非隔离式开关电源PCB布局设计技巧

非隔离式开关电源PCB布局设计技巧
非隔离式开关电源PCB布局设计技巧

非隔离式开关电源PCB布局设计技巧一个良好的布局设计可优化效率,减缓热应力,并尽量减小走线与元件之间的噪声与作用。这一切都源于设计人员对电源中电流传导路径以及信号流的理解。

当一块原型电源板首次加电时,最好的情况是它不仅能工作,而且还安静、发热低。然而,这种情况并不多见。

开关电源的一个常见问题是“不稳定”的开关波形。有些时候,波形抖动处于声波段,磁性元件会产生出音频噪声。如果问题出在印刷电路板的布局上,要找出原因可能会很困难。因此,开关电源设计初期的正确PCB布局就非常关键。

电源设计者要很好地理解技术细节,以及最终产品的功能需求。因此,从电路板设计项目一开始,电源设计者应就关键性电源布局,与PCB布局设计人员展开密切合作。

一个好的布局设计可优化电源效率,减缓热应力;更重要的是,它最大限度地减小了噪声,以及走线与元件之间的相互作用。为实现这些目标,设计者必须了解开关电源内部的电流传导路径以及信号流。要实现非隔离开关电源的正确布局设计,务必牢记以下这些设计要素。

布局规划

对一块大电路板上的嵌入dc/dc电源,要获得最佳的电压调节、负载瞬态响应和系统效率,就要使电源输出靠近负载器件,尽量减少PCB走线上的互连阻抗和传导压降。确保有良好的空气流,限制热应力;如果能采用强制气冷措施,则要将电源靠近风扇位置。

另外,大型无源元件(如电感和电解电容)均不得阻挡气流通过低矮的表面封装半导体元件,如功率MOSFET或PWM控制器。为防止开关噪声干扰到系统中的模拟信号,应尽可能避免在电源下方布放敏感信号线;否则,就需要在电源层和小信号层之间放置一个内部接地层,用做屏蔽。

关键是要在系统早期设计和规划阶段,就筹划好电源的位置,以及对电路板空间的需求。有时设计者会无视这种忠告,而把关注点放在大型系统板上那些更“重要”或“让人兴奋”的电路。电源管理被看作事后工作,随便把电源放在电路板上的多余空间上,这种做法对高效率而可靠的电源设计十分不利。

对于多层板,很好的方法是在大电流的功率元件层与敏感的小信号走线层之间布放直流地或直流输入/输出电压层。地层或直流电压层提供了屏蔽小信号走线的交流地,使其免受高噪声功率走线和功率元件的干扰。

作为一般规则,多层PCB板的接地层或直流电压层均不应被分隔开。如果这种分隔不可避免,就要尽量减少这些层上走线的数量和长度,并且走线的布放要与大电流保持相同的方向,使影响最小化。

图1a和1c分别是六层和四层开关电源PCB的不良层结构。这些结构将小信号层夹在大电流功率层和地层之间,因此增加了大电流/电压功率层与模拟小信号层之间耦合的电容噪声。

图中的1b和1d则分别是六层和四层PCB设计的良好结构,有助于最大限度减少层间耦合噪声,地层用于屏蔽小信号层。要点是:一定要挨着外侧功率级层放一个接地层,外部大电流的功率层要使用厚铜箔,尽量减少PCB传导损耗和热阻。

功率级的布局

开关电源电路可以分为功率级电路和小信号控制电路两部分。功率级电路包含用于传输大电流的元件,一般情况下,要首先布放这些元件,然后在布局的一些特定点上布放小信号控制电路。

大电流走线应短而宽,尽量减少PCB的电感、电阻和压降。对于那些有高di/dt 脉冲电流的走线,这方面尤其重要。

图2给出了一个同步降压转换器中的连续电流路径和脉冲电流路径,实线表示连续电流路径,虚线代表脉冲(开关)电流路径。脉冲电流路径包括连接到下列元件上的走线:输入去耦陶瓷电容CHF,上部控制FET QT以及下部同步FET QB,还有选接的并联肖特基二极管。

图3a给出了高di/dt电流路径中的PCB寄生电感。由于存在寄生电感,因此脉冲电流路径不仅会辐射磁场,而且会在PCB走线和MOSFET上产生大的电压振铃和尖刺。为尽量减小PCB电感,脉冲电流回路(所谓热回路)布放时要有最小的圆周,其走线要短而宽。

高频去耦电容CHF应为0.1μF~10μF,X5R或X7R电介质的陶瓷电容,它有极低的ESL(有效串联电感)和ESR(等效串联电阻)。较大的电容电介质(如Y5V)可能使电容值在不同电压和温度下有大的下降,因此不是CHF的最佳材料。

图3b为降压转换器中的关键脉冲电流回路提供了一个布局例子。为了限制电阻压降和过孔数量,功率元件都布放在电路板的同一面,功率走线也都布在同一层上。当需要将某根电源线走到其它层时,要选择在连续电流路径中的一根走线。当用过孔连接大电流回路中的PCB层时,要使用多个过孔,尽量减小阻抗。

图4显示的是升压转换器中的连续电流回路与脉冲电流回路。此时,应在靠近MOSFET QB与升压二极管D的输出端放置高频陶瓷电容CHF。

图5 显示的是升压转换器中的热回路与寄生PCB电感(a);为减少热回路面积而建议采用的布局(b)

图5是升压转换器中脉冲电流回路的一个布局例子。此时关键在于尽量减小由开关管QB、整流二极管D和高频输出电容CHF形成的回路。图6提供了一个同步降压电路的例子,它强调了去耦电容的重要性。图6a是一个双相12VIN、

2.5VOUT/30A(最大值)的同步降压电源,使用了LTC3729双相单VOUT控制器IC,在无负载时,开关结点SW1和SW2的波形以及输出电感电流都是稳定的(图6b)。但如果负载电流超过13A,SW1结点的波形就开始丢失周期。负载电流更高时,问题会更恶化(图6c)。

在各个通道的输入端增加两只1μF的高频陶瓷电容,就可以解决这个问题,电容隔离开了每个通道的热回路面积,并使之最小化。即使在高达30A的最大负载电流下,开关波形仍很稳定。

高DV/DT开关区

图2和图4中,在VIN(或VOUT)与地之间的SW电压摆幅有高的dv/dt速率。这个结点上有丰富的高频噪声分量,是一个强大的EMI噪声源。为了尽量减小开关结点与其它噪声敏感走线之间的耦合电容,你可能会让SW铜箔面积尽可能小。

但是,为了传导大的电感电流,并且为功率MOSFET管提供散热区,SW结点的PCB区域又不能够太小。一般建议在开关结点下布放一个接地铜箔区,提供额外的屏蔽。

如果设计中没有用于表面安装功率MOSFET与电感的散热器,则铜箔区必须有足够的散热面积。对于直流电压结点(如输入/输出电压与电源地),合理的方法是让铜箔区尽可能大。

多过孔有助于进一步降低热应力。要确定高dv/dt开关结点的合适铜箔区面积,就要在尽量减小dv/dt相关噪声与提供良好的MOSFET散热能力两者间做一个设计平衡。

功率焊盘形式

注意功率元件的焊盘形式,如低ESR电容、MOSFET、二极管和电感。

对于去耦电容,正负极过孔应尽量互相靠近,以减少PCB的ESL。这对低ESL

电容尤其有效。小容值低ESR的电容通常较贵,不正确的焊盘形式及不良走线都会降低它们的性能,从而增加整体成本。通常情况下,合理的焊盘形式能降低PCB噪声,减小热阻,并最大限度降低走线阻抗以及大电流元件的压降。

大电流功率元件布局时有一个常见的误区,那就是不正确地采用了热风焊盘(thermal relief)。非必要情况下使用热风焊盘,会增加功率元件之间的互连阻抗,从而造成较大的功率损耗,降低小ESR电容的去耦效果。如果在布局时用过孔来传导大电流,要确保它们有充足的数量,以减少阻抗。此外,不要对这些过孔使用热风焊盘。

控制电路布局

使控制电路远离高噪声的开关铜箔区。对降压转换器,好的办法是将控制电路置于靠近VOUT+端,而对升压转换器,控制电路则要靠近VIN+端,让功率走线承载连续电流。

如果空间允许,控制IC与功率MOSFET及电感(它们都是高噪声高热量元件)之间要有小的距离(0.5英寸~1英寸)。如果空间紧张,被迫将控制器置于靠近功率MOSFET与电感的位置,则要特别注意用地层或接地走线,将控制电路与功率元件隔离开来。

控制电路应有一个不同于功率级地的独立信号(模拟)地。如果控制器IC上有独立的SGND(信号地)和PGND(功率地)引脚,则应分别布线。对于集成了MOSFET 驱动器的控制IC,小信号部分的IC引脚应使用SGND。

信号地与功率地之间只需要一个连接点。合理方法是使信号地返回到功率地层的一个干净点。只在控制器IC下连接两种接地走线,就可以实现两种地。

控制IC的去耦电容应靠近各自的引脚。为尽量减少连接阻抗,好的方法是将去

耦电容直接接到引脚上,而不通过过孔。

回路面积与串扰

两个或多个邻近导体可以产生容性耦合。一个导体上的高dv/dt会通过寄生电容,在另一个导体上耦合出电流。为减少功率级对控制电路的耦合噪声,高噪声的开关走线要远离敏感的小信号走线。如果可能的话,要将高噪声走线与敏感走线布放在不同的层,并用内部地层作为噪声屏蔽。

空间允许的话,控制IC要距离功率MOSFET和电感有一个小的距离(0.5英寸~1

英寸),后者既有大噪声又发热。

LTC3855控制器上的FET驱动器TG、BG、SW和BOOST引脚都有高的dv/dt

开关电压。连接到最敏感小信号结点的LTC3855引脚是:Sense+/Sense-、FB、ITH和SGND,如果布局时将敏感的信号走线靠近了高dv /dt结点,则必须在信号走线与高dv/dt走线之间插入接地线或接地层,以屏蔽噪声。

在布放栅极驱动信号时,采用短而宽的走线有助于尽量减小栅极驱动路径中的阻抗。

如果在BG走线下布放了一个PGND层,低FET的交流地返回电流将自动耦合到一个靠近BG走线的路径中。交流电流会流向它所发现的最小回路/阻抗。此时,低栅极驱动器不需要一个独立的PGND返回走线。最好的办法是尽量减少栅极驱动走线通过的层数量,这样可防止栅极噪声传播到其它层。

在所有小信号走线中,电流检测走线对噪声最为敏感。电流检测信号的波幅通常小于100mV,这与噪声的波幅相当。以LTC3855为例,Sense+/Sense-走线应以最小间距并行布放(Kelvin检测),以尽量减少拾取di/dt相关噪声的机会。

另外,电流检测走线的滤波电阻与电容都应尽可能靠近IC引脚。当有噪声注入

长的检测线时,这种结构的滤波效果最好。如果采用带R/C网络的电感DCR电流检测方式,则DCR检测电阻R应靠近电感,而DCR检测电容C则应靠近IC.

如果在走线到Sense-的返回路径上使用了一个过孔,则过孔不应接触到其它的

内部VOUT+层。否则,过孔可能会传导大的VOUT+电流,所产生的压降可能破坏电流检测信号。要避免在高噪声开关结点(TG、BG、SW和BOOST走线)附近

布放电流检测走线。如可能,在电流检测走线所在层与功率级走线层之间放置地层。

如果控制器IC有差分电压远程检测引脚,则要为正、负远程检测线采用独立的走线,同时也采用Kelvin检测连接。

走线宽度的选择

对具体的控制器引脚,电流水平和噪声敏感度都是唯一的,因此,必须为不同信号选择特定的走线宽度。通常情况下,小信号网络可以窄些,采用10mil~15mil 宽度的走线;大电流网络(栅极驱动、VCC以及PGND)则应采用短而宽的走线。这些网络的走线建议至少为20mil宽。

高效率开关电源设计实例.pdf

高效率开关电源设计实例--10W同步整流B u c k变换器 以下设计实例中,包含了各种技巧来提高开关电源的总体效率。有源钳位和元损吸收电路的设计主 要依靠经验来完成的,所以不在这里介绍。 采用新技术时必须小心,因为很多是有专利的,可能需要直接付专利费给专利持有人,或在购买每 一片控制IC芯片时,支付附加费用。在将这些电源引入生产前,请注意这个问题。 10W同步整流Buck变换器 应用 此设计实例是PWM设计实例1的再设计,它包括了如何设计同步整流器(板载的10W降压Buck 变换器)。 在设计同步整流开关电源时,必须仔细选择控制IC。为了效率最高和体积最小,一般同步控制器在 系统性能上各有千秋,使得控制器只是在供应商提到的应用场合中性能较好。很多运行性能的微妙 之处不能确定,除非认真读过数据手册。例如,每当作者试图设计一个同步整流变换器,并试图使 用现成买来的IC芯片时,3/4设计会被丢弃。这是因为买来的芯片功能或工作模式往往无法改变。 更不用说,当发现现成方案不能满足需求时,是令人沮丧的(见图20的电路图)。 设计指标 输入电压范围: DC+10~+14V 输出电压: DC+5.0V 额定输出电流: 2.0A 过电流限制: 3.0A 输出纹波电压: +30mV(峰峰值) 输出调整:±1% 最大工作温度: +40℃ “黑箱”预估值 输出功率: +5.0V*2A=10.0W(最大) 输入功率: Pout/估计效率=10.0W/0.90=11.1W 功率开关损耗 (11.1W-10W) * 0.5=0.5W 续流二极管损耗: (1l.lW-10W)*0.5=0.5W 输入平均电流 低输入电压时 11.1W/10V=1.1lA 高输入电压时: 11.1W/14V=0.8A 估计峰值电流: 1.4Iout(rated)=1.4×2.0A=2.8A 设计工作频率为300kHz。

开关电源课程设计报告

现代电源技术课程实践报告 院系:物理与电气工程学院 班级:电气自动化一班 姓名: 李向伟 学号: 111101007 指导老师:苗风东

一、设计要求 (1)输入电压:AC220±10%V (2)输出电压: 12V (3)输出功率:12W (4)开关频率: 80kHz 二、反激稳压电源的工作原理

图2-1 反激稳压电源的电路图 三、 反激电路主电路设计 (1)(1)Np Vdc Ton Vo Tr Nsm -=+ (3-1) 1. 反激变压器主电路工作原理 反激式变换器以其电路结构简单,成本低廉而深受广大开发工程师的喜爱,它特别适合小功率电源以及各种电源适配器.但是反激式变换器的设计难点是变压器的设计,因为输入电压范围宽,特别是在低输入电压,满负载条件下变压器会工作在连续电流模式(CCM),而在高输入电压,轻负载条件下变压器又会工作在不连续电流模式(DCM);另外关于CCM 模式反激变压器设计的论述文章极少,在大多数开关电源技术书籍的论述中, 反激变压器的设计均按完全能量传递方式(DCM

模式)或临界模式来计算,但这样的设计并未真实反映反激变压器的实际工作情况,变压器的工作状态可能不是最佳.因此结合本人的实际调试经验和心得,讲述一下不完全能量传递方式(CCM) 反激变压器的设计. 1)工作过程: S 开通后,VD 处于断态,W1绕组的电流线性增长,电感储能增加; S 关断后,W1绕组的电流被切断,变压器中的磁场能量通过W2绕组和VD 向输出端释放。 反激电路的工作模式: 反激电路的理想化波形 S u S i S i V D t o t o ff t t t t U i O O O O 反激电路原理图

反激式开关电源变压器的设计方法

反激式开关电源变压器的设计方法 1引言 在开关电源各类拓扑结构中,反激式开关电源以其小体积、低成本的优势,广泛应用在高电压、小功率的场合。反激式开关电源设计的关键在于其变压器的设计。由于反激变压器可以工作在断续电流(DCM )和连续电流(CCM )两种模式,因此增加了设计的复杂性。本文考虑到了两种工作模式下的差异,详细介绍了反激变压器的设计方法和步骤。 2基本原理 R 1 V o 图1 反激变换器原理图 反激变压器实际上是一个耦合电感,首先要存储能量,然后再将磁能转化为电能传输出去[1]。如图1所示,当开关管r T 导通时,输入电压i V 加在变压器初级线圈上。由于初级与次级同名端相反,次级二极管1D 截止,能量储存在初级线圈中,初级电流线性上升,变压器作为电感运行。当r T 关断时,励磁电感的电流使初级和次级绕组电压反向,1D 导通,储存在线圈中的能量传递给负载。按照电感线圈中电流的特点,可分为断续电流模式(DCM )和连续电流模式(CCM )。电流波形如图2所示。

初级 次级 初级 次级 I p2I p1I s2 I s1 I p2 I p1 I s2 I s1 DCM CCM 图2 DCM 和CCM 电流波形 DCM 为完全能量转换,在开关管开通时,初级电流从零开始逐渐增加,开关管关断期间,次级电流逐渐下降到零。 CCM 为不完全能量转换,开关管开通时,初级电流有前沿阶梯,开关管关断期间,次级电流为阶梯上叠加的衰减三角波。 3设计步骤 (1)各项参数的确定 反激式开关电源变压器的设计中涉及到很多参数,因此在计算之前必须要明确已知量和未知量。 已知参数一般由电源的设计要求和特点来确定,包括:直流输入电压i V (i min i i max V V V ≤≤),输出电压o V ,输出功率o P ,效率o i P = P η,工作频率1 f=T 。 未知量即所要求的参数包括:磁芯型号,初级线圈匝数p N ,次级线圈匝数s N ,初级导线直径p d ,次级导线直径s d ,气隙长度g l 。 另外,为了能够对未知参数进行求解,我们还必须要指定开关管的耐压值或开关的最大占空比。本文中,以规定满载和最小输入电压条件下最大占空比为 max D 来进行后续的计算。 为简化计算公式,本文中忽略开关管及二极管导通压降。

开关电源测量的经验总结

电子器件的电源测量通常情况是指开关电源的测量(当然还有线性电源)。讲述开关电源的资料非常多,本文讨论的内容为PWM开关电源,而且仅仅是作为测试经验的总结,为大家简述容易引起系统失效的一些因素。因此,在阅读本文之前,已经假定您对于开关电源有一定的了解。 1 开关电源简述 开关电源(Switching Mode Power Supply,常常简化为SMPS),是一种高频电能转换装置。其功能是将电压透过不同形式的架构转换为用户端所需求的电压或电流。 开关电源的拓扑指开关电源电路的构成形式。一般是根据输出地线与输入地线有无电气隔离,分为隔离及非隔离变换器。非隔离即输入端与输出端相通,没有隔离措施,常见的DC/DC变换器大多是这种类型。所谓隔离是指输入端与输出端在电路上不是直接联通的,使用隔离变压器通过电磁变换方式进行能量传递,输入端和输出端之间是完全电气隔离的。 对于开关变换器来说,只有三种基本拓扑形式,即: ● Buck(降压) ● Boost(升压) ● Buck-Boost(升降压) 三种基本拓扑形式,是电感的连接方式决定。若电感放置于输出端,则为Buck 拓扑;电感放置于输入端,则是Boost拓扑。当电感连接到地时,就是Buck-Boost拓扑。 2 容易引发系统失效的关键参数测试 以下的测试项目除了是指在静态负载的情况下测试的结果,只有噪声(noise)测试需要用到动态负载。

2.1 Phase点的jitter 图一 对于典型的PWM开关电源,如果phase点jitter太大,通常系统会不稳定(和后面提到的相位裕量相关),对于200~500K的PWM开关电源,典型的jitter 值应该在1ns以下。 2.2 Phase点的塌陷 有时候工程师测量到下面的波形,这是典型的电感饱和的现象。对于经验不够丰富的工程师,往往会忽略掉。电感饱和会让电感值急剧下降,类似于短路了,这样会造成电流的急剧增加,MOS管往往会因为温度的急剧增加而烧毁。这时需要更换饱和电流更大的电感。 图二 2.3 Shoot through测试

开关电源设计的一般注意事项

开关电源设计的一般注意事项 1、布局: 【1】脉冲电压连线尽可能短; 【2】其中输入开关管到变压器连线,输出变压器到整流管连接线.脉冲电流环路尽可能小;【3】如输入滤波电容正到变压器到开关管返回电容负.输出部分变压器出端到整流管到输出电感到输出电容返回变压器; 【4】电路中X电容要尽量接近开关电源输入端; 【6】输入线应避免与其他电路平行,应避开。Y电容应放置在机壳接地端子或FG连接端;【7】共摸电感应与变压器保持一定距离,以避免磁偶合,如不好处理可在共摸电感与变压器间加一屏蔽,以上几项对开关电源的EMC性能影响较大; 【8】输出电容一般可采用两只一只靠近整流管另一只应靠近输出端子,可影响电源输出纹波指标; 【9】两只小容量电容并联效果应优于用一只大容量电容. 发热器件要和电解电容保持一定距离,以延长整机寿命,电解电容是开关电源寿命的瓶劲,如变压器、功率管、大功率电阻要和电解保持距离,电解之间也须留出散热空间,条件允许可将其放置在进风口;【10】控制部分要注意:高阻抗弱信号电路连线要尽量短如取样反馈环路,在处理时要尽量避免其受干扰、电流取样信号电路,特别是电流控制型电路,处理不好易出现一些想不到的意外,其中有一些技巧,现以3843电路举例见图(1)图一效果要好于图二,图二在满载时用示波器观测电流波形上明显叠加尖刺,由于干扰限流点比设计值偏低,图一则没有这种现象、还有开关管驱动信号电路; 【11】开关管驱动电阻要靠近开关管,可提高开关管工作可靠性,这和功率MOSFET高直流阻抗电压驱动特性有关; 【12】关于反激电源的占空比,原则上反激电源的最大占空比应该小于0.5,否则环路不容易补偿。 3、线间距:随着印制线路板制造工艺的不断完善和提高,一般加工厂制造出线间距等于甚至小于0.1mm已经不存在什么问题,完全能够满足大多数应用场合。考虑到开关电源所采用的元器件及生产工艺,一般双面板最小线间距设为0.3mm,单面板最小线间距设为0.5mm,焊盘与焊盘、焊盘与过孔或过孔与过孔,最小间距设为0.5mm,可避免在焊接操作过程中出现“桥接”现象,这样大多数制板厂都能够很轻松满足生产要求,并可以把成品率控制得非常高,亦可实现合理的布线密度及有一个较经济的成本。

高效率开关电源设计实例

高效率开关电源设计实 例 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

高效率开关电源设计实例--10W同步整流B u c k变换器 以下设计实例中,包含了各种技巧来提高开关电源的总体效率。有源钳位和元损吸收电路的设计主要依靠经验来完成的,所以不在这里介绍。 采用新技术时必须小心,因为很多是有专利的,可能需要直接付专利费给专利持有人,或在购买每一片控制IC芯片时,支付附加费用。在将这些电源引入生产前,请注意这个问题。 10W同步整流Buck变换器 应用 此设计实例是PWM设计实例1的再设计,它包括了如何设计同步整流器()。 在设计同步整流开关电源时,必须仔细选择控制IC。为了效率最高和体积最小,一般同步控制器在系统性能上各有千秋,使得控制器只是在供应商提到的应用场合中性能较好。很多运行性能的微妙之处不能确定,除非认真读过数据手册。例如,每当作者试图设计一个同步整流变换器,并试图使用现成买来的IC芯片时,3/4设计会被丢弃。这是因为买来的芯片功能或工作模式往往无法改变。更不用说,当发现现成方案不能满足需求时,是令人沮丧的(见图20的电路图)。 设计指标 输入电压范围: DC+10~+14V 输出电压: DC+ 额定输出电流: 过电流限制: 输出纹波电压: +30mV(峰峰值) 输出调整:±1% 最大工作温度: +40℃ “黑箱”预估值 输出功率: +*2A=(最大) 输入功率: Pout/估计效率=/= 功率开关损耗* 0.5= 续流二极管损耗:*= 输入平均电流 低输入电压时/10V= 高输入电压时:/14V=0.8A 估计峰值电流: 1.4Iout(rated)=1.4×2.0A=2.8A 设计工作频率为300kHz。

爱浦AC-DC模块电源设计心得

电源设计心得 Q1:如何来评估一个系统的电源需求 Answer:对于一个实际的电子系统,要认真的分析它的电源需求。不仅仅是关心输入电压,输出电压和电流,还要仔细考虑总的功耗,电源实现的效率,电源部分对负载变化的瞬态响应能力,关键器件对电源波动的容忍范围以及相应的允许的电源纹波,还有散热问题等等。功耗和效率是密切相关的,效率高了,在负载功耗相同的情况下总功耗就少,对于整个系统的功率预算就非常有利了,对比LDO和开关电源,开关电源的效率要高一些。同时,评估效率不仅仅是看在满负载的时候电源电路的效率,还要关注轻负载的时候效率水平。 至于负载瞬态响应能力,对于一些高性能的CPU应用就会有严格的要求,因为当CPU突然开始运行繁重的任务时,需要的启动电流是很大的,如果电源电路响应速度不够,造成瞬间电压下降过多过低,造成CPU运行出错。 一般来说,要求的电源实际值多为标称值的+-5%,所以可以据此计算出允许的电源纹波,当然要预留余量的。 散热问题对于那些大电流电源和LDO来说比较重要,通过计算也是可以评估是否合适的。 Q2:如何选择合适的电源实现电路 Answer:根据分析系统需求得出的具体技术指标,可以来选择合适的电源实现电路了。一般对于弱电部分,包括了LDO(线性电源转换器),开关电源电容降压转换器和开关电源电感电容转换器。相比之下,LDO设计最易实现,输出纹波小,但缺点是效率有可能不高,发热量大,可提供的电流相较开关电源不大等等。而开关电源电路设计灵活,效率高,但纹波大,实现比较复杂,调试比较烦琐等等Q3:如何为开关电源电路选择合适的元器件和参数 Answer:很多的未使用过开关电源设计的工程师会对它产生一定的畏惧心理,比如担心开关电源的干扰问题,PCB layout问题,元器件的参数和类型选择问题等。其实只要了解了,使用一个开关电源设计还是非常方便的。 一个开关电源一般包含有开关电源控制器和输出两部分,有些控制器会将MOSFET集成到芯片中去,这样使用就更简单了,也简化了PCB设计,但是设计的灵活性就减少了一些。 开关控制器基本上就是一个闭环的反馈控制系统,所以一般都会有一个反馈输出

开关电源设计技巧连载十六:推挽式变压器开关电源储能滤波电感、电容参数的计算

开关电源设计技巧连载十六:推挽式变压器开关电源储能滤波电感、电容参数的计算 1-8-1-3.推挽式变压器开关电源储能滤波电感、电容参数的计算 图1-33中,储能滤波电感和储能滤波电容参数的计算,与图1-2的串联式开关电源中储能滤波电感和储能滤波电容参数的计算方法很相似。 根据图1-33和图1-34,我们把整流输出电压uo和LC滤波电路的电压uc、电流iL画出如图1-35,以便用来计算推挽式变压器开关电源储能滤波电感、电容的参数。 图1-35-a)是整流输出电压uo的波形图。实线表示控制开关K1接通时,推挽式变压器开关电源开关变压器次级线圈N3绕组输出电压经整流后的波形;虚线表示控制开关K2接通时,推挽式变压器开关电源开关变压器次级线圈N3绕组输出电压经整流后的波形。Up表示整流输出峰值电压(正激输出电压),Up-表示整流输出最低电压(反激输出电压),Ua表示整流输出电压的平均值。 图1-35-b)是滤波电容器两端电压的波形图,或滤波电路输出电压的波形图。Uo表示输出电压,或滤波电容器两端电压的平均值;ΔUc表示电容充电电压增量,2ΔUc等于输出电压纹波。

1-8-1-3-1.推挽式变压器开关电源储能滤波电感参数的计算 在图1-33中,当控制开关K1接通时,输入电压Ui通过控制开关K1加到开关变压器线圈N1绕组的两端,在控制开关K1接通Ton期间,开关变压器线圈N3绕组输出一个幅度为Up(半波平均值)的正激电压uo,然后加到储能滤波电感L 和储能滤波电容C组成的滤波电路上,在此期间储能滤波电感L两端的电压eL 为: 式中:Ui为输入电压,Uo为直流输出电压,即:Uo为滤波电容两端电压uc的平均值。 在此顺便说明:由于电容两端的电压变化增量ΔU相对于输出电压Uo来说非常小,为了简单,我们这里把Uo当成常量来处理。 对(1-136)式进行积分得:

一个基于DSP的DC_DC开关电源设计方法(精)

随着低成本、高性能D S P 的出现,尤其是A /D 和P W M 性能的大幅提高。D S P 控制的开关电源将越来越多地在电源工业中应用。基于DSP 的数字控制能实现更丰富的功能控制策略。可以在一个标准化的硬件平台上,通过更新软件满足不同的需求。数字控制器也更少的受到环境变化和噪声的影响。TI 公司推出的32位DSP TMS320F28系列,系统时钟达到100MHz,外设集成了高分辨率的PWM 模块,转换速率高达160ns 的12位A/D。相比TI 早期推出的24系列DSP,各方面都有了很大的提高。这些都新功能的出现降低了DSP 实用化的难度,然而对于多数电源工程师,他们大多数是模拟方面的专家,对于数字化设计则面临许多技术上的挑战。 1电路模型仿真 B U C K 变换器的电路模型如图所示。 其中各项电路参数如下: V in =3 ̄4V ,V o u t =1.2V ,最大输出电流I out =20A,等效负载电阻R L =V out /I out =0.06Ω 最大输出电压V omax =1.3V; PWM 开关工作频率f p w m =250k H z ,电压环采样频率fs=250khz L=1μH,C=1800μF,等效串联阻抗R c =0.004Ohm 电压环带宽取f cv =20kHz,相位域度为45。 电路的环路模型如图2所示。

其中Gp(s根据Buck电路的小信号模型如下: 在Matlab中分析G p (s的环路特性如下; V in =3.3;R c =0.004;C =1800e -006;L=1e-006;R l =0.061;V omax =1.3; G p =t f (V in *[Rc*C l 1],[L*C*(1+R c /R l R c *C+L/R l 1]; sisotool(Gp; 利用Matlab中的Sisotool工具设计一个校正函数Gc(s如下: 校正后的环路特性如Figure4: 利用Matlab中的c2d函数将Gc(s转为离 散形式: G cz =c 2d(Gc(s,Ts,'t'ustin得到 分解得到:U (n =1.598U (n -1-0.5985U(n-2+12.49E(n-22.81E(n-1+10.41E(n-2 结论:当这个仿真结果用于实际的产品测试中,在从0到15A 的动态变化时,只需要30μs 的响应时间,这个结果是比较满意的。 2软件实现代码 根据U(n给出在DSP TMS320LF2801中

开关电源的系统设计深度解读

开关电源的系统设计深度解读 开关电源的系统设计深度解读 时间:2013-03-05 214次阅读【网友评论0条我要评论】收藏 首先从开关电源的设计及生产工艺开始描述吧,先说说印制板的设计。开关电源工作在高频率,高脉冲状态,属于模拟电路中的一个比较特殊种类。布板时须遵循高频电路布线原则。 1、布局:脉冲电压连线尽可能短,其中输入开关管到变压器连线,输出变压器到整流管连接线。脉冲电流环路尽可能小如输入滤波电容正到变压器到开关管返回电容负。输出部分变压器出端到整流管到输出电感到输出电容返回变压器电路中X电容要尽量接近开关电源输入端,输入线应避免与其他电路平行,应避开。 Y电容应放置在机壳接地端子或FG连接端。共摸电感应与变压器保持一定距离,以避免磁偶合。如不好处理可在共摸电感与变压器间加一屏蔽,以上几项对开关电源的EMC性能影响较大。 输出电容一般可采用两只一只靠近整流管另一只应靠近输出端子,可影响电源输出纹波指标,两只小容量电容并联效果应优于用一只大容量电容。发热器件要和电解电容保持一定距离,以延长整机寿命,电解电容是开关电源寿命的瓶劲,如变压器、功率管、大功率电阻要和电解保持距离,电解之间也须留出散热空间,条件允许可将其放置在进风口。 控制部分要注意:高阻抗弱信号电路连线要尽量短如取样反馈环路,在处理时要尽量避免其受干扰、电流取样信号电路,特别是电流控制型电路,处理不好易出现一些想不到的意外,其中有一些技巧,现以3843电路举例见图(1)图一效果要好于图二,图二在满载时用示波器观测电流波形上明显叠加尖刺,由于干扰限流点比设计值偏低,图一则没有这种现象、还有开关管驱动信号电路,开关管驱动电阻要靠近开关管,可提高开关管工作可靠性,这和功率MOSFET高直流阻抗电压驱动特性有关。

电力电子课程设计心得-单端反激式输出开关电源设计【模版】

电力电子技术课程设计报告

单端反激式单路输出开关电源 一、设计任务及要求 本课程设计要求根据所提供的元器件设计并制作一个小功率的单端反激式开关电源。我们设计的反激式开关电源的输入是180V,输出是10V。要求画出必要的设计电路图,进行必要的电路参数计算,完成电路的焊接任务,并具有1A的带负载能力以及过流保护功能。 二、设计原理及思路 1、反激变换器工作原理 假设变压器和其他元器件均为理想元器件,稳态工作下: (1)当有源开关Q导通时,变压器原边电流增加,会产生上正下负的感应电动势,从而在副边产生下正上负的感应电动势,无源开关VD1因反偏而截止,输出由电容C向负载提供能量,而原边则从电源吸收电能,储存于磁路中。 (2)当有源开关Q截止时,由于变压器磁路中的磁通不能突变,所以在原边会感应出上负下正的感应电动势,而在副边会感应出上正下负的感应电动势,故VD1正偏而导通,此时磁路中的存储的能量转到副边,并经二极管VD1向负载供电,同时补充滤波电容C在前一阶段所损失的能量。输出滤波电容除了在开关Q导通时给负载提供能量外,还用来限制输出电压上的开关频率纹波分量,使之远小于稳态的直流输出电压。 U o 图 1 反激变换器的原理图 反激变换器的工作过程大致可以看做是原边储能和副边放电两个阶段。原边电流和副边电流在这两个阶段中分别起到励磁电流的作用。如果在下一次Q导通之前,副边已将磁路的储能放光,即副边电流变为零,则称变换器运行于断续电流模式(DCM),反之,则在副边还没有将磁路的储能放光,即在副边电流没有变为零之前,Q又导通,则称变换器运行于连续电流模式(CCM)。通常反激变换器多设计为断续电流模式(DCM)下。

史上最全的开关电源设计经验资料

三种基础拓扑(buck boost buck-boost )的电路基础: 1, 电感的电压公式dt dI L V ==T I L ??,推出ΔI =V ×ΔT/L 2, sw 闭合时,电感通电电压V ON ,闭合时间t ON sw 关断时,电感电压V OFF ,关断时间 t OFF 3, 功率变换器稳定工作的条件:ΔI ON =ΔI OFF 即,电感在导通和关断时,其电流变化相等。 那么由1,2的公式可知,V ON =L ×ΔI ON /Δt ON ,V OFF =L ×ΔI OFF /Δt OFF ,则稳定条件为伏秒定律:V ON ×t ON =V OFF ×t OFF 4, 周期T ,频率f ,T =1/f ,占空比D =t ON /T =t ON /(t ON +t OFF )→t ON =D/f =TD →t OFF =(1-D )/f 电流纹波率r P51 52 r =ΔI/ I L =2I AC /I DC 对应最大负载电流值和最恶劣输入电压值 ΔI =E t /L μH E t =V ×ΔT (时间为微秒)为伏微秒数,L μH 为微亨电感,单位便于计算 r =E t /( I L ×L μH )→I L ×L μH =E t /r →L μH =E t /(r* I L )都是由电感的电压公式推导出来 r 选值一般0.4比较合适,具体见 P53 电流纹波率r =ΔI/ I L =2I AC /I DC 在临界导通模式下,I AC =I DC ,此时r =2 见P51 r =ΔI/ I L =V ON ×D/Lf I L =V O FF×(1-D )/Lf I L →L =V ON ×D/rf I L 电感量公式:L =V O FF×(1-D )/rf I L =V ON ×D/rf I L 设置r 应注意几个方面: A,I PK =(1+r/2)×I L ≤开关管的最小电流,此时r 的值小于0.4,造成电感体积很大。 B,保证负载电流下降时,工作在连续导通方式P24-26, 最大负载电流时r ’=ΔI/ I LMAX ,当r =2时进入临界导通模式,此时r =ΔI/ I x =2→ 负载电流I x =(r ’ /2)I LMAX 时,进入临界导通模式,例如:最大负载电流3A ,r ’=0.4,则负载电流为(0.4/2)×3=0.6A 时,进入临界导通模式 避免进入临界导通模式的方法有1,减小负载电流2,减小电感(会减小ΔI ,则减小r )3,增加输入电压 P63 电感的能量处理能力1/2×L ×I 2 电感的能量处理能力用峰值电流计算1/2×L ×I 2PK ,避免磁饱和。 确定几个值:r 要考虑最小负载时的r 值 负载电流I L I PK 输入电压范围V IN 输出电压V O 最终确认L 的值 基本磁学原理:P71――以后花时间慢慢看《电磁场与电磁波》用于EMC 和变压器 H 场:也称磁场强度,场强,磁化力,叠加场等。单位A/m B 场:磁通密度或磁感应。单位是特斯拉(T )或韦伯每平方米Wb/m 2 恒定电流I 的导线,每一线元dl 在点p 所产生的磁通密度为dB =k ×I ×dl ×a R /R 2 dB 为磁通密度,dl 为电流方向的导线线元,a R 为由dl 指向点p 的单位矢量,距离矢量为R ,R 为从电流元dl 到点p 的距离,k 为比例常数。 在SI 单位制中k =μ0/4π,μ0=4π×10-7 H/m 为真空的磁导率。 则代入k 后,dB =μ0×I ×dl ×R/4πR 3 对其积分可得B = 3 40R C R Idl ?? π μ

简易开关电源设计报告

四川教育学院应用电子设计报告 课程名称:Protel99 电路设计系部:物理与电子技术系专业班级:应用电子技术0901 学生姓名:x x x 学号: 指导教师: 完成时间:

开关电源电路设计报告 一. 设计要求: 直流稳定电源主要包括线性稳定电源和开关型稳定电源,由于开关稳压电源的优点是体积小,重量轻,稳定可靠,适用性强,故选择设计可调开关稳压电源,其具体设计要求如下: (1).所选元器件和电路必须达到在一定范围内输出电压连续可调,输出电压U0=+6V —— +9V连续可调,输出额定电流为500mA; (2).输出电压应能够适应所带负载的启动性能,且输出电压短路时,对各元器件不会产生影响; (3).电路还必须简单可靠,有过流保护电路,能够输出足够大的电流。 二.方案选择及电路的工作原理 方案一: 首先用一个桥式整流电路将输入的交流电压变成直流电压,然后经过电容滤波,然后在经过一个NPN型三级管Q1调整管,最后整过电路形成一个通路,达到最终的效果。 方案二: 开关电源同其它电子装置一样,短路是最严重的故障,短路保护是否可靠,是影响开关电源可靠性的重要因素。IGBT(绝缘栅双极型晶体管)兼有场效

应晶体管输入阻抗高、驱动功率小和双极型晶体管电压、电流容量大及管压降低的特点,是目前中、大功率开关电源最普遍使用的电力电子开关器件[6]。IGBT能够承受的短路时间取决于它的饱和压降和短路电流的大小,一般仅为几μs至几十μs。短路电流过大不仅使短路承受时间缩短,而且使关断时电流下降率过大,由于漏感及引线电感的存在,导致IGBT集电极过电压,该过电压可使IGBT锁定失效,同时高的过电压会使IGBT击穿。因此,当出现短路过流时,必须采取有效的保护措施。 为了实现IGBT的短路保护,则必须进行过流检测。适用IGBT过流检测的方法,通常是采用霍尔电流传感器直接检测IGBT的电流Ic,然后与设定的阈值比较,用比较器的输出去控制驱动信号的关断;或者采用间接电压法,检测过流时IGBT的电压降Vce,因为管压降含有短路电流信息,过流时Vce增大,且基本上为线性关系,检测过流时的Vce并与设定的阈值进行比较,比较器的输出控制驱动电路的关断。 在短路电流出现时,为了避免关断电流的过大形成过电压,导致IGBT 锁定无效和损坏,以及为了降低电磁干扰,通常采用软降栅压和软关断综合保护技术。 在设计降栅压保护电路时,要正确选择降栅压幅度和速度,如果降栅压幅度大(比如7.5V),降栅压速度不要太快,一般可采用2μs下降时间的软降栅压,由于降栅压幅度大,集电极电流已经较小,在故障状态封锁栅极可快些,不必采用软关断;如果降栅压幅度较小(比如5V以下),降栅速度可快些,而封锁栅压的速度必须慢,即采用软关断,以避免过电压发生。 为了使电源在短路故障状态不中断工作,又能避免在原工作频率下连续进行短路保护产生热积累而造成IGBT损坏,采用降栅压保护即可不必在一次短路保护立即封锁电路,而使工作频率降低(比如1Hz左右),形成间歇“打嗝”的保护方法,故障消除后即恢复正常工作。下面是几种IGBT短路保护的实用电路及工作原理。 利用IGBT的Vce设计过流保护电路

开关电源设计技巧之一:为电源选择正确的工作频率

开关电源设计技巧之一:为电源选择正确的工作频率 为电源选择最佳的工作频率是一个复杂的权衡过程,其中包括尺寸、效率以及成本。通常来说,低频率设计往往是最为高效的,但是其尺寸最大且成本也最高。虽然调高频率可以缩小尺寸并降低成本,但会增加电路损耗。接下来,我们使用一款简单的降压电源来描述这些权衡过程。 我们以滤波器组件作为开始。这些组件占据了电源体积的大部分,同时滤波器的尺寸同工作频率成反比关系。另一方面,每一次开关转换都会伴有能量损耗;工作频率越高,开关损耗就越高,同时效率也就越低。其次,较高的频率运行通常意味着可以使用较小的组件值。因此,更高频率运行能够带来极大的成本节约。 图1.1显示的是降压电源频率与体积的关系。频率为100 kHz时,电感占据了电源体积的大部分(深蓝色区域)。如果我们假设电感体积与其能量相关,那么其体积缩小将与频率成正比例关系。由于某种频率下电感的磁芯损耗会极大增高并限制尺寸的进一步缩小,因此在此情况下上述假设就不容乐观了。如果该设计使用陶瓷电容,那么输出电容体积(褐色区域)便会随频率缩小,即所需电容降低。另一方面,之所以通常会选用输入电容,是因为其具有纹波电流额定值。该额定值不会随频率而明显变化,因此其体积(黄色区域)往往可以保持恒定。另外,电源的半导体部分不会随频率而变化。这样,由于低频开关,无源器件会占据电源体积的大部分。当我们转到高工作频率时,半导体(即半导体体积,淡蓝色区域)开始占据较大的空间比例。 图1.1 电源组件体积主要由半导体占据 该曲线图显示半导体体积本质上并未随频率而变化,而这一关系可能过于简单化。与半导体相关的损耗主要有两类:传导损耗和开关损耗。同步降压转换器中的传导损耗与 MOSFET 的裸片面积成反比关系。MOSFET 面积越大,其电阻和传导损耗就越低。 开关损耗与MOSFET 开关的速度以及MOSFET 具有多少输入和输出电容有关。这

开关电源设计及调试总结

线性稳压电路具有结构简单,调整方便,输出电压脉动小的优点,但缺点是效率低,一般只有20%~40%,并且比较笨重。开关型稳压电路能克服线性稳 压电源的缺点,具有效率高,一般能达到65%~90%,并且体积小,重量轻,对电网电压要求不高,因而在实际生活中得到广泛应用。也正因为其应用的广泛性,相应专业的学生就更应该深刻和熟练地掌握它,在此以设计脉冲宽度调制型开关电路(PWM)为基础,详细解说该系统的调试过程。 1 系统设计原理 PWM 型的开关电源整体框图如图1所示。变压、整流、滤波模块处理起来比较简单,只要采用相应的变压器、单相全波整流、电容式滤波即可实现,这里不用更多的篇幅介绍。此系统的核心模块是方框图中的闭合(负反馈)模块。如果直接采用Boost型DC-DC升压器,实现起来简单,但输出/输入电压比太大,占空比也大,而将使输出电压范围变小,难以达到较高的指标,且为开环控制。对此采用专用开关芯片TL494芯片,它采用开关脉宽调制(PWM),效率高,外围电路也较简单,可以方便实现闭环控制。 1.1 TL494工作原理 TL494 内部结构如图2所示,它是一种固定频率可自行设置,并应用脉空调制的控制电路,其中,振荡频率fosc=1.1/(RTCT)。具体来讲,由于误差放大器输入口1,2(或3,4)的值不等,产生偏差,偏差送入PWM比较器与锯齿波(锯齿波的频率由振荡频率确定,幅值是定值)比较,在偏差大于锯齿波范围内时,9口(或10口)输出低电平,在偏差小于锯齿波范围内时,9口(或10口)输出高电平。若偏差值越大,TL494输出高电平的区间越小。由此可见,通过调整误差放大器输入口的偏差可改变占空比。

开关电源设计技巧之——阻尼输入滤波系列(下)之令狐文艳创作

开关电源设计技巧之四——阻尼输入滤波 系列(下) 令狐文艳 控制源极阻抗 在“开关电源设计技巧之三”中,我们讨论了输入滤波器的源极阻抗如何变得具有电阻性,以及其如何同开关调节器的负输入阻抗相互作用。在极端情况下,这些阻抗振幅可以相等,但是其符号相反从而构成了一个振荡器。业界通用的标准是输入滤波器的源极阻抗应至少比开关调节器的输入阻抗低6dB,作为最小化振荡概率的安全裕度。 输入滤波器设计通常以根据纹波电流额定值或保持要求选择输入电容(图 4.1所示CO)开始的。第二步通常包括根据系统的EMI要求选择电感 (LO)。正如我们上个月讨论的那样,在谐振附近,这两个组件的源极阻抗会非常高,从而导致系统不稳定。图 1 描述了一种控制这种阻抗的方法,其将串联电阻 (RD) 和电容 (CD) 与输入滤波器并联放置。利用一个跨接 CO 的电阻,可以阻尼滤波器。但是,在大多数情况下,这样做会导致功率损耗过高。另一种方法是在滤波器电感的两端添加一个串联连接的电感和电阻。 图4.1 CD和RD阻尼输出滤波器源极阻抗选择阻尼电阻

有趣的是,一旦选择了四个其他电路组件,那么就会有一个阻尼电阻的最佳选择。图 4.2 显示的是不同阻尼电阻情况下这类滤波器的输出阻抗。红色曲线表示过大的阻尼电阻。请思考一下极端的情况,如果阻尼电阻器开启,那么峰值可能会非常的高,且仅由CO和LO来设定。蓝色曲线表示阻尼电阻过低。如果电阻被短路,则谐振可由两个电容和电感的并联组合共同设置。绿色曲线代表最佳阻尼值。利用一些包含闭型解的计算方法(见参考文献 1)就可以很轻松地得到该值。 图4.2 在给定CD-CO比的情况下,有一个最佳阻尼电阻 选择组件 在选择阻尼组件时,图 4.3非常有用。该图是通过使用RD Middlebrook建立的闭型解得到的。横坐标为阻尼滤波器输出阻抗与未阻尼滤波器典型阻抗 (ZO= (LO/CO)1/2) 的比。纵坐标值有两个:阻尼电容与滤波器电容 (N) 的比;以及阻尼电阻同该典型阻抗的比。利用该图,首先根据电路要求来选择LO和CO,从而得到ZO。随后,将最小电源输入阻抗除以二,得到您的最大输入滤波器源极阻抗 (6dB)。 最小电源输入阻抗等于Vinmin2/Pmax。只需读取阻尼电容与滤波器电容的比以及阻尼电阻与典型阻抗的比, 您便可以计算得到一个横坐标值。例如,一个具有10μH电感和10μH 电容的滤波器具有Zo= (10μH/10μF)1/2=1Ohm 的典型阻抗。如果它正对一个12V最小输入的12W电源进行滤波,那么该电源输入阻抗将为Z=V2/P=122/12=12Ohms。这样,最大源

高效率开关电源设计实例

高效率开关电源设计实例 1 0 W同步整流Buck变换器 以下设计实例中,包含了各种技巧来提高开关电源的总体效率。有源钳位和元损吸收电路 的设计主要依靠经验来完成的,所以不在这里介绍。 采用新技术时必须小心,因为很多是有专利的,可能需要直接付专利费给专利持有人,或在购买每一片控制IC芯片时,支付附加费用。在将这些电源引入生产前,请注意这个问题。 10W同步整流Buck变换器 应用 此设计实例是PW履计实例1的再设计,它包括了如何设计同步整流器(板载的10W降压 Buck变换器)。 在设计同步整流开关电源时,必须仔细选择控制IC。为了效率最高和体积最小,一般同步 控制器在系统性能上各有千秋,使得控制器只是在供应商提到的应用场合中性能较好。很多运行性能的微妙之处不能确定,除非认真读过数据手册。例如,每当作者试图设计一个同步整流变换器,并试图使用现成买来的IC芯片时,3/4设计会被丢弃。这是因为买来的芯片功能或工作模式往往无法改变。更不用说,当发现现成方案不能满足需求时,是令人沮丧的(见图20的电路图)。 设计指标 输入电压范围:DC+10- +14V 输出电压:DC+5.0V

额定输出电流:2.0A 过电流限制:3.0A 输出纹波电压:+30mV (峰峰值) 输出调整:土1% 最大工作温度:+40 C “黑箱”预估值 输出功率:+5.0V *2A=10.0W最大) 输入功率:Pout/估计效率=10.0W^0.90=11.1W 功率开关损耗(11.1W-10W) * 0 . 5=0.5W 续流二极管损耗:(1I.IW-10W) *0.5=0.5W 输入平均电流 低输入电压时11.1W / 10V=1.1IA 高输入电压时:11.1W/ 14V=0. 8A 估计峰值电流:1 . 4lout(rated)=1 . 4X 2. 0A=2. 8A 设计工作频率为300kHz。

开关电源实习报告

第十届TI杯电子设计竞赛培训实 习报告 日8月7年2012 1.开关稳压电源 1.1工频变压器 工频变压器作为本电源降低电压的核心。它把有效值为220V的交流市电降低为20V的交流电压。为后级稳压环节输入一个低的直流电压做了准备。 1.2整流滤波 本电源整流采用4安的集成整流桥堆。前级滤波采用三个电容进行。如图1示,分别为C12,C14,C15。C14是一个1000uF的铝电解电容,它可以很好地滤除低频脉动成分,使整流输出波形变得很平滑。电容的高频小信号模型为电感、电容、电阻的串联。铝电解电容,由于其内部结构决定了它的高频等效电感比较大。再加之铝电解电容的容值比较大,这就导致它的自身谐振频率比较低。这样它可以很好地滤除低频杂波成分,但是对于高频杂波成分,它的滤除效果不是很好。这就需要给他并联一个0.1uF的瓷片电容C15,这样滤波器的带宽就会大大提高,可以滤除掉更多的杂波成分。C12是作为LM2576的输入滤波的,以保证输入LM2576的交流杂波成分更小。 1.3稳压 本电源稳压环节采用LM2576开关降压(Buck)型集成稳压芯片。其内部集成了52KHz的振荡器,功率管,PWM调制器和反馈环路。LM2576输出最大电流可以保证3A,输入最大电压40V。D4是一个肖特基二极管,型号为MBR20200。它是作为Buck电路的续流二极管使用的。电感L2是一个用铁粉磁环绕制的100uH 的大功率电感,它是Buck电路的储能电感。L2和C13共同组成了一个LC滤波器。R12,R10是一个电阻串联分压网络。LM2576的4脚在分压网络分压点采集电压反馈给其内部误差放大器,控制PWM调制器改变PWM波的脉宽,从而控制功

一种正激变换器开关电源设计方案方法

一种基于正激变换器的开关电源设计方法 收藏此信息打印该信息添加:郑慧汤天浩韩金刚来源:未知 1 引言 经过多年的发展,开关电源技术已经取得了很大成功,其应用也十分普遍和广泛。但因其结构复杂,涉及的元器件较多,以及要降低成本、提高可靠性,仍存在一些问题需要解决。例如:电源的设计和生产需要较高的技术支持;电路的调试要有实际经验,也有一定的难度。对于第一个问题,由于目前各种开关电源虽然形式多样,结构各异,但其大都源于几种基本的dc-dc变换器拓扑结构,或者是这些基本电路组合,因此,可以对几种基本dc-dc变换器进行分析,将已有的电路设计公式应用于实际开关电源的设计。对于第二个问题,随着计算机硬件和软件的发展以及仿真技术的不断完善,人们可以利用仿真技术来解决开关电源产品开发和生产中存在的问题。 本文在对基本的buck变换器电路拓扑分析的基础上,对与之相关的正激变换器和双管正激变换器进行了分析,发现可以通过等效变换,从buck变换电路的设计公式中推导出正激变换和双管正激变换电路的参数计算公式;此外,采用pspice仿真软件进行了电路仿真试验,仿真结果证明了开关电源电路设计的正确性。 2 buck变换的拓扑结构与参数设计 基本buck变换器的电路拓扑结构如图1所示,由电压源vi、串联开关s、续流二极管vd和由lc组成的电流负载组合而成,其中l的大小决定输出电流纹波,而输出电压纹波则由c决定,这是最基本的一种直流变换器。 图1 基本的buck变换器 文献[1]给出了buck变换器的电路设计公式,根据buck变换器的输出公式:

式中:ρ为占空比,且有:ρ=ton/t,则ρ=vo/vi。 电感l的计算公式为: 式中:f为开关频率; iomin为输出最小电流。 而电容c的计算公式为: 式中:δvo为输出电压纹波。 3 正激变换的公式推导 3.1 拓扑结构与工作模式 一个单管正激变换器的主电路拓扑结构如图2所示,由于正激变换器是在基本的buck型变换器基础上多了一个隔离变压器t1、一个二极管vd1和一个由回收绕组n3和箝位二极管vd3构成的复位电路。由于电路形式发生了变化,所以设计时不能直接使用上述基本buck变换器的参数计算公式。本文通过对正激变换器工作模式的分析,采用等效变换方法将正激变换器等效为一个基本的buck变换电路,由此可将基本buck变换电路的参数计算公式(2)和(3)推广到一类正激变换器的参数计算,建立新的设计公式。 图2 单管正激变换器主电路结构

开关电源的一点总结

关于开关电源,其实没有什么好写的,或者说,已经有很多专门写开关电源的书,三言两语也说不出什么来。但是以前有人问过我一些问题,现在想起来,总结下。 1,开关电源的占空比 初学者总是不明白占空比跟输入电压输出电压的关系。以buck型为例,因为Vout=D*Vin,所以会有人考虑怎么根据输入电压和输出电压改变占空比。这个问题让我很难回答。 占空比是变化的,但不是根据输出电压和输入电压变化的。开关电源芯片和线性稳压芯片一样,都是根据反馈来稳定输出的。芯片的DATASHEET上会有计算输出电压的公式,只要根据公式得到分压电阻值就可以,不必考虑内部是如何调整占空比的。 设计人员需要注意的是,占空比的范围。不是所有的芯片都能达到100%,大多数只能到90%多,甚至更低。所以需要根据输入电压的范围和输出电压,计算出需要的占空比是不是在芯片工作范围内。 2,开关电源的结构 很多。 降压(buck)型,输出电压低于输入电压,最常见的一种结构; 升压型,输出电压高于输入电压; 极性反转,一般是输入正电压,输出负电压; 汽车电子中常见上述三种,如果是要求输入电压变化范围较大,有时高于输出电压,有时低于输出电压,可以先升压再降压,也可以用SEPIC型结构。 具体各种类型的计算可以参考一些芯片资料。凌特公司的芯片资料,原理简单,计算公式列得详细,中文化做的也不错,推荐电路也很多;国半公司也可以,芯片资料上可能不太详细,但是Application Notes里原理介绍很多,还有他们的模拟技术大学,可惜没有中文版。 推荐几个: 凌特:LTC1772 SOT-23 封装恒定频率电流模式降压型 DCDC 控制器 凌特:LTC1871 宽输入范围,无需检测电阻电流模式升压,反激和SEPIC控制器 国半模拟技术大学,开关电源(英文): 国半Application Notes:AN1484 Design a SEPIC Converter 3,同步整流 buck型开关电流有一个续流二极管,在这个二极管上并联一个MOS管。这个是同步整流用的。 因为二极管导通时,即使是肖特基二极管,压降也有大概0.3V,在效率要求很高的场合,这是不允许的,所以要进一步降低压降。这个方法就是,在需要二极管导通时,同时也将并联的MOS管导通,达到减小压降,减小损失的目的。

相关文档
最新文档