三相SPWM逆变器的仿真与研究毕业设计

三相SPWM逆变器的仿真与研究毕业设计
三相SPWM逆变器的仿真与研究毕业设计

三相SPWM逆变器的仿真与研究

[摘要]随着电力电子技术、计算机技术、自动控制技术的迅速发展,PWM技术得到了迅速发展,SPWM正弦脉宽调制法这项技术的特点是原理简单,通用性强,具有开关频率固定,控制和调节性能好,能消除谐波使输出电压只含有固定频率的高次谐波分量,设计简单等一系列优点,是一种比较好的波形改善法。它的出现为中小型逆变器的发展起了重要的推动作用。SPWM技术成为目前应用最为广泛的逆变用PWM技术。因此,研究SPWM逆变器的基本工作原理和作用特性意义十分重大。

本论文介绍了三相电压型SPWM逆变器的工作原理,仿真电路及matlab仿真。文中还给出了用此逆变器构成的三相交流电动机变频调速系统,并对仿真结果进行分析。

[关键词]正弦脉宽调制,逆变器,电机变频调速,matlab仿真

Three-phase SPWM inverter simulation and research

Author: Huang Fei

(Grade9, Class1, Major Automation , Electrical Engineering

Dept, Shaanxi University of Technology , Hanzhong 723003,Shaanxi)

Instructor: Zhang Peng Chao

[Abstrac]With the power electronics technology, computer technology, the rapid development ofautomatic control technology, PWM technology is developing rapidly, SPWM sine pulse width modulation principle of this technology is characterized by simple, versatile, with a fixed switching frequency, control and regulation performance, eliminate harmonics thatcontain only a fixed output voltage of high frequency harmonic components, simple design and a series of advantages, is a good waveform improvement Act. It was a smallinverter played an important role. SPWM technology become the most widely usedinverter with PWM technology. Therefore, the study of SPWM inverter characteristics ofthe basic working principle and the role of great significance.

This paper describes the three-phase voltage SPWM inverter works, simulate circuits and matlab simulation. The article also gives the composition with this three-phase ACinverter motor frequency control systems, and simulation results were analyzed.

[Key words]Sinusoidal pulse width modulation, inverters, motor speed, matlab simulation

毕业设计(论文)原创性声明和使用授权说明

原创性声明

本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。

作者签名:日期:

指导教师签名:日期:

使用授权说明

本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。

作者签名:日期:

学位论文原创性声明

本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。

作者签名:日期:年月日

学位论文版权使用授权书

本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。

涉密论文按学校规定处理。

作者签名:日期:年月日

导师签名:日期:年月日

引言

经过大约30多年的发展,交流调速电气传动已经上升为电气调速传动的主流。在电气调速领域内,可以相信在不久的将来交流调速将会完全取代直流调速传动。

现在要求性能较高的中、小容量的交流调速传动,主要使用电子式电力变换器对交流电动机进行变频调速。除变频以外的另一些简单的调速方案,如变极调速、定子调压调速、转差离合器调速等,它们只有在特定场合有一定的应用。

由于电力电子学和微电子技术的发展,使变频调速技术近年来获得了飞速的发展,各种变频调速控制方式、PWM脉宽调制技术以及MCU微处理器和以大规模集成电路为基础的全数字化控制技术等均在变频调速中获得了成功应用。

SPWM正弦脉宽调制法这项技术的特点是原理简单,通用性强,具有开关频率固定,控制和调节性能好,能消除谐波使输出电压只含有固定频率的高次谐波分量,设计简单等一系列优点,是一种比较好的波形改善法。它的出现为中小型逆变器的发展起了重要的推动作用。SPWM技术成为目前应用最为广泛的逆变用PWM技术。

根据生成SPWM波形的实现方式可以分为模拟控制和数字控制两种形式。传统的模拟控制在逆变器中应用广泛,技术成熟,控制性能优良,但模拟控制也存在一些缺陷:元件众多,设计周期长,调试复杂,不易管理维护等。随着数字信号处理技术的蓬勃发展,数字控制技术已经成功地应用到电力电子与电力传动控制领域中来,逆变器的数字控制逐渐成为研究热点。

1 PWM技术的应用

1.1 PWM控制技术的研究意义

PWM控制技术一直是变频技术的核心技术之一。1964年A.Schonung和H.stemmler首先在<>评论上提出把这项通讯技术应用到交流传动中,从此为交流传动的推广应用开辟了新的局面。

从最初采用模拟电路完成三角调制波和参考正弦波比较,产生正弦脉宽调制SPWM信号以控制功率器件的开关开始,到目前采用全数字化方案,完成优化的实时在线的PWM信号输出,可以说直到目前为止,PWM在各种应用场合仍占主导地位,并一直是人们研究的热点。

由于PWM可以同时实现变频变压反抑制谐波的特点,由此在交流传动乃至其它能量变换系统中得到广泛应用。PWM控制技术大致可以分为三类,正弦PWM(包括电压,电流或磁通的正弦为目标的各种PWM方案,多重PWM也应归于此类),优化PWM及随机PWM。正弦PWM已为人们所熟知,而旨在改善输出电压、电流波形,降低电源系统谐波的多重PWM技术在大功率变频器中有其独特的优势(如 ABB ACS1000系列和美国ROBICON公司的完美无谐波系列等);而优化PWM所追求的则是实现电流谐波畸变率(THD)最小,电压利用率最高,效率最优,及转矩脉动最小以及其它特定优化目标。

在70年代开始至80年代初,由于当时大功率晶体管主要为双极性达林顿三极管,载波频率一般最高不超过5KHZ,电机绕组的电磁噪音及谐波引起的振动引起人们的关注。为求得改善,随机PwM方法应运而生。其原理是随机改变开关频率使电机电磁噪音近似为限带白噪声(在线性频率坐标系中,各频率能量分布是均匀的),尽管噪音的总分贝数未变,但以固定开关频率为特征的有色噪音强度大大削弱。正因为如此,即使在IGBT已被广泛应用的今天,对于载波频率必须限制在较低频率的场合,随机PWM仍然有其特殊的价值(DTC控制即为一例);另一方面则告诉人们消除机械和电磁噪音的最佳方法不是盲目地提高工作频率,因为随机PWM技术提供了一个分析、解决问题的全新思路。

在电力拖动领域,解决好电动机的无级调速问题有着十分重要的意义,电机调速性能的提高可以大大提高工农业生产设备的加工精度、工艺水平以及工作效率,从而提高产品的质量和数量;对于风机、水泵负载,如果采用调速的方法改变其流量,节电效率可达20%-60%。

众所周知,直流调速系统具有较为优良的静、动态性能指标。在很长的一个历史时期内,调速传动领域基本上被直流电机调速所垄断,这是和实际中交流电机的广泛使用是一对存在的矛盾,许多应用交流电机的设备为了达到调节被控对象的目的,只能采用物理的方法,例如采用风门,阀门控制流量等,这样浪费能源的问题就很突出,费用就大。而且在采用直流调速的方面由于直流电机固有的缺点—换相器和电刷的存在,使得维修工作量大,事故率高,电机的大容量使用受到限制,在易燃易爆的场合无法使用,因此开发交流调速势在必行。

变频调速具有高效率、宽范围和高精度等特点,是目前运用最广泛且最有发展前途的调速方式。交流电动机变频调速系统的种类很多,从早起提出的电压源型变频器开始,相继发展了电流源型,脉宽调制等各种变频器。目前变频调速的主要方案有:交-交变频调速,交-直-交变频调速,同步电动机自控式变频调速,正弦波脉宽调制(SPWM)变频调速,矢量控制变频调速等。这些变频调速技术的发展很大程度上依赖于大功率半导体器件的制造水平。随着电力电子技术的发展,特别是可关断晶闸管GT0,电力晶体管GTR,绝缘门极晶体管IGBT,MOS晶闸管及MTC等具有自关断能力全控功率元件的发展,再加上控制单元也从分离元件发展到大规模数字集成电路及采用微机控制,从而使变频装置的快速性,可靠性及经济性不断提高,变频调速系统的性能也得到不断完善。PWM控制技术在逆变电路中的应用十分广泛,目前中小功率的逆变电路几乎都采用了PWM技术。常用的PWM技术主要包括:正弦脉宽调制(SPWM)、选择谐波调制(SHEPWM)、电流滞环调制(CHPWM)和电压空间矢量调制(SVPWM)。

PWM技术用于变频器的控制,可以改善变频器的输出波形,降低谐波并减小转矩脉动。同时也简化了变频器的结构,加快了调节速度,提高了系统的动态响应。

随着电力电子器件制造技术的发展和新型电路变换器的不断出现,现代控制理论向交流调速领域的渗透,特别是微型计算机及大规模集成电路的发展,交流电动机调速技术正向高频化、数字化和智能化方向发展。

控制策略的应用:由于电力电子电路良好的控制特性及现代微电子技术的不断进步,使几乎所有新的控制理论,控制方法都得以在交流调速装置上应用和尝试。从最简单的转速开环恒压频比控制发展到基于动态模型按转子磁链定向的矢量控制和基于动态模型保持定子磁链恒定的直接转矩控制

1.2 PWM控制技术的发展现状

一、课题背景

正弦逆变电源作为一种可将直流电能有效地转换为交流电能的电能变换装置被广泛地应用于国民经济生产生活中,其中有:针对计算机等重要负载进行断电保护的交流不间断电源UPS (Uninterruptle Power Supply) ;针对交流异步电动机变频调速控制的变频调速器;针对智能楼宇消防与安防的应急电源EPS ( Emergence Power Supply) ;针对船舶工业用电的岸电电源SPS(Shore Power Supply) ;还有针对风力发电、太阳能发电等而开发的特种逆变电源等等.随着控制理论的发展与电力电子器件的不断革新,特别是以绝缘栅极双极型晶体管IGBT( Insulated Gate Bipolar Transistor)为代表的自关断可控型功率半导体器件出现,大大简化了正弦逆变电源的换相问题,为各种PWM型逆变控制技术的实现提供了新的实现方法,从而进一步简化了正弦逆变系统的结构与控制.

电力电子器件的发展经历了晶闸管(SCR)、可关断晶闸管(GTO)、晶体管(BJT)、绝缘栅晶体管(IGBT)等阶段。目前正向着大容量、高频率、易驱动、低损耗、模块化、复合化方向发展,与其他电力电子器件相比,IGBT具有高可靠性、驱动简单、保护容易、不用缓冲电路和开关频率高等特点,为了达到这些高性能,采用了许多用于集成电路的工艺技术,如外延技术、离子注入、精细光刻等。

IGBT最大的优点是无论在导通状态还是短路状态都可以承受电流冲击。它的并联不成问题,由于本身的关断延迟很短,其串联也容易。尽管IGBT模块在大功率应用中非常广泛,但其有限的负载循环次数使其可靠性成了问题,其主要失效机理是阴极引线焊点开路和焊点较低的疲劳强度,另外,绝缘材料的缺陷也是一个问题。

随着电力电子技术的飞速发展,正弦波输出变压变频电源已被广泛应用在各个领域中,与此同时对变压变频电源的输出电压波形质量也提出了越来越高的要求。对逆变器输出波形质量的要求主要包括两个方面:一是稳态精度高;二是动态性能好。因此,研究开发既简单又具有优良动、静态性能的逆变器控制策略,已成为电力电子领域的研究热点之一。

在现有的正弦波输出变压变频电源产品中,为了得到SPWM波,一般都采用双极性调制技术。该调制方法的最大缺点是它的6个功率管都工作在较高频率(载波频率),从而产生了较大的开关损耗,开关频率越高,损耗越大。本文针对正弦波输出变压变频电源SPWM调制方式及数字化控制策略进行了研究,以SG3525为主控芯片,以期得到一种较理想的调制方法,实现逆变电源变压、变频输出。

交流传动与控制技术是目前发展最为迅速的技术之一,这是和电力电子器件制造技术、变流技术控制技术以及微型计算机和大规模集成电路的飞速发展密切相关。

通用变频器作为早个商品开始在国内上市,是近十年的事,销售额逐年增加,于今全年有

超过数十亿元(RMB)的市场。其中.各种进口品牌居多,功率小至百瓦大至数千千瓦;功能简易或复杂;精度低或高;响应慢或快:有PG(测速机)或无PG;有噪音或无噪音等等。对于许多用户来说,这十年中经历了多次更新,现所使用的变频器大都属于目前最为先进的机型如果从应用的角度来说,我们的水准与发达国家没有什么两样。作为国内制造商,通过这十年来对国外的先进技术进行销化,也正在积极地进行国产变频器的自主开发.努力追赶世界发达国家的水平。

回顾近十年来国外通用变频器技术的发展对于深入了解交流传动与控制技术的走向,以及如何站在高起点上结合我国国情开发我国自己的产品应该说具有十分积极的意义.

通用变频器大都为电压型交-直-交变频器。三相交流电首先通过二极管不控整流桥得到脉动直流电,再经电解电容滤波稳压,最后经无源逆变输出电压、频率可调的交流电给电动机供电。这类变频器功率因数高、效率高、精度高、调速范围宽,所以在工业中获得广泛应用。但是通用变频器不能直接用于需要快速起、制动和频繁正、反转的调速系统,如高速电梯、矿用提升机、轧钢机、大型龙门刨床、卷绕机构张力系统及机床主轴驱动系统等。因为这种系统要求电机四象限运行,当电机减速、制动或者带位能性负载重物下放时,电机处于再生发电状态。由于二极管不控整流器能量传输不可逆,产生的再生电能传输到直流侧滤波电容上,产生泵升电压。而以GTR、IGBT为代表的全控型器件耐压较低,过高的泵升电压有可能损坏开关器件、电解电容,甚至会破坏电机的绝缘,从而威胁系统安全工作,这就限制了通用变频器的应用范围。

2 PWM 控制技术

2.1 PWM (脉冲宽度调制)

PWM 控制方式就是对逆变电路开关器件的通断进行控制,使输出端得到一系列幅值相等

而宽度不等的脉冲。按一定的规则对各脉冲的宽度进行调制,既可改变逆变电路输出电压的

大小,也可改变逆变输出频率。

PWM 控制——脉冲宽度调制技术,通过对一系列脉冲的宽度进行调制,来等效地获得所

需要波形(含形状和幅值)

理论基础:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。

冲量指窄脉冲的面积。这里所说的效果基本相同,是指环节的输出响应波形基本相同

PWM 波形可等效的各种波形,例如:直流斩波电路可以等效直流波形;PWM 波可以等效

正弦波形;还可以等效成其他所需波形,如等效所需非正弦交流波形等,其基本原理和SPWM

控制相同,也基于等效面积原理 。

用一系列等幅不等宽的脉冲来代替一个正弦半波的方法:⑴正弦半波N 等分,可看成N

个彼此相连的脉冲序列,宽度相等,但幅值不等;⑵用矩形脉冲代替,等幅,不等宽,中点

重合,面积(冲量)相等。这样就可得到PWM 波形。由上方法可知各脉冲的幅值相等,而

宽度按正弦规律变化 。对于正弦波的负半周,也可用同样的方法得到PWM 波形。像这种脉

冲的宽度按正弦规律变化而和正弦波等效的PWM 波形,也称SPWM 波形。

要改变等效输出正弦波幅值时,只要按照同一比例系数改变上述各脉冲的宽度即可。

2.2 PWM 的控制方法及其比较

2.2.1单极性正弦脉宽调制

调制信号u r 为正弦波,载波u c 在u r 的正半周为正极性的三角波,在u r 的负半周为负极

性的三角波。在u r 和u c 的交点时刻控制IGBT 的通断。在u r 的半个周期内三角波载波只在正

极性或负极性一种极性范围内变化,所得到的PWM 波形也只在单个极性范围变化的控制方式

称为单极性PWM 控制方式。

单极性正弦脉宽调制用幅值为r U 的参考信号波r U 与幅值为o f ,频率为o f 的三角波c

U 比较,产生功率开关信号。其原理波形如图2.2所示。图2.2是用单相正弦波全波整流电压

信号与单向三角形载波交截,再通过倒相产生功率开关驱动信号。

参考波频率fr 决定了输出频率fo ,每半周期的脉冲数P 决定于载波频率fc 。即: P=2c

a f f (2-1)

f ( t ) δ ( t ) t O 图2.1形状不同而冲量相同的各种窄脉冲

a b c d

t O t O t O f ( t ) f ( t ) f ( t )

用参考电压信号的幅值Ur ,与三角形载波信号的幅值Uc 的比值,即调制度m = Ur/Uc ,

来控制输出电压变化。当调制度由0~1变化时,脉宽由0~π/p 变化,输出电压由0~ E 变化。

如果每个脉冲宽度为θ,则输出电压的傅里叶级数展开式为:

()()01cos sin n n n U t A n B n ωθωθ∞

==+∑ (2-2)

系数An 和Bn 由每个脉宽为θ,起始角为α的正脉冲来决定和对应的负脉冲起始角π+

α来决定。如果第j 个脉冲的起始角为αj 则有

14sin cos 22p

n j j E n A n a n θθπ=????=+ ???????∑ (2-3a) 14sin sin 22p n j j E n B n a n θθθπ=????=+ ???????∑

(2-3b) 由式(2-3a)、式(2-3b)可计算输出电压的傅里叶级数的系数

()12sin sin p n j j j j E A n a na n θπ=??=+-??∑ (2-4a) ()12cos cos p n j j j j E B na n a n θπ

=??=-+??∑

(2-4b)

图2.2

2.1.2 双极性正弦脉宽调制

用双极性方式时,在u r 的半个周期内,三角波载波不再是单极性的,而是有正有负,

所得的PWM 形也是有正有负。在u r 的一个周期内,输出的PWM 波只有±U d 两种电平,而不像

单极性控制时还有零电平。仍然在调制信号u r 和载波信号u c 的交点时刻控制各开关的通断。

在u r 的正负半周,对各开关器件的控制规律相同。

双极性正弦脉宽调制的输出电压u0(t)波形在0~2π区间关于中心对称、在0~π区间关

于轴对称,其傅里叶级数展开式为

()01,3,5...sin n n U t B n t ω∞==

()()002sin n B u t n td t πωωπ??=???

?? (2-5) 式(2-5)中

输出电压u0(t )可看成是幅值为E ,频率为fo 的方波与幅值为2E 、频率为fc 的负脉冲序

列(起点和终点分别为的叠加。因此

123212,,,...,,p p ααααα- (2-6) 则输出电压为

()()02121,3,5141cos cos sin p j j n j E U t na na n t n ωπ∞-==??=

--????∑∑ (2-7) 输出电压基波分量 )(01t U 为

()()01212141cos cos sin p j j j E U t na na n t n ωπ-=??=--????

∑ (2-8) ()()()()()214232102121sin sin 2sin sin 41cos cos p p a a n a a a a p j j j E n td t E n td t B E n td t E n td t E na na n πωωωωπωωωωπ--=??-??=??---????

??=--????

????∑

图2.3 双极性PWM 控制方式波形

u r u c u

O

w t O w t u o u o f u o U d - U d

2.1.3 单极性调制和双极性调制的比较

双极性调制和单极性调制都通过调制波和载波比较,在交点处产生驱动信号。改变调

制波u r 的幅值,则改变了调制正弦波和三角波的交点位置,可以调节矩形脉冲的宽度,从

而改变输出交流电压的大小。改变调制正弦波的频率o f ,使交流电的频率,也同时变化,

因此调节调制波的频率和幅值就可以调节交流输出电压的大小和频率,调压和调频(VVVF

控制)同时在逆变器的控制中完成,不再需要调控直流电源电压,因此电压型PWM 控制的直

流电源都采用不控整流器为直流电源。

为了反映载波和调制波的关系,定义调制比M 为调制波幅值和载波幅值之比:

10<≤M U U Cm rm

M =

改变M 即调节了交流输出电压,M 也称为调制度。

定义载波比N (即频率比)为载波频率与调制波频率之比: T T f f f f c

r c r c

N ===0

载波比N 决定了一周期中组成输出交流电的脉冲个数。

单极性调制在输出交流半周期内只有单一极性的脉冲,因此输出电压较高。(基波值)

较高;双极性调制在输出交流的半周内有正负脉冲,因此输出电压(基波值)比较单极性较

低,但是双极性调制灵敏度较高,使用也较多,可以证明双极性调制,如果载波比N 足够大,

调制比M ≤1,则基波电压幅值U U d m M ?≈1,输出交流电压基波有效值为

U U U d m

M ?==707.02101,而采用180O 方波调制时输出交流电压基波有效值可以达到U U d 9.001

=,U d 为直流电源电压。 采用PWM 调制时,在输出电压中可以消除(N-2)次以下谐波,N 为载波比,因此除基波

外,其最低次谐波为(N-2)次。例如N=15时最低次谐波为13次谐波,而15次谐波幅值最大,

π2215U U d ==0.9U d 。如果逆变器输出频率为50z H ,载波频率为2K z H ,则N=40,

这时可以消除38次以下的谐波,而残存的高次谐波则较易滤除。

双极性调制同相上下桥臂的开关器件交替导通,较易产生直通现象,因此同相上下桥臂

开关的关断和导通之间要有一定的时间间隔,称为“死区”,以确保不产生直通现象。插入

死区使输出电压波形产生一定的畸变,输出电压也略有降低,并使输出电压含有低次谐波,

并且主要产生的是奇次谐波,而单极性调制则没有这个问题。

2.2 SPWM(正弦脉冲宽度调制)

2.2.1 SPWM的工作原理

PWM的全称是Pulse Width Modulation(脉冲宽度调制),它是通过改变输出方波的占空比来改变等效的输出电压。广泛地用于电动机调速和阀门控制,比如我们现在的电动车电机调速就是使用这种方式。

所谓SPWM,就是在PWM的基础上改变了调制脉冲方式,脉冲宽度时间占空比按正弦规率排列,这样输出波形经过适当的滤波可以做到正弦波输出。它广泛地用于直流交流逆变器等,比如高级一些的UPS就是一个例子。三相SPWM是使用SPWM模拟市电的三相输出,在变频器领域被广泛的采用。

SPWM(Sinusoidal PWM)法是一种比较成熟的,目前使用较广泛的PWM法.前面提到的采样控制理论中的一个重要结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。SPWM法就是以该结论为理论基础,用脉冲宽度按正弦规律变化而和正弦波等效的PWM波形即SPWM波形控制逆变电路中开关器件的通断,使其输出的脉冲电压的面积与所希望输出的正弦波在相应区间内的面积相等,通过改变调制波的频率和幅值则可调节逆变电路输出电压的频率和幅值。

三角波变化一个周期,它与正弦波有两个交点,控制逆变器中开关元件导通和关断各一次。要准确的生成SPWM波形,就要精确的计算出这两个点的时间。开关元件导通时间是脉冲宽度,关断时间是脉冲间隙。正弦波的频率和幅值不同时,这些时间也不同,但对计算机来说,时间由软件实现,时间的控制由定时器完成,是很方便的,关键在于调制算法。调制算法主要有自然采样法、规则采样法、等面积法等。

2.2.2 SPWM的调制算法

1.自然采样法

按照SPWM控制的基本原理,在正弦波与三角波的交点进行脉冲宽度和间隙的采样,去生成SPWM波形,成为自然采样法。如图2-8所示

图2.4 自然采样法原理图

2.规则采样法

为使采样法的效果既接近自然采样法,没有过多的复杂运算,又提出了规则采样法。其出发点是设法使SPWM波形的每个脉冲都与三角波中心线对称。这样,图 2.5中的

法。计算就大大简化了。

图2.5 规则采样法原理图

3.双极性正弦波等面积法

正弦波等面积算法的基本原理为:将一个正弦波等分成H 个区段,区段数l H 一定是6

的整数倍,因为三相正弦波,各项相位互差120?,要从一相正弦波方便地得到其他两相,

必须把一个周期分成6的整数倍。l H 越大,输出波形越接近正弦波。在每一个区段,等分

成若干个等宽脉冲(N),使这N 个等宽脉冲面积等于这一区段正弦波面积。采用这种方法既

可以提高开关频率,改善波形,又可以减少计算新脉冲的数量,节省计算机计算时间。

正弦波面积为

()s2

n n 12s1A=sin cos cos U td t U t t ωωωω=-?

输出频率f 与区段数l H ,每个区段脉冲数N 及脉冲周期()us T 之间的关系 6110l f H NT -=

3 三相桥式逆变器

3.1 IGBT 的动态特性分析

图3.1

与MOSFET 的相似,因为开通过 程中IGBT 在大部分时间作为MOSFET 运行u CE 的下降

过程分为t fv1和t fv2两段。t fv1——IGBT 中MOSFET 单独工作的电压下降过程;t fv2——

MOSFET 和PNP 晶体管同时工作的电压下降过程 。

电流下降时间又可分为t fi1和t fi2两段。t fi1——IGBT 内部的MOSFET 的关断过程,

i C 下降较快;t fi2——IGBT 内部的PNP 晶体管的关断过程,i C 下降较慢IGBT 中双极型PNP

晶体管的存在,虽然带来了电导调制效应的好处,但也引入了少子储存现象,因而IGBT 的

开关速度低于电力MOSFET 。

3.1.2 IGBT 的特性和参数特点

(1) 开关速度高,开关损耗小。在电压1000V 以上时, 开关损耗只有GTR 的1/10,与

电力MOSFET 相当。

(2)相同电压和电流定额时,安全工作区比GTR 大,且具有耐脉冲电流冲击能力。

(3)通态压降比VDMOSFET 低,特别是在电流较大的区域。

(4)输入阻抗高,输入特性与MOSFET 类似。

(5) 与MOSFET 和GTR 相比,耐压和通流能力还可以进一步提高,同时保持开特 点 。

3.2 三相PWM 逆变器的工作原理和结构电路

3.2.1三相桥式PWM 逆变器电路

三相桥式逆变电路如图所示,图中应用V1-V6作为逆变开关,也可用其它全控型器件构

成逆变器,若用晶闸管时,还应有强迫换流电路。

t t t

10%90%10%90%U CE I C 0O 0U G E U G EM I CM U CEM

t fv 1t fv 2t o ff t o n t fi1t fi2t d (o f f)t f t d (o n )t r U CE(o n )U G EM U G EM I CM I CM

图3.2

从电路结构上看,如果把三相负载看成三相整流变压器的三个绕组,那么三相桥式逆变电路犹如三相桥式可控整流电路与三相二极管整流电路的反并联,其中可控电路用来实现直流到交流的逆变,不可控电路为感性负载电流提供续流回路,完成无功能量的续流和反馈,因此VD1~VD6称为续流二极管或反馈二极管。

3.2.2逆变器的工作原理

在三相桥式逆变电路中,各管的导通次序同整流电路一样,也是T1、T2、T3……T6、T1……各管的触发信号依次互差60?。根据各管的导通时间可以分为180?导通型和120?导通型两种工作方式,在180?导通型的逆变电路中,任意瞬间都有三只管子导通,各管导通时间为180?,同一桥臂中上下两只管子轮流导通,称为互补管。在120?导通型逆变电路中,各管导通120?,任意瞬间只有不同相的两只管子导通,同一桥臂中的两只管子不是瞬时互补导通,而是有60?的间隙时间,当某相中没有逆变管导通时,其感性电流经该相中的二极管流通。

图3.3

图3.3中的u ao`、u bo`与u co`是逆变器输出端a、b、c分别与直流电源中点o`之间的电压,o`点与负载的零点o并不一定是等电位的,u ao`等并不代表负载上的相电压。令负载零点o 与直流电源中点o`之间的电压为u oo`,则负载各相的相电压分别为

(3-1)

将式(3-1)中各式相加并整理后得

一般负载三相对称,则u ao+u bo+u co=0,故有

(3-2) 由此可求得a相负载电压为

(3-3)在图3.3中绘出了相应的负载a相电压波形,u bo和u co波形与此相似。

3.2.3spwm波的基波电压

对电动机来说,有用的是电压的基波,希望spwm波形中基波的成分越大越好。为了找出基波电压,须将spwm脉冲序列波u(t)展开成傅氏级数,由于各相电压正、负半波及其左、右均对称,它是一个奇次正弦周期函数,其一般表达式为

式中

(3-4)

要把包含n 个矩形脉冲的u(t)代入上式,必须先求得每个脉冲的起始相位和终了相位。在图3-5中,由于在原点处三角波是从负的顶点开始出现的,所以第i 个脉冲中心点的相位应为

(3-5)

于是,第i 个脉冲的起始相位为

终了相位为

其中δi 是第i 个脉冲的宽度。把各脉冲起始和终了相位代入式(3-4)中,可得

Hz Hz f f t t 37205580max 232

3min =-=-≈ (3-6)

(3-7)

以k=1代入式(3-7),可得输出电压的基波幅值。当半个周期内的脉冲数n不太少时,各脉冲的宽度δi都不大,可以近似地认为sinδi/2≈δi/2,因此

(3-8)

可见输出基波电压幅值u1m与各段脉宽δi有着直接的关系,它说明调节参考信号的幅值从而改变各个脉冲的宽度时,就可实现对逆变器输出电压基波幅值的平滑调节。

根据脉冲与相关段正弦波面积相等的等效原则可以导出

(3-9) 将式(3-5)、式(3-9)代入式(3-8),得

(3-10)

可以证明,除n=1以外,有限项三角级数

而n=1是没有意义的,因此由式(3-10)可得u1m=u m

也就是说,spwm逆变器输出脉冲波序列的基波电压正是调制时所要求的正弦波幅值电压。当然,这个结论是在作出前述的近似条件下得到的,即n不太少,sinπ/2n≈π/2n,且sin δi/2≈δi/2。当这些条件成立时,spwm变压变频器能很好地满足异步电动机变压变频调速的要求。

要注意到,spwm逆变器输出相电压的基波和常规六拍阶梯波的交-直-交变压变频器相比要小一些,据有关资料介绍,仅为其86%~90%,这样就影响了电机额定电压的充分利用。为了弥补这个不足,在spwm逆变器的直流回路中常并联相当大的滤波电容,以抬高逆变器的直流电源电压u d。

3.2.4脉宽调制的制约条件

根据脉宽调制的特点,逆变器主电路的功率开关器件在其输出电压半周内要开关n次。如果把期望的正弦波分段越多,则n越大,脉冲波序列的脉宽δi越小,上述分析结论的准确性越高,spwm波的基波就更接近期望的正弦波。但是,功率开关器件本身的开关能力是有限的,因此,在应用脉宽调制技术时必然要受到一定条件的制约,这主要表现在以下两个方面。

3.2.5功率开关器件的开关频率

各种电力电子器件的开关频率受到其固有的开关时间和开关损耗的限制,全控型器件常用的开关频率如下:双极型电力晶体管(bjt)开关频率可达1~5khz,可关断晶闸管(gto)开关频率为1~2khz,功率场效应管(p-mosfet)开关频率可达50khz,而目前最常用的绝缘栅双极晶体管(igbt)开关频率为5~20khz。

定义载波频率f t与参考调制波频率f r之比为载波比n(carrier ratio),即

(3-11)

相对于前述spwm波形半个周期内的脉冲数 n来说,应有n=2n。为了使逆变器的输出尽量接近正弦波,应尽可能增大载波比,但若从功率开关器件本身的允许开关频率来看,载波比又不能太大。n值应受到下列条件的制约:

逆变器电路DIY(图文详解)

逆变器电路DIY(图文详解) 电子发烧友网:本文的主要介绍了逆变器电路DIY制作过程,并介绍了逆变器工作原理、逆变器电路图及逆变器的性能测试。本文制作的的逆变器(见图1)主要由MOS 场效应管,普通电源变压器构成。其输出功率取决于MOS 场效应管和电源变压器的功率,免除了烦琐的变压器绕制,适合电子爱好者业余制作中采用。下面介绍该逆变器的工作原理及制作过程。 1.逆变器电路图 2.逆变器工作原理 这里我们将详细介绍这个逆变器的工作原理。 2.1.方波信号发生器(见图2)

图2 方波信号发生器 这里采用六反相器CD4069构成方波信号发生器。电路中R1是补偿电阻,用于改善由于电源电压的变化而引起的振荡频率不稳。电路的振荡是通过电容C1充放电完成的。其振荡频率为f=1/2.2RC.图示电路的最大频率为:fmax=1/2.2×3.3×103×2.2×10-6=62.6Hz;最小频率 fmin=1/2.2×4.3×103×2.2×10-6=48.0Hz.由于元件的误差,实际值会略有差异。其它多余的反相器,输入端接地避免影响其它电路。 #p#场效应管驱动电路#e# 2.2场效应管驱动电路 图3 场效应管驱动电路 由于方波信号发生器输出的振荡信号电压最大振幅为0~5V,为充分驱动电源开关电路,这里用TR1、TR2将振荡信号电压放大至0~12V.如图3所示。 4. 逆变器的性能测试 测试电路见图4.这里测试用的输入电源采用内阻低、放电电流大(一般大于100A)的12V汽车电瓶,可为电路提供充足的输入功率。测试用负载为普通的电灯泡。测试的方法是通过改变负载大小,并测量此时的输入电流、电压以及输出电压。输出电压随负荷的增大而下降,灯泡的消耗功率随电压变化而改变。我们也可以通过计算找出输出电压和功率的关系。但实际上由于电灯泡的电阻会随受加在两端电压变化而改变,并且输出电压、电流也不是正弦波,所以这种的计算只能看作是估算。

三相PWM逆变器的设计_毕业设计

湖南文理学院 课程设计报告 三相PWM逆变器的设计 课程名称:专业综合课程设计 专业班级:自动化10102班

摘要 本次课程设计题目要求为三相PWM逆变器的设计。设计过程从原理分析、元器件的选取,到方案的确定以及Matlab仿真等,巩固了理论知识,基本达到设计要求。 本文将按照设计思路对过程进行剖析,并进行相应的原理讲解,包括逆变电路的理论基础以及Matlab仿真软件的简介、运用等,此外,还会清晰的介绍各个环节的设计,比如触发电路、控制电路、主电路等,其中部分电路的绘制采用Proteus软件,最后结合Matlab Simulink仿真,建立了三相全控桥式电压源型逆变电路的仿真模型,进而通过软件得到较为理想的实验结果。 关键词:三相PWM 逆变电路Matlab 仿真

Abstract The curriculum design subject requirements for the design of the three-phase PWM inverter. Design process from the principle of analysis, selection of components, to scheme and the Mat-lab simulation, etc., to consolidate the theoretical knowledge, basic meet the design requirements. This article will be carried out in accordance with the design of process analysis, and the corresponding principles, including the theoretical foundation of the inverter circuit and introduction, using Matlab simulation software, etc., in addition, will also clearly introduces the design of every link, such as trigger circuit, control circuit, main circuit, etc., some of the drawing of the circuit using Proteus software, finally combined with Matlab Simulink, established a three-phase fully-controlled bridge voltage source type inverter circuit simulation model, and then through the software to get the ideal results. Keywords: Matlab simulation, three-phase ,PWM, inverter circuit

逆变器电路图

逆变器电路图 这是一种性能优良的家用逆变电源电路图,材料易取,输出功率150W。本电路设计频率为300Hz左右,目的是缩小逆变变压器的体积、重量。输出波形方波。这款逆变电源可以用在停电时家庭照明,电子镇流器的日光灯,开关电源的家用电器等其他方面。 电容器 C1、C2用涤纶电容,三极管 BG1-BG5可以用9013:40V 0.1A 0.5W,BG6-BG7可以用场效应管IRF150:100V 40A 150W 0.055 欧姆。变压器B的绕制请参考逆变器的设计计算方法,业余条件下的调试;先不接功率管,测 A点、B点对地的电压,调整R1或R2使A、B两个点的电压要相同,这样才能输出的方波对称,静态电流也最少。安装时要注意下列事项:BG6、BG7的焊接,必须用接地良好的电烙铁或切断电源后再焊接。大电流要用直径2.5MM以上的粗导线连接,并且连线尽量短,电瓶电压12V、容量12AH以上。功率管要加适当的散热片,例如用100*100*3MM铝板散热。如果你要增加功率,增加同型号的功率管并联使用,相应地增加变压器的功率。 晶体管的选择:考虑到安全因素,要具有一定的安全系素。经验资料如下: 直流电源电压:晶体管集射极耐压BV CEO 6~8V≥20~30V 12~14V≥60~80V 24~28V≥80~100V 计算晶体管集电极电流:I CM(A)=输出功率P(W)÷ 输入电压V(V)× 效率。

式中输入电压即电源电压。效率与选择的电路有关,一般在百分之60~80之间。 铁芯截面积:S(平方厘米)=k×变压器额定功率的平方根,k的选择见下表 P(VA) 5-10 10-50 50-100 100-500 500-1000 k 2-1.75 1.75-1.5 1.5-1.35 1.35-1.25 1.25-1 变压器铁芯的选择:业余制作对变压器铁心要求并不严格。不过硅钢片最好选用薄而质地脆的,或者采用铁氧体磁心。漆包线用高强度的,绕线需用绕线机紧密平绕。 安插硅钢片时要严格平整。初级绕组两端电压与铁心截面积和工作频率等参数的 关系可以用公式表示如下:V=4.44×10-8SKFBN 式中 S --- 铁心截面积(平方厘米); K --- 硅钢片间隙系数(0.9~0.95); F --- 逆变器工作频率(赫兹); B --- 饱和磁通密度(T); N --- 线圈的匝数(圈); V --- 初级绕组的电压(伏特)。 K的数值与硅钢片的厚度及片与片之间的间隙有关,铁心层迭越紧,K值越高 一般K取0.9即可。逆变器的工作频率,主要由所选择的铁心决定。采用硅钢片铁心,逆变器工作频率低于2KH Z。采用不同的铁氧体磁心,工作频率在2KH Z~40KH Z之 间。如果工作频率超出了磁心的固有频率,则高频损耗十分严重。饱和磁通密度

(完整版)三相逆变器matlab仿真

三相无源逆变器的构建及其MATLAB仿真1逆变器 1.1逆变器的概念 逆变器也称逆变电源,是一种可将直流电变换为一定频率下交流电的装置。相对于整流器将交流电转换为固定电压下的直流电而言,逆变器可把直流电变换成频率、电压固定或可调的交流电,称为DC-AC变换。这是与整流相反的变换,因而称为逆变。 1.3逆变器的分类 现代逆变技术的种类很多,可以按照不同的形式进行分类。其主要的分类方式如下: 1)按逆变器输出的相数,可分为单相逆变、三相逆变和多相逆变。 2)按逆变器输出能量的去向,可分为有源逆变和无源逆变。 3)按逆变主电路的形式,可分为单端式、推挽式、半桥式和全桥式逆变。 4)……………. 2 三相逆变电路 三相逆变电路,是将直流电转换为频率相同、振幅相等、相位依次互差为120°交流电的一种逆变网络。 图 1 三相逆变电路

日常生活中使用的电源大都为单相交流电,而在工业生产中,由于诸多电力能量特殊要求的电气设备均需要使用三相交流电,例如三相电动机。随着科技的日新月异,很多设备业已小型化,许多原来工厂中使用的大型三相电气设备都被改进为体积小、耗能低且便于携带的小型设备。尽管这些设备外形发生了很大的变化,其使用的电源类型——三相交流电却始终无法被取代。在一些条件苛刻的环境下,电力的储能形式可能只有直流电,如若在这样的环境下使用三相交流电设备,就要求将直流电转变为特定要求的三相交流电以供使用。这就催生了三相逆变器的产生。 4MATLAB仿真 Matlab软件作为教学、科研和工程设计的重要方针工具,已成为首屈一指的计算机仿真平台。该软件的应用可以解决电机电器自动化领域的诸多问题。利用其中的Simulink模块可以完成对三相无源电压型SPWM逆变器的仿真,并通过仿真获取逆变器的一些特性图等数据。 图 2 系统Simulink 仿真 所示为一套利用三相逆变器进行供电的系统的Matlab仿真。系统由一个380v的直流电源供电,经过三相整流桥整流为三相交流电,并进行SPWM正弦脉宽调制。输出经过一个三相变压器隔离后通入一个三相的RLC负载模块(Three phase parallel RLC)。加入了两个电压测量单元voltage measurement和voltage measurement1,并将结果输出到示波器模块Scope1.

三相SVPWM逆变电路MATLAB仿真

基于电压空间矢量控制的三相逆变器的研究 1、SVPWM逆变电路的基本原理及控制算法 图1.1中所示的三相逆变器有6个开关,其中每个桥臂上的开关工作在互补状态,三相桥臂的上下开关模式得到八个电压矢量,包括6个非零矢量(001)、()、(011)、(100)、(101)、(110)和两个零矢量(000)、(111). 图1.-1 三相桥式电压型有源逆变器拓扑结构 在平面上绘出不同的开关状态对应的电压矢量,如图1.2所示。由于逆变器能够产生的电压矢量只有8个,对与任意给定的参考电压矢量,都可以运用这8个已知的参考电压矢量来控制逆变器开关来合成。 图1.2 空间电压矢量分区 图1.2中,当参考电压矢量在1扇区时,用1扇区对应的三个空间矢量U sv1 、U sv2 、U sv3来等效参考电压矢量。若1.2 合成矢量 ref U所处扇区N的判断 三相坐标变换到两相β α-坐标: ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? ? ? ) ( ) ( ) ( 2 3 - 2 3 2 1 - 2 1 - 1 3 2 ) ( ) ( t t t t t u u u u u co bo ao β α (1.1) 根据u α 、u β 的正负及大小关系就很容易判断参考电压矢量所处的扇区位

置。如表1.1所示。 表1.1 参考电压矢量扇区位置的判断条件 可以发现,扇区的位置是与u β、 u u βα-3及u u βα--3的正负有关。为 判断方便,我们设空间电压矢量所在的扇区N N=A+2B+3C (1.2) 其中,如果u β >0,那么A=1,否则A=0 如果u u βα-3 >0,那么B=1,否则B=0 如果u u βα--3 >0,那么C=1,否则C=0 1.3 每个扇区中基本矢量作用时间的计算 在确定参考电压矢量的扇区位置后,根据伏秒特性等效原理,采用该扇区三个顶点所对应的三个电压空间矢量来逼近参考电压矢量。以参考电压矢量位于3扇区为例,如图1.3所示,参考电压U ref 与U 4的夹角为γ。

3KVA三相逆变器的设计

3KVA三相逆变器设计 1概述 随着各行各业自动化水平及控制技术的发展和其对操作性能要求的提高,许多行业的用电设备(如通信电源、电弧焊电源、电动机变频调速器等)都不是直接使用交流电网作为电源,而是通过形式对其进行变换而得到各自所需的电能形式,它们所使用的电能大都是通过整流和逆变组合电路对原始电能进行变换后得到的。 当今世界逆变器应用非常广泛。逆变器是将直流变为定频定压或调频调压交流电的变换器,传统方法是利用晶闸管组成的方波逆变电路实现,但由于其含有较大成分低次谐波等缺点,近十余年来,由于电力电子技术的迅速发展,全控型快速半导体器件BJT,IGBT,GTO 等的发展和PWM 的控制技术的日趋完善,使SPWM 逆变器得以迅速发展并广泛使用。PWM 控制技术是利用半导体开关器件的导通与关断把直流电压变成电压脉冲列,并通过控制电压脉冲宽度和周期以达到变压目的或者控制电压脉冲宽度和脉冲列的周期以达到变压变频目的的一种控制技术,SPWM 控制技术又有许多种,并且还在不断发展中,但从控制思想上可分为四类,即等脉宽PWM 法,正弦波PWM 法(SPWM 法),磁链追踪型PWM 法和电流跟踪型PWM 法,其中利用SPWM 控制技术做成的SPWM 逆变器具有以下主要特点:(1)逆变器同时实现调频调压,系统的动态响应不受中间直流环节滤波器参数的影响。 (2)可获得比常规六拍阶梯波更接近正弦波的输出电压波形,低次谐波减少,在电气传动中,可使传动系统转矩脉冲的大大减少,扩大调速范围,提高系统性能。 (3)组成变频器时,主电路只有一组可控的功率环节,简化了结构,由于采用不可控整流器,使电网功率因数接近于1,且与输出电压大小无关。 本次课程设计要完成的是设计容量为3KVA的三相逆变器。初始条件为:输入直流电压220V。要求输出220V三相交流电,完成总电路的设计,并计算电路中各元件的参数。

正弦波逆变器设计

正弦波逆变器逆变主电路介绍 主电路及其仿真波形 图1主电路的仿真原理图 图1.1是输出电压的波形和输出电感电流的波形。上部分为输出电压波形,下面为电感电流波形。 图1.1输出电压和输出电感电流的波形 图1.2为通过三角载波与正弦基波比较输出的驱动信号,从上到下分别为S1、S3、S2、S4的驱动信号,从图中可以看出和理论分析的HPWM调制方式的开关管的工作波形向一致。

图1.2 开关管波形 从图1.3的放大的图形可以看出,四个开关管工作在正半周期,S1和S3工作在互补的调制状态,S4工作在常导通状态,S2截止;在负半周期,S2和S4工作在互补的调制状态,S3工作在常导通状态,S1截止。 图1.3放大的开关管波形 图1.4为主电路工作模态的仿真波形,图中从上到下分别为C3的电压波形、C1的电压波形、S3开关管的驱动波形,S1的驱动波形。从图中可以看出在S1关断的瞬间,辅助电容的电压开始上升,完成充电过程,同时S3上的辅助电容完成放电过程,S3开通。 图1.4工作模态仿真波形 图1.5为开关管的驱动电压波形和电感电流波形图,图中从上到下分别为电

感电流波形、S3驱动波形、S1驱动波形。从图中可以看出当S1关断瞬间到S3开通的瞬间,电感电流为一恒值,S3开通后,电感电流不断下降到S3关断时的最小值,然后到S1开通之前仍然为一恒值,直到S1开通,重复以上过程。根据以上结论可以看出仿真分析状态和前面的理论分析完全符合。 图1.5开关管的驱动电压波形和电感电流波形 2 滤波环节参数设计与仿真分析 2.1 输出滤波电感和电容的选取 对逆变电源而言,由于逆变电路输出电压波形谐波含量较高,为获得良好的正弦波形,必须设计良好的LC 滤波器来消除开关频率附近的高次谐波。 滤波电容C f 是滤除高次谐波,保证输出电压的THD 满足要求。C f 越大,则THD 小,但是C f 不断的增大,意味着无功电流也随之增加,从而增加了逆变电源的 电容容量,同时会导致逆变电源系统体积重量增加,同时电容太大,充放电时间也延长,对输出波形也会产生一定的影响。 逆变桥输出调制波形中的高次谐波主要降在滤波电感的两端,所以L 的大小关系到输出波形的质量。要保证输出的谐波含量较低,滤波电感的感值不能太小。增加滤波器电感量可以更好地抑制低次谐波,但是电感量的增加带来体积重量的加大。不仅如此,滤波电感的大小还影响逆变器的动态特性。滤波电感越大,电感电流变化越慢,动态时间越长,波形畸变越严重。而减小滤波电感,可以改善电路的动态性能,则使得输出电流的开关纹波加大,必然增大磁滞损耗,波形也会变差。综合以上的分析,在LC 滤波器的参数设计时应综合考虑。 本文设计的LC 滤波器如图 3.12中所示,电感的电抗2L X L fL ωπ==,L X 随频率的升高而增大。电容的电抗为 112C X C fC ωπ==,C X 随频率的升高而减小。1L C ωω=所对应

最新三相逆变器Matlab仿真精编版

2020年三相逆变器M a t l a b仿真精编版

三相无源电压型SPWM逆变器的构建及其MATLAB仿真 09 电气工程及其自动化邱迪 摘要:本文简要介绍了三相无源电压型SPWM输出的逆变器的构建和工作方式及其MATLAB仿真。 关键词:三相逆变器正弦脉宽调制(SPWM)技术 MATLAB仿真 Abstract: This paper introduces briefly the construction of 3-phase inverter which output SPWM wave and the MATLAB-based simulation. Key word: Three-phase inverter Sinusoidal Pulse Width Modulation Power electronic technology 1逆变器 1.1逆变器的概念 逆变器也称逆变电源,是一种可将直流电变换为一定频率下交流电的装置。相对于整流器将交流电转换为固定电压下的直流电而言,逆变器可把直流电变换成频率、电压固定或可调的交流电,称为DC-AC变换。这是与整流相反的变换,因而称为逆变。 [1] 1.2逆变器涉及的技术 逆变器的构建应用了电力电子学科中的很多关键技术。电路中电流的可控流通断开的过程中应用了多种可控硅类型的电力电子器件;开关的控制过程应用了基于微处理

器的现代控制技术;对于正弦波形的仿制过程应用了正弦波脉宽调制(SPWM)技术等等。 1.3逆变器的分类 现代逆变技术的种类很多,可以按照不同的形式进行分类。其主要的分类方式如下: 1)按逆变器输出的相数,可分为单相逆变、三相逆变和多相逆变。 2)按逆变器输出能量的去向,可分为有源逆变和无源逆变。 3)按逆变主电路的形式,可分为单端式、推挽式、半桥式和全桥式逆变。 4)按逆变主开关器件的类型,可分为晶闸管逆变、晶体管逆变、场效应管 逆变等等。 5)按输出稳定的参量,可分为电压型逆变和电流型逆变。 6)按输出电压或电流的波形,可分为正弦波输出逆变和非正弦波输出逆 变。 7)按控制方式,可分为调频式(PFM)逆变和调脉宽式(PWM)逆变。[2] 2 三相逆变电路 三相逆变电路,是将直流电转换为频率相同、振幅相等、相位依次互差为120°交流电的一种逆变网络。

PWM逆变器Matlab仿真设计

PWM逆变器MATLAB仿真 1设计方案的选择与论证 从题目的要求可知,输入电压为110V直流电,而输出是有效值为220V的交流电,所以这里涉及到一个升压的问题,基于此有两种设计思路第一种是进行DC-DC升压变换再进行逆变,另一种是先进行逆变再进行升压。除此之外,要得到正弦交流电压还要考虑滤波等问题,所以这两种方案的设计框图分别如下图所示: 图1-1方案一:先升压再逆变 图1-2方案二:先逆变,再升压 方案选择: 方案一:采用DC-DC升压斩波电路其可靠性高、响应速度、噪声性能好,效率高,但不适用于升压倍率较高的场合,另外升压斩波电路在初期会产生超调趋势(这一点将在后文予以讨论),在与后面的逆变电路相连时必须予以考虑,我们可以采用附加控制策略的办法来减小超调量同时达到较短的调节时间,但这将增加逆变器的复杂度和设计成本。 方案二:采用变压器对逆变电路输出的交流电进行升压,这种方法效率一般可达90%以上、可靠性较高、抗输出短路的能力较强,但响应速度较慢,体积大,波形畸变较重。 从以上的分析可以看出两种方案有各自的优缺点,但由于方案二设计较为简便,因此本论文选择方案二作为最终的设计方案,但对于方案一的相关容也会在后文予以讨论。 2逆变主电路设计 2.1逆变电路原理及相关概念

逆变与整流是相对应的,把直流电变为交流电的过程称为逆变。根据交流侧是否与交流电网相连可将逆变电路分为有源逆变和无源逆变,在不加说明时,逆变一般指无源逆变,本论文针对的就是无源逆变的情况;根据直流侧是恒流源还是恒压源又将逆变电路分为电压型逆变电路和电流型逆变电路,电压型逆变电路输出电压的波形为方波而电流型逆变电路输出电流波形为方波,由于题目要求对输出电压进行调节,所以本论文只讨论电压型逆变电路;根据输出电压电流的相数又将逆变电路分为单相逆变电路和三相逆变电路,由于题目要求输出单相交流电,所以本论文将只讨论单相逆变电路。 2.2逆变电路的方案论证及选择 从上面的讨论可以看出本论文主要讨论单相电压型无源逆变电路,电压型逆变电路的特点除了前文所提及的之外,还有一个特点即开关器件普遍选择全控型器件如IGBT,电力MOSFET等,有三种方案可供选择,下面分别予以讨论: 方案一:半桥逆变电路,如下图所示,其特点是有两个桥臂,每个桥臂有一个可控器件和一个反并联二极管组成。在直流侧接有两个相互串联的足够大的电容,两个电容的连接点为直流电源的中点。反并联二极管为反馈电感中储存的无功能量提供通路,直流侧电容正起着缓冲无功能量的作用。其优点为简单,使用器件少,缺点为输出交流电压的幅值仅为直流电源电压的一半,且直流侧需要两个电容器串联,工作时还要控制两个电容器电压的均衡,因此它只适用于几千瓦以下的小功率逆变电路。 VD2 图2-1 半桥逆变电路 方案二:全桥逆变电路,如下图所示:其特点是有四个桥臂,相当于两个半桥电路的组合,其中桥臂1和4作为一对,桥臂2和3作为一对,成对的两个桥臂同时导通,两对

3KVA三相逆变电源设计

课程设计 题目3KVA三相逆变电源设计学院自动化学院 专业自动化 班级 姓名 指导教师朱国荣 2014 年 1 月 2 日

课程设计任务书 学生姓名:专业班级:自动化1102 指导教师:朱国荣工作单位:自动化学院 题目: 3KVA三相逆变电源设计 初始条件: 输入直流电压110V。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 设计容量为3KVA的三相逆变器,要求达到: 1、输出380V,频率50Hz三相交流电。 2、完成总电路设计。 3、完成电路中各元件的参数计算。 时间安排: 课程设计时间为两周,将其分为三个阶段。 第一阶段:复习有关知识,阅读课程设计指导书,搞懂原理,并准备收集设计资料,此阶段约占总时间的20%。 第二阶段:根据设计的技术指标要求选择方案,设计计算。 第三阶段:完成设计和文档整理,约占总时间的40%。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 摘要 (1) 1 设计要求、意义及思路 (2) 1.1 设计意义 (2) 1.2 设计要求 (2) 1.3 设计思路 (3) 2 方案设计及原理 (3) 2.1逆变电路 (3) 2.2 SPWM采样方法选择 (4) 2.3 LC滤波 (5) 2.4 升压变压器 (6) 3 主电路设计及参数设计 (7) 3.1 IGBT三相桥式逆变电路 (7) 3.2 脉宽控制电路的设计 (9) 3.2.1 SG3524芯片 (9) 3.2.2 调制波及载波的产生 (10) 3.3 触发电路的设计 (11) 3.3.1 IR2110芯片构成的触发 (11) 3.3.2 M57962L芯片构成的触发电路 (12) 3.4其他部分的参数设计 (13) 结束语 (15) 参考文献 (16) 附录一: (17) 附录二:主电路图 (18)

逆变器用变压器设计

计算方法 A 已知条件: 输出功率:2P =25W ; 次级电流:2I =0.115A ;(220V ?) 初级电流:1I =1.0A ; 电源频率:f =50Hz ; 效率:η>0.9; 功率因数:cos ?>0.9; 温升:m τ?<55℃。 B 电压计算输入功率:212527.80.9P P η= ==W 初级电压:11127.827.81P U I = ==V 次级电压:22225217.390.115 P U I ===V 次级负载电阻:()222222518900.115P R I = ==?C 选择铁芯 按2P 选择铁芯。当使用R 型铁芯R-30,材料使用DQ151-35时。铁芯 相关性能为: 当0B =1.70T 时,S P ≤2.2W/kg ,磁化伏安≤8V A/kg ,~H ≤3.5A/cm 2 223.1410 3.142C d S cm π??==×=????;()()2 5.45 2.021.95 2.022.8C L =×+++=cm ;

C G =0.425(kg );c F =64cm 2 D 匝数计算 44 1010108.43864.44 4.4450 1.7 3.14 c TV fB S ===×××匝/V 当%U ?=15%(8%?),()()128.43869.92781%10.15TV TV U ===???匝/V (()()128.43869.1721%10.08TV TV U ===???)11127.88.4386235N U TV =×=×=匝 2222179.92782155N U TV =×=×=匝(2222179.1721990N U TV ==×= )E 导线直径确定(数据提供23.5~4.0/j A A mm = )1 1.130.604d === mm 2 1.130.205d ===mm 若取QZ-2(二级聚酯漆包线)标准导线,则10.630d mm =,1max 0.704d mm =,铜导体电阻54.84/km ?;20.224d mm =,2max 0.266d mm =,铜导体电阻433.8/km ?。

(整理)三相逆变器Matlab仿真.

三相无源电压型SPWM逆变器的构建及其MATLAB仿真 09 电气工程及其自动化邱迪 摘要:本文简要介绍了三相无源电压型SPWM输出的逆变器的构建和工作方式及其MATLAB 仿真。 关键词:三相逆变器正弦脉宽调制(SPWM)技术MATLAB仿真 Abstract: This paper introduces briefly the construction of 3-phase inverter which output SPWM wave and the MATLAB-based simulation. Key word:Three-phase inverter Sinusoidal Pulse Width Modulation Power electronic technology 1逆变器 1.1逆变器的概念 逆变器也称逆变电源,是一种可将直流电变换为一定频率下交流电的装置。相对于整流器将交流电转换为固定电压下的直流电而言,逆变器可把直流电变换成频率、电压固定或可调的交流电,称为DC-AC变换。这是与整流相反的变换,因而称为逆变。[1] 1.2逆变器涉及的技术 逆变器的构建应用了电力电子学科中的很多关键技术。电路中电流的可控流通断开的过程中应用了多种可控硅类型的电力电子器件;开关的控制过程应用了基于微处理器的现代控制技术;对于正弦波形的仿制过程应用了正弦波脉宽调制(SPWM)技术等等。 1.3逆变器的分类 现代逆变技术的种类很多,可以按照不同的形式进行分类。其主要的分类方式如下: 1)按逆变器输出的相数,可分为单相逆变、三相逆变和多相逆变。

2)按逆变器输出能量的去向,可分为有源逆变和无源逆变。 3)按逆变主电路的形式,可分为单端式、推挽式、半桥式和全桥式逆变。 4)按逆变主开关器件的类型,可分为晶闸管逆变、晶体管逆变、场效应管逆变等等。 5)按输出稳定的参量,可分为电压型逆变和电流型逆变。 6)按输出电压或电流的波形,可分为正弦波输出逆变和非正弦波输出逆变。 7)按控制方式,可分为调频式(PFM)逆变和调脉宽式(PWM)逆变。[2] 2 三相逆变电路 三相逆变电路,是将直流电转换为频率相同、振幅相等、相位依次互差为120°交流电的一种逆变网络。 图 1 三相逆变电路 日常生活中使用的电源大都为单相交流电,而在工业生产中,由于诸多电力能量特殊要求的电气设备均需要使用三相交流电,例如三相电动机。随着科技的日新月异,很多设备业已小型化,许多原来工厂中使用的大型三相电气设备都被改进为体积小、耗能低且便于携带的小型设备。尽管这些设备外形发生了很大的变化,其使用的电源类型——三相交流电却始终无法被取代。在一些条件苛刻的环境下,电力的储能形式可能只有直流电,如若在这样的环境下使用三相交流电设备,就要求将直流电转变为特定要求的三相交流电以供使用。这就催生了三相逆变器的产生。

三相电压型逆变器课程设计

三相电压型逆变器 一.电力电子器件的发展: 1.概述: 1957年可控硅(晶闸管)的问世,为半导体器件应用于强电领域的自动控制迈出了重要的一步,电力电子开始登上现代电气传动技术舞台,这标志着电力电子技术的诞生。20世纪60年代初已开始使用电力电子这个名词,进入70年代晶闸管开始派生各种系列产品,普通晶闸管由于其不能自关断的特点,属于半控型器件,被称作第一代电力电子器件。随着理论研究和工艺水平的不断提高,以门极可关断晶闸管(GTO)、电力双极性晶体管(BJT)和电力场效应晶体管(Power-MOSFET)为代表的全控型器件迅速发展,被称作第二代电力电子器件。80年代后期,以绝缘栅极双极型晶体管(IGBT)为代表的复合型第三代电力电子器件异军突起,而进入90年代电力电子器件开始朝着智能化、功率集成化发展,这代表了电力电子技术发展的一个重要方向 电子技术被认为是现代科技发展的主力军,电力电子就是电力电子学,又称功率电子学,是利用电子技术对电力机械或电力装置进行系统控制的一门技术性学科,主要研究电力的处理和变换,服务于电能的产生、输送、变换和控制。(电力电子的发展动向)电力电子技术包括功率半导体器件与IC 技术、功率变换技术及控制技术等几个方面,其中电力电子器件是电力电子技术的重要基础,也是电力电子技术发展的“龙头”。电力电子器件(Power Electronic Device)又称为功率半导体器件,用于电能变换和电能控创电路中

的大功率(通常指电流为数十至数千安,电压为数百伏以上)电子器件。广义上电力电子器件可分为电真空器件(Electron Device)和半导体器件(Semiconductor Device)两类。 2.发展: A.整流管: 整流管是电力电子器件中结构最简单、应用最广泛的一种器件。目前主要有普通整流管、快恢复整流管和肖特基整流管三种类型。电力整流管在改善各种电力电子电路的性能、降低电路损耗和提高电源使用效率等方面发挥着非常重要的作用。目前,人们已通过新颖结构的设计和大规模集成电路制作工艺的运用,研制出集PIN整流管和肖特基整流管的优点于一体的具有MPS、SPEED和SSD等结构的新型高压快恢复整流管。它们的通态压降为IV 左右,反向恢复时间为PIN整流管的1/2,反向恢复峰值电流为PIN整流管的1/3。 B.晶闸管: 自1957年美国通用电气公司GE研制出第一个晶闸管开始,其结构的改进和工艺的改革,为新器件开发研制奠定了基础,其后派生出各种系列产品。1964年,GE公司成功开发双向晶闸管,将其应用于调光和马达控制;1965年,小功率光触发晶闸管问世,为其后出现的光耦合器打下了基础;60年代后期,出现了大功率逆变晶闸管,成为当时逆变电路的基本元件;逆导晶闸管和非对称晶闸管于1974年研制完成。 C.门极可关断晶闸管: GTO可达到晶闸管相同水平的电压、电流等级,工作频率也可扩展到

PWM逆变器Matlab仿真解析

课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: PWM逆变器Matlab仿真 初始条件: 输入110V直流电压; 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1、得到输出为220V、50Hz单相交流电; 2、采用PWM斩波控制技术; 3、建立Matlab仿真模型; 4、得到实验结果。 时间安排: 课程设计时间为两周,将其分为三个阶段。 第一阶段:复习有关知识,阅读课程设计指导书,搞懂原理,并准备收集设计资料,此阶段约占总时间的20%。 第二阶段:根据设计的技术指标要求选择方案,设计计算。 第三阶段:完成设计和文档整理,约占总时间的40%。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 摘要 (1) 1设计方案的选择与论证 (2) 2逆变主电路设计 (2) 2.1逆变电路原理及相关概念 (2) 2.2逆变电路的方案论证及选择 (3) 2.3建立单相桥式逆变电路的S IMULINK的仿真模型 (4) 2.3.1模型假设 (5) 2.3.2利用MATLAB/Simulink进行电路仿真 (5) 3正弦脉宽调制(SPWM)原理及控制方法的SIMULINK仿真 (6) 3.1正弦脉冲宽度调制(SPWM)原理 (6) 3.2SPWM波的控制方法 (7) 3.2.1双极性SPWM控制原理及Simulink仿真 (7) 3.2.2单极性SPWM控制原理及Simulink仿真 (9) 4升压电路的分析论证及仿真 (11) 4.1B OOST电路工作原理 (11) 4.2B OOST电路的S IMULINK仿真 (12) 5滤波器设计 (13) 6 PWM逆变器总体模型 (15) 7心得体会 (18) 参考文献 (19)

三相桥式spwm逆变电路的设计及仿真课程设计

院(系):电气工程学院

摘要 根据三相桥式SPWM逆变电路的工作原理以及特点,采用Simulink中的相关模块建立仿真模型,仿真分析其典型电流、电压波形和工作过程,得到了三相桥式SPWM控制波、负载线电压、负载相电压、负载相电流、负载中性点电压、电源电流波形,解决了三相桥式SPWM逆变电路教学中的难点问题。利用该模型辅助三相桥式SPWM逆变电路教学,直观生动,交互性强,动态显示传真波形。论述了单项正弦波逆变器的工作原理,介绍了SG3524的功能及产生SPWM波的方法,对逆变器的控制及保护电路做了详细介绍,给出了输出电压波形的实验结果。 关键词:三相桥式SPWM逆变;Simulink;仿真;波形;

目录 第1章绪论 (1) 第2章课程设计的方案 (2) 2.1三相桥式SPWM逆变电路的设计内容及要求....... 错误!未定义书签。 2.2SPWM逆变器的工作原理 ....................... 错误!未定义书签。第3章 SPWM逆变器的工作原理. (4) 3.1工作原理 (4) 3.2 控制方式 (5) 3.2.1单极性正弦脉宽调制 (5) 3.2.2双极性正弦脉宽调制 (6) 3.3 正弦脉宽调制的调制算法 (7) 3.3.1 自然采样法 (7) 3.3.2规则采样法 (7) 3.3.3 双极性正弦波等面积法 (7) 第四章MATLAB仿真设计 (8) 4.1 主电路 (8) 4.2 控制电路设计 (9) 4.3仿真结果与分析 (10) 第五章课程设计总结 (15) 参考文献 (16)

第1章绪论 电力电子技术是跨越电力技术、电子技术和控制技术理论三个领域的一门新兴交叉学科,它主要研究应用了电路领域的各种电力半导体器件及其装置,以实现对电能的变换和控制。它可以看成是弱电控制强电的技术,是弱电和强电之间的接口。电力电子技术广泛应用于一般工业、交通运输、电力系统、通信系统、计算机系统、新能源系统等。该课程已成为电气工程与自动化、自动化、电力系统自动化等电类专业的重要专业基础课。 正弦逆变电源作为一种可将直流电能有效地转换为交流电能的电能变换装置被广泛地应用于国民经济生产生活中,其中有:针对计算机等重要负载进行断电保护的交流不间断电源UPS (Uninterruptle Power Supply);针对交流异步电动机变频调速控制的变频调速器;针对智能楼宇消防与安防的应急电源EPS ( Emergence Power Supply);针对船舶工业用电的岸电电源 SPS(Shore Power Supply);还有针对风力发电、太阳能发电等而开发的特种逆变电源等等.随着控制理论的发展与电力电子器件的不断革新,特别是以绝缘栅极双极型晶体管IGBT( Insulated Gate Bipolar Transistor)为代表的自关断可控型功率半导体器件出现,大大简化了正弦逆变电源的换相问题,为各种 PWM 型逆变控制技术的实现提供了新的实现方法,从而进一步简化了正弦逆变系统的结构与控制。 IGBT最大的优点是无论在导通状态还是短路状态都可以承受电流冲击。它的并联不成问题,由于本身的关断延迟很短,其串联也容易。尽管IGBT模块在大功率应用中非常广泛,但其有限的负载循环次数使其可靠性成了问题,其主要失效机理是阴极引线焊点开路和焊点较低的疲劳强度,另外,绝缘材料的缺陷也是一个问题。 在现有的正弦波输出变压变频电源产品中,为了得到SPWM波,一般都采用双极性调制技术。该调制方法的最大缺点是它的6个功率管都工作在较高频率,从而产生了较大的开关损耗,开关频率越高,损耗越大。本文针对正弦波输出变压变频电源 SPWM调制方式及数字化控制策略进行了研究,以SG3524为主控制芯片,以期得到一种较理想的调制方法,实现逆变电源变压、变频输出。

基于MATLAB的三相桥式PWM逆变电路资料

交流调速系统课程设计题目:三相桥式SPWM逆变器的仿真设计 班级:0 姓名: 学号: 指导老师:

目录 摘要 (2) 关键词 (2) 绪论 (2) 三相桥式SPWM逆变器的设计内容及要求 (3) SPWM逆变器的工作原理 (3) 1 工作原理 (5) 2 控制方式 (6) 3 正弦脉宽调制的算法 (9) MATlAB仿真设计 (12) 硬件实验 (19) 实验总结 (23) 附录 Matab简介 (24) 参考文献 (24)

三相桥式SPWM逆变电路设计 摘要: 随着电力电子技术的飞速发展,正弦波输出变压变频电源已被广泛应用在各个领域中,与此同时对变压变频电源的输出电压波形质量也提出了越来越高的要求。对逆变器输出波形质量的要求主要包括两个方面:一是稳态精度高;二是动态性能好。因此,研究开发既简单又具有优良动、静态性能的逆变器控制策略,已成为电力电子领域的研究热点之一。 在现有的正弦波输出变压变频电源产品中,为了得到SPWM波,一般都采用双极性调制技术。该调制方法的最大缺点是它的6个功率管都工作在较高频率(载波频率),从而产生了较大的开关损耗,开关频率越高,损耗越大。本实验针对正弦波输出变压变频电源SPWM调制方式及数字化控制策略进行了研究,以SG3525为主控芯片,以期得到一种较理想的调制方法,实现逆变电源变压、变频输出。 关键词:逆变器SPWM逆变器的工作原理正弦脉宽调制的调制算法单极性正弦脉宽调制双极性正弦脉宽调制自然采样法规则采样法双极性正弦波等面积法 一、绪论 正弦逆变电源作为一种可将直流电能有效地转换为交流电能的电能变换装置被广泛地应用于国民经济生产生活中,其中有:针对计算机等重要负载进行断电保护的交流不间断电源UPS (Uninterruptle Power Supply) ;针对交流异步电动机变频调速控制的变频调速器;针对智能楼宇消防与安防的应急电源EPS ( Emergence Power Supply) ;针对船舶工业用电的岸电电源SPS(Shore Power Supply) ;还有针对风力发电、太阳能发电等而开发的特种逆变电源等等.随着控制理论的发展与电力电子器件的不断革新,特别是以绝缘栅极双极型晶体管IGBT( Insulated Gate Bipolar Transistor)为代表的自关断可控型功率半导体器件出现,大大简化了正弦逆变电源的换相问题,为各种PWM 型逆变控制技术的实现提供了新的实现方法,从而进一步简化了正弦逆变系统的结构与控制. 电力电子器件的发展经历了晶闸管(SCR)、可关断晶闸管(GTO)、晶体管(BJT)、绝缘栅晶体管(IGBT)等阶段。目前正向着大容量、高频率、易驱动、低损耗、模块化、复合化方向发展,与其他电力电子器件相比,IGBT具有高可靠性、驱动简单、保护容易、不用缓冲电路和开关频率高等特点,为了达到这些高性能,采用了许多用于集成电路的工艺技术,如外延技术、离子注入、精细光刻等。 IGBT最大的优点是无论在导通状态还是短路状态都可以承受电流冲击。它

直流三相逆变器设计

1 设计任务与要求 条件:输入直流电压:110V。 要求完成的主要任务: (1)开关元器件的选择 (2)各模块方案选择 (3)各模块方案设计 (4)总电路的设计 (5)各模块的器件选型 (6)参数计算 设计容量为3KVA的三相逆变器,要求达到: (1)输出380V,频率50Hz三相交流电 (2)完成总电路设计 (3)完成电路中各元件的参数计算 1.1 设计任务分析 由于输入直流电压只有110V,而输出交流电压要求有效值为380V,所以必须通过升压电路将直流电压升到到一定值才能作为逆变器的输入电压。逆变器的核心是半导体开关器件,不同拓扑的逆变电路有不同的优缺点和应用领域。半导体开关器件需要触发信号才能导通,要使逆变器输出正弦波形,则需要特殊的触发电路对开关器件进行调制。逆变器输出带有高次谐波,需要滤波电路对谐波进行。在进行仿真前,需对上述电路模块进行比较论证和选择。 1.2 设计思路 首先,考虑输入直流电压为110V而输出380V、频率50Hz三相交流电,要采用斩波电路升压到大于380以上,可以用直流斩波升压电路、直流斩波升降压电路等。其次要求由直流变为三相交流电,可采用电压型逆变电路、电流型逆变电路。逆变电路得到的是三相矩形波,再用PWM或者SPWM开关采用规则采样法将矩形波变为三相波,最后用滤波器滤波得到最终的所要的三相电,设计流程图如图1.1所示 图1.1设计流程图

2 设计意义及原理 2.1 设计意义 逆变电源技术的核心部分是逆变器和其控制部分。逆变器是将直流变为定频定压或调频调压交流电的变换器,传统方法是利用晶闸管组成的方波逆变电路实现,但其含有较大成分低次谐波等缺点,由于电力电子技术的迅速发展,全控型快速半导体器件BJT,IGBT,GTO 等的发展和PWM 的控制技术的日趋完善,使SPWM 逆变器得以迅速发展并广泛使用众所周知。 逆变器是将直流变为定频定压或调频调压交流电的变换器,传统方法是利用晶闸管组成的方波逆变电路实现,但由于其含有较大成分低次谐波等缺点,近十余年来,由于电力电子技术的迅速发展,全控型快速半导体器BJT,IGBT,GTO等的发展和PWM的控制技术的日趋完善,使SPWM逆变器得以迅速发展并广泛使用。 PWM控制技术是利用半导体开关器件的导通与关断把直流电压变成电压脉冲列,并通过控制电压脉冲宽度和周期以达到变压目的或者控制电压脉冲宽度和脉冲列的周期以达到变压变频目的的一种控制技术,SPWM 控制技术又有许多种,并且还在不断发展中,但从控制思想上可分为四类,即等脉宽PWM 法,正弦波PWM 法(SPWM 法),磁链追踪型PWM 法和电流跟踪型PWM 法,其中利用SPWM 控制技术做成的SPWM 逆变器具有以下主要特点: (1)逆变器同时实现调频调压,系统的动态响应不受中间直流环节滤波器参数的影响。 (2)可获得比常规六拍阶梯波更接近正弦波的输出电压波形,低次谐波减少,在电气传动中,可使传动系统转矩脉冲的大大减少,扩大调速范围,提高系统性能。 (3)组成变频器时,主电路只有一组可控的功率环节,简化了结构,由于采用不可控整流器,使电网功率因数接近于1,且与输出电压大小无关。 在后备式供电中,蓄电池作为一种非常重要的储能介质,在各个行业都得到了广泛的应用。由于单个电池的参数存在着差别,不能通过将蓄电池并联的方法来提高直流供电系统的容量,因此在电池的容量不能满足实际需求时,最直接的办法就是多个蓄电池串联共同提供能量。所串的蓄电池越多,蓄电池组能够提供的能量就越多,但输出端电压就越高,此时,逆变器输入直流电压的上限就直接决定了蓄电池组的容量 大小。 另外,高压变频器广泛的应用于轧钢、造纸、水泥制造、矿井提升、轮船推进器等传统工业的改造和高速列车、城市地铁轻轨、电动汽车中,其核心部分也是高压逆变器。

相关文档
最新文档