正弦信号的相量表示

正弦信号的相量表示
正弦信号的相量表示

第八章 相量法

本章重点:正弦信号的相量表示、电路元件伏安关系的相量表示 本章难点: 复数的计算

第十五讲 8.1复数

相量法是线性电路正弦稳态分析的一种简便有效的方法。应用相量法,需要用到复数的运算

1.复数的表示形式

1)代数形式 复数可用复平面上的向量表示: 2)三角形式

3)指数形式 4)极坐标形式

8.2正弦量

一.正弦量:

电路中按正弦规律变化的电压或电流,统称为正弦量。对正弦量的数学描述,可以采用sin 函数,也可采用cos 函数。但在用相量法进行分析时,要注意采用的是哪一种形式,不要两者同时混用。本书采用cos 函数。 周期量:时变电压和电流的波形周期性的重复出现。

周期T :每一个瞬时值重复出现的最小时间间隔,单位:秒(S ); 频率f : 是每秒中周期量变化的周期数,单位:赫兹(Hz )。,f =1/T 。

交变量:一个周期量在一个周期内的平均值为零。可见,正弦量不仅是周期量,而且还是交变量。

)

1( -=+=j jb a F )

sin (cos ||θθj F F +=)

( sin cos 欧拉公式θθθ

j e j +=

θ

∠=||F F

二.正弦量的表达式

1. 函数表示法:m ()cos()f t F t ωψ=+

m F —最大值,反映正弦量在整个变化过程中所能达到的最大值;

t ωψ+—相位,反映正弦量变动的进程;

ω—角频率(rad /s )

,反映正弦量变化的快慢。22,2T f T

π

ωπωπ=== ()ψπψπ-≤≤—初相位,反映正弦量初值的大小、正负。 m F ,ω,ψ—正弦量的三要素。

已知m 10A,50Hz,15o I f ψ===-, 则()10cos(31415)A o

i t t =-。 2. 波形表示法

0t ωψ+=, t ωψ=-。当0>ψ时,最大值点由坐标原点左移ψ。如下图。

三.两个同频率正弦量的相位差?

设 m u ()cos()u t U t ωψ=+ )cos(

)(i m t I t i ψω+= 则u (t )与i (t )的相位差 i u i u t t ψψψωψω?-=+-+=)()( 设电压u=6cos(ωt+90o)V ,电流i=2cos(ωt-150o)A , 问哪个正弦量滞后?滞后的角度是多少? 解:相位差?=?u -?i =90o-(-150o)=240o>0 所以电压u 比电流i 超前240°。 另作分析:

相位差?=?u -?i =240o-360o = -120o 所以电压u 比电流i 滞后120°。

t

几种特殊相位关系:

(1)1m11()cos()u t U t ωψ=+ 当1ψψ=,则10?ψψ=-=,1u 与u 同相。如

下图φ=Ψu ?Ψi =0 。

(2)2m22()cos()u t U t ωψ=+ 当22

π

ψψ=±,22

π

?ψψ=-=

,2u 与u 正交。

如下图(这里φ=Ψ-Ψ2=+π/2)

(3)3m33()cos()u t U t ωψ=+ 当3ψψπ=±,3?ψψπ=-= ,3u 与u 反相。

t

2t

2=π

注意:1. 函数表达形式应相同,均采用cos 形式表示。如 ()100cos(15)V u t t ω=+

()10sin(30)10cos(60)A i t t t ωω=+=-

15(60)75?=--=

2. 函数表达式前的正、负号要一致。当0,""0,""ψπψπ>-<-取取+-,。

3. 当两个同频率正弦量的计时起点(即波形图中的坐标原点)改变时,它们的初相也跟着改变,但它们的相位差却保持不变。所以两个同频率正弦量的相位差与计时起点的选择无关。

8.2正弦量的有效值

()f t —任意周期函数

?

=

T

dt t f T

F 0

2)(1 —方均根值

可见,周期量的有效值等于它的瞬时值的平方在一个周期内积分的平均值取平方根。因此,有效值又称为方均根值。

这样正弦量的数学表达式写为 ()cos()f t t ωψ=+。

i 1和i 2同反相 i 1和i 2正交

i 1和i 2反相

i 1比i 2超前

对于正弦电流i =I m cos(ωt+φi ) 的有效值为

I =I m /2=0.707I m

同理,正弦电压u =U m cos(ωt+φu )的有效值为

U =U m /2=0.707U m

在工程上,一般所说的正弦电压、电流的大小都是指有效值。例如交流测量仪表所指示的读数、交流电气设备铭牌上的额定值都是指有效值。我国所使用的单相正弦电源的电压U =220V ,就是正弦电压的有效值,它的最大值U m =2U =1.414×220=311V 。 应当指出,并非在一切场合都用有效值来表征正弦量的大小。例如,在确定各种交流电气设备的耐压值时,就应按电压的最大值来考虑。

8.3 相量法的基础

一 相量:

令正弦量m ()cos()cos()f t F t t ωψωψ=+=+,根据欧拉公式,可知 j e cos jsin x

x x =+,取x t ωψ=+ 则 ()cos()jsin()j t e

t t ωψωψωψ+=+++

j()

cos()Re t t e ωψωψ+??+=?? j ()sin()Im t t e ωψωψ+??+=??

可以表示一个正弦量的复值常数称为相量。

m ()30)V 30V u t t U =+?=

F F ψ=∠

—有效值相量 m F =

信号与系统实验指导书

实验一 常用信号分类与观察 一、实验目的 1、了解单片机产生低频信号源; 2、观察常用信号的波形特点及产生方法; 3、学会使用示波器对常用波形参数的测量。 二、实验内容 1、信号的种类相当的多,这里列出了几种典型的信号,便于观察。 2、这些信号可以应用到后面的“基本运算单元”和“无失真传输系统分析”中。 三、实验原理 对于一个系统特性的研究,其中重要的一个方面是研究它的输入输出关系,即在一特定的输入信号下,系统对应的输出响应信号。因而对信号的研究是对系统研究的出发点,是对系统特性观察的基本手段与方法。在本实验中,将对常用信号和特性进行分析、研究。 信号可以表示为一个或多个变量的函数,在这里仅对一维信号进行研究,自变量为时间。常用信号有:指数信号、正弦信号、指数衰减正弦信号、抽样信号、钟形信号、脉冲信号等。 1、正弦信号:其表达式为)sin()(θω+=t K t f ,其信号的参数:振幅K 、角频率ω、与初始相位θ。其波形如下图所示: 图 1-5-1 正弦信号 2、指数信号:指数信号可表示为at Ke t f =)(。对于不同的a 取值,其波形表现为不同的形式,如下图所示:

图 1-5-2 指数信号 3、指数衰减正弦信号:其表达式为 ?? ? ??><=-)0()sin()0(0)(t t Ke t t f at ω 其波形如下图: 图 1-5-3 指数衰减正弦信号 4、抽样信号:其表达式为: sin ()t Sa t t = 。)(t Sa 是一个偶函数,t = ±π,±2π,…,±n π时,函数值为零。该函数在很多应用场合具有独特的运用。其信号如下图所示:

正弦量的相量表示法教案

《电工学(少学时)》第三章正弦量的相量表示法 学习目标: 1. 掌握复数的基本知识。 2 .掌握正弦量的相量表示法。 重点:正弦量的相量表示法。 难点:相量图 一、相量法的引入 一个正弦量可以用三角函数式表示,也可以用正弦曲线表示。但是用这两种方法进行正弦量的计算是很繁琐的,有必要研究如何简化。 由于在正弦交流电路中 , 所有的电压、电流都是同频率的正弦量,所以要确定这些正弦量,只要确定它们的有效值和初相就可以了。相量法就是用复数来表示正弦量。使正弦交流电路的稳态分析与计算转化为复数运算的一种方法。 二、复数概述 1 .复数:形如的式子称为复数,为复数的实部,为复数的虚部,、 均为实数,为虚数单位。 图 4-3 复数的图示法 2 .复数的图示法

式中为复数 A 的模,为复数 A 的辐角。 3 .复数的表示形式及其相互转换 其中代数式常用于复数的加减运算,极坐标式常用于复数的乘除运算。 4 .复数的运算法则 ①相等条件:实部和虚部分别相等(或模和辐角分别相等)。 ②加减运算:实部和实部相加(减),虚部和虚部相加(减)。 ③乘法运算:模和模相乘,辐角和辐角相加。 ④ 除法运算:模和模相除,辐角和辐角相减。 三、相量表示法 1 .正弦量与复数的关系 = sin( ψ )= [ ]= [ ] 正弦电压等于复数函数的虚部,该复数函数包含了正弦量的三要素。 2 .相量 ---- 分有效值相量和最大值相量 ① 有效值相量:= / ψ ② 最大值相量:= / ψ 3 .相量图

在复平面上用一条有向线段表示相量。相量的长度是正弦量的有效值I ,相量与正实轴的夹角是正弦量的初相。这种表示相量的图称为相量图。 例 4-4 :。写出表示 1 和2 的相量,画相量图。 解: 1 =100 /60 ° V 2 =50 /-60 ° V 相量图见图 4-4 。 例 4-5: 已知 1 =100 sin A , 2 =100 sin( -120 ° )A ,试用相量法求 1 + 2 ,画相量图。 解: 1 =100 /0 °A 2 =100 /-120 ° A 1 + 2 =100 /0 ° + 100 /-120 ° =100 /-60 ° A 1 + 2 =100 sin( -60 ° )A 相量图见图 4-5 。 作业: 4-5 、 4-7 、 4-8

信号与系统实验报告_1(常用信号的分类与观察)

实验一:信号的时域分析 一、实验目的 1.观察常用信号的波形特点及产生方法 2.学会使用示波器对常用波形参数的测量 二、实验仪器 1.信号与系统试验箱一台(型号ZH5004) 2.40MHz双踪示波器一台 3.DDS信号源一台 三、实验原理 对于一个系统特性的研究,其中重要的一个方面是研究它的输入输出关系,即在一特定的输入信号下,系统对应的输出响应信号。因而对信号的研究是对系统研究的出发点,是对系统特性观察的基本手段与方法。在本实验中,将对常用信号和特性进行分析、研究。 信号可以表示为一个或多个变量的函数,在这里仅对一维信号进行研究,自变量为时间。常用信号有:指数信号、正弦信号、指数衰减正弦信号、复指数信号、Sa(t)信号、钟形信号、脉冲信号等。 1、信号:指数信号可表示为f(t)=Ke at。对于不同的a取值,其波形表现为不同的形式,如下图所示: 图1―1 指数信号 2、信号:其表达式为f(t)=Ksin(ωt+θ),其信号的参数:振幅K、角频率ω、与初始相位θ。其波形如下图所示:

图1-2 正弦信号 3、指数衰减正弦信号:其表达式为其波形如下图: 图1-3 指数衰减正弦信号 4、Sa(t)信号:其表达式为:。Sa(t)是一个偶函数,t= ±π,±2π,…,±nπ时,函数值为零。该函数在很多应用场合具有独特的运用。其信号如下图所示:

图1-4 Sa(t)信号 5、钟形信号(高斯函数):其表达式为:其信号如下图所示: 图1-5 钟形信号 6、脉冲信号:其表达式为f(t)=u(t)-u(t-T),其中u(t)为单位阶跃函数。其信号如下图所示: 7、方波信号:信号为周期为T,前T/2期间信号为正电平信号,后T/2期间信号为负电平信号,其信号如下图所示 U(t)

信号与系统知识点整理

第一章 1.什么是信号? 是信息的载体,即信息的表现形式。通过信号传递和处理信息,传达某种物理现象(事件)特性的一个函数。 2.什么是系统? 系统是由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。3.信号作用于系统产生什么反应? 系统依赖于信号来表现,而系统对信号有选择做出的反应。 4.通常把信号分为五种: ?连续信号与离散信号 ?偶信号和奇信号 ?周期信号与非周期信号 ?确定信号与随机信号 ?能量信号与功率信号 5.连续信号:在所有的时刻或位置都有定义的信号。 6.离散信号:只在某些离散的时刻或位置才有定义的信号。 通常考虑自变量取等间隔的离散值的情况。 7.确定信号:任何时候都有确定值的信号 。 8.随机信号:出现之前具有不确定性的信号。 可以看作若干信号的集合,信号集中每一个信号 出现的可能性(概率)是相对确定的,但何时出 现及出现的状态是不确定的。 9.能量信号的平均功率为零,功率信号的能量为无穷大。 因此信号只能在能量信号与功率信号间取其一。 10.自变量线性变换的顺序:先时间平移,后时间变换做缩放. 注意:对离散信号做自变量线性变换会产生信息的丢失! 11.系统对阶跃输入信号的响应反映了系统对突然变化的输入信号的快速响应能 力。(开关效应) 12.单位冲激信号的物理图景: 持续时间极短、幅度极大的实际信号的数学近似。 对于储能状态为零的系统,系统在单位冲激信号作 用下产生的零状态响应,可揭示系统的有关特性。

例:测试电路的瞬态响应。 13.冲激偶:即单位冲激信号的一阶导数,包含一对冲激信号, 一个位于t=0-处,强度正无穷大; 另一个位于t=0+处,强度负无穷大。 要求:冲激偶作为对时间积分的被积函数中一个因子, 其他因子在冲激偶出现处存在时间的连续导数. 14.斜升信号: 单位阶跃信号对时间的积分即为单位斜率的斜升信号。 15.系统具有六个方面的特性: 1、稳定性 2、记忆性 3、因果性 4、可逆性 5、时变性与非时变性 6、线性性 16.对于任意有界的输入都只产生有界的输出的系统,称为有界输入有界输出(BIBO )意义下的稳定系统。 17.记忆系统:系统的输出取决于过去或将来的输入。 18.非记忆系统:系统的输出只取决于现在的输入有关,而与现时刻以外的输入无关。 19.因果系统:输出只取决于现在或过去的输入信号,而与未来的输入无关。 20.非因果系统:输出与未来的输入信号相关联。 21.系统的因果性决定了系统的实时性:因果系统可以实时方式工作,而非因果系统不能以实时方式工作. 22.可逆系统:可以从输出信号复原输入信号的系统。 23.不可逆系统:对两个或者两个以上不同的输入信号能产生相同的输出的系统。 24.系统的时变性: 如果一个系统当输入信号仅发生时移时,输出信号也只产生同样的时移,除此之外,输出响应无任何其他变化,则称该系统为非时变系统;即非时变系统的特性不随时间而改变,否则称其为时变系统。 25.检验一个系统时不变性的步骤: 1. 令输入为 ,根据系统的描述,确定此时的输出 。 1()x t 1()y t

信号与系统常用公式

常用 公式 第一章 判断周期信号方法 两个周期信号x(t),y(t)的周期分别为T1和T2,若其周期之比T1/T2为有理数,则其和信号x(t)+y(t)仍然是周期信号,其周期为T1和T2的最小公倍数。 2/2/2/(2/),/N N M M N πβπβ πβπβπβ==仅当为整数时正弦序列才具有周期当为有理数时 正弦序列仍具有周期性, 其周期为取使为整数的最小整数当2为无理数时 正弦序列不具有周期性, 1、连续正弦信号一定是周期信号,而正弦序列不一定是周期序列。 2、两连续周期信号之和不一定是周期信号,而两周期序列之和一定是周期序列。 信号的能量 def 2 ()E f t dt +∞ -∞=? 信号的平均功率 def 2 /2 /2 1lim ()T T T P f t dt T +-→∞=? 冲激函数的特性 '''()()(0)()(0)()f t t f t f t δδδ=- ()()(0)()f t t f t δδ= ()()()()f t t a f a t a δδ-=- ()()(0),f t t dt f δ∞ -∞ =? ()()()f t t a dt f a δ∞ -∞ -=? ()()11()()n n n at t a a δδ= g 001 ()()t at t t a a δδ-=- 000()()()()f k k k f k k k δδ-=- ()()()()(1)(0)n n n t f t dt f δ∞ ∞ =-? - ''()()(0)t f t dt f δ∞ ∞ =-?- 动态系统是线性系统的条件 可分解性 {}{}{}{}()()()0,()(0),0f x y y y T f T x ?=?+?=?+???????? 零状态线性 {}{}{}{}{}{}12120,()()0,()0,()T af t bf t aT f bT f +=?+????????????? 零输入线性 {}{}{}{}{}{}1212(0)(0),0(0),0(0),0T ax bx aT x bT x +=+???????????? 判断系统时不变、因果、稳定的方法。 线性时不变的微分和积分特性。 第二章

--非正弦交流电路

第9章非正弦交流电路 学习指导与题解 一、基本要求 1.建立几个频率为整数倍的正弦波可以合成为一非正弦周期的概念。明确一个非正弦周期波可以分解为一系列频率为整数倍正弦波之和的概念(即谐波分析)、谐波中的基波与高次谐波的含义。了解谐波分析中傅里叶级数的应用。 2.掌握波形对称性与所含谐波分量的关系。能根据波形的特点判断所含谐波的情况。了解波形原点选择对所含谐波的影响。 3.掌握非正弦周期电压和电流的平均值(即直流分量)和有效值的计算。能根据给定波形计算出直流分量。能根据非正弦周期波的直流分量和各次谐波分量,计算出它的有效值。 4.掌握运用叠加定理和谐波分析计算非正弦交流电路中的电压和电流的方法。 5.建立同频率的正弦电压和电流才能形成平均功率的概念。掌握运用叠加定理和谐波分量计算非正弦交流电路中和平均功率。 二、学习指导 在电工技术中,电路除了激励和响应是直流和正弦交流电和情况外,也还遇到有非正弦周期函数电量的情况。如当电路中有几个不同频率的正弦量激励时,响应是非正弦周期函数;含有非线性元件的电路中,正弦激励下的响应也是非线性的;在电子、计算机等电路中应用的脉冲信号波形,都是非正弦周期函数。因此,研究非正弦交流电路的分析,具有重要和理论和实际意义。 本章的教学内容可分为如下三部分: 1.非正弦周期波由谐波合成的概念; 2.非正弦周期波的谐波分析; 3.非正弦交流电路的计算。 着重讨论非正弦周期波谐波分析的概念,非正弦周期量的有效值和运用叠加定理计算非正弦交流电路的方法。 现就教学内容中的几个问题分述如下。 (一)关于非正弦周期波的谐波的概念 非正弦周期波是随时间作周期性变化的非正弦函数。如周期性变化的方波、三角波等。这类波形,与正弦波相比,都有变化的周期T和频率f,不同的是波形而已。

信号与系统作业

实验一常用连续时间信号的实现 一、实验目的 (1)了解连续时间信号的特点; (2)掌握连续时间信号表示的向量法和符号法; (3)熟悉MA TLABPlot函数等的应用。 二、涉及的MATLAB函数 1.plot函数 功能:在X轴和Y轴方向都按线性比例绘制成二维图形。 2.ezplot函数 功能:绘制符号函数在一定范围内的二维图形,简易绘制函数曲线。 3.Sym函数 功能:定义信号为符号变量。 4.subplot函数 功能:产生多个绘图区间。 三、实验内容与方法 1.正弦交流信号f(t)=sin(ωt+φ) (1)符号推理法生成正弦交流信号。 MATLAB程序:. t=-0:0.001:1; f=sym('sin(2*pi*t)'); ezplot(f,[0,1]); xlabel('时间(t)'); ylabei('幅值(f)'); title(‘正弦交流信号'); 用符号法生成的正弦交流信号如图所示:

(2)数值法生成正弦交流信号。 MATLAB程序:. t=-0:0.001:1; y=sin(2*pi*t); plot(t,y,'k'); xlabel('时间(t)'); ylabei('幅值(f)'); title('正弦交流信号'); 用数值法生成的正弦交流信号如图所示: 2.单边衰减指数信号. MATLAB程序: t1=-1;t2=10;dt=0.1; t=t1:dt:t2; A1=1; %斜率 a1=0.5; %斜率 n=A1*exp(-a1*t); plot(t,n); axis([t1,t2,0,1]); xlabel('时间(t)'); ylabel('幅值(f)'); title('单边衰减指数信号'); 用数值法生成的单边衰减指数信号如图所示:

实验一 非正弦周期信号的分解与合成

实验一非正弦周期信号的分解与合成 一、实验目的 1.用同时分析法观测50Hz 非正弦周期信号的频谱,并与其傅里叶级数各项的频率与系数作比较; 2.观测基波和其谐波的合成。 二、实验设备 1.THBCC-1型信号与系统·控制理论及计算机控制技术实验平台 2.PC 机(安装“THBCC-1”软件) 3.双踪慢扫描示波器1台(选配) 三、实验原理 1.任何电信号都是由各种不同频率、幅值和初相的正弦波迭加而成的。对周期信号由它的傅里叶级数展开式可知,各次谐波的频率为基波频率的整数倍。而非周期信号包含了从零到无穷大的所有频率成份,每一频率成份的幅值相对大小是不同的。将被测方波信号加到分别调谐于其基波和各次奇谐波频率的电路上。从每一带通滤波器的输出端可以用示波器观察到相应频率的正弦波。本实验所用的被测信号是50Hz 的方波。 2.实验装置的结构图 图4-1实验结构图 图4-1中LPF 为低通滤波器,可分解出非正弦周期信号的直流分量。BPF 1~BPF 6为调谐在基波和各次谐波上的带通滤波器,加法器用于信号的合成。 3.各种不同波形及其傅氏级数表达式 方波: ?? ? ??++++ sin7ωt 71sin5ωt 51sin3ωt 31sin ωt π4Um U(t)= 三角波: ?? ? ??-+- sin5ωt 251sin3ωt 91sin ωt π8Um U(t)=2 半波 ??? ??+--+ cos4ωt 151cos ωt 31sin ωt 4π21π2Um U(t)= 全波 ?? ? ??+--- cos6ωt 351cos4ωt 151cos2ωt 3121π4Um U(t)= 矩形波 ?? ? ??++++ cos3ωt T 3τπsin 31cos2ωt T 2τπsin 21cos ωt T τπsin π2Um T τUm U(t)= 四、实验内容及步骤

03-正弦量的相量表示法知识点

正弦量相量表示 1、基本概念 (1)正弦电路相量表示方法。正弦量的相量表示实质上就是用复数表示正弦量。为与一般的复数相区别,将表示正弦量的复数称为相量。正弦量的相量表示如表1所示。 表1正弦量的相量式三角函数式 相量的极坐标式相量的直角坐标式电压t U u ωsin 2=o 0∠=U U )(o o 0sin j 0cos +=U U 电流)30sin(2o +=t I i ωo 30∠=I I )(o o 30sin j 0cos3+=I I 电动势)30sin(2o -=t I e ωo 30-∠=E E )(o o 30sin j 0cos3-=E E (2)相量的实质与目的。相量表示的实质上就是用复数表示正弦量。正弦量可用三角函数式、波形图等表示,但以此方法分析正弦交流电路比较困难,引入相量的目的是为了简化正弦交流电路的分析方法,即将正弦交流电路的计算变成复数式的代数运算。 2、正弦交流电路的相量分析方法 正弦交流电路引入相量后,正弦交流电路就有相量式法和相量图法两种分析方法。 (1)相量式法 1)将电路中已知的正弦量电压、电流、电动势用相量表示; 2)将电路中无源元件用阻抗表示,如R 、jX L 、-jX C ;

3)用各种电路分析方法求解,所有方程均为相量方程。一般加减运算用代数式;乘除运算用指数式或极坐标式。 (2)相量图法 1)选取参考相量,一般并联电路选电压U 、串联电路选电流I ,复联电路要视具体情况而定; 2)以参考相量为基础,根据元件上电压与电流的相位关系画出电路的相量图; 3)根据相量的几何关系(平行四边形法则)求解待求物理量。 2、注意事项 (1)正弦量与相量间为对应关系,不是“相等”或“等效”关系。 (2)相量法是分析计算正弦交流电路的一种辅助数学工具,可使正弦量的数学运算更为简便,且只适应于同频率的正弦量的分析计算。 (3)分析和计算正弦交流电路时,必要时可借助相量图的几何关系,同一相量图中各正弦量必须频率相同。

信号与系统实验报告(常用信号的分类与观察)

实验一:信号得时域分析 一、实验目得 1.观察常用信号得波形特点及产生方法 2.学会使用示波器对常用波形参数得测量 二、实验仪器 1.信号与系统试验箱一台(型号ZH5004) 2.40MHz双踪示波器一台 3.DDS信号源一台 三、实验原理 对于一个系统特性得研究,其中重要得一个方面就是研究它得输入输出关系,即在一特定得输入信号下,系统对应得输出响应信号.因而对信号得研究就是对系统研究得出发点,就是对系统特性观察得基本手段与方法.在本实验中,将对常用信号与特性进行分析、研究。 信号可以表示为一个或多个变量得函数,在这里仅对一维信号进行研究,自变量为时间。常用信号有:指数信号、正弦信号、指数衰减正弦信号、复指数信号、Sa(t)信号、钟形信号、脉冲信号等。 1、信号:指数信号可表示为f(t)=Ke at。对于不同得a取值,其波形表现为不同得形式,如下图所示: 图1―1 指数信号 2、信号:其表达式为f(t)=Ksin(ωt+θ),其信号得参数:振幅K、角频率ω、与初始相位θ。其波形如下图所示:

图1-2 正弦信号 3、指数衰减正弦信号:其表达式为其波形如下图: 图1-3指数衰减正弦信号 4、Sa(t)信号:其表达式为:。Sa(t)就是一个偶函数,t= ±π,±2π,…,±nπ时,函数值为零。该函数在很多应用场合具有独特得运用。其信号如下图所示: 图1-4 Sa(t)信号 5、钟形信号(高斯函数):其表达式为:其信号如下图所示:

图1-5 钟形信号 6、脉冲信号:其表达式为f(t)=u(t)-u(t—T),其中u(t)为单位阶跃函数。其信号如下图所示: f(t) ? ……??…… 0 t 图1-6脉冲信号 7、方波信号:信号为周期为T,前T/2期间信号为正电平信号,后T/2期间信号为负电平信号,其信号如下图所示 U(t) ………… ?0?t 图1-7方波信号 四、实验内容及主要步骤 下列实验中信号产生器得工作模式为11 1、指数信号观察 通过信号选择键1,设置A组输出为指数信号(此时信号输出指示灯为000000)。用示波器测量“信号A组”得输出信号。 输出波形为:

正弦量的相量表示法

第九讲 正弦量的相量表示法 一、相量法的引入 1、相量法的概念:的用一个称为相量的向量或复数来表示正弦电压和电流。 2、正弦量的复数表示法: 假设正弦电压为 )sin()(m ψω+=t U t u 复数的形式:ψψ∠==∠+=+=m 22Y e Y a b arctg b a bi a Y j m 复数的模:表示电压的振幅; 复数的幅角:表示电压的初相。 正弦波电压的相量表示法:ψψ∠==m j m m e U U U 二、相量 1、概念:在复数平面上表示正弦电压和电流的复数的方有向线段。 3-2-1 正弦电压和电流的相量 2、正弦电压相量与正弦电压的关系 (1)正弦电压量的实质:电压的旋转相量在坐标轴(实轴或虚轴)上的投影。 (2)电压的旋转相量:当电压相量以角速度ω沿反时针方向旋转,即为旋转相量。 实轴上的投影:)cos(m ψω+t U 属于时间函数 虚轴上的投影:)sin(m ψω+t U 属于时间函数

图3-2-1 旋转相量及其在实轴和虚轴上的投影 (3)正弦量与相量表示法的相互关系 三、实例分析 【例3-2-1】正弦电流A )60314sin(5)(1?+=t t i , A )120314cos(10)(2?--=t t i ,求电流相量,画出相量图,并求出i (t )=i 1(t)+i 2(t)。 解:表示正弦电流A )60314sin(5)(1?+=t t i 的相量为 A 605A e 560j m 1 ∠==I 用相量法分析电路时,各正弦量的瞬时表达式用正弦函数(余弦函数)表示。 将电流相量A 6051m ∠=I 和A 15010m 2 ∠=I 画在一个复数平面上,就得到相量图 3-2-2。从相量图上容易看出各正弦电压电流的相位关系。 i m m i m u m m u m ) cos()() cos()(ψψωψψωωω∠=?→←+=∠=?→←+=I I t I t i U U t U t u A 15010A )150314sin(10 A )180********sin(10A )120314cos(10)(m 22 ∠=?→?+=+?+-=--=I t t t t i

非正弦交流电路

第9章非正弦交流电路 学习指导与题解 一、基本要求 1.建立几个频率为整数倍的正弦波可以合成为一非正弦周期的概念。明确一个非正弦周期波可以分解为一系列频率为整数倍正弦波之和的概念(即谐波分析)、谐波中的基波与高次谐波的含义。了解谐波分析中傅里叶级数的应用。 2.掌握波形对称性与所含谐波分量的关系。能根据波形的特点判断所含谐波的情况。了解波形原点选择对所含谐波的影响。 3.掌握非正弦周期电压和电流的平均值(即直流分量)和有效值的计算。能根据给定波形计算出直流分量。能根据非正弦周期波的直流分量和各次谐波分量,计算出它的有效值。 4.掌握运用叠加定理和谐波分析计算非正弦交流电路中的电压和电流的方法。 5.建立同频率的正弦电压和电流才能形成平均功率的概念。掌握运用叠加定理和谐波分量计算非正弦交流电路中和平均功率。 二、学习指导 在电工技术中,电路除了激励和响应是直流和正弦交流电和情况外,也还遇到有非正弦周期函数电量的情况。如当电路中有几个不同频率的正弦量激励时,响应是非正弦周期函数;含有非线性元件的电路中,正弦激励下的响应也是非线性的;在电子、计算机等电路中应用的脉冲信号波形,都是非正弦周期函数。因此,研究非正弦交流电路的分析,具有重要和理论和实际意义。 本章的教学内容可分为如下三部分: 1.非正弦周期波由谐波合成的概念; 2.非正弦周期波的谐波分析; 3.非正弦交流电路的计算。 着重讨论非正弦周期波谐波分析的概念,非正弦周期量的有效值和运用叠加定理计算非正弦交流电路的方法。 现就教学内容中的几个问题分述如下。 (一)关于非正弦周期波的谐波的概念 非正弦周期波是随时间作周期性变化的非正弦函数。如周期性变化的方波、三角波等。这类波形,与正弦波相比,都有变化的周期T和频率f,不同的是波形而已。 f t,可 几个频率为整数倍的正弦波,合成是一个非正弦波。反之,一个非正弦周期波()

(完整word版)信号与系统_复习知识总结

重难点1.信号的概念与分类 按所具有的时间特性划分: 确定信号和随机信号; 连续信号和离散信号; 周期信号和非周期信号; 能量信号与功率信号; 因果信号与反因果信号; 正弦信号是最常用的周期信号,正弦信号组合后在任一对频率(或周期)的比值是有理分数时才是周期的。其周期为各个周期的最小公倍数。 ① 连续正弦信号一定是周期信号。 ② 两连续周期信号之和不一定是周期信号。 周期信号是功率信号。除了具有无限能量及无限功率的信号外,时限的或,∞→t 0)(=t f 的非周期信号就是能量信号,当∞→t ,0)(≠t f 的非周期信号是功率信号。 1. 典型信号 ① 指数信号: ()at f t Ke =,a ∈R ② 正弦信号: ()sin()f t K t ωθ=+ ③ 复指数信号: ()st f t Ke =,s j σω=+ ④ 抽样信号: sin ()t Sa t t = 奇异信号 (1) 单位阶跃信号 1()u t ={ 0t =是()u t 的跳变点。 (2) 单位冲激信号 单位冲激信号的性质: (1)取样性 11()()(0) ()()()f t t dt f t t f t dt f t δδ∞ ∞ -∞ -∞ =-=? ? 相乘性质:()()(0)()f t t f t δδ= 000()()()()f t t t f t t t δδ-=- (2)是偶函数 ()()t t δδ=- (3)比例性 ()1 ()at t a δδ= (4)微积分性质 d () ()d u t t t δ= ; ()d ()t u t δττ-∞ =? (5)冲激偶 ()()(0)()(0)()f t t f t f t δδδ'''=- ; (0) t <(0)t > ()1t dt δ∞ -∞ =? ()0t δ=(当0t ≠时)

信号与系统实验报告

《信号与系统》 实验报告 湖南工业大学电气与信息工程学院 实验一用同时分析法观测50Hz非正弦周期信号的 分解与合成 一、实验目的 1、用同时分析法观测50Hz非正弦周期信号的频谱,并与傅立叶级数各项的频率与系数作比较。

2、观测基波和其谐波的合成。 二、实验设备 1、信号与系统实验箱:TKSS -A型或TKSS -B 型TKSS -C 型; 2、双踪示波器 三、实验原理 1、 一个非正弦周期函数可以用一系列频率成整数倍的正弦函数来表示,其中与非正弦具有相同频率的成分称为基波或一次谐波,其他成分则根据其频率为基波频率的 2、 3、 4、…、n 等倍数分别称为二次、三次、四次、…、n 次谐波,其幅度将随着谐波次数的增加而减小,直至无穷小。 2、 不同频率的谐波可以合成一个非正弦周期波,反过来,一个非正弦周期波也可以分解为无限个不同频率的谐波成分, 3、 一个非正弦周期函数可以用傅立叶级数来表示,级数各项系数之间的关系可用一个频谱来表示,不同的非正弦周期函数具有不同的频谱图,各种不同波形及其傅氏级数表达式见表2-1,方波频谱图如图2-1表示 Um 1 351/9 1/51/71/3 790ωωωωωω 图1-1 方波频谱图 表2-1 各种不同波形的傅立叶级数表达式 Um 0t T U 2τ方波 Um 0T U 2τ正弦整流全波

Um 0T U 2τ三角波Um 0T 2τ 正弦 整流半波t t Um 0t T U 2 τ矩形波U 1、方波 ())7sin 715sin 513sin 31(sin 4Λ++++= t t t t u t u m ωωωωπ 2、三角波 ())5sin 2513sin 91(sin 82Λ++-=t t t u t u m ωωωπ 3、半波 ())4cos 1512cos 31sin 421(2Λ+--+= t t t u t u m ωωωππ 4、全波 ())6cos 3514cos 1512cos 3121(4Λ+---=t t t u t u m ωωωπ 5、 矩形波 ())3cos 3sin 312cos 2sin 21cos (sin 2Λ++++=t T t T t T U T U t u m m ωτπωτπωτππτ 实验装置的结构如图1-2所示 DC 20f f f f f f 3456图1-2信号分解于合成实验装置结构框图 图中LPF 为低通滤波器,可分解出非正弦周期函数的直流分量。BPF 1-BPF 6为调

非正弦周期信号

第十三章非正弦周期电流电路和信号的频谱 重点: 1. 非正弦周期电流电路的电流、电压的有效值、平均值; 2. 非正弦周期电流电路的平均功率 3. 非正弦周期电流电路的计算方法 难点: 1. 叠加定理在非正弦周期电流电路中的应用 2. 非正弦周期电流电路功率的计算 与其它章节的联系: 叠加定理 RLC串联谐振 RLC并联谐振 数学知识:傅里叶分析

§13.1 非正弦周期信号 生产实际中不完全是正弦电路,经常会遇到非正弦周期电流电路。在电子技术、自动控制、计算机和无线电技术等方面,电压和电流往往都是周期性的非正弦波形。 非正弦周期交流信号的特点: 1) 不是正弦波 2) 按周期规律变化,满足:(k=0,1,2…..) 式中T 为周期。图 13.1 为一些典型的非正弦周期信号。 图13.1(a)半波整流波形(b)锯齿波(c)方波 本章主要讨论非正弦周期电流、电压信号的作用下,线性电路的稳态分析和计算方法。采用谐波分析法,实质上就是通过应用数学中傅里叶级数展开方法,将非正弦周期信号分解为一系列不同频率的正弦量之和,再根据线性电路的叠加定理,分别计算在各个正弦量单独作用下电路中产生的同频率正弦电流分量和电压分量,最后,把所得分量按时域形式叠加得到电路在非正弦周期激励下的稳态电流和电压。

§13.2 周期函数分解为傅里叶级数 电工技术中所遇到的非正弦周期电流、电压信号多能满足展开成傅里叶级数的条件,因而能分解成如下傅里叶级数形式: 也可表示成: 以上两种表示式中系数之间关系为: 上述系数可按下列公式计算: (k=1,2,3……)求出a0、a k、b k便可得到原函数f(t) 的展开式。 注意:非正弦周期电流、电压信号分解成傅里叶级数 的关键在于求出系数a0、ak、bk ,可以利用函数的某种 对称性判断它包含哪些谐波分量及不包含哪些谐波分量, 可使系数的确定简化,给计算和分析将带来很大的方便。图 13.2

信号与系统matlab实验及答案

产生离散衰减正弦序列()π0.8sin 4n x n n ?? = ??? , 010n ≤≤,并画出其波形图。 n=0:10; x=sin(pi/4*n).*0.8.^n; stem(n,x);xlabel( 'n' );ylabel( 'x(n)' ); 用MATLAB 生成信号()0sinc at t -, a 和0t 都是实数,410t -<<,画波形图。观察并分析a 和0t 的变化对波形的影响。 t=linspace(-4,7); a=1; t0=2; y=sinc(a*t-t0); plot(t,y);

t=linspace(-4,7); a=2; t0=2; y=sinc(a*t-t0); plot(t,y); t=linspace(-4,7); a=1; t0=2; y=sinc(a*t-t0); plot(t,y);

三组对比可得a 越大最大值越小,t0越大图像对称轴越往右移 某频率为f 的正弦波可表示为()()cos 2πa x t ft =,对其进行等间隔抽样,得到的离散样值序列可表示为()()a t nT x n x t ==,其中T 称为抽样间隔,代表相邻样值间的时间间隔,1 s f T = 表示抽样频率,即单位时间内抽取样值的个数。抽样频率取40 Hz s f =,信号频率f 分别取5Hz, 10Hz, 20Hz 和30Hz 。请在同一张图中同时画出连续信号()a x t t 和序列()x n nT 的波形图,并观察和对比分析样值序列的变化。可能用到的函数为plot, stem, hold on 。 fs = 40; t = 0 : 1/fs : 1 ; % ?μ?ê·?±e?a5Hz,10Hz,20Hz,30Hz f1=5; xa = cos(2*pi*f1*t) ; subplot(1, 2, 1) ; plot(t, xa) ; axis([0, max(t), min(xa), max(xa)]) ; xlabel('t(s)') ;ylabel('Xa(t)') ;line([0, max(t)],[0,0]) ; subplot(1, 2, 2) ;stem(t, xa, '.') ; line([0, max(t)], [0, 0]) ;

信号与系统MATLAB仿真题目

考核人数______ 考核班次_______________ 任课教员_________ 出题教员签名________ 任课教研室主任签名_______日期_______ 队别__________ 教学班次___________ 学号___________ 姓名____________ …………………………密………………………………封………………………………线……………………………………… 通信系统仿真题目 1.学习电路时已知LC 谐振电路具有选择频率的作用,当输入正弦信号频率与LC 电路的谐 振频率一致时,将产生较强的输出响应,而当输入信号频率适当偏离时,输出响应相对值很弱,几乎为零(相当于窄带通滤波器)。利用这一原理可以从非正弦周期信号中选择所需的正弦频率成分。题图所示RLC 并联电路和电流1()i t 都是理想模型。已知电路的谐振频率为 0100f kHz = =,100R k =Ω谐振电路品质因素Q 足够高(可滤除邻近频率成分) 1()i t 为周期矩形波,幅度为1 mA 当1()i t 的参数(,)T τ为下列情况时,粗略地画出输出电压 2()t υ的波形,并注明幅度值。 (1)510s T s τμμ== (2)1020s T s τμμ== (3)1530s T s τμμ== 2.设()x n 为一限长序列,当0n <和n N ≥时,()0x n =,且N 等于偶数。已知[()]DFT x n = ()X k ,试用()X k 表示以下各序列的DFT 。 (1)1()(1)x n x N n =-- (2)2()(1)()n x n x n =- (3) 3() (01)()()(21)0()x n n N x n x n N N n N n ≤≤-?? =-≤≤-??? 为其他值 (4) 4()()(01) ()2 2 () N N x n x n n x n n ?≠+≤≤ -? =???为其他值 (5) 5()(01)()0 (21)0() x n n N x n N n N n ≤≤-?? =≤≤-??? 为其他值 (6) 6() ()20()n x n x n n ??? ? ?=????? 为偶数为奇数 (DFT 有限长度取2N ,k 取偶数。) (7) 7()(2)x n x n =(DFT 有限长度取 2 N )。 3.已知三角脉冲1() f t 的傅里叶变换为21()24E F Sa τωτω??= ??? 试利用有关定理求210()cos()2f t f t t τω?? =- ??? 的傅里叶变换2()F ω。1()f t 、2()f t 的波形如下图所示。 4.求下图所示半波余弦信号的傅里叶级数。若E=10V ,f=10kHz ,大致画出幅度谱。 5.求下图所示()F ω的傅里叶逆变换()f t 。

第6节 非正弦周期电流电路分析

第6章 非正弦周期电流电路分析 主要内容 1. 信号的基本概念和分类。 2. 信号的基本运算。 3. 常用非正弦周期信号。 4. 非正弦周期信号的傅里叶级数分解。 5. 周期信号的频谱。 6. 非正弦周期电流电路分析。 6.1信号 6.1.1 信号的基本概念 宇宙万物都处在不停的运动中,物质的一切运动或状态的变化,从广义上讲都是信号(Signal ),即信号是物质运动的表现形式。例如,钟鼓楼的报时钟声和轮船的汽笛声是声信号;烽火台的烽火和交通路口的红绿灯信号是光信号;电路中的电流和无线电基站发射的电磁波是电信号。在社会活动和日常生活中,人们总要使用语言、文字、数据、图像等多种媒体来传递消息(Message ),消息是这些语言、文字、数据、图像等信号所代表的具体内容。通信的目的在于通过各种消息的传递,使人们获取不同的信息(Information ),信息就是指具有新内容、新知识的消息。为了有效地传输和利用消息,通常需要将消息转换成各种便于传输和处理的信号。可见,信号是消息的载体,消息是信号的具体内容。 信号通常表现为某种随时间变化的物理量,在各种信号中,电信号最便于传输、控制和处理。因此,在实际应用中通常将各种非电信号(如声音、图像、温度、压力、位移、转矩、流量等)通过适当的传感器转换成电信号。 6.1.2 信号的描述和分类 电信号通常表现为电压信号和电流信号,它们都是时间的函数,可分别用u (t )和i (t )表示,或一般地表示为f (t )、y (t )等。信号的描述方法通常包括函数表达式法、波形图法、频谱图法和数据列表法。信号的变化规律是多种多样的,可以从不同的研究角度进行分类。 1.确定信号与随机信号 若信号随时间的变化表现为某种确定的规律,能用确定的函数表达式来描述,或者说对于任意一个确定的时刻,信号都有确定的函数值,这种信号称为确定信号。例如,正弦信号就是典型的确定信号。相反,如果信号的取值在不同时刻随机变化,事先无法预知它的变化规律,不能用确定的函数表达式来描述,这种信号称为不确定信号或随机信号。例如,噪声信号就是典型的随机信号。图6-1所示为几种常用信号的波形图,其中(a )~(e )是确定信号,(f )是随机信号。 由于信号在传输过程中不可避免地要受到各种噪声和干扰的影响,所以在实际应用中,理想的确定信号并不存在。但作为科学的抽象,研究确定信号仍然十分重要,它是研究随机信号的基础。 2.周期信号与非周期信号 周期信号是按某一固定周期重复出现的信号,它可以表示为 f (t )= f (t+nT ) n =0,±1,±2,… (6-1) 式中,T 称为信号的周期。周期信号的特点在于只要给定任意一个周期内信号的变化规律,就可以确定它在其他时间内的变化规律,如图6-1(c )所示。 非周期信号不具有周期性,它通常有两种表现方式:一种是仅在某些时间区间存在的信号,如图 6-1(a )、(b )、(d )、(e )、(f ) 所示;另一种是拟周期信号(概周期信号),例如)2sin(sin )(t t t f +=,它的两个正弦分量频率之比为无理数。另外,通常也可以将非周期信号看作是周期为无穷大的周期信号。

正弦量的相量表示法

5.2 正弦量的相量表示法 一、复数及其运算 1、复数的形式及其相互转换 (1)代数形式(直角坐标形式):A j a b =+ 其中:a 为实部,[]A a Re =,b 为虚部,[]A b Im =;每一个复数在复平面上都可找到唯一的点与之对应,而复平面上的每一点也都对应着唯一的复数。 复数还可以用复平面上的一个矢量来表示。复数A j a b =+,可以用一个从原点O 到P 点的矢量来表示,这种矢量称为复矢量。由图可知: 复数A 的模——矢量的长度:A r == 复数A 的辐角:矢量和实轴正方向的夹角?:规定 π?≤ a b arctan =?(复数落于第Ⅰ、Ⅳ象限) 或π?±=a b arctan (复数落于第Ⅱ、Ⅲ象限) 实部:??cos cos A r a == 虚步:??sin sin A r b == (2)复数的三角形式:()????sin j cos sin j cos +=+=A A A A (3)复数的指数形式:? j e A A =(欧拉公式:??? jsin cos j +=e ) (4)复数的极坐标形式:?∠=A A 例5-3 写出复数12A 4j3 , A 3j4=-=-+的极坐标形式。 解 1A 的模 15r = = 辐角 3 arctan 36.94 ?1-==-? (在第四象限) 则1A 的极坐标形式为1A 5=∠-36.9?。 2A 的模 25r = = 辐角 9.1261803 arctan 2=+-=?(在第二象限) 则 2A 的极坐标形式为2A 5126.9=∠?。 例5-4 写出复数A 10030=∠?的三角形式和代数形式。 解 三角形式: A 100(cos30jsin 30)=?+?

正弦量的相量表示法

4-1 正弦交流电路的分析方法 一、用向量表示正弦量 表示正弦量的方法:三角函数式、波形图、相量图(式)。 一、正弦量的旋转矢量表示 1、相量:在一平面直角坐标系上画一矢量,它的长度等于正弦量的最大值,它与横轴正方向之间的夹角为正弦量的初相,而角速度因是固定的也可不必再标明,这种仅反映正弦量的最大值和初相的“静止的”矢量, 称为相量。如:?m I 、? m U 、? m E 。 有效值相量:表示出正弦量的有效值和初相位的相量。如:? I 、? U 、? E 。 2、注意:⑴相同单位的量应按相同的的比例尺来画,不同单位的量可以用不同的比例尺来画;⑵只有同频率的正弦量才能画在同一相量图上,否则无法进行比较和运算。 二、同频率正弦量的加、减 确定m I 和ψ可用曲线相加法,也可用相量作图法。 1、 相量作图法的步骤:先用出相量 1? I 和2 ?I ,而后以1?I 和2? I 为邻边作一平行四 边形,其对角线即为合成电流i 的相量? I 。 ? I 的长度为有效值,? I 与横轴正方向的夹角 即为初相ψ。 2、应用相量作图法对正弦量进行减法时,实质与加法相同。

例如: ? ????-+=-=)(2121I I I I I 3、三角形法求矢量加、减 两矢量求和:两相量“头尾相连”,第三条边即是它们的和。 两矢量求差:两相量“尾尾相连,指向最减数的第三边即为它们的差。 多个相量相加时:各相量“头尾相连”,由第一个相量的箭尾和最后一个相量的箭头作一相量,即为求和的相量。 三、相量的复数表示式 把一个表示正弦量的相量画在复平面上,相量便可以用复数来表示,从而正弦量也就可以用复数表示。 jb a I +=? 其中,a----实部,b----虚部 ψ ψsin ,cos I b I a == 则 : ()ψψψψsin cos sin cos j I jI I jb a I +=+=+=? , 式中,I----复数的模,ψ----复数的幅角 a b tg b a I = += ψ,2 2 复数的三角函数形式变换为指数形式再简写为极坐标形式为:

相关文档
最新文档