晶体管音频功放音质不好的原因及改进方法

晶体管音频功放音质不好的原因及改进方法
晶体管音频功放音质不好的原因及改进方法

晶体管音频功放音质不好的原因及改进方法(转贴)

晶体管功放都有非常优秀的特性测试指标,但实际音质音色都很不满意,即主观测试和客

观音质有很大差异,其原因如下:

一、晶体管功放的开环特性不能令人满意,为了获得好的频响特性,都施加了深度达40db-50db的大环路负反馈,虽然得到非常高的闭环特性,但客观音质评价并不好,声音不

柔和、不动听,这正是负反馈过度的通病。

二、晶体管功放的输出内阻Ri本来就非常低、在深度反馈下Ri又大幅度减小,电路阻尼系数Fd往往增大到100以上,Fd要比电子管功放大1-2个数量级(电子管功放Fd一般约在10以下)。这样高的Fd对扬声器的机电阻尼过重、扬声器振动系数处于过阻尼状态,振膜的运动则很迟钝,动态会变得很小、音质就显得生硬不圆润、缺层次、丰富的谐波被封杀、被过滤,微妙的谐波信息分量大量丢失,振膜细节刻画能力差,声音干瘪、缺乏色彩、不丰满、久听使人生厌,人声表现远不及电子管功放。

三、电路稳定性差、易自激也是深度负反馈功放的一个通病,一般都是在电路中接入减小高频增益的相移补偿电容来破坏形成自激的条件。此举虽有效地抑制了自激振荡,却常常引起瞬态互调失真增大、高频响应变劣,声音则变得毛糙、尖锐、不悦耳、不耐听。

四、大功率晶体管功放大都是甲乙类功放,有很明显的交越失真故保真度也差,往往又多管并联来增大功率,这样管子的结电客Cs会变大,高频响应不可能很好,同时也会使输出

阻尼过重。

五、甲乙类功放的Ic变化特别大,但供电都是一些低压,负载输出特性差的简单电容式滤波电源。由于大电容滤波充放电速度迟缓,持续大信号时的滤波响应或电源能量输出往往跟不上Ic的动态变化,电源电压经常在峰谷之间作大幅度涨落,当电源容量不足或Ri较大时,峰值信号声音出现阻塞或喘息和拖尾现象,瞬态、动态响应也很不理想。

除上述众所周知的五条原因外,我认为开关失真是晶体管功放音质不好、声音不润、莫名其妙烧高音喇叭的根本原因。我们知道所有放大器件都是非线性器件,都会产生非线性失真,两个不同频率的信号通过非线性器件时就会产生新的频率成分。当晶体管脱离放大区就会产生开关失真,因开关失真产生的频率不是单一频率,所以因开关失真产生的多种信号经过非线性器件放大后不仅产生非线性失真,各频率之间还要产生互调失真,再生成新的频率成分,而它们恰恰是晶体管功放听感不好和莫名其妙烧高音喇叭的根本原因。

在全对称直流OCL放大器中,常采用下列方法获得好的音质和音色

1、前置输入级使用场效应管,可降低传导噪声和本底噪声,提高信噪比。对现在普遍使用的DVD、CD、VCD、等数字信号源,可消除一些数码声,再加上没有奇次谐波而只有偶次谐波,音色较圆润。前置输入级使用交叉耦合全互补高速宽频电路,使用特征频率FT高的晶体管,这样可加快转换速度,从而减少开关失真。

2、电压放大级采用共发共基极联电路。这种失配法对前后级有隔离作用,而且高频特性好,电路不易自激,工作稳定。使用特征频率FT高的晶体管减少转换时间,从而减少开关失真。

3、电流推动级通常由一至二级组成,为了降低输出阻抗、增加阻尼系数,常采用二级电流推动。为了避免电流推动级产生开关失真,较好的作法是、采用MOS管并增大本级的静态电流,这样本级不会产生开关失真,由于任何情况下电流推动级始终处于放大区,所以电流输出级也始终处于放大区,因此输出级同样不会产生开关失真和交越失真。

4、电流输出级为了避免开关失真和交越失真,通常改善方法是工作在甲类或动态甲类。

5、环路反馈采用电流反馈,可有效减小互调失真。

以上五个改进方法虽然可改善OCL全对称功放的性能,但并没有从根源上彻底解决,即开关失真没有彻底消除,只是部份减少了一些开关失真。

仿高文27前级的高音僵硬中音虚低音淡薄的解决方法

大名顶顶的高文,仿者甚多,我也高文了一回,仿之前悦读了很多有关仿高文的贴,已知声音不行,但觉得自己有较强的调校能力,也不想花3W多买拜士通前级,就高文了一回。

高文前级用料扎实,没有任何的极品元件。电路如图(本论坛找到的)

[attach]2002108[/attach]

先调高音部分,播放宋祖英.伶歌1和2.弦技。。。。。。声音瘦薄,高音僵硬乐器的堂音极少。什么叫堂音,买张杏花天影就明白了,那张CD就是玩堂音的,过分又合理的堂音。看图RA1和CA1,是高频相位网络,其实RA1和CA1有很多的说法,在我来看,识得改变RA1或CA1调整声音才是最重要。加大RA1或CA1高音信号就越弱,(可以想象电分中这两个的用途)。实际听音现象:RA1.CA1越大高音越少,高音声音后移(就象人声向后移动一样)。在没改动之前,高音相位前移,约前移了一步多(人声),古筝,2胡,古琴,小提琴。。。。。。弦的声音极度显现但僵紧,没表情,严重的盖过了堂音。我有22P----200P 电容各2只,够齐全了吧,但CA1的位置不好焊,加大CA1减少高频信号不好改。就改RA1,

加大RA1减少高频信号的方案,RA1有3K了,实际听声音高音也不是多很多,在RA1窜个电阻加大RA1减少高频信号,手头有2只47欧,先试试看。结果古筝,2胡,古琴,小提琴。。。。。。弦的声音变松软了,少了清脆和甜美,听了几张CD觉得高音部分不对路,于是折半,47欧换成23欧,(手上有8只23欧的电阻,拆机的)。这种高贵,嫩滑的高音显出来了,反反复复听了几日,找毛病:高音部分人声齿音重,人声紧,表情差。(手头有12只10欧的)再加窜一只10欧的,RA1被改成3.033K了。高音部分全部合到拜士通播放时的定位了,这时高音部分通透明亮又宽松高频的定位有准确,高频的形体显现.细节丰富。对声音精准是我极度的要求,我还是发现民歌蔡琴,齐峰的齿音有些过多,乐器高音的音色过于张扬,尝试调整音箱摆位向外倾角度减些高音,去掉齿音,但声场边形了,定位移位了,只好复原。再窜加5.6欧,哈哈,齿音去了,但是吖,高音欠质感略暗但通透,没有很吸引人的音质音色,虽然细节丰富,我在想,这种声音不毒,高文**的,要再调,于是又把5.6欧换成2欧,这时,才得到有音色但又准确,娇艳的高频了,齿音和口水声过度得非常漂靓。这时RA1成了3K窜23殴窜10殴窜2殴。高频部份调整完毕,日

后继续调中音虚和低音淡薄。明日上高清图

此电路对声音影响最大的输入场管(2n5564-2n5566),不同厂商生产的管,声音有很大的差别;二是第二级反馈电路中2只并联220U电容,用不同品牌的对声音影响较大,第三是电源的滤波电解电容对整机音色有一定影响。

如果你的机还在,不妨买几个电阻试试,看看我所讲是否属实,(我现在的CD机是马兰士SA-14,功放拜士通3B,自做的西雅士音箱)

换换滤波电容,发烧名管,补品能出好声音的我还没见到,有好管好线路还要有调校能力,当做好一台机后,听听声音怎么样,缺什么声音,什么声音多了,该调哪儿,然后对症调整才是正道

如果是我,会砍掉一半电路,再调负反馈电阻与电容.

先调好高低音,再调中音

接一楼高音调整后低音调整:

低音是很淡薄的,如按照听音的说法,低音相位后移了,播放低音强,能量多的也觉不到饱满的低频,没感到低频的在整个声场中回荡总是感觉在很远的声场后轻轻一响就没有了,要把低音的声音向前移到高音的定位上,这时,就用低频相位补偿电容,这个电容是和反馈电阻RA47并联的,这个电容一般是几十P的,我手头倒是齐全,20P-----200P的各有2只,先用25P的试试,声音明显宽松了很多,但低音还是很靠后,在声场的后面,又换33P的试听才感到低音铺满整个声场

有次,我在离音箱约六七米外泡茶喝听音乐,总听到低音比高音慢了一拍换了多张Cd还是一样,分析是低音补偿还没够,后来把33P换到47P高低音才平衡

本帖最后由胜德茶艺于2011-6-20 02:19 编辑

我要解缺的问题是前级的高音僵硬中音虚低音淡薄,就是改高音低音这两处都花了十多天了,别小看这两处的改动,有这个前级的人都知道,乐器没泛音,没形体,这是中音虚的表现大约500HZ-----2000HZ。高音僵硬是因为2000HZ以上过多,使高频部分比如乐器的弦不宽松,低音淡薄低音提琴干吧吧的。高音我对症调好了,低音我也对症调好了,中音调了好多天了也会在这两天完成,现在已调到了临介点,要么过多,要么过少(因为元件不够齐全)摘来这里看看这里吧,调放大器和前级也用得到的

人声:

男:低音82~392Hz,基准音区64~523Hz

男中音123~493Hz,男高音164~698Hz

女:低音82~392Hz,基准音区160~1200Hz

女低音123~493Hz,女高音220~1.1KHz

这是各种乐器的频率特性说明, 大家可以参考一下

贝司:低音吉它:频响在700~1KHz之间,提高拨弦音为60~80Hz

电贝司:低音在80~250Hz,拨弦力度在700~1KHz

吉它:电吉它:65~1.7KHz,响度在2.5KHz,饱满度在240Hz

木吉它:低音弦:80~120Hz,琴箱声:250Hz,清晰度:2.5KHz、3.75KHz、5KHz 鼓:低音鼓:27~146Hz,低音:60~80Hz,敲击声:2.5KHz

小鼓:饱满度:240Hz,响度:2KHz

通通鼓:丰满度:240Hz,硬度:8KHz

地筒鼓:丰满度:80~120Hz

吊钗:130~2.6KHz,金属声:200Hz,尖锐声:7.5~10KHz,镲边声:12KHz

人声:男:低音82~392Hz,基准音区64~523Hz

男中音123~493Hz,男高音164~698Hz

女:低音82~392Hz,基准音区160~1200Hz

女低音123~493Hz,女高音220~1.1KHz

手风琴:饱满度:240Hz

钢琴:低音在80~120Hz,临场感2.5~8KHz,声音随频率的升高而变单薄

Trumpet(小号): 146~2.6KHz,丰满度:120~240Hz,临场感:5~7.5KHz 小提琴:174~3.1KHz,丰满度:240~400Hz,拨弦声:1~2KHz,明亮度:7.5~10KHz

大提琴:61~2.6KHz,丰满度:300~500Hz

中提琴:123~2.6KHz

琵琶:110~1.2KHz,丰满度:600~800Hz

二胡:293~1318Hz

Flute(笛子):220~2.3K

Piccolo(短笛):494~4.1KHz

Oboe(双簧管):220~2.6KHz

Clarinet(单簧管):146~2.6KHz

Bassoon(巴松管、低音管):55~2.6KHz

French Horn(法国号):73~2.8KHz

Trombone(长号):65~2.6KHz

Tuba(低音号):43~2.6KHz

另一版资料:乐器的重要频率范围表

小提琴 200hz~400hz影响音色的丰满度;1~2khz是拨弦声频带;6~10khz是音色明亮度。

中提琴 150hz~300hz影响音色的力度;3~6khz影响音色表现力。

大提琴 100hz~250hz影响音色的丰满度;3khz是影响音色音色明亮度。

贝斯提琴 50hz~150hz影响音色的丰满度;1~2khz影响音色的明亮度。

长笛 250hz~1khz影响音色的丰满度;5~6khz影响的音色明亮度。

黑管 150hz~600hz影响音色的丰满度;3khz影响音色的明亮度。

双簧管 300hz~1khz影响音色的丰满度;5~6khz影响音色的明亮度;1~5khz提升使音色明

亮华丽。

大管 100hz~200hz音色丰满、深沉感强;2~5khz影响音色的明亮度。

小号 150hz~250hz影响音色的丰满度;5~7.5khz是明亮清脆感频带。

圆号 60hz~600hz提升会使音色和谐自然;强吹音色光辉,1~2khz明显增强。

长号 100hz~240hz提升音色的丰满度;500hz~2khz提升使音色变辉煌。

大号 30hz~200hz影响音色的丰满度;100hz~500hz提升使音色深沉、厚实。

钢琴 27.5~4.86khz是音域频段。音色随频率增加而变的单薄;20hz~50hz是共振峰频率。

竖琴 32.7hz~3.136khz是音域频率。小力度拨弹音色柔和;大力度拨弹音色丰满。

萨克斯管 600hz~2khz影响明亮度;提升此频率可使音色华彩清透。

萨克斯管bb 100hz~300hz是影响音色的淳厚感,提升此频段可使音色的始振特性更加细腻,

增强音色的表现力。

吉它 100hz~300hz提升增加音色的丰满度;2~5khz提升增强音色的表现力。

低音吉它 60hz~100hz低音丰满;60hz~1khz影响音色的力度;2.5khz是拨弦声频。

电吉它 240hz是丰满度频率;2.5khz是明亮度频率3~4khz拨弹乐器的性格表现的更充分。电贝司 80hz~240hz是丰满度频率;600hz~1khz影响音色的力度;2.5khz是拨弦声频。

手鼓 200hz~240hz共鸣声频;5khz影响临场感。

小军鼓(响弦鼓) 240hz影响饱满度;2khz影响力度(响度);5khz是响弦音频(泛音区)通通鼓 360hz影响丰满度;8khz为硬度频率;泛音可达10~15khz 低音鼓 60hz~100hz为低音力度频率;2.5khz是敲击声频率;8khz是鼓皮泛音声频。

地鼓(大鼓) 60hz~150hz是力度音频,影响音色的丰满度;5~6khz是泛音声频。

镲 250hz强劲、坚韧、锐利;7.5~10khz音色尖利;1.2~15khz镲边泛音“金光四溅”。歌声(男) 150hz~600hz影响歌声力度,提升此频段可以使歌声共鸣感强,增强力度。

歌声(女) 1.6~3.6khz影响音色的明亮度,提升此段频率可以使音色鲜明通透。

语音 800hz是“危险”频率,过于提升会使音色发“硬”、发“楞”

沙哑声提升64hz~261hz会使音色得到改善。

喉音重衰减600hz~800hz会使音色得到改善

鼻音重衰减60hz~260hz,提升1~2.4khz可以改善音色。

齿音重 6khz过高会产生严重齿音。

咳音重 4khz过高会产生咳音严重现象(电台频率偏离时的音色)。

另附各频率对听感影响:

16∽20KHz频率:这段频率范围实际上对于人耳的听觉器官来说,已经听不到了,因为人耳听觉的最高频率是15.1KHz。但是,人可以通过人体和头骨、颅骨将感受到的16∽20KHz 频率的声波传递给大脑的听觉脑区,因而感受到这个声波的存在。这段频率影响音色的韵味、色彩、感情味。如果汽车音响系统的频率响应范围达不到这个频率范围,那么音色的韵味将会失落;而如果棕段频率过强,则给人一种宇宙声的感觉,一种幻觉,一种神秘莫测的感觉,使人有一种不稳定的感觉。因为这些频率大多数是基音的不谐和音频率,所以会产生一种不安定的感受。这段频率在音色当中强度很小。但是很重要,是音色的表现力

部分,也是常常被人们忽略的部分,甚至有些人根本感觉不到它的存在。

12∽16KHz频率:这是人耳可以听到的高频率声波,是音色最富于表现力的部分,是一些高音乐器和高音打击乐器的高频泛音频段,例如镲、铃、铃鼓、沙锤、铜刷、三角铁等打击乐器的高频泛音,可给人一种"金光四射"的感觉,强烈地表现了各种乐器的个性。如果这段频率成分不足,则音色将会会失掉色彩,失去个性;而如果这段频率成分过强,如激励器激励过强,音色会产生"毛刺"般尖噪、刺耳的高频噪声,对此频段应给予一定的适

当的衰减。

10∽12KHz频率:这是高音木管乐器的高音铜管乐器的高频泛音频段,例如长笛、双簧管、小号、短笛等高音管乐器的金属声非常强烈。如果这段频率缺乏,则音色将会失去光泽,失去个性;如果这段频率过强,则会产生尖噪,刺耳的感觉。

8∽10KHz频率:这段频率s音非常明显,影响音色的清晰度和透明度。如果这频率成分缺少,音色则变得平平淡淡;如果这段频率成分过多,音色则变得尖锐。

6∽8KHz频率:这段频率影响音色的明亮度,这是人耳听觉敏感的频率,影响音色清晰度。如果这段频率成分缺少,则音色会变得暗淡;如果这段频率成分过强,则音色显得齿

音严重。

5∽6KHz频率:这段频率最影响语音的清晰度、可懂度。如果这段频率成分不足,则音色显得含糊不清;如果此段频率成分过强,则音色变得锋利,易使人产生听觉上的疲劳感。

RA1+CA1是输入带宽控制作用,能消除干扰,仿高频自激,RA1+CA1的转折频率决定高频转折点。CA1用33P按经验值来说,偏小。不过搂主仅仅是将3K串联3欧

受到楼主的经验启发,试着给自己的功放(与楼主的电路不同)末级反馈电阻上并接的相位补偿电容(原机为4pF)换成30pF后发现低音严重失真..最后选择并联同样容量也即最终容量为8pF电容后听觉较好..

试验表明: 此电容的容量依据不同电路,只能在小范围内变化,从而使得中低/频相位“前移”,最终在声音听感上取得低音声场较之前更加“突出” 这样补偿得到低音听感上的改善..

一般而言,此电容不宜过大,并且要清楚: 它只是在“无奈之下”起到补偿的作用,要想取得良好的原生低音质量,只能在硬件比如选用低音质量较好末级对管或者在主电源电路上做改进.. 容量的选取并非简单在不产生自激失真的基础上选用最大化容量,否则仅仅是针对某种音箱有效,而换用其它箱子后可能产生浑浊的低音,“质”与“量”到底多少合适,需根据音箱的通用性

及耳朵来决定..

这个前级的中音,非常虚,以至使这个前级的声音:没形体,没泛音,没力度,没厚度,没情感,没堂音,没细节,没表情。。。。。。

调中音,就调反馈电阻,反馈电阻越小,中音就越多,反馈电阻越大中音就越少。现在中音虚,就是中音少,中音少,就要减小反馈电阻。但减小反馈电阻放大倍数就会降低,于是先把RA13电阻3K改成1.5K

接着就减小反馈电阻RA21这个10K的电阻,采用并联的方法,最先并了个26.7K的,中音提升了很多,但还不够饱满,形体模糊但是没形体,没形体,没泛音,没力度,没厚度,没情感,没堂音,没细节,没表情。。。。。。

现象有所转好,后来把26.7K换成22K,20K,18K。直到18K才得到饱满的中音,没形体,没泛音,没力度,没厚度,没情感,没堂音,没细节,没表情。。。。。。已经扫光光,每换一次电阻,都播放了大量的CD试听,对比,分析。在18K时,实际声音变得偏慢,偏柔软,对比高音和低音分析中音过量了些,至使声音慢和软,乐器人声也粗声,不够活力,懒洋洋

肥婆于是又在18K窜个680欧再并在RA21,声音又过于清亮,把680欧换成330欧,

120欧,100欧,47欧,直到47欧才有那种厚润,通透,活泼,情感表达是多么的好,乐器形体是多么的清析,定位是多么的准确,声音以进入了平衡状态,高音僵硬中音虚低音淡薄再也不再

摘来这里看看这里吧,调放大器和前级也用得到的

人声:

男:低音82~392Hz,基准音区64~523Hz

...

胜德茶艺发表于2011-6-21 13:23

这些参数对玩均衡器倒不错,不过我觉得你这种调音方式犹如走迷宫,如果你那边的资源允许的话或许你还会试下0.1欧电阻与0.2欧电阻的区别。希望老兄早日有所觉悟。

不过由于仿制对晶体的曲线参数有很大的不确定性,有些时候就不得不是摸着石头过河了!A20模组据说改动不小,稳压管也不是6V2的。不过出于市场利益估计也没人会公开。

模块的核心是输入管(2N5564-2N5566),其它的三极管、阻容器件对声音的影响次之,当然,还有适当的级间工作点。

为动手派,虽是仿名机,想是所有元件都能一模一样是不可能的,变压器就是不可能,所以没必要很刻意什么管,不同的管代换后,跟据代换管的参数可适当调整电路使代换管工作在最好状态,再跟据代换管后出来的声音再调整高.中.低音的平衡,使声音达到公整,平衡,好听就达到目的了,这就是DIY的乐趣。

通过前级与后级的对比发现模块的部分中前后级存在3个电阻的差别,分别是RA3、RA10、RA8,job4 module中是使用的1.5K,A20用的3K。因此做了A、B声道的对比。感觉的确存在差别后,全部A20模块的这3个电阻换用了1.5K。

换用前后用手头一张一直放在边上的苏芮精选集做了对比。更换前由于这个前级的确如LZ 所说的“声音瘦薄,高音僵硬乐器的堂音极少”,所以感觉声音太硬,低音又收的太快而一直没能听完,且感觉上苏芮的声音一直是处于一种高亢的状态,没有起伏。更换电阻后,这张碟可以轻松的从头听到尾,感觉上低音的控制力有所加强,堂音有所改善,几首现场能够分

辨乐器的位置了,最主要的是能听到歌者抑扬顿挫的嗓音。

鉴于以上的尝试,目前可以确定的是涉及到的2对管子没有工作在最佳状态(我的全是42、92)。

顺带说一句,我的仿27用了大量的光音电阻尤其在音频通道,因该算是最清瘦的那种了,但清晰度非常好。这个机器还是我做过最好的声音之一。过几天试试看LZ的方法,看看能不能变成我做过的最好的,呵

低通截止频率也远远超过20K人耳的范围达到了1M。我还是个菜鸟,所以这样的仿真结果是否正确还请高手指正。

如果可以认可multisim的仿真效果的话,我们就不能把问题完全集中于对相位的补偿上了。并电容的方法对机器的速度上虽然没有大的影响,但是对音质还是有影响的。

你可以试试换掉负反馈的电容,这个对声音的影响真的很大。我试过太多的电容了,最后用roe电木的470uf 2颗,正负反接,220uf、16v的太贵了都炒到30元一颗了。飞利浦在这里不如roe的表现。sic在这里也有不错的表现,可惜只能找到330uf的,220uf的耐压要100v 体积太大

LZ生气了?我也菜鸟一个,multisim是坛子里下的,只是讨论一下而已,也在尝试你的方法。

你可以试试换掉负反馈的电容,这个对声音的影响真的很大。我试过太多的电容了,最后用roe电木的470uf 2颗,正负反接,220uf、16v的太贵了都炒到30元一颗了。飞利浦在这里不如roe的表现。sic在这里也有不错的表现,可惜只能找到330uf的,220uf的耐压要100v 体积太大了。

但电源部分呢,影响会很少吗?你试换个变压器,保证声音又是一回事。至于换电容改变味道,那是以前才玩的了,我这边有人用金泊电容等顶级元件做机的,也不见得好听。连基本正确的声音都做不到,两W的成本。。。。。。

先把声音调到正确才是正道,当然贵价元件声音就更贵气,但也要有正确的声音才行否则也不好听。所以吖,我见论坛里调音摩机都是换另一种风格或者贵价的电容电阻三极管之类,没有实质性的把声音调整正确,最后还是出不了正确的声音,要设计合理的电路,合理的选取管子的参数让管子工作在最佳状态,和什么线路,很多人都可以做得到,其实各种名机用的线路也没什么神秘,但做出来的声音好不好是一回事。

我这个贴只是提供一种调音的思路,想调好一台机还要有基本正确的听音水平,对声音要有基本正确的认识,盲听音响要知那个个频段多了还是少了,调整起来才得心应手

楼主能教教我怎么调整一下仿A1后级电路,我在论坛人士那购买后直接后级听也是跟楼主说的问题差不多,特别是低频根本没有力度。中高频就很亮,整体中高频非常突出,低频超级薄弱。我个人喜欢的音乐声音是低频起码占整个电路比例的55%-65%之间,哎,现在的放

大器都是全平坦设计,附上我装的套件电路图,希望楼主指教一下。

电路中的C15、C16 22P的不知道换成33P或更大低频不知会不会有明显提升,

C6C7换到3U以上。加大R4减少高音,可换个2K试试,太暗就换成1.5K,再亮就加大,你只听高音部分细节中低音少可不理它,这要有一定的辩别能力,先大约调好高频部份。低频没力度是因为300ZH-----800ZH这段缺少,同时减小R24.R25这300-----1000得到提升,声音的厚度力度就在这个频段。R24R25要同时同值改变,千万不要让开路,可用并联方法,先并约90K的看看,再跟句情况再换大或减小。C15C16先不要动

我试过在47K并100K以及2个33K组合在一起,我听着觉得什么变化,手头上没什么电阻合适的,拆一次调有点麻烦,昨天才装上去,假如将47K的直装换成22K或列小的话,然后再将电容换成33P或更大应该会有大幅度的低频提升吧,不过输入1K没换成2K的

如果不先调好高频,以你的经验应不容易听得出调47K的变化,因为被高频严重覆盖了

工作点的选择会影响音色的变化和音质的质变,还有相位

所以要设计稳定的工作点,选优秀工作点

回复73#胜德茶艺

老大怎么回事,我在原来输入串了两个1K的电阻,高音依然是那么亮。请问怎么回事,还有输入的电阻最大能接多大

因为中音你还未调起来,所以高音依然是那么亮。难道窜了两个1K的电阻和没窜你听不出区别吗

区别是有点,这说的这调法,跟我之前调我的3886基本一样,现在我已将R24,R25将原来的47K降成22K,输入的1K不变,整体是有点明显变化,不过不是低频提升了,而是将中高频的人声声压压低了许多

低频很吃功率的,把声音调平衡就OK,中频太多也影响低频的。

最好是有对优秀的原装箱调,不过也不要紧,耐心点,调得人声好听就行,6.5寸的我还没见有低音好的

这个方法跟我调校的方法基本一样哦,取值略微有出入。差分级总电流我设置在约3.7mA,电压放大级9mA左右。这个是多次反复试验的结果。另外共基管换成556B效果挺明显的,用42 92不好。差分级每调0.1mA声音都有区别,效果非常明显,比调其它任何地方效果都强。

不用那么大的,你再减少些中音和高音,高中低就平衡了。

不知你对定位和基本正确的声音认识有几多成,如果你懂得正确的定位,调高中低音平衡很快的,十来天就可以做到声音基本平衡,再花十来天细调,就很好听了。

认定其中的一些乐器或者人声,它们是在特定的位置发声的,然后仔细分辨乐器或者人声的高频,低频中频的量,高频多,声音往前往高处移的,中频多,人声向前移,低频多,人声后移。(可以去听优秀的音响认识定位,音源(即CD唱片)也要相

晶体管音频功放音质不好的原因及改进方法

晶体管音频功放音质不好的原因及改进方法 晶体管功放都有非常优秀的特性测试指标,但实际音质音色都很不满意,即主观测试和客观音质有很大差异,其原因如下: 一、晶体管功放的开环特性不能令人满意,为了获得好的频响特性,都施加了深度达40db-50db的大环路负反馈,虽然得到非常高的闭环特性,但客观音质评价并不好,声音不柔和、不动听,这正是负反馈过度的通病。 二、晶体管功放的输出内阻Ri本来就非常低、在深度反馈下Ri又大幅度减小,电路阻尼系数Fd往往增大到100以上,Fd要比电子管功放大1-2个数量级(电子管功放Fd一般约在10以下)。这样高的Fd对扬声器的机电阻尼过重、扬声器振动系数处于过阻尼状态,振膜的运动则很迟钝,动态会变得很小、音质就显得生硬不圆润、缺层次、丰富的谐波被封杀、被过滤,微妙的谐波信息分量大量丢失,振膜细节刻画能力差,声音干瘪、缺乏色彩、不丰满、久听使人生厌,人声表现远不及电子管功放。三、电路稳定性差、易自激也是深度负反馈功放的一个通病,一般都是在电路中接入减小高频增益的相移补偿电容来破坏形成自激的条件。此举虽有效地抑制了自激振荡,却常常引起瞬态互调失真增大、高频响应变劣,声音则变得毛糙、尖锐、不悦耳、不耐听。 四、大功率晶体管功放大都是甲乙类功放,有很明显的交越失真,故保真度也差,往往又多管并联来增大功率,这样管子的结电客Cs会变大,高频响应不可能很好,同时也会使输出阻尼过重。 五、甲乙类功放的Ic变化特别大,但供电都是一些低压,负载输出特性差的简单电容式滤波电源。由于大电容滤波充放电速度迟缓,持续大信号时的滤波响应或电源能量输出往往跟不上Ic的动态变化,电源电压经常在峰谷之间作大幅度涨落,当电源容量不足或Ri较大时,峰值信号声音出现阻塞或喘息和拖尾现象,瞬态、动态响应也很不理想。 除上述众所周知的五条原因外,我认为开关失真是晶体管功放音质不好、声音不润、莫名其妙烧高音喇叭的根本原因。我们知道所有放大器件都是非线性器件,都会产生非线性失真,两个不同频率的信号通过非线性器件时就会产生新的频率成分。当晶体管脱离放大区就会产生开关失真,因开关失真产生的频率不是单一频率,所以因开关失真产生的多种信号经过非线性器件放大后不仅产生非线性失真,各频率之间还要产生互调失真,再生成新的频率成分,而它们恰恰是晶体管功放听感不好和莫名其妙烧高音喇叭的根本原因。 在全对称直流OCL放大器中,常采用下列方法获得好的音质和音色 1、前置输入级使用场效应管,可降低传导噪声和本底噪声,提高信噪比。对现在普遍使用的DVD、CD、VCD、等数字信号源,可消除一些数码声,再加上没有奇次谐波而只有偶次谐波,音色较圆润。前置输入级使用交叉耦合全互补高速宽频电路,使用特征频率FT高的晶体管,这样可加快转换速度,从而减少开关失真。 2、电压放大级采用共发共基极联电路。这种失配法对前后级有隔离作用,而且高频特性好,电路不易自激,工作稳定。使用特征频率FT高的晶体管减少转换时间,从而减少开关失真。 3、电流推动级通常由一至二级组成,为了降低输出阻抗、增加阻尼系数,常采用二级电流推动。为了避免电流推动级产生开关失真,较好的作法是、采用MOS管并增大本级的静态电流,这样本级不会产生开关失真,由于任何情况下电流推动级始终处于放大区,所以电流输出级也始终处于放大区,因此输出级同样不会产生开关失真和交越失真。 4、电流输出级为了避免开关失真和交越失真,通常改善方法是工作在甲类或动态甲类。 5、环路反馈采用电流反馈,可有效减小互调失真。 以上五个改进方法虽然可改善OCL全对称功放的性能,但并没有从根源上彻底解决,即开关失真没有彻底消除,只是部份减少了一些开关失真。 晶体管功放能否彻底消除开关失真?没有开关失真的功放有何特点?本人通过多年研究已彻底解决了晶体管功放的开关失真,生产的多部样机一致性好,性能稳定。 本机输入级采用J型场效应管或BJT管,前者噪声低,后者动态范围要大一些,静态工作电流1.2ma。电压放大级采用共发共基电路,使用BJT管,静态电流2ma。电流推动级由二级组成,使用BJT管。第一级静态电流2ma,第二级静态电流4ma。输出级采用倒达林吨电路,静态电流20ma。倒达林吨输出电路可以减小阻尼系数,并具有一定的放大系数。采用直流伺服电路稳定中点电位,环路反馈采用电流反馈减小互调失真。

电子管音频功率放大器,以其卓越的重放音质,广受HiFi发烧

电子管音频功率放大器,以其卓越的重放音质,广受HiFi发烧友的青睐。市售成品电子管功放动辄数千元,乃至上万元,如此高价是大多数爱好者无法企及的。爱好者说得好:“自己动手,丰衣足食”。只要你有一定的电子知识和一定的动手能力,自制一台物美价廉的电子管功放并非难事。电子管功放较之晶体管功放,看似庞大复杂,但当你了解了电子管电路的工作方式后,会发现,电子管劝放电路较之晶体管分立元件功放相对简洁,所用元件也少得多。除输出变压器自制有一定难度外,其他元器件只要选配得当,电路调试有方,一台靓声的电子管功放就会在你的手上诞生。 本章先对自制电子管功放的元件选配、安装程序、调试技巧及关键制作要领作一简要介绍。当你胸有成竹,跃跃欲试时,就可以动手操作了。 第一节电子管功放的装配与焊接技巧 一、搭棚焊接方式 国内外许多著名的电子管功率放大器过去和现在均采用搭棚式装配焊接方式。因为,搭棚式接法的优点是布线可走捷径,使走线最近,达到合理布线。另外,电子管功放的元件数量不多,体积较大,借助元件引脚,即可搭接,减少了过多引线带来的弊病。只要布局合理,易收到较好的效果。图8—1为搭棚式接法示意图。 搭棚式接法一般将功放机内的各种元器件分为3—4层,安装元件的步骤是由下而上。接地线与灯丝走线一般置于靠近底板的最下层,其地线贴紧底板,并保持最好的接触;第二层多为各电子管阴极与栅极接地的元器件。注意同一管子阴极与栅极的相关元件接地最好就近在同一点接地;第三层是各放大级之间的耦合电容等元件;最上层则为以高压架空接法连接的阻容等元件。高压元件置于上层可以有效地防止高压电场对各级电路造成的干扰。 二、关于一点接地 一点接地,在电子管功放电路的布线中是一项值得重视的措施。图8—2为一点

制作晶体管靓声甲类功放电路图

制作晶体管靓声甲类功放电路图

制作晶体管靓声甲类功放电路 许多发烧友都乐于制作功放,但多局限于一些单片集成功放如LM1875、LM3886、LM4766、TDA7294等,用这些IC制作的功放其音质要好于市面上一些中、低档功放,但与一些高档Hi-Fi功放相比,音质仍有较大的差距。这里推荐几款容易制作的靓声甲类功放电路以供参考。其组成框图如图1所示。 该电路具有如下特点:1.采用板块积木式组合,可根据自身经济状况适当增减。2.电压放大部分与电流放大部分分开设计、布版,便于烧友采用高、低压两组电源分开供电,可选择众多特色的后级电路搭配,也便于安装固定散热片,为发烧友摩机提供方便。3.采用无大环负反馈设计,可进一步改善扬声器负反馈电动势对音质的影响。 限于篇幅,这里简介电压放大部分与电流放大部分。以下均为双声道设计,仅给出一个声道的原理图,另一声道、电源与保护电路图略。 一、电压放大部分使用厂家提供的成品板。该板双声道设计,采用双面镀金线路板制作,板上大量使用发烧器件,如五环金属膜电阻、ELNA发烧电容、音频专用高频管、低噪声恒流源专用场效应管等。原理简图如图2所示。使用孪生场效应管NPD5565输入,采用共源共基电路、有源负载及差分电路,与马兰士公司的HDAM模块电路及国内一些厂家生产的电压放大模块电路相比,本电路显得设计更趋于该电压放大板对电源适应范围较宽,±35V~±60V都可工作,建议电压放大部分供电采用并联式稳压电源,且比电流放大部分电压高出5V~10V。完善,音质也更理想。 二、电流放大部分有多种电流放大板可与上述电压放大板配套,下表列出所用功率管的部分参数供发烧友参考。 1.2SK2013/2SJ313推动3对2SK1529/J200,原理图如图3所示。 2.2SK2013/2SJ313推动3对2SC5200/2SA1943,原理图略,可参考图3,装配时只需把K1529/J200换为C5200/A1943即可。 3.2SC5171/2SA1930推动6只2SK851,原理图如图4所示,超大电流MOS场效应管2SK851具有开关速度快、导通电阻小、失真率低等特点。目前仍无场效应管与之配对,该电路采用准互补输出的形式,2SK851曾在天龙PWA-2000N功放中使用过。 4.2SC5171/2SA1930推动6只2SD1037,原理图略,可参考图4,装配时,只需把K851换为D1037即可。该电路采用准互补输出,只要设计得当,准互补输出电路同样可出靓声。比如深受好*的LM3886、LM4766内部就采用准互补输出电路。 5.采用3对三肯复合管SAP15N、SAP15P,原理图如图5所示。 6.2SK2013/2SJ313推动8对大功率场效应管或三极管(图略),方便发烧友制作100W×2纯甲类。 三、调试以上6种后级电路可根据P甲=2I02RL计算其所需甲类功率或末级静态电流,从而根据需要调试末级静态电流。如一台在8Ω负载下输出功率为80W的纯甲类机,末级静态电流为Io=2.236,则流过每管的静态电流为Io′=Io/n=2.236/3A=0.745A,即0.25Ω/5W电阻上直流压降为V=Io′?R=745×0.25≈186(Mv)。 虽然纯甲类功放声音柔和、甜美,但是它对变压器、滤波电容、功率管及散热片都有极其严格的要求。听一个月下来,电费负担重。在这种情况下,不妨把功放制作成高偏置甲乙类功放,比如20W以下为甲类输出,20W~100W为甲乙类输出。此时功放总静态电路为Io=1.118A,其实一般居室环境,20W左右的纯甲类输出,可满足大多数烧友的听音要求。 由于电压放大部分已被厂家调试好,只需装配好末级电流放大部分及相关接口。微调电压放大部分的W1使输出为0mV,再调节电流放大部分的多圈电位器W2,测量0.25Ω/5W电阻两端的直流电压,使其符合自己的要求,对图3、图4可直接测量0.25Ω/5W两端的电压,对图5应测量SAP15N④、⑤脚或SAP15P①、②脚两端的电压。 若测试一切正常,即可煲机1~2小时,重复检查各项参数,若无误,即可放音试听。若想装配纯甲类功放,可把整机先调成高偏置甲乙类功放,试听正常,再逐步加大静态电流至所需值,使该机成为纯甲类功放。 以上五种电流放大板,所配散热器尺寸均为360mm×120mm×50mm,成品板均调试成高偏置甲乙类功放(甲类20W+20W),若要装配80W+80W纯甲类功放,只需换掉散热片,把功放板装入两边外露散热器式专业功放机箱(480mm×430mm×150mm)调试好即可。 以上线路,稍作调整(如改变变压器功率及供电电压、功率管对数及静态电流)即可有多种用途使用。如:制作大功率功放(250W/4Ω);制作电子分频功放;制作高品质耳机放大器(用本电压放大板推动K214/J77或K2013/J313);用电压放大部分对一些分立元件中、低档功放进行摩机;制作顶级8声道纯后级功放(如用4块电压放大板,共用电源,每声道一对三肯2SC3858、2SA1494等)

音频功率放大器的设计报告

音频功率放大器的设计报告 目录 一、设计任务和要求 (2) 二、设计方案的选择与论证 (2) 三、电路设计计算与分析 (4) UA741介绍 (4) 前级电路原理图及仿真结果 (5) (6)TDA2030介绍·················································· 音频功放电路原理图及仿真结果 (7) 结果与分析 (8) 总原理图 (9) PCB图 (10) 四、总结及心得 (12) 五、附录 (14) 六、参考文献 (15)

音频功率放大器的设计 一、设计任务和要求 1、设计任务 设计一音频功率放大器,满足: (1)、输出功率为1W---2W; (2)、输出阻抗8-16欧姆; (3)、带宽:100Hz—10KHz; 2、设计要求 (1)、根据设计指标,确定电路的理论设计; (2)、学会合理的选择电路的元器件; (3)、利用multisim软件完成对相关电路模块的仿真分析; (4)、按时提交课程设计报告,画出设计电路图,交一份A3的图纸,完成相 应的答辩; 二、设计方案的选择与论证 音频功率放大器,简称音频功放,该设备主要用于推动扬声设备发声,因而,在很多电子设备上均有应用,比如,手机、电脑、电视机、音响设备等,是我们生活、学习不可或缺的重要设备,为我们的生活带来了很多便利。 音频功率放大器实际上就是对比较小的音频信号进行放大,使其功率增加,然后输出。前置放大主要完成对小信号的放大,使用一个同向放大电路对输入的音频小信号的电压进行放大,得到后一级所需要的输入。后一级的主要对音频进行功率放大,使其能够驱动电阻而得到需要的音频。设计时首先根据技术

晶体管共发射极小信号放大器原理图和PCB板图设计详解

目录 摘要........................................................................ I Abstract ................................................................... II 1 概述. (1) 1.1 protel发展历程 (1) 1.2 Protel99Se软件特色 (1) 2 晶体管共发射极小信号放大器的设计 (2) 2.1 参考电路图 (2) 2.2电路原理 (2) 3 用Protel软件绘制原理图 (3) 3.1 新建设计 (3) 3.2 放置元件 (3) 3.3 原理图的布线 (4) 3.4 检查原理图 (5) 4 绘制电路的PCB图 (5) 4.1 创建网络表 (5) 4.2 进入PCB设计界面 (5) 4.3 导入网络表 (6) 4.4 摆放元件并布线 (7) 4.5 元件清单 (8) 5心得体会 (9) 6参考文献 (10)

摘要 Protel软件功能强大,使用方便,学会它,可以很好的设计电路的布局,更加利于后续电路的焊接等工作,本次设计题目是晶体管共发射极小信号放大器的设计,首先要明白放大器的工作原理,设计电路图,合理选择参数,完成路的设计。通过这次设计,我们需要学会如何利用Protel软件设计电路原理图,以及元器件的封装,创建网络表,以及在PCB界面加载网络表,合理布局,生成PCB双面和单面板图。 关键词:电路设计;晶体管;PCB I

Abstract Protel software powerful, easy to use, learn it, can be very good design circuit layout, more conducive to the follow-up circuit welding work, this design topic is of tiny transistor amplifier design launch signal, the first to understand the amplifier's work principle, design the circuit diagram and rational selection of parameters, completed the design of the road. This design, we need to learn how to use Protel software design of the circuit principle diagram, and the encapsulation of the components, create network table, as well as in PCB interface loading network table, rational distribution, formation and single double-sided PCB panel of the figure. Keywords:Circuit design; The transistor; PCB

50W晶体管功放电路图

50W晶体管功放电路图 此功法电路可谓一装即成,特别适合初学者制作。这款功放一声道只需17个零件,却收到了意想不到的效果,还音效果真实,频响平直,解析力高,且功率可以达到50W。 具体电路如图(只画出一声道),全机用1/2W电阻,C2和C4用瓷盘电容即可,Q5、Q6采用大功率管2SC5200,变压器容量大于200W,次级输出电压AC22V*2 4A。 50W晶体管功放电路 调试方法:本机一般来说无需调整,装机后测中点电压在+-50mV内可以认为正常,否则可调整R2的阻值,如偏离电压高则加大R2,反之则减小。 JK50系列晶体管扩音机的改进 JK50系列晶体管扩音机如飞跃JK50-1A,民生JK50W、金龙JK50W、珠江JK50型等,社会拥有量相当大。美中不足的是它们的电源和功放部分采用的是PNP大功率锗管(3AD30C或3AD53C),一旦损坏,市场上很难买到。笔者采用市场极易购到的3DD15D 硅管对该机的电源和功放电路进行改进,其效果很好。下面以飞跃JK50-1A型扩音机为例进行介绍。 一、电源电路的改进 JK50-1型晶体管扩音机电源用4只管子组成三级复合管作调整管,如图1所示。BG14、BG15相并联后再与BG16、BG17复合,以实现输出稳定的-22V工作电压。由于调整管3AD30C(或3AD53C)输出功率大,很容易损坏。笔者用β为60的3DD15D取代BG14、BG15改进成功,机器连续工作6~8小时,调整管仍不烫手。具体改法如下:从原机上拆下BG14、BG15,用硬塑料片剪成比3DD15D略大的形状作绝缘垫片,再将两只3DD15D 安装在原BG14、BG15的位置上(注意涂些硅脂以利于散热)。然后断开R66以及BG16(3AD6C)的集电极与发射极,使该管发射极与电源输出端相连接,集电极与整流滤波输

JK50系列晶体管扩音机的改进

JK50系列晶体管扩音机的改进 倪服务 杨建民 JK50系列晶体管扩音机如飞跃JK50-1A,民生JK50W、金龙JK50W、珠江JK50型等,社会拥有量相当大。美中不足的是它们的电源和功放部分采用的是PNP大功率锗管(3AD30C或3AD53C),一旦损坏,市场上很难买到。笔者采用市场极易购到的3DD15D硅管对该机的电源和功放电路进行改进,其效果很好。下面以飞跃JK50-1A型扩音机为例进行介绍。 一、电源电路的改进 JK50-1型晶体管扩音机电源用4只管子组成三级复合管作调整管,如图1所示。BG14、BG15相并联后再与BG16、BG17复合,以实现输出稳定的-22V工作电压。由于调整管3AD30C(或3AD53C)输出功率大,很容易损坏。笔者用β为60的3DD15D取代BG14、BG15改进成功,机器连续工作6~8 小时,调整管仍不烫手。具体改法如下:从原机上拆下BG14、BG15,用硬塑料片剪成比3DD15D略大的形状作绝缘垫片,再将两只3DD15D安装在原BG14、BG15的位置上(注意涂些硅脂以利于散热)。然后断开R66以及BG16(3AD6C)的集电极与发射极,使该管发射极与电源输出端相连接,集电极与整流滤波输出端间接一只200Ω/1W的电阻。再在BG14、BG15的发射极各串一只0.1Ω/1W的反馈电阻,改进后的电路如图2所示。注意,两只调整管的放大倍数最好相同或接近(约50~60)。

二、功放电路的改进 原机功放电路如图3所示,改进后的电路如图4所示。具体改法如下:首先拆下原机上的两只功放管BG12、BG13(3AD3C或3AD53C),在3DD15D上加硬塑料片作绝缘垫片再涂些硅脂装在原功放管位置上,然后将输出变压器的初级中心轴头与电源"+"端即原机的接地线连接,两管发射极相连后通过新增的电阻Re(Re=0.5Ω/1W)与电源"-"端连接。原机的两只3AD30C(或3AD53C)管基极是直接通过输入变压器次级中心轴头接地的,改用硅管3DD15D后由Rb1、Rb2(Rb1=27Ω/8W,Rb2=1.1kΩ/10W)组成偏置电路。为防止发射结被瞬间击穿,分别在两管b、e极之间加上两只保护二极管(1N4007),因为 3DD15D的截止频率高于3AD30C(3AD53C),所以改进后的电路必须取消原电路中由C52和R60组成的反馈支路,否则会产生自激振荡。另外,在选择3DD15D时,β=80为最佳。而一般两管的放大倍数应以70~130为宜,两管放大倍数的差别不应大于10%。 通过以上的改进,使不少因很难购到3AD30C(3AD53C)的JK50-1 A型晶体管扩音机起死回生。

关于音频功率放大器的常识

关于音频功率放大器的常识 一、分类 音频功率放大器从材料组成分为以下几类: ?电子管功放(电压放大器) ?晶体管功放(电流放大器) ?场效应管功放(电流放大器) ?集成电路功放 ?数字功放 音频功率放大器从用途分为以下几类:HIFI音乐功放和AV家庭音响功放。 其中HIFI音乐功放的特点是保真度高、电路简捷、用料讲究。功放的功能是信号放大或振荡。功放是对一定频率的信号的放大,在放大的过程中存在两种失真:偶次谐波失真、奇次谐波失真。其中偶次谐波失真比较符合人耳的听觉,特性“温暖、柔和”;奇次谐波失真是“生硬、刺耳”的金属声。 常规AV家庭音响规格是5.1或7.2,数字具体指音箱数量。家庭AV音箱中低音炮单独带功放,剩余音箱的功放整合至一个设备。由于AV音响的声场特殊性,常规AV音响带有分频器。 连接音响的线材通常使用无氧铜线材。 音响系统有点声源和矩阵声源两种声源模式,点声源适合小范围的音乐欣赏,矩阵声源适合大场景的表演欣赏。听者与声源的距离呈现效果反馈了设备的性能,常规频率响应数据是,每当听者与声源的距离增加1倍的时候,功放的功率要增加4倍,音箱的灵敏度要增加6dB。 功放的核心元件是具有功率放大功能的电子管、晶体管、场效应管、集成电路和数字电路。周边器件是日产黑金刚、红宝石等具有电源滤波功能的大电解电容。还有就是美国DALE电阻、日本ROA电阻、RXJX 无感线绕电阻。金属膜电阻或者大红袍电阻的主要功能是给电路提供电源,提供信号放大电路,减少交流

声。常规功放电路也会用到整流器来处理电平。 另外,功放电路离不开电源变压器,常用的电源变压器是环形变压器。电源变压器需要在一次侧与二次侧中间做静电屏蔽。需要注意如果隔离层引出线焊接不良或接地不良将造成电位差增大,出现交流声。常规处理办法是低阻抗,平衡式输入方式,能够最大程度地降噪。 在处理噪声方面,常规的做法还有母线接地即一点接地,这样可减小电位差,防止噪声干扰。 另外,电路上会引入几个负反馈原理,常规方式是级间负反馈、电流负反馈、整机负反馈。这样做可以达到输入阻抗高、输出阻抗低、控制力强、失真小、解析力强的整体效果。 电子管功放的特征围绕核心器件电子管,电子管是电流传导的功能,主要作用是整流和检波。电子管的动态特性有放大系数μ,跨系S、内阻Ri。电子管功放的特点是信号失真明显。 晶体管和场效应管功放的核心器件是晶体管或场效应管,主体常常由三极管(集电极、基极、栅极)构成的半导体材料。三极管分类又有半导体材料和极性分类、结构及制造工艺分类、电流容量分类、工作效率分类、封装结构分类、功能用途分类等。 功放电路由两部分组成,前级和后级。 前级电路的作用是切换音源、处理信号、控制音量。前级负责将信号整理和调整,使音乐信号在进入后级前得到缓冲、等化、调整。常规情况下前级的放大倍率为10倍。前级的组成有音源切换开关、音量电位器、音源输入、音源选择、控制音量。前级的信号流向是输入----信号切换----左右平衡----音量控制----放大电路----静音开关----输出。前级处理了阻抗的降低,之后连接到输出端。前级放大是将信号放大到额定电平,常规是1V左右。前级完成音质控制、美化声音,将音响系统的频率特性控制到高保真的音质水平。音频的频响是5Hz到35Hz 。

模电实验 晶体管共射极放大电路

晶体管共射极放大电路 一、实验目的 1、 学习放大电路静态工作点的测试及调整方法,分析静态工作点对放大器性能的影 响。 2、 掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。 3、 熟悉常用电子仪器及模拟电路实验设备的使用。 二、实验原理 图2-1为电阻分压式工作点稳定单管放大器实验电路图。它的偏置电路采用R B1和R B2组成的分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号u i 后,在放大器的输出端便可得到一个与u i 相位相反,幅值被放大了的输出信号u 0,从而实现了电压放大。 图1-1 共射极单管放大器实验电路 在图2-1电路中,当流过偏置电阻R B1和R B2 的电流远大于晶体管T 的 基极电流I B 时(一般5~10倍),则它的静态工作点可用下式估算 CC B2 B1B1B U R R R U +≈ (1-1) (1-2) U CE =U CC -I C (R C +R E ) (1-3) 电压放大倍数 be L C V r R R β A // -= (1-4) C E BE B E I R U U I ≈-≈

输入电阻 R i =R B1 / R B2 / r be (1-5) 输出电阻 R O ≈R C (1-6) 由于电子器件性能的分散性比较大,因此在设计和制作晶体管放大电路时,离不开测量和调试技术。在设计前应测量所用元器件的参数,为电路设计提供必要的依据,在完成设计和装配以后,还必须测量和调试放大器的静态工作点和各项性能指标。一个优质放大器,必定是理论设计与实验调整相结合的产物。因此,除了学习放大器的理论知识和设计方法外,还必须掌握必要的测量和调试技术。 放大器的测量和调试一般包括:放大器静态工作点的测量与调试,消除干扰与自激振荡及放大器各项动态参数的测量与调试等。 1、 放大器静态工作点的测量与调试 1) 静态工作点的测量 测量放大器的静态工作点,应在输入信号u i =0的情况下进行, 即将放大器输入端与地端短接,然后选用量程合适的直流毫安表和直流电压表,分别测量晶体管的集电极电流I C 以及各电极对地的电位U B 、U C 和U E 。一般实验中,为了避免断开集电极,所以采用测量电压U E 或U C ,然后算出I C 的方法,例如,只要测出U E ,即可用 E E E C R U I I = ≈算出I C (也可根据C C CC C R U U I -= ,由U C 确定I C ),同时也能算出 U BE =U B -U E ,U CE =U C -U E 。 为了减小误差,提高测量精度,应选用内阻较高的直流电压表。 2) 静态工作点的调试 放大器静态工作点的调试是指对管子集电极电流I C (或U CE )的调整与测试。 静态工作点是否合适,对放大器的性能和输出波形都有很大影响。如工作点偏高,放大器在加入交流信号以后易产生饱和失真,此时u O 的负半周将被削底,如图2-2(a)所示;如工作点偏低则易产生截止失真,即u O 的正半周被缩顶(一般截止失真不如饱和失真明显),如图2-2(b)所示。这些情况都不符合不失真放大的要求。所以在选定工作点以后还必须进行动态调试,即在放大器的输入端加入一定的输入电压u i ,检查输出电压u O 的大小和波形是否满足要求。如不满足,则应调节静态工作点的位置。 (a) (b) 图1-2 静态工作点对u O 波形失真的影响 改变电路参数U CC 、R C 、R B (R B1、R B2)都会引起静态工作点的变化,如图2-3所示。但通常多采用调节偏置电阻R B2的方法来改变静态工作点,如减小R B2,则可使静态工作点提高等。

毕业设计-音频功率放大器

音频功率放大器的设计 内容提要: 本文介绍了音频功率放大器构成、功能、及工作原理等。关键词:LM1875 功率芯片音频功率放大器 Audio power amplifier Abstract: Keywords: LM1875 power chip Audio amplifier

目录 一、音频功率放大器简介 (1) (一)早期的晶体管功放 (1) (二)晶体管功放的发展和互调失真 (1) (三)功放输入级——差动与共射-共基 (3) (四)放大器的电源与甲类放大器 (4) (五)其他类型的放大器 (5) 二、放大器常见名词 (6) (一)灵敏度 (6) (二)阻尼系数 (6) (三)反馈 (6) (四)动态范围 (6) (五)响应 (6) (六)信噪比(S/N) (7) (七)屏蔽 (7) (八)阻抗匹配 (7) 三、音频放大器的设计 (7) (一)设计要求: (7) (二)设计过程 (7) 四、LM1875的简介 (16) (一)LM1875的参数简介 (16) (二)LM1875的工作原理: (16) (三)LM1875的电路特点 (17) 五、电路设计 (17) (一)典型应用电路 (17) (三)双电源音频功率放大器PCB图 (19) 六、电路制作与调试 (20) (一)利用PCB制作电路板 (20) (二)装配与调试: (20) 七、电路图的绘制与制板中应注意的问题 (21) (一)Sch原理图应注意常见问题 (21) (二)PCB设计中应注意的问题 (22) (三)焊盘应注意的常见问题 (23) 八、总结 (23) 参考文献 (25)

音频功率放大器的设计 一、音频功率放大器简介 在现代音响普及中,人们因生活层次、文化习俗、音乐修养、欣赏口味的不同,令对相同电气指标的音响设备得出不同的评价。所以,就高保真度功放而言,应该达到电气指标与实际听音指标的平衡与统一。 音频功率放大器是一个技术已经相当成熟的领域,几十年来,人们为之付出了不懈的努力,无论从线路技术还是元器件方面,乃至于思想认识上都取得了长足的进步。(一)早期的晶体管功放 半导体技术的进步使晶体管放大器向前迈进了一大步。自从有了晶体管,人们就开始用它制造功率放大器。 早期的放大器几乎全用锗管来制作,但由于锗管工艺上的一些原因,使得放大器中所用的晶体管,尤其是功放管性能指标不易做得很高,例如,共发射极截止频率fh的典型值为4kHz,大电流管的耐压值一般在30V一40V左右。这样,放大器的频率响应也就很狭窄,其3dB截止频率通常在10kHz左右,大大影响了音乐中高频信号的重现。再加上功放管的耐压、电流和功耗三个指标相互制约,制作较大功率的 OTL或OCL放大器不易寻到三个指标都满足要求的管子,所以不得不采用变压器耦合输出。变压器的相移又使电路中加深度负反馈变得很困难,谐波失真得不到充分的抑制,因此这一时期的晶体管放大器音质是很差的。“还是胆机规声”,这种看法的确事出有因。 (二)晶体管功放的发展和互调失真 随着半导体工艺的逐渐成熟,大电流、高耐压的晶体管品种日益增加,越来越多的功率放大器采用了无输出变压器的 OCL电路或 OTL电路(图一)。最初的大功率 PNP 管是锗管,而 NPN管是硅管,两者的特性差别非常显著,电路的对称性很差,人们更多采用的是图二所示的准互补电路,通过小功率硅管 Q1与一只大功率的 NPN硅管 Q2复合,得到一只极性与PNP管类似的大功率管,降低了电路因对称性差而招至的失真。 到了六十年代末,大功率的 PNP硅管商品化的时候,互补对称电路才得到 广泛的应用。元器件的进步使晶体管功率放大器的技术指标产生了质的飞跃,在主观音质评价方面,也改变了过去人们对晶体管功放的看法,无论是在厅堂扩音、电台节目制作还是家庭重放,晶体管功放都被大量地采用,首次在数量上以压倒性的优势超过了电子管功放。在商品化的晶体管扩音机中,相继出现了一些摧琛夺目的名机,如 JBL的SA600,Marantz互补对称电路MOdel15等等。

看懂晶体管收音机电路图

看懂晶体管收音机电路图 一、了解用途 了解所读的电子电路原理图用于何处、起什么作用,对于弄请电路工作原理、各部分的功能及性能指标都有指导意义。浏览下图可知:这是一个典型的晶体管收音机电路图。其用途是将接收到的高频信号通过输入电路后与收音机本身产生的一个振荡电流一起送入变频管内进行“混合”(混频),混频后在变频级负载回路(选频)产生一个新的频率(差频),即中频(465kHz),然后通过中放、检波、低放、功放后,推动扬声器发声。当然,还要求对振荡频率进行调节(f振-f信=465kHz),并能调节音量的大小。 二、找出通路 指找出信号流向的通路。通常。输入在左方、输出在右方(面向电路图)。信号传输的枢纽是有源器件,所以可按它们的连接关系来找。从左向右看过去,此电路的有源器件为BG1(变频管)、BG2与BG3(中放管)、BG4与BG5(低放管)、BG6与BG7(功放管),因此可大致推断信号是从BG1的基极输入,经过振荡并混频后产生中频信号,再经过两级中放,然后由检波器把中频信号变成音频信号,最后经过低放、功放后送至扬声器,这样,信号的通路就大致找了出来。通路找出后。电路的主要组成部分也就出来了。 三、化整为零 沿信号的主要通路。根据各基本单元电路或功能电路,将原理图分成若干具有单一功能的部分。划分的粗细程度与读者掌握电路类型的多少及经验有关。 根据上述通路可清楚地看出,整个电路可分别以BZ1及D1(2AP9)为界分成三部分,我们称之为变频级、中放级(包括检波级)和低功放级(输出)。 四、分析功能 划分成单元电路后,根据已有的知识。定性分析每个单元电路的工作原理和功能。 1.输入回路和变频级 该部分的任务是将接收到的各个频率的高频信号转变为一个固定的中频频率(465kHz)信号输送到中放级放大。它涉及到两个调谐回路: 一个是输入调谐回路,一个是本机振荡回路。输入调谐回路选择电感耦合形式(磁棒线圈B1),本机振荡回路选择变压器耦合振荡形式(B2)。 由于双连可变电容器(C1a、C1b)可同轴同步调谐输入回路和本机振荡回路的频率,因而可使:二者的频率差保持不变。 变频级电路的本振和混频由一只三极管BG1担任。由于三极管的放大作用和非线性特性,所以可获得频率变换作用。从下图中可以看出:这是一个振荡电压由发射极注入、信号由基极注入的变频级。两个信号同时在晶体管内混合,通过晶体管的非线性作用再通过中频变压器BZ1的选频作用,选出频率为f振-f信=465kHz的中频调幅波送到中放级。 2.中放级(含检波) 1)中频放大级中放级采用的是两级单调谐中频放大。变频级输出的中频调幅波信号由BZ1次级送到BG2的基极进行放大,放大后的中频信号再送到BG3的基极,由BZ3次级输出被放大的信号。三个中频变压器都应准确调在465kHz。 中频放大级的特点是用并联的LC调谐回路作负载。其原因是:并联谐振回路同串联谐振回路一样,能对某一频率的信号产生谐振,不同的是在谐振时。串联谐振回路的阻抗很小,电路中的电流很大,阻抗越小,Q值越高;而并联谐振回路在谐振时,阻抗很大,回路两端电压很高,并联阻抗越大,损耗越小,Q值越高。 由于中频放大器采用了谐振于465kHz的并联回路作负载。因此用了中频放大器后,大

晶体管功放调试方法

晶体管功放调试方法 作者mzsrz 从早期的厚膜功放到现在的分立功放,前前后后我折腾了有20个年头。自知玩音响的水很深,比我能力强的人有很多,只是他们多半隐居论坛,很少发言。由于论坛在晶体管功放调试方面缺少相关的文章,所以斗胆抛砖引玉,把自己多年来的调试功放经验总结出来,让更多的朋友分享。有不对的地方,还请方家指证。 功放要做出声响来很容易,但是要想做好,就并不那么容易了,除了并不知道哪些是真正影响到功放性能的地方,往往把精力放在了一些并不太重要的事情上,把该注意的地方忽略掉了。更有些人以为用补品堆砌起来就是好功放,或参照某名机复刻以为就要有合理的设计和制作,还要有精心的调试,方能成材。可惜现在有些朋友DIY出来的功放其实都不如厂机,这并不是打击某些人的信心,而是事实。其主要原因是很多人能达到名机的水准,其实这些都是舍本求末的方法,因为他们并不懂得调试功放在DIY中的重要作用。于是我总结了以下几点加以说明。 调试秘诀之一是高次谐波失真越小越好。 功放低次谐波失真大一点无所谓(当然最好是没有,除非你喜欢听失真的声音),但是高次谐波一定不能有,这是晶体管功放生硬刺耳声音的元凶。当功放装配完成后,一个非常重要的工作就是调静态电流,它不是一个可有可无,可大可小的随意调整,而是一个非常有讲究的调整,调整得好往往可以改变一台功放的档次。在调静态电流时最好有失真仪或频谱仪,如果没有,乙类功放可按下表(取自《音频功率放大器设计手册》)给出的参数进行调整。甲类机器调到额定电流即可,这方面可以省略不考虑。 最优静态电流调整对照表:

图是指一对管的情况,如果是两对管,射极电阻又是独立(即4只),则静态电流加倍,但R两端电压不变,如果遇到上下两管不配对情况导致上下两管电流有误差,则取上下两管R1+R2的电压总和。 下图的测试频率是2kHZ,负载为8Ω,输出75W时的失真情况。我故意把功放设成欠偏臵(即静态电流很小)状态看看它的失真成份是怎么样的。(下面的图都是经过陷波器滤掉基频后再经低失真运放放大后的情况,为的是能更直观分析失真成份,因为频谱仪的分辨率有限) 静态电流不足时的测试图:可以看出高次谐波比优化调整后的测试图大了20多db

晶体管放大器结构原理图解

晶体管放大器结构原理图解 功率放大器的作用是将来自前置放大器的信号放大到足够能推动相应扬声器系统所需的功率。就其功率来说远比前置放大器简单,就其消耗的电功率来说远比前置放大器为大,因为功率放大器的本质就是将交流电能“转化”为音频信号,当然其中不可避免地会有能量损失,其中尤以甲类放大和电子管放大器为甚。 一、功率放大器的结构 功率放大器的方框图如图1-1所示。 1、差分对管输入级 输入级主要起缓冲作用。输入输入阻抗较高时,通常引入一定量的负反馈,增加整个功放电路的稳定性和降低噪声。 前置激励级的作用是控制其后的激励级和功劳输出级两推挽管的直流平衡,并提供足够的电压增益。 激励级则给功率输出级提供足够大的激励电流及稳定的静态偏压。激励级和功率输出级则向扬声器提供足够的激励电流,以保证扬声器正确放音。此外,功率输出级还向保护电路、指示电路提供控制信号和向输入级提供负反馈信号(有必要时)。 一、放大器的输入级功率放大器的输入级几乎一律都采用差分对管放大电路。由于它处理的信号很弱,由电压差分输入给出的是与输入端口处电压基本上无关的电流输出,加之他的直流失调量很小,固定电流不再必须通过反馈网络,所以其线性问题容易处理。事实上,它的线性远比单管输入级为好。图1-2示出了3 种最常用的差分对管输入级电路图。

图1-2种差分对管输入级电路 1、加有电流反射镜的输入级 在输入级电路中,输入对管的直流平衡是极其重要的。为了取得精确的平衡,在输入级中加上一个电流反射镜结构,如图1-3所示。它能够迫使对管两集电极电流近于相等,从而可以对二次谐波准确地加以抵消。此外,流经输入电阻与反馈电阻的两基极电流因不相等所造成的直流失调也变得更小了,三次谐波失真 也降为不加电流反射镜时的四分之一。 在平衡良好的输入级中,加上一个电流反射镜,至少可把总的开环增益提高6Db。而对于事先未能取得足够好平衡的输入级,加上电流反射镜后,则提高量最大可达15dB。另一个结果是,起转换速度在加电流反射镜后,大致提高了一倍。 2、改进输入级线性的方法 在输入级中,即使是差分对管采用了电流反射镜结构,也仍然有必要采取一定措施,以见效她的高频失真。下面简述几钟常用的方法。 1)、恒顶互导负反馈法 图1-4示出了标准输入级(a)和加有恒定互导(gm)负反馈输入级(b)的电路原理图。经计算,各管加入的负反馈电阻值为22Ω当输入电压级为-40dB条件下,经测试失真由0.32%减小到了0.032%。同时,在保持gm为恒定的情况下,电流增大两倍,并可提高转换速率(10~20)V/us。

音频功率放大器设计与制作

引言 (1) 第一章课题概况 (3) §1.1 课题设计要求 (3) §1.2 毕业设计目的 (3) 第二章音响技术简介 (4) §2.1人耳的听觉特性 (4) §2.2高保真度 (4) 第三章高保真音响的原理介绍 (5) §3.1设计思路 (5) §3.2滤波器的介绍 (5) §3.3功率放大器的介绍 (6) §3.4 音频功率放大器 (8) §3.5 电源 (12) 第四章焊接与调试 (13) §4.1电路的焊接 (13) §4.2电路的调试 (14) 第五章全文总结和展望 (14) §5.1总结 (14) §5.2展望 (14) 致谢 ............................................................................................................ 错误!未定义书签。参考文献........................................................................................................... 错误!未定义书签。附录.................................................................................................................. 错误!未定义书签。

人们总是喜欢用听音乐的方式来放松工作中的疲劳,或者欢聚庆祝,或者陶冶情操。随着改革开放的深入,经济的快速增长和城市规模的不断扩大,人类的生活水平也都相应的提高了,人们懂得了听音乐来缓解生活中所带来的各种巨大压力,通过解放神经来提高自己的生活水平,如今的市场上有着许许多多,琳琅满目的音响品牌,具体那些好,商家各执一词,消费者也很难选择,因此,通过此次设计,可以解决消费者难以选择的麻烦,直接自己动手制作,了解音响的结构和特点,不光扩大了自己的知识面,从制作到完成作品,最后欣赏自己的作品,简直有种说不出的美妙感觉,连上CD机,放上自己喜欢的音乐,来享受音乐的魅力,从而能缓解压力,使心情放松,能更好的投入工作,从而提高自己的生活水平。 2.1AV有源音响是音频功率放大器和扬声器的有机组合体。放大器置于音响内部,结构紧凑、价格低廉、系统消耗低、占用空间小,是居室不太宽敞的家庭和广大音响爱好者较喜欢的一种机型。这种音响可直接接各种家庭有源设备(如随身听、CD唱机、收音机、录像机、电视机、影碟机等),有的还设有开机延时和扬声器保护电路,消除开机喇叭冲击噪声,解除了烧坏喇叭的后顾之忧。全部电路有集成电路组成,须调试,还给业余制作提供了可靠保障。

音频功率放大器

编号: 课程设计说明书 题目:OCL音频功率放大器 院(系):信息与通信学院 专业:电子信息工程 学生姓名:蔡宝明 学号: 1200220707 指导教师:符强 2014年10月30日

摘要 OCL功率放大器是一种直接耦合的功率放大器,它具有频响宽,保真度高。动态特性好及易于集成化等特点。OCL是英文Output Capacitor Less 的缩写,意为无输出电容。采用双电源供电,使用了正负电源,在电压不太高的情况下,也能获得比较大的输出功率,省去了输出端的耦合电容。使放大器低频特性得到扩展。OCL功率放大电路也是定压式输出电路,由于电路性能比较好,所以广泛的应用在高保真扩音设备中。本次课程设计采用分立元件电路法设计一台OCL音频功率放大器。 设计的功率放大电路由三部分组成:输入级、推动级和输出级。输入级由有两个三极管组成差分放大电路,推动级由一个三极管组成,输出级由两个三极管对称构成。两输出管分别由正、负两组电源供电,扬声器直接接在两输出管的输出端与地之间,功率放大电路类型很多,目前电子电路中广泛采用乙类(或甲乙类)互补对称功率放大电路,所以这里只对乙类(或甲乙类)互补功率放大电路进行分析。 关键词:OCL功率放大器、双电源、分立元件电路法、互补功率放大电路

Abstract OCL power amplifier is a kind of direct coupling of power amplifier, it has a wide frequency response, high fidelity.Good dynamic characteristics and easy integration, etc.The abbreviation of OCL is English the Output Capacitor Less, meaning no Output capacitance.With double power supply, the use of the positive and negative power supply, under the condition of the voltage is too high, also can obtain larger output power, saves the output coupling capacitance.The character of low frequency amplifier was expanded.OCL power amplification circuit and constant pressure output circuit, because the circuit performance is good, so widely used in the high fidelity audio amplifiers.The course design of discrete component circuit method is used to design an OCL audio power amplifier. Design of power amplifier circuit consists of three parts: the input stage, promote the level and output level.Input stage is composed of two triode differential amplifier circuit, driver stage consists of a transistor, the output level consists of two triode symmetry.Two output pipe respectively by the positive and negative two sets of power supply, the speaker directly connect between the output pipe output terminal and ground, power amplification circuit type many, now widely used in electronic circuit b class (or class ab) complementary symmetry power amplifier circuit, so here only to b class (or class ab) complementary power amplification circuit is analyzed. Key words:the OCL power amplifier, dual power supply, discrete element method, the complementary power amplification circuit

相关文档
最新文档