构”(Tensegrity),是指由连续的受拉杆索和局部的受压杆件组成的结构体系,目前在工程上的唯一实现形式是由预应力双层空间索系和薄膜屋面组成的“索穹顶”(Cable Dome)结构。国外已建成的索穹顶有两种形式:1988年汉城奥运会体育馆采用脊索呈辐射布置的Geiger体系;1996年亚特兰大奥运会体育馆采用脊索呈菱形布置的Levy体系。索穹顶自重极轻,因而可以跨越非常大的空间,像亚特兰大体育馆达到243mX191m这样大的尺度。我国还没有采用这种体系的工程实践,可能原因是施工安装技术上有较大难度,但在理论研究方面已做得比较深入。我相信,在研究、设计、施工、安装各部门协调配合下,有朝一日我国会实现这些高效的结构形式。

四、理论研究

空间结构的理论研究是与其工程应用同步开展的。早期的研究偏重于各式空间结构在荷载作用下的静、动力性能的分析方法,以满足一般设计工作的需要为主要目标。这些研究为我国空间结构的发展提供了基本的理论支持。

我国关于空间结构研究的一个特点是做了大量的试验。这是我国结构研究领域的一个优良传统。80年代乃至90年代初期建造的几乎每一个有代表性的大型空间结构,都作过模型试验或现场实测。这些试验研究同理论分析工作一起,以及它们之间的相互印证,使我们对原来可能比较生疏的各种新颖空间结构的基本性能了解得越来越全面,为设计这些结构积累起比较丰富的理论储备。

我们除了对各种类型空间结构的基本性状和计算方法的研究以外,一些更为基础性的理论研究也受到了重视。关于网壳稳定性的研究已取得许多重要成果。稳定性是网壳结构、尤其是单层网壳结构设计中的关键问题,也是国内外十多年来的热点研究领域。我国从80年代后期开始也积极开展以非线性全过程分析为基础的网壳稳定性研究。

在深入的理论研究的基础上,采用大规模参数分析的方法,进行了网壳稳定性分析实用方法的研究。即结合不同类型的网壳结构,在其基本参数(几何参数、构造参数、荷载参数等)的常用变化范围内,进行大规模的实际结构全过程分析,对所得结果进行统计分析和归纳,考察网壳稳定性的变化规律,最后通过回归分析提出网壳稳定性验算的实用公式。这一工作很受广大设计部门欢迎。这些公式已列入正在编制的“网壳结构技术规程”(征求意见稿)。应该说,我国关于网壳稳定性的研究是相当深入和细致的。

空间结构是最充分地利用曲面形状来抵抗外力作用的结构形式,所以空间结构的形体设计(或从理论分析角度称作初始形态分析)具有十分重要的意义。对于钢筋混凝土薄壳和钢网壳等较刚性的体系,其形态分析主要涉及结构几何形状的优化。对索网、膜和索-膜等柔性结构体系,初始形态分析具有更基本的意义。初始形态分析的任务就是要确定在给定支承条件下满足建筑功能要求的曲面形状和预张力状态的优化组合。具体的计算方法一般采用非线性有限元分析方法,但理论上远未定型。我国在悬索结构和膜结构的初始形态分析方面作

过不少工作,并编制了一些相应的软件。有些研究者还提出了空间结构初始形态的优化准则和分析方法。

我们对悬索结构的风振问题也做了不少研究,索、膜结构等柔性体系自振频率低,是风敏感结构,研究这种结构在风作用下的动力响应十分重要。膜结构具有较强的几何非线性,而且作为多自由度的复杂三维体系,其自振频率密集分布且相互耦合;传统的以振型分解法为基础的随机振动频域分析方法无法应用。几年来我们主要开展了若干种非线性随机方法,可用来分析索、膜结构这类大跨度柔性体系的风振响应。

但不同的柔性屋盖体系,其风振特性也有差别,以膜结构为例,膜既是受力构件,又是覆面材料,质轻而薄,局部刚度很小,在风作用下局部膜单元的速度和加速度、响应较大,可能对周围流场产生影响,形成明显的流固耦合作用,导致较明显的气弹反应和可能的动力失稳现象。研究这一问题在理论上有较大难度,各类随机振动分析方法都是建立在来流已知的基础上,无法考虑真正的流固耦合作用。目前主要的研究方法是风洞试验,但风洞试验也存在局限性。在风洞试验中某些相似参数的模拟和某些物质量的精确观测均非易事。有些研究者准备用气动弹性力学的方法来研究膜结构风振分析中的流固耦合问题,提出了一些气动力模型,其中有关参数需由气弹模型风洞实验来确定。应该说,这一方法目前离实用尚远。

鉴于上述原因,有些研究者转向另一方向,即借鉴桥梁,飞机等其他学科领域的风振研究经验,运用计算流体力学研究手段,开发适应于膜结构风工程领域的数值风洞,以便对结构响应与周围流场的变化做出更准确的描述,并对各种可能的气弹失稳现象进行探索,这是一种有前途的研究方法,但目前我们只能说,这些方法还都处在探索阶段。

我相信,在做好上面这些理论研究工作以后,将使我国大跨空间结构领域形成较完整的理论体系并进入世界先进行列,为我国大跨度建筑的进一步发展提供充分的理论支持。

大跨空间结构案例分析

通过这一个学期建筑结构选型将建筑结构分类如下:●平面结构 梁柱结构(框架结构 桁架结构 单层钢架结构 拱式结构 ●空间结构 薄壁空间结构 网架结构 网壳结构网格结构 悬索结构 薄膜结构 ●高层建筑结构 ●平面结构 平面屋盖结构空间跨度相比较小,节点、支座形式较简单。 2008年奥运会摔跤比赛馆总建筑面积约23950平方米,比赛馆平面是一个82.4*94米平面,屋面是反对称的折面,采用巨型门式钢钢架结构,将建筑塑造为富有韵律感的

造型,如图所示。三维整体模型工程屋盖由12榀空间门式钢钢架组成,跨度82.4米,中心距8,0米,钢刚架为四肢组合的格构式结构。构件间的连接节点均为相贯节点,钢架柱(钢管连接于看台部分的钢筋混凝土柱,屋盖结构外形简洁、流畅,节点形式简单,刚度大,几何特性好。 单榀空间门式钢刚架单榀空间门式钢刚架(有连系杆单榀空间门式钢刚架(有连系杆

刚架柱支座 ●空间结构 ●网格结构 ?网架结构 一:2008奥运会国家体育馆 国家体育馆位于北京奥林匹克公园中心区,建筑面积80 476m2 ,固定座席118 万座,活动座2 000座,用于举办2008 年奥运会的体操、手球比赛,赛后用于举办体育比赛和文艺演出。虽然体育馆在功能上划分为比赛馆和热身馆两部分,但屋盖结构在两个区域连成整体,即采用正交正放的空间网架结构连续跨越比赛馆和热身馆两个区域,形成一个连续跨结构。空间网架结构在南北方向的网格尺寸为815m,东西方向的网格有两种尺寸,其中中间(轴a和○K之间的网格尺寸为1210m,其他轴的网格尺寸为815m。按照建筑造型要求,网架结构厚度在11518~31973m之间。不包括悬挑结构在内,比赛馆的平面尺寸为114m ×144m,跨度较大,为减小结构用钢量,增加结构刚度,充分发挥结构的空间受力性能,在空间网架结构的下部还布置了双向正交正放的钢索,钢索通过钢桅杆与其上部的网架结构相连,形成双向张弦空间网格结构。其中最长桅杆的长度为91237m,钢索形状根据桅杆高度通过圆弧拟合确定。在

大跨空间结构的发展回顾与展望

大跨空间结构的发展——回顾与展望 来源:中国论文下载中心[ 06-03-20 08:42:00 ] 作者:沈世钊编辑:studa9ngns 摘要:大跨空间结构是目前发展最快的结构类型。大跨度建筑及作为其核心的空间结构技术的发展状况是代表一个国家建筑科技水平的重要标志之一。本文就空间网格结构和张力结构两大类介绍了国内外(但主要是国外)空间结构的发展现状和前景。对这一领域几个重要理论问题,包括空间结构的形态分析理论、大跨柔性属盖的动力风效应、网壳结构的稳定性和抗震性能等问题的研究提出了看法。 关键词:空间结构回顾展望 一、概述 在这实际的三维世界里,任何结构物本质上都是空间性质的,只不过出于简化设计和建造的目的,人们在许多场合把它们分解成一片片平面结构来进行构造和计算。与此同时,无法进行简单分解的真正意义上的空间体系也始终没有停止其自身的发展,而且日益显示出一般平面结构无法比拟的丰富多彩和创造潜力,体现出大自然的美丽和神奇。空间结构的卓越工作性能不仅仅表现在三维受力,而且还由于它们通过合理的曲面形体来有效抵抗外荷载的作用。当跨度增大时,空间结构就愈能显示出它们优异的技术经济性能。事实上,当跨度达到一定程度后,一般平面结构往往已难于成为合理的选择。从国内外工程实践来看,大跨度建筑多数采用各种形式的空间结构体系。 近二十余年来,各种类型的大跨空间结构在美、日、欧等发达国家发展很快。建筑物的跨度和规模越来越大,目前,尺度达150m以上的超大规模建筑已非个别;结构形式丰富多彩,采用了许多新材料和新技术,发展了许多新的空间结构形式。例如1975年建成的美国新奥尔良“超级穹顶”(Superdome),直径207m,长期被认为是世界上最大的球面网壳;现在这一地位已被1993年建成夏径为222m的日本福冈体育馆所取代,但后者更著名的特点是它的可开合性:它的球形屋盖由三块可旋转的扇形网壳组成,扇形沿圆周导轨移动,体育馆即可呈全封闭、开启1/3或开启2/3等不同状态。1983年建成的加拿大卡尔加里体育馆采用双曲抛物面索网屋盖,其圆形平面直径135m,它是为1988年冬季奥运会修建的,外形极为美观,迄今仍是世界上最大的索网结构。70年代以来,由于结构使用织物材料的改进,膜结构或索-膜结构(用索加强的膜结构)获得了发展,美国建造了许多规模很大的气承式索-膜结构;1988年东京建成的“后乐园”棒球馆,也采用这种结构技术尤为先进, (Geogia 其近似圆形平面的直径为204m;美国亚特兰大为1996年奥运会修建的“佐治亚穹顶”Dome,1992年建成)采用新颖的整体张拉式索一膜结构,其准椭圆形平面的轮廓尺寸达192mX241m。许多宏伟而富有特色的大跨度建筑已成为当地的象征性标志和著名的人文景观。 由于经济和文化发展的需要,人们还在不断追求覆盖更大的空间,例如有人设想将整个街区、整个广场、甚至整个山谷覆盖起来形成一个可人工控制气候的人聚环境或休闲环境;为了发掘和保护古代陵墓和重要古迹,也有人设想采用超大跨度结构物将其覆盖起来形成封闭的环境。目前某些发达国家正在进行尺度为300m以上的超大跨度空间结构的设计方案探讨。

大跨度空间结构复习题

1空间结构的特点:1)空间结构具有合理形体,三维受力特性,内力均匀,结构整体刚度大,抗震性能好。对集中荷载的分散性较强,能很好的承受不对称荷载或较大的集中荷载。2)自重轻,经济性好。3)便于工业化生产4)形式多样化,造型美观。5)有较大的跨越能力,为建筑功能提供较大的空间。6)建筑,结构和使用功能的统一。 2大跨度空间结构分类按大跨度空间结构的受力特点可分为刚性,柔性空间结构和杂交结构体系按单元划分分为板壳单元,梁单元,杆单团,索单元和膜单元。 3刚性空间结构体系包括薄壳,空间网络和立体桁架结构。薄壳结构多为钢筋混凝土整体浇灌而成 4空间网格结构一般是由钢杆件按一定规律组成的网格状高次超静定空间杆系结构。空间网格结构根据外形分:网架——外形呈平板状,网壳——其外形呈曲面状 5立体桁架结构是以钢管通过焊接有机连接而成的一种空间结构。 6柔性空间结构体系是指由柔性构件构成,通过施加预应力而形成的具有一定刚度的空间结构体系(包括:悬索结构,膜结构,张拉整体结构)。 7杂交空间结构体系:第一类为刚性结构体系之间的组合,第二类为柔性结构体系于刚性结构体系的组合,第三类为柔性体系之间的组合。 8单层网壳由梁单元组成,而双层网壳由杆单元组成 9网架结构具有空间三维受力、整体性好、刚度好、施工简单、快捷等优点。优点:1,应用范围广2,建筑高度小,能更有效的利用建筑空间,获得良好的经济效益。3,网格结构的刚度大,整体性好,抗震性好。4,网格尺寸小,可采用小规模的杆件界面,并为采用轻型屋面提供了便利的条件。5)便于制造定型化,网格可做成少数几种标准尺寸的组合单元,节点和零件,在工厂大量生产。组合单元若采用螺栓连接,网架可装可拆,也可任意加长或缩短,灵活性更大。6)由于网架杆件与节点的单一性,一般结构设计所需的施工图纸比较少。 10网架结构形式按结构组成分有双层和三层网架;按支承情况,可分为周边支承、点支承、三边支承和两边支承,周边支承与点支撑相结合的混合支承,按网格组成情况,可分为有两向或三向平面桁架组成的平面桁架体系和由三角锥、四角锥组成的空间桁架体系。根据搁置方式不同,可分为周边支承、点支撑、三边支撑和两边支承,以及周边支承与点支撑相结合的情况。 11双层网架由上下两个平放的平面构架做表层,上、下表层设有层间杆件相联系。组成上下表层的杆件称为网架的上弦杆或下弦杆,位于两层之间的杆件称为副杆。 12三层网架由3个平放的平面构架及层间杆件组成。三层网架结构的稳定性能比双层网架好,杆件密集,传力路径众多,结构有更好的安全储备,致使结构有很好的延性。三层网架结构杆件内力分布均匀。三层网架也存在不足之处是节点和杆件数量增多,中层节点上的链接的杆件较密。 13常用的柱帽形式有3种:1柱帽设置在网架下弦平面下,就是在支点处向下延伸一个网架高度,这种柱帽能很快将柱顶反力扩散,由于假设柱帽将占据一部分室内空间。2柱帽在网架上弦平面之上,就是在支点处向上延伸一个网架高度,其优点是不占室内空间,柱帽上凸部分可兼作采光天窗。3柱帽布置在网架内,将上弦节点直接搁置于柱顶,使柱帽呈伞形,其优点是不占室内空间,屋面处理较简单。这种柱帽承载力较低,适用轻屋盖或中小跨度网架。 14按网格形式分类,网架可分为平面桁架系和空间桁架系。平面桁架体系由平行斜架组成,杆件较多,刚度较大,适用与各种跨度。平面桁架体系分为1两向正交正放网架2两向正交斜放网架3两向斜交斜放网架空间桁架体系分为四角锥体系和三角锥体系四角锥体系是由许多四角锥按一定规律组成,组成的基本单位为倒置四角锥,这类网架上下弦平面均为方

大跨度空间结构的发展历史及分类

大跨度空间结构的发展历史及分类【摘要】按照古代、近代、现代的时间顺序介绍空间结构的发展历程。按传统划分方法、单元组成划分法对空间结构进行分类,后者能更好的囊括和包络既有的空间结构形式。 【关键词】大跨度空间结构;发展历史;分类 1982年中国成立空间结构委员会,在此后三十多年里大跨度空间结构发展迅速,兴建了大量体育场馆、会议展览馆、机场车库、大型娱乐场所、多功能厅等,结构在跨度上跨度的要求越来越高,在形式上,也不断创新。 一、空间结构的发展历史 在二十世纪前,古代空间结构就已经出现并大量应用,主要标志性结构为拱券式穹顶,该结构充分利用拱券合理传力的原理,有连环拱、交叉拱、拱上拱、大拱套小拱。该类结构的代表工程:南京无梁殿(明洪武14年),平面尺寸38m×54m,净高22m。 二十世纪初叶(1925年)后,涌现了大梁的近代空间结构,主要标志性结构为薄壳结构、网格结构和一般悬索结构。其中薄壳结构代表工程有:北京火车站(1959年),跨度35m×35m;网架结构代表工程有:首都体育馆(1968年),跨度99m ×112.2m;悬索结构代表工程:北京工人体育馆(1961年,跨度94m),浙江人民体育馆(1967年,跨度60m ×80m ),成都城北体育馆(1979年,跨度61m)。

到二十世纪末叶(1975 年前后),现代空间结构开始发展,其主要标志性结构为索膜结构、索杆张力结构、索穹顶结构等。例如,2008 年建成的114m×144m北京奥运会国家体育馆是世界上最大跨度的双向弦支桁架结构。 二、按传统方法划分空间结构 按传统的划分方法,空间结构分为薄壳结构、网架结构、网壳结构、悬索结构和膜结构五类。五种空间结构的定义及主要形式如下: (一)网架结构是以多根杆件按照一定规律组合而成的网格状高次超静定空间杆系结构,有以下主要形式:(1)平面桁架系组成的网架结构,主要有两向正交正放网架、两向斜交斜放网架、两向正交斜放网架、三向网架等型式。(2)四角锥体组成的网架结构主要有正放四角锥网架、斜放四角锥网架、正放抽空四角锥网架、棋盘形四角锥网架、星型四角锥网架、单向折线型网架等型式。(3)三角锥组成的网架结构主要有三角锥网架、抽空三角锥网架(分Ⅰ型和Ⅱ型)、蜂窝形三角锥网架等型式。(4)六角锥体组成的网架结构主要形式有正六角锥网架。 (二)网壳结构是将杆件沿着某个曲面有规律地布置而组成的空间结构体系其受力特点与薄壳结构类似,是以“薄膜”作用为主要受力特征的。主要有球面网壳、双曲面网壳、圆柱面网壳、双曲抛物面网壳等。

大跨空间结构答案.doc

大跨空间结构(答案整理) 一、单项选择题(共20分,每小题2分) 1. 下列哪一种空间结构在高空作业时施工费用最高( B ) A. 网格结构 B. 折板结构 C. 平板结构 D. 混合结构 2. 下列哪一种网架结构的刚度最差( D ) A. 两向正交正放网架 B. 两向正交斜放网架 C. 三向网架 D. 单向折线形网架 3. 若三角锥网架的全部杆件等长(其中h 为网架高度,s 为弦杆长度),必须满足下列哪 一种条件( D ) A. 腹杆与高度方向的夹角为33arccos B. 腹杆与高度方向的夹角为2 3arccos C. 腹杆与高度方向的夹角为32arccos D. A 、B 、C 都不对 4. 下列哪种网架的节点处杆件汇交的数量最少( B ) A. 两向正交正放网架 B. 蜂窝形三角锥网架 C. 棋盘形四角锥网架 D. 抽空三角锥网架 5. 下列哪种网架的节点处杆件汇交的数量最多( A ) A. 三向网架 B. 三角锥网架 C. 四角锥网架 D. 星形四角锥网架 6. 下列哪一种网架屋面构造最为复杂( D ) A. 星形四角锥网架 B. 棋盘形四角锥网架 C. 斜放四角锥网架 D. 两向斜交斜放网架 7. 正放四角锥网架须满足下列哪种条件方能做到所有杆件等长( A ) A. 网架腹杆与弦杆的夹角为60° B. 网架腹杆与竖向的夹角为60° C. 网架腹杆与腹杆的夹角为60° D. 以上答案均不正确。 8. 下列哪一种网架受力的均匀性较差( C ) A. 正放四角锥网架 B. 正放抽空四角锥网架 C. 星形四角锥网架 D. 棋盘形四角锥网架 9. 有一间接承受动力作用的网架,其受拉杆的容许长细比[]λ为( D ) A. 180 B. 200 C. 250 D. 300

大跨度空间结构工程案例样本

大跨度空间结构案例及分析

1、大跨度空间结构选型的概念 跨度超过30米的空间结构就是大跨度空间结构。大跨度空间结构使建筑实现较大的跨度, 满足建筑大空间的使用要求, 而且结构轻巧, 造型优美, 受力合理, 实用耐久, 用钢量低。大跨度空间结构不但使空间的水平分隔的灵活性增大, 而且也增大了垂直方向的自由调整的可能性。大跨度空间结构的选型即大跨度空间结构体系方案的优化选择, 实际上就是对适合建筑设计的多种结构体系方案进行分析、比较、判断、假设、择优的过程。 2、大跨度空间结构选型的原则 大跨度建筑迅速发展的原因一方面是由于社会发展使建筑功能愈来愈复杂; 另一方面则是新材料、新结构、新技术的出现, 促进了大跨度建筑的进步。因此大跨度空间结构的发展是在结构受力合理, 造型美观等诸多因素的限制下发展起来的。各种结构不同的优势与劣势, 只有将它们合理的运用起来, 才能达到技术与艺术都最合适的结构选择, 甚至创造出完美的建筑。 在大跨度空间结构中引入现代预应力技术, 不但使结构体形更为丰富而且也使其先进性、合理性、经济性得到充分展示。经过适当配置拉索, 或可使结构获得新的中间弹性支点或使结构产生与外载作用反向的内力和挠度而卸载。前者即为斜拉结构体系, 后者则为预应力结构体系。这一类”杂交”结构体系将改进原结构的受力状态, 降低内力峰值, 增强结构刚度、经济效果明显提高。

一、案例 南京医科大学新建新基础医学教学与科研楼/教研服务中心工程, 位于南京市江宁大学城,分教学楼和教研服务中心两部分。其建筑群皆为四周办公楼中间设中庭的结构形式,中庭跨度约55米,屋面采用折叠钢屋架结构,钢屋架上铺设玻璃采光天窗,有效的解决了楼内的采光问题,外观造型线条优美,气势磅礴,在满足使用功能的同时,又给人以美的享受。 1.1 工程概况 中庭钢结构屋面, 结构形式为一倾斜的折叠钢屋架。位于一区、二区、三区、四区之间, 高端支撑于一区和四区的屋面钢结构上, 经过固定支座与一区和四区的屋面钢结构相连; 低端支撑于二区和三区的屋面钢结构上, 经过滑动支座与一区和四区的屋面钢结构相连, 边榀下设箱型柱支撑。 中庭折叠钢屋架由5榀正三角形管桁架组成, 两边悬挑。低端钢桁架下弦标高从15.831米至17.271米, 上弦标高从17.940米至19.080米, 高约2米, 宽23.477米; 高端下弦标高20.490米至22.274米, 上弦标高从24.752米至26.524米, 高约4米; 跨度: 第一榀40.306米, 第二榀48.133米, 第三榀56.825米, 第四榀58.673米, 第五榀53.862米, 钢折梁屋面部

大跨度空间结构的主要形式及特点

大跨度空间结构的主要形式及特点 摘要: 大跨度空间结构往往是衡量一个国家或地区建筑技术水平的重要标志。其结构形式主要包括网架结构、网壳结构、悬索结构、膜结构、薄壳结构等五大空间结构及各类组合空间结构。形态各异的空间结构在体育场馆、会展中心、影剧院、大型商场、工厂车间等建筑中得到了广泛的应用。 关键词: 大跨度空间结构形式特点 1 网架结构 由多根杆件按照某种规律的几何图形通过节点连接起来的空间结构称之为网格结构,其中双层或多层平板形网格结构称为网架结构或网架。它通常是采用钢管或型钢材料制作而成。 1.1 网架结构的形式 (1)平面桁架系组成的网架结构。主要有:两向正交正放网架、两向斜交斜放网架、两向正交斜放网架、三向网架等型式。 (2)四角锥体组成的网架结构。主要有:正放四角锥网架、斜放四角锥网架、正放抽空四角锥网架、棋盘形四角锥网架、星型四角锥网架、单向折线型网架等型式。 (3)三角锥组成的网架结构。主要有:三角锥网架、抽空三角锥网架(分Ⅰ型和Ⅱ型)、蜂窝形三角锥网架等型式。 (4)六角锥体组成的网架结构。主要形式有:正六角锥网架。 1.2 网架结构的主要特点 空间工作,传力途径简捷;重量轻、刚度大、抗震性能好;施工安装简便;网架杆件和节点便于定型化、商品化、可在工厂中成批生产,有利于提高生产效率;网架的平面布置灵活,屋盖平整,有利于吊顶、安装管道和设备;网架的建筑造型轻巧、美观、大方,便于建筑处理和装饰。 2 网壳结构

曲面形网格结构称为网壳结构,有单层网壳和双层网壳之分。网壳的用材主要有钢网壳、木网壳、钢筋混凝土网壳等。 2.1 网壳结构的形式 主要有球面网壳、双曲面网壳、圆柱面网壳、双曲抛物面网壳等。 2.2 网壳结构主要特点 兼有杆系结构和薄壳结构的主要特性,杆件比较单一,受力比较合理;结构的刚度大、跨越能力大;可以用小型构件组装成大型空间,小型构件和连接节点可以在工厂预制;安装简便,不需大型机具设备,综合经济指标较好;造型丰富多彩,不论是建筑平面还是空间曲面外形,都可根据创作要求任意选取。 3 膜结构 薄膜结构也称为织物结构,是20世纪中叶发展起来的一种新型大跨度空间结构形式。它以性能优良的柔软织物为材料,由膜内空气压力支承膜面,或利用柔性钢索或刚性支承结构使膜产生一定的预张力,从而形成具有一定刚度、能够覆盖大空间的结构体系。 3.1 膜结构的主要形式 主要有空气支承膜结构;张拉式膜结构;骨架支承膜结构等形式。 3.2膜结构主要特点 自重轻、跨度大;建筑造型自由丰富;施工方便;具有良好的经济性和较高的安全性;透光性和自结性好;耐久性较差。 4 悬索结构 悬索结构是以能受拉的索作为基本承重构件,并将索按照一定规律布置所构成的一类结构体系,悬索屋盖结构通常由悬索系统,屋面系统和支撑系统三部分构成。用于悬索结构的钢索大多采用由高强钢丝组成的平行钢丝束,钢绞线或钢缆绳等,也可采用圆钢、型钢、带钢或钢板等材料。 4.1悬索结构形式

大跨空间结构答案

四、简答题(共20分,每小题5分) 1.在进行网架节点设计时,有哪些基本要求? 答:①牢固可靠,传力明确简捷;(1分) ②构造简单,制作简单,安装方便;(1分) ③用钢量省,造价低;(1分) ④构造合理,使节点尤其是支座节点的受力状态符合设计计算假设。(2分) 2.确定网架结构的网格尺寸时,需要考虑哪些因素? 答: 1)与屋面材料有关。钢筋混凝土板尺寸不宜过大,否则安装有困难,一般不宜超过 3m;当采用有檩体系构造方案时,网架一般不超过6 m。(3分) 2)与网架高度有一定比例关系。夹角过大、过小,节点构造会产生困难。(2分) 3. 当网架只承受恒载、活载、风载作用时,应考虑哪些荷载组合? 答: ①永久荷载+可变荷载(1分) ②②永久荷载+半跨可变荷载(2分) ③网架自重+半跨屋面板+施工荷载(2分) 4.在螺栓球节点网架中杆件的计算长度L0等于杆件几何长度L,而在焊接球节点网架中杆件的计算长度L0小于杆件几何长度L,试说明理由。 答:在焊接球网架中,焊接球通过焊缝与杆件连接,由于焊接抗弯刚度大,工作性能接近于刚节点,故计算长度L0

市场常供钢管。(4)考虑到杆件材料负公差的影响,宜留有适当的余地。 6.用有限单元法对网架进行分析时,采用了哪些基本假设? 答:①假定节点为铰节点,每个节点有三个自由度,忽略节点刚度的影响;②荷载作用在网架节点上,杆件只承受轴力;③材料在弹性阶段工作,符合胡克定律;④假定网架的变形很小,由此产生的影响予以忽略。 7.屋面排水坡度的做法共有几种方式?这几种方式有何特点? 答:(1)上弦节点上加小立柱找坡:当小立柱较高时,应注意小立柱自身的稳定性,此法构造比较简单。(2)网架变高度:当网架跨度较大时,会造成受压腹杆太长的缺点。(3)支承柱变高:采用点支撑的网架可用此法找坡。(4)整个网架起拱:一般用于大跨度网架。网架起拱后,杆件、节点的规格明显增多,使网架的设计、制造、安装复杂化。 8.焊接球节点有哪些优缺点? 答:优点:构造和制造均较简单,球体外型美观、具有万向性,可以连接任意方向的杆件。缺点:用钢量较大,节点用钢量占网架总用钢量的20%~25%;冲压焊接费工,焊接质量要求高,现场仰焊、立焊占很大比重;杆件下料长度要求准确;当焊接工艺不当造成焊接变形过大后难于处理。 9.空间结构与平面结构有何不同? 答:平面结构,荷载作用方向平行于结构中面并沿结构中面方向均匀分布,或不同平面的结构单一在各向平面内的平行荷载作用下相互间的合作效应没有影响或影响很小。空间结构,具有不宜分解为平面结构体系的三维形体,具有三维受力特性,在荷载作用下呈空间工作的结构。 10.空间结构有哪几种基本类型?各类基本类型有哪些主要形式? 答:(1)实体结构(薄壳、折板、平板)。(2)网格结构(网架、网壳、立体桁架)。(3)张力结构(悬索、薄膜)。(4)混合结构(张弦梁(桁架)、斜拉网架(网壳)、索承网壳) 11.何为实体结构、网格结构、弦力结构、混合结构? 答:实体结构:用钢筋混凝土材料建造,内部无空洞或空洞率很小的结构,特点①以薄膜压力为主,能充分发挥混凝土强度;②折板抗弯刚度大,可作为受弯和压弯构件;③既是承重结构,又是维护结构;④曲面壳体模板复杂,耗工、耗材、耗时。网格结构:由标准化的刚构件和加大组成,并按一定规律相连而成的高次超静定空间网状结构。张力结构:通过对

大跨度建筑结构选型的关键因素研究

大跨度建筑结构选型中关键因素研究 摘要: 大跨度结构是近年来在全世界越来越风行的新型结构,它发展迅速,应用广泛。本文在介绍了大跨度的基本信息后,主要研究的是大跨度建筑结构选型的两方面关键要素——基本要素和深入研究要素。从这两方面仔细分析结构选型的重要切入点与选择理由。 基本要素主要是各种大跨度的表面比较浅显的特点与它所对应的建筑功能因素,是结构选型的基础。深入因素是进一步完善选型的更近一步研究,只有两者都深入了解了,才能真正理解大跨度建筑结构选型的要点,做到建筑与结构的和谐统一。 关键词:大跨度结构选型影响因素美观经济合理 引言 大跨空间结构近年来在全球发展迅速,结构形式丰富多样,技术水平也在不断提高。我国大跨度空间结构的基础原来比较薄弱,但随着国家经济实力的增强和社会发展的需要,近年来也取得了比较迅猛的发展,并且国内也开展了大跨度空间结构的一系列具有较高学术价值的研究工作。 大跨度结构属于空间结构,所谓空间结构,其形状呈空间状,并同时具有三维受力特性,所以大跨度结构通常是比较复杂而多样的。但是,空间结构往往比平面结构更美观、经济和高效,更能满足人类不断追求改善与扩充其生活空间的要求。于是空间结构建造及其所采用的技术往往反映了一个国家建筑技术的水平,一些规模宏大、形式新颖、技术先进的大型空间结构也成为一个国家经济实力与建筑技术水平的重要标志。 凡此种种都决定了大跨度结构选型工作是很重要并且与国家发展息息相关的。而大跨度结构选型的不仅仅是要了解各种结构的分类及特点,仔细把握相关结构选型的关键因素,并且能使各因素协调统一,达成最佳方案才是最重要的。 大跨度结构 在建筑结构上来说,大跨度建筑通常是指跨度在30m以上的建筑。民用建筑中主要用于影剧院、体育场馆、展览馆、大会堂、航空港以及其他大型公共建筑,而工业建筑中则主要用于飞机装配车间、飞机库和其他大跨度厂房。 大跨空间结构的类型和形式十分丰富多彩,通常将空间结构按形式分为五大类,它们特点应用各有特点,我以表格的方式对它们进行了总结与对比: 名称定义跨度特点主要应用 网架由多根杆件按照某种规 律的几何图形通过节点 连接起来的空间结构大中小 均适用 传力途径简捷,重量轻、刚度大、 抗震性能好施工简便, 生产效率高,平面布置灵活, 造型轻巧,美观 最为广泛

大跨度空间结构中的钢网架结构设计分析

大跨度空间结构中的钢网架结构设计分析 发表时间:2019-11-15T16:04:56.187Z 来源:《建筑细部》2019年第12期作者:苏海丽[导读] 近些年,在社会发展的影响下,我国的城市建筑技术快速进步,以及人们生活空间需求的增大,城市建设中超大型复杂结构的建筑物不断涌现,钢结构有多方面的优势,在此类建筑中广泛运用。苏海丽 华电重工股份有限公司北京 100070 摘要:近些年,在社会发展的影响下,我国的城市建筑技术快速进步,以及人们生活空间需求的增大,城市建设中超大型复杂结构的建筑物不断涌现,钢结构有多方面的优势,在此类建筑中广泛运用。文章分析了大跨度空间钢网架结构的设计要点,供业内人士参考。 关键词:大跨度;钢网架结构;设计 引言 近些年来,钢网架结构设计在我国的空间结构设计中得到了广泛的应用,主要是因为自身重量较强,实际安装操作比较简便,受力传递比较合理,具有较强的刚度以及抗震性,所以设计师可以利用这些优点,根据自己的想象进行自由创作,为其提供了丰富的创作空间,可以将自己的想法充分的展现在建筑结构设计中。在建筑平面设计方面,可以适用圆形、矩形、多边形等多种形状,在外形上可以形成椭圆面、球面以及旋转抛物面等各种形式,所以能够展现出良好的外观。因为钢网架的杆件以及节点能够进行定型化,所以可在工厂中进行批量的定制,实施工业化生产,可有效的提高施工效率,节约施工成本。在实际设计的过程中,还需要根据建筑的用途以及周围环境进行合理构思,在保证各项技术参数合理的情况下,还要考虑到经济性,从而达到最高的性价比。 1钢网架结构的选型 钢网架结构是使用比较普遍的一种大跨度屋顶结构。这种结构整体性强,稳定性好,空间刚度大,防震性能好。网构架高度较小,能利用较小杆形构件拼装成大跨度的建筑,有效地利用建筑空间。适合工业化生产的大跨度网架结构,外形可分为平板型网架和壳形网架两类,能适应圆形、方形、多边形等多种平面形状。平板型网架多为双层,壳形网架有单层和双层之分,并有单曲线、双曲线等屋顶形式。钢网架结构较为复杂,需要进行科学的选型,才能确认整体结构。钢网架结构是空间铰接杆系结构,一定要全面考虑到整体结构在力学上的问题,确保结构更加稳定。按现行标准要求,网架结构设计要满足受力需要,对外部压力、受力方向要严格遵守设计要点,保证在受到任何外力作用下,网架结构均稳定平衡,不发生几何变形问题,实现结构整体的安全性。要想从根本上确保网架结构稳定,就需要对网架结构做合理的选型,合理的选型结构直接关系到整体结构,所以要根据实际情况确定选型,保证安全稳定。选型时,一要全面考虑几何问题,因为结构几何不确定则会出现更多的可变量,影响到结构稳定。在实际施工过程中,网架结构样式非常多,要根据使用功能、所处区域特征做好选型,在具体选择时,要看建筑平面、尺寸、荷载、网架、安装及成本,做好全面选择,以经济性原则为出发点,从几个设计方案中择优选择一个设计思路。在选型时,要全方位考虑,一是看用钢量多少,用钢量是主要考虑的方向,要在经济性原则基础上,确保用量最少,材料最少;二是连接节点造价,杆件与节点连接部位造价也要保证安全的前提下,成本最低;三是安装费用,各种材料运输和安装费用也关系到经济效益,所以要综合考虑各项经济指标。通过实践证明,选型最好的结构是三角锥网格和四角锥网格,按这种几何单元确定的网架结构非常稳定,是施工中经常用到的几何单元形式,能够保证各个结构单元上的稳固,具有不变性的明显特点。 2大跨度钢网架结构的设计要点 大跨度钢网架结构的荷载形式应被重点关注,设计时应全面考虑荷载类型,荷载类型则主要包含永久荷载、可变荷载、偶然荷载三个方面。设计取值时,永久荷载应采用标准值作为代表值;可变荷载则根据设计要求采用标准值、组合值、频遇值或准永久值作为代表值;偶然荷载,是按照设计的建筑结构使用的特点确定其代表值。下面就这几种荷载类型做具体说明。 2.1永久荷载 大跨度钢网架结构在设计时,永久荷载包含网架结构的自重、檩条的自重以及屋面覆盖材料的自重。网架结构的自重计算可由计算机自动完成,屋面覆盖材料的自重计算可由计算机自动完成或采用经验公式计算得出,檩条的自重根据檩距、拉条及撑杆的布置进行计算。屋面覆盖材料通常是指防水层、屋面板、屋面保温层等所有上盖材料的自重总和,此外,检修马道、屋内吊顶或设备管道等装修构造,则按实际情况计算。 2.2可变荷载 (1)屋面活荷载。根据《建筑结构荷载规范》(GB5009-2012)相关规定,屋面活荷载一般按屋面的水平投影面计算。对不上人的大跨度钢网架结构屋面,屋面活荷载标准值采用0.5kN/m2,但当施工或维修荷载较大时,应按实际情况设计取值,或在维修施工中采取特殊措施。 (2)雪荷载。屋面雪荷载取值主要考虑屋面几何形状、朝向和风向等相关要素。屋面雪荷载通常小于基本雪压,但有时也会产生积雪,如双跨或多跨曲面屋顶的交接处等,此时应该考虑雪荷载不均匀分布的情况。 (3)风荷载。当建筑周围的空气流动受到建筑物的阻挡时,就会在建筑物表面的方向形成吸力或压力,这些吸力或压力即设计时须考虑的建筑物所受的风荷载。由于风的特性,使得风荷载取值设计时须考虑风的静力和动力作用的双重特点。对风敏感的或大跨度(大于60m)的柔性屋盖结构,须考虑风压脉动对大跨度钢网架结构屋盖产生风振的影响。这种情况须先进行风洞试验,根据结果按随机振动理论计算确定风荷载取值。 3钢网架结构设计方法 3.1网架结构杆件设计 钢网架是网架结构设计中比较常用的一种形式,主要以Q235和Q345钢材较多。这两种钢材具有很好的力学性能,并且焊接性能较佳,具有很强的稳定性,所以应用范围较广。作为钢网架结构中的杆件,其截面形式有很多种,其中的空腹载面较好,包括圆钢管和方钢管,这两种截面形式在各向惯性矩方面都较强,易于承受一定的外力作用。在空腹截面焊接封闭后,内部不易受到腐蚀,并且在表面不易积水积灰,所以防腐性能较佳,也是应用比较广泛的原因。

浅谈大跨度空间结构

龙源期刊网 https://www.360docs.net/doc/b21254393.html, 浅谈大跨度空间结构 作者:康纪平 来源:《智富时代》2015年第05期 【摘要】随着社会的发展、建筑科学的不断进步,人类对大跨空间结构的需求量越来越大、功能要求越来越多,机场、车站、体育场馆、桥梁等设施大都属于大跨度建筑,其结构形式多样、发展前景广阔。本文简单介绍了大跨度空间结构及大跨度结构建筑实例。 【关键词】大跨度;空间结构;建筑 一、引言 在人类社会的发展历程中,人们一直渴望建筑能够提供更大跨度和空间,空间结构的发展很大程度上反映了人类建筑史的发展。世界各国对空间结构的研究和发展都极为重视,以新型的空间结构来展示本国的建筑科学技术水平,空间结构已经成为衡量一个国家建筑技术水平高低的标志之一。 二、大跨空间结构简介 横向跨越60m以上空间的各类结构可称为大跨度空间结构。常用的大跨度空间结构形式 包括充气结构、折板结构、悬索结构、网壳结构、网架结构、篷帐张力结构等。以下将简单介绍网壳结构、网架结构、悬索结构。 (一)网壳结构 网壳结构是一种与平板网架类似的空间杆系结构,系以杆件为基础,按一定规律组成网格,按壳体结构布置的空间构架,它兼具杆系和壳体的性质。网壳结构兼有杆件结构和薄壳结构的主要特性,受力合理,可以跨越较大的跨度。刚度大,结构变形小,稳定性高,节省材料。建筑造型优美,应用范围广,在建筑平面上可以适应多种形状,如圆形、矩形、多边形、扇形以及各种不规则的平面,在建筑外形上可以形成多种曲面。杆件单一,安装简便快速,适应采用各种条件下的施工工艺,不需要大型设备,综合效益较好。例如1989年建成的北京奥林匹克体育中心综合体育馆,平面尺寸为,采用人字形截面双层圆柱面斜拉网壳。又如1988 年建成的北京体院体育馆,采用带斜撑的四块组合型双层扭网壳,平面尺寸为59.2m见方,矢高3.5m,挑檐3.5m,为我国跨度最大的四块组合型扭网壳。 (二)网架结构 网架结构是由多根杆件按照一定的网格形式通过节点连结而成的空间结构。具有空间受力小、重量轻、刚度大、抗震性能好、安全储备高、安装方便等优点。缺点是汇交于节点上的杆

大跨度结构的发展概况

大跨度结构的发展概况 一、概 述 在这实际的三维世界里,任何结构物本质上都是空间性质的,只不过出于简化设计和建造的目的,人们在许多场合把它们分解成一片片平面结构来进行构造和计算。与此同时,无法进行简单分解的真正意义上的空间体系也始终没有停止其自身的发展,而且日益显示出一般平面结构无法比拟的丰富多彩和创造潜力,体现出大自然的美丽和神奇。空间结构的卓越工作性能不仅仅表现在三维受力,而且还由于它们通过合理的曲面形体来有效抵抗外荷载的作用。当跨度增大时,空间结构就愈能显示出它们优异的技术经济性能。事实上,当跨度达到一定程度后,一般平面结构往往已难于成为合理的选择。从国内外工程实践来看,大跨度建筑多数采用各种形式的空间结构体系。 近二十余年来,各种类型的大跨空间结构在美、日、欧等发达国家发展很快。建筑物的跨度和规模越来越大,目前,尺度达150m以上的超大规模建筑已非个别;结构形式丰富多彩,采用了许多新材料和新技术,发展了许多新的空间结构形式。例如 1975年建成的美国新奥尔良“超级穹顶”(Superdome),直径207m,长期被认为是世界上最大的球面网壳;现在这一地位已被1993年建成夏径为222m的日本福冈体育馆所取代,但后者更著名的特点是它的可开合性:它的球形屋盖由三块可旋转的扇形网壳组成,扇形沿圆周导轨移动,体育馆即可呈全封闭、开启1/3或开启2/3等不同状态。1983年建成的加拿大卡尔加里体育馆采用双曲抛物面索网屋盖,其圆形平面直径135m,它是为1988年冬季奥运会修建的,外形极为美观,迄今仍是世界上最大的索网结构。70年代以来,由于结构使用织物材料的改进,膜结构或索-膜结构(用索加强的膜结构)获得了发展,美国建造了许多规模很大的气承式索-膜结构;1988年东京建成的“后乐园”棒球馆,也采用这种结构技术尤为先进,其近似圆形平面的直径为204m;美国亚特兰大为1996年奥运会修建的“佐治亚穹顶”(Geogia Dome,1992年建成)采用新颖的整体张拉式索一膜结构,其准椭圆形平面的轮廓尺寸达192mX241m。许多宏伟而富有特色的大跨度建筑已成为当地的象征性标志和著名的人文景观。 由于经济和文化发展的需要,人们还在不断追求覆盖更大的空间,例如有人设想将整个街区、整个广场、甚至整个山谷覆盖起来形成一个可人工控制气候的人聚环境或休闲环境;为了发掘和保护古代陵墓和重要古迹,也有人设想采用超大跨度结构物将其覆盖起来形成封闭的环境。目前某些发达国家正在进行尺度为300m以上的超大跨度空间结构的设计方案探讨。 可以这样说,大跨空间结构是最近三十多年来发展最快的结构形式。国际《空间结构》杂志主编马考夫斯基(Z.S.Makowski)说:在60年代“空间结构还被认为是一种兴趣但仍属陌生的非传统结构,然而今天已被全世界广泛接受。”从今天来看,大跨度和超大跨度建筑物及作为其核心的空间结构技术的发展状况已成为代表一个国家建筑科技水平的重要标志之一。 世界各国为大跨度空间结构的发展投入了大量的研究经费。例如,早在20年前美国土木工程学会曾组织了为期 10年的空间结构研究计划,投入经费 1550万美元。同一时期,西德由斯图加特大学主持组织了一个“大跨度空间结构综合研究计划”,每年研究经费100万马克以上。这些研究工作为各国大跨度建筑的蓬勃发展奠定了坚实的理论基础和技术条件。国际壳体和空间结构学会(IASS)每年定期举行年会和各种学术交流活动,是目前最受欢迎的著名学术团体之一。 我国大跨度空间结构的基础原来比较薄弱,但随着国家经济实力的增强和社会发展的需要,近十余年来也取得了比较迅猛的发展。工程实践的数量较多,空间结构的类型和形式逐

大跨度空间结构选型

建筑设计原理Ⅲ课程论文 --------大跨度空间结构选型 班级:09城市规划(2)班 学号:09202020211 姓名:刘赛 指导教师:段伟 建筑与规划学院建筑系 2011-12

目录前言 1、大跨度空间结构选型的概念 2、大跨度空间结构的发展及现状 3、大跨度空间结构的形式及特点 3—1、点连接玻璃幕墙支承结构 3—2、膜结构 3—3、薄壳结构 3—4、悬索结构 3—5、网壳结构 3—6、网架结构 4、大跨度空间结构选型的原则 4—1、满足功能 4—2、造型美观 4—3、实用耐久 4—4、受力合理 4—5、安装简便 4—6、经济合理 5、结语

大跨度空间结构选型 前言 在人类社会的发展历程中,能够提供更大跨度和空间的结构常常是人们追求的梦想和目标,空间结构的发展很大程度上反映了人类建筑史的发展。大跨度空间结构的发展使其结构选型的复杂性和重要性日益明显。各种大跨度空间结构形式的产生和发展,一方面为土木工程师能力的发挥提供了更大的余地,另一方面,由于大跨度结构设计问题的复杂性,选择余地的增大意味着选择的结构体系和类型不恰当的可能性大大增加。结构选型是建筑结构设计是最大的问题。结构的好坏直接关系到建筑物是否安全、适用、经济、美观。建筑结构也关系着建筑的整体强度、刚度、抗震能力、经济性能等等。大跨度结构的选型具有十分重要的意义。 摘要:大跨度结构发展迅速,应用广泛。大跨度空间结构设计应正确合理地运用不同的计算理论和程序方法进行精确的分析,同时在空间结构的形体设计中不能只注重美观,还必须注重结构受力的合理性和工程成本的等因素。本文简单概述了大跨度空间结构的发展现状,着重就大跨度空间结构主要形式的特点进行详细的介绍,然后以汽车站设计为例说明了大跨度空间结构选型的原则。 关键词:大跨度空间结构发展形式特点原则 1、大跨度空间结构选型的概念 跨度超过30米的空间结构就是大跨度空间结构。大跨度空间结构不仅可以使建筑实现较大的跨度,满足建筑大空间的使要求,而且结构轻巧,造型优美,受力合理,实用耐久,用钢量低。大跨度空间结构不仅使空间的水平分隔的灵活性增大,而且也增大了垂直方向的自由调整的可能性。大跨度空间结构的选型即大跨度空间结构体系方案的优化选择,实际上就是对适合建筑设计的多种结构体系方案进行分析、比较、判断、假设、择优的过程。 2、大跨度空间结构的发展及现状 建筑物的跨度和规模越来越大,尺度达150m以上的超大规模建筑已非个别;大跨度空间结构形式丰富多彩,采用了许多新材料和新技术,发展了许多新的空间结构形式。例如 1975年建成的美国新奥尔良“超级穹顶”,直径207m,长期被认为是世界上最大的球面网壳;现在这一地位已被1993年建成直径为222m的日本福冈体育馆所取代,但后者更著名的特点是它的可开合性:它的球形屋盖由三块可旋转的扇形网壳组成,扇形沿圆周导轨移动,体育馆即可呈全封闭、开启1/3或开启2/3等不同状态。1983年建成的加拿大卡尔加里体育馆采用双曲抛物面索网屋盖,其圆形平面直径135m,它是为1988年冬季奥运会修建的,外形极为美观,迄今仍是世界上最大的索网结构。1988年东京建成的“后乐园”棒球馆,采用膜结构技术,其近似圆形平面的直径为204m;美国亚特兰大为1996年奥运会修建的“佐治亚穹顶”采用新颖的整体张拉式索一膜结构,其准椭圆形平面的轮廓尺寸达192mX241m。许多宏伟而富有特色的大跨度建筑已成为当地的象征性标志和著名的人文景观。 日本福冈体育馆“后乐园”棒球馆“佐治亚穹顶” 3、大跨度空间结构的形式及特点 3—1、点连接玻璃幕墙支承结构 由点支撑装置和支撑结构构成玻璃幕墙的结构为点连接玻璃 幕墙支承结构。点式玻璃幕墙的玻璃是用不锈钢爪件穿过玻璃上 预钻的孔固定的。 点连接玻璃幕墙支撑结构的建筑具有很多优点。(1)通透性 好:玻璃面板仅通过几个点连接到支撑结构上,几乎无遮挡,透 过玻璃视线达到最佳,视野达到最大,将玻璃的透明性应用到极 限。(2)灵活性好:在金属紧固件和金属连接件的设计中,为减 少、消除玻璃板孔边的应力集中,使玻璃板与连接件处于铰接状 态,使得玻璃板上的每个连接点都可自由地转动,并且还允许有 少许的平动,用于弥补安装施工中的误差。采用点支式玻璃幕墙 技术可以最大限度地满足建筑造型的需求。(3)安全性好:由于 点支式玻璃幕墙所用玻璃全都是钢化玻璃的,属安全玻璃,并且点连接玻璃幕墙 使用金属紧固件和金属连接件与支撑结构相连接,耐候密封胶只起密封作用,不承受荷载,即使玻璃意外破坏,钢化玻璃破裂成碎片,形成所谓的“玻璃雨”,不会出现整块玻璃坠落的严重伤人事故。(4)工艺感好:点支式玻璃幕墙的支撑结构有多种形式,支撑构件加工精细、表面光滑,具有良好的工艺感和艺术感。(5)环保节能性好:点支式玻璃幕墙的特点之一是通透性好,因此在玻璃的使用上多选择无光污染的白玻、超白玻等,尤其是中空玻璃的使用,节能效果更加明显。 3—2、膜结构 膜结构是以性能优良的织物为材料,或是向膜内充气,由空气压力支撑膜面,或是利用柔性钢索或刚性骨架将膜面绷紧,从而形成具有一定刚度并能覆盖大跨度结构体系。 膜结构既能承重又能起围护作用,与传统结构相比,其重量却大大减轻。膜结构跨度大;建筑造型自由丰富;施工方便;具有良好的经济性和较高的安全性;透光性和自结性好。但是耐久性较差。 3—3、薄壳结构 薄壳结构就是曲面的薄壁结构,按曲面生成的形式分为筒壳、圆顶薄壳、双曲扁壳和双曲抛物面壳等,材料大都采用钢筋

大跨空间结构 2014期末考试 模拟1 哈工大

模拟试题二 一、填空题 1. 球节点是网架、网壳结构的一类基本节点形式, 和焊接球节点最为常用。正确答案:螺栓球 2. 正确答案:零 / 0 3. 正确答案:空间桁架位移法 / 空间桁架有限元法 4. (酸洗)除锈三种。正确答案:喷砂除锈 / 机械喷砂除锈 5. 正确答案:结构找坡 / 短柱找坡 / 支托找坡 6.对于张力结构,所谓的“形”指结构的曲面形状,所谓的“态”指结构内部的 正确答案:预张力 7. 正确答案:钢丝缆索 8. 织物膜材的基材种类有:正确答案:玻璃纤维 9. 2008 的气枕,这种膜材属于非织物膜材。正确答案:ETFE膜材 尽可能精确地拟合空间曲 面上的相应条块。其实质是研究一定约束条件下的空间曲面的平面展开问题。正确答案:剪裁 二、简答:

网架结构外形一定是平面吗?是否可能是曲面形式?为什么?(5分) 正确答案:不一定,可能是曲面。(2分)因为网架结构在荷载下是以受弯为主的,只要符合网架结构的受力特点,无论是平面的或曲面的,都可称之为网架结构。(3分)或答:工程中也有一些实例是曲面的,例如折板网架或曲板网架。(可给2分) 三、简答: 列举网架结构支承布置的几类主要形式,并简述其特点或适用范围。(5分) 正确答案:(1)周边支承,传力直接,受力均匀。适用于周边支承条件好的情况。(2)点支承,受力与无梁楼盖近似,支座处受力大。适用于开敞建筑。(3)周边与点支承结合,受力合理,可有效减小网架内力峰值及挠度。适用于工业厂房、展览建筑,仓库等。(4)三边或两边支承,自由边的存在对网架内力分布和挠度都不利。在飞机库、影剧院、工业厂房、干煤棚等中应用。(5)单边支承,受力与悬挑板相似。多用于挑篷结构。 四、简答: 列举一些影响网壳结构稳定性的因素。(5分) 正确答案:影响网壳稳定性的因素极其复杂,(1)材料的物理特性如弹性模量、强度;(2)结构的几何形体组成,杆件的截面尺寸;(3)支承条件以及荷载类型;(4)结构的初始缺陷;(5)网壳稳定性进行分析所采用的方法。 五、简答: 单层悬索体系的形状稳定性不好体现在哪方面?应采用哪些措施提高其形状稳定性?(5分) 正确答案:单层悬挂体系是一种可变体系,其平衡状态随外荷载分布的变化而变化,抗风能力差。提高稳定性措施:(1)采用重屋面;(2)采用钢筋混凝土悬挂薄壳;(3)增加横向加劲构件。 六、论述: 形效结构的定义,并说明实腹式梁,拱和悬索是不是形效结构。(5分) 正确答案:形效结构是指结构构件沿纵轴的形状与外荷载的分布形式有关,以实现构件以受轴力为主的目的。实腹梁不是形效结构;悬索是典型的手拉形效结构。 七、论述: 如图(1)为Geiger体系的索穹顶,(2)是以Geiger体系为基础改进而成的,请指出图(3)是什么体系的索穹顶,它的优点是什么?(5分) 正确答案:(2)是Levy体系的悬索穹顶。其优点是:1)膜单元为菱形双曲抛物面,可自然绷紧成形;2)整体空间作用加强,在不对称荷载作用下,强度有较大的提高。

相关文档
最新文档