世界上最大的光学望远镜--哈勃望远镜

世界上最大的光学望远镜--哈勃望远镜
世界上最大的光学望远镜--哈勃望远镜

世界上最大的光学望远镜--哈勃望远镜

2010-11-06 13:54提问者采纳

哈勃望远镜长13.3米,直径4.3米,重11.6吨,造价近30亿美元,于1990

年4月25日由美国航天飞机送上高590千米的太空轨道(图1)。哈勃望远镜以时速2.8万千米沿寂静的太空轨道运行,默默地窥探着太空的秘密。图1哈勃太空望远镜

哈勃望远镜是有史以来最大、最精确的天文望远镜。它上面的广角行星相机可拍摄到几十到上百个恒星照片,其清晰度是地面天文望远镜的10倍以上,其观测能力等于从华盛顿看到1.6万千米外悉尼的一只萤火虫。

1999年4月,利用哈勃望远镜拍摄的深空图像,美国纽约州立大学斯托尼布鲁克分校的研究人员发现了宇宙边缘附近有一个距离地球130亿光年的古老星系,这是迄今为止人类所发现的最遥远的天体;利用全新的近红外仪器,透过茫茫的星际,人们发现了“皮斯托”星,这是至今发现的最大的一个天体。利用哈勃望远镜的宽视场和行星摄像机,科学家获取了第一张伽玛射线爆发的光学照片;哈勃望远镜上的超级摄谱仪又向人们揭示了超新星的化学成分。

哈勃望远镜所收集的图像和信息,经人造卫星和地面数据传输网络,最后到达美国的太空望远镜科学研究中心。利用这些极其珍贵的太空图像和宇宙资料,科学家们取得了一系列突破性的成就。沉寂多年的天文学领域,正发生着天翻地覆的变化。

哈勃望远镜预计2010年“退休”。21世纪的太空望远镜研制计划正紧锣密鼓地在全世界范围内展开。21世纪初叶,将有数台大型天文观测设备送入外层空间,这将是继哈勃望远镜取得的辉煌成就之后的,人类探测太空的又一次大手笔。空间红外望远镜

将于2001年发射升空,其主镜口径84厘米,配备有灵敏度极高的红外探测元件。为彻底避开地球红外辐射的干扰,它将遨游于近百亿米之遥的深空轨道。当望远镜在外层空间、处于极低温的条件下进行观测时,红外波段的宇宙“面容”纤毫毕现,较之于地面观测将清晰百万倍。

新“哈勃望远镜”

美国正在积极筹划研制新一代太空望远镜,旨在接替目前还在轨道运行的哈勃望远镜。新一代望远镜主镜为口径达7.5米,其观察范围比“哈勃”大4~6倍,清晰度却不亚于“哈勃”。新一代望远镜计划2003年开始制造,重量预定3000千克,而“哈勃”重达10000千克。制造这么大而又这么轻的镜片,要求在材料上有巨大的突破和进展。

“哈勃”在对宇宙形成初期进行探测时留下了1亿年到10亿年之间空白,新一代望远镜将填补这段空白,研究宇宙的甚早期,观察诸星系形成时期的情况。“哈勃”专门用紫外线和可见光中的短波来观测宇宙,而新一代望远镜则用电磁光谱中波长较长的红外线部分来深入探索宇宙。因为宇宙在扩张的过程中诸星系远离

地球向外运动,它们的光变成波长较长的红光,以红外线的形式传到地球上。

新一代望远镜不像“哈勃”那样绕地球轨道,而是将稳定地占据地球与太阳之间、月球以外约150万公里的一条轨道。

空间干涉望远镜

预计于2005年3月被送入预定轨道。它实际上由7架30厘米口径的镜面组成,进入轨道空间后将释放排列成长达9米的望远镜阵。运用光学干涉技术,其最终的空间分辨率可优于哈勃望远镜近千倍。建造空间干涉望远镜,要求极高的技术水平,它的应用将使天文学家分辨遥远恒星的能力迈上一个新的台阶。

地外行星搜寻者

“地外行星搜寻者”是美国宇航局空间计划的“点睛”之笔,计划于2012年发射升空。它汇集了人类太空望远镜技术的精华,将在寻找太空生命方面崭露头角。“地外

行星搜寻者”的设计思路与空间干涉望远镜相似,但在规模与性能上有重大突破。空间干涉望远镜的可收卷镜阵延伸9米上下,而“地外行星搜寻者”的镜面阵列延展可达百米。利用它空前的分辨率,人们将足以探明,在太阳系邻近数十光年之内,是否存在与地球条件相似的行星,并进一步为解开地外生命的“悬念”获取宝贵的线索。

总之,21世纪的“天眼”,将具备前所未有的高灵敏度、高分辨率、大视场以及多天体观测能力。就整体而言,它们观测宇宙的效能将全面超越其“老大哥”----哈勃太空望远镜,从而全方位地开阔人类探测宇宙的视界。

望远镜的工作原理

望远镜的工作原理 望远镜是如何工作的 1.1 光线的聚集和图像的形成 光学望远镜是利用了两种现象: 光线的反射,由镜面产生(图1)和光线的折射,由透镜产生(图2) 图1:光线通过平面反射 折射是光线从一种介质传播到另一种介质时产生的光线弯曲。它遵守Snell定律: n1sinθi=n2sinθr (1) 这里的n是折射率,是光线所穿过的材料的特征属性: n=1.0000 理想的真空 n=1.0002 空气 n=1.5 玻璃 n实际上是光线在真空中的速度与光线在介质中的速度的比值。图2是一个n2> n1的例子。 图2:光线在两种介质的边界发生折射 图3将告诉你如何制作一个透镜。标定的距离 f 是透镜的焦距,一个位于“无限远”处的物体将成像在透镜后面距离为 f 的地方。我们在第2节中将会知道,望远镜是一些光学元件的组合。许多设计都包含折射和反射光学元件,但是为了简化后面的介绍,我们举例的望远镜只包含透镜。实际上,就我们的目的而言,反射和折射是等效的,从某种意义上说,一个人在原则上可以建造一个只使用透

镜的系统或是只使用反射镜的系统,而这两者在光学上来说是不可分辨的。当我们拿一个透镜收集来自遥远天体的光线从而得到图像的时候,就已经建造了基本的天文折射望远镜。 图3:透镜的折射 1.2 成像的大小依赖焦距的长短 注意我们到现在为止描述的折射望远镜是没有目镜的,因此它将不允许一个人直接看到它已经产生的图像,因为人类的视觉系统不适用于已经汇聚了的光线。虽然如此,我们简单的仪器实际上是个望远镜。如果想看到像是如何形成和在哪里形成的,你可以拿一片白色的纸或者一张照相底片放在焦点上。图4显示的就是两颗在天空中角距为θ的星,和它们正在被观察的样子。 图4:焦平面 由于相似三角形中θ是不改变的,所以星在图像上的分离大小与它们在天空中角距是成正比的。 图5:角距离转化为线距离 同时,从图5中可以看出: tanθ=d/fobj (2) 这里d是所成图像中星星们之间的线距离,fobj是透镜的焦距。现在,(物理学家们总爱耍一些这样的小把戏),因为这些星必然都很远,θ是如此之小, tan θ≈θ。这样, θ=d/fobj ==》1/fobj=θ/d

天文望远镜介绍

?光学望远镜 天文光学望远镜主要由物镜和目镜组镜头及其它配件组成。通常按照物镜的不同,可把光学望远镜分为三类:折射望远镜、反射望远镜和折反射望远镜。 一折射望远镜 折射望远镜的物镜由透镜组成折射系统。早期的望远镜物镜由一块单透镜制成。由于物点发射的光线与透镜主轴有较大的夹角,玻璃对不同颜色的光的折射率不同,会造成球差和色差,严重影响成像质量。为了克服这一缺点,人们发现近轴光线几乎没有球差和色差,于是尽量制造长焦距透镜,促使望远镜向长镜身发展。1722年希拉德雷测定金星直径的望远镜,物镜焦距长达65m,用起来非常不便,跟踪天体时甚至需很多人推动。 为解决上述缺点,后来人们用不同玻璃制成的一块凸透镜和一块凹透镜组成复合物镜。所以,现代的折射望远镜的物镜,都是由两片或多片透镜组成折射系统(双透镜组或三合透镜组等)这样,可使望远镜口径增大,镜身缩短。1897年安装在美国叶凯士天文台的折射望远镜,口径 1.02m,焦距19.4m,仅物镜就重达230kg,至今仍是世界上最大的折射望远镜。 从理论上说,望远镜越大,收集到的光越多,自然威力也越大。但巨大物镜对光学玻璃的质量要求极高,制作困难。镜身太大,支撑结构的刚性难保,大气抖动影响明显,其观测效果反倒不佳。这就限制了折射望远镜向更大口径发展。现在天文学家们发展了一种新技术,可以在望远镜镜面背后加上一套微调装置,根据大气的抖动情况,随时调整望远镜的镜面,把大气的抖动影响矫正过来,这套技术叫做主动光学,这样一来,望远镜口径问题有望突破。 二反射望远镜 反射望远镜的物镜,不需笨重的玻璃透镜,而是制成抛物面反射镜。 其光学性能,既没有色差,又消弱了球差。 反射望远镜物镜表面有一层金属反光膜,通常用铝或银,反光性能相当理想,且镜筒大大缩短。由于抛物面反射可作得很轻薄,于是就可以增大望远镜的口径。现代世界上大型光学望远镜都是反射望远镜。 反射望远镜需在镜筒里面装有口径较小的反射镜,叫作副镜,以改变由主镜反射后,光线行进方向和焦平面的位置。反射望远镜有几种类型,通常使用的主要有牛顿式,副镜为平面镜;卡塞格林式,副镜是凸双曲面镜,它可把主物镜的焦距延长,并从主镜的光孔中射出。

《国际最大规模的射电望远镜》阅读练习及答案

国际最大规模的射电望远镜 为了争取国际最大规模的射电望远镜合作计划来华,中国正在贵州省“筑巢引凤”,建设全球最大的射电望远镜。这是中国2007年批准立项的500米口径球面射电望远镜(FAST)项目,日前已经在贵州省开始基建,项目总投资6.27亿元,建设期5年半,预计2014年开光。FAST建成后,不仅将成为世界第一大单口径天文望远镜,并将在未来20年至30年内保持世界领先地位。 探测遥远的“地外文明” 这座巨大的望远镜外形与卫星天线相似,单口径500米,犹如一只巨大的“天眼”,将探测遥远、神秘的“地外文明”。千百年来人类大多是通过可见光波段观测宇宙。事实上,天体的辐射覆盖整个电磁波段,而可见光只是其中人类可以感知的一部分。该射电望远镜可以用来监听外太空的宇宙射电波,其中包括可能来自其他智能生命的“人工电波”;在电力充足的条件下,这只巨大的“天眼”还能发送电波信号,几万光年远的“外星朋友”将有可能收到来自中国的问候。 可寻找第一代诞生的天体 据FAST工程办公室研究人员介绍,项目建成后,它将使中国的天文观测能力延伸到宇宙边缘,可以观测暗物质和暗能量,寻找第一代天体。其能用一年时间发现数千颗脉冲星,研究极端状态下的物质结构与物理规律。而且无需依赖模型精确测定黑洞质量就可以有希望发现奇异星和夸克星物质;可以通过精确测定脉冲星到达时间来检测引力波;还可能发现高红移的巨脉泽星系,实现银河系外第一个甲醇超脉泽的观测突破。 用于太空天气预报 FAST还将把中国空间测控能力由地球同步轨道延伸至太阳系外缘,将深空通讯数据下行速率提高100倍。脉冲星到达时间测量精度由目前的120纳秒提高至30纳秒,成为国际上最精确的脉冲星计时阵,为自主导航这一前瞻性研究制作脉冲星钟。同时,可以进行高分辨率微波巡视,以1Hz的分辨率诊断识别微弱的空间讯号,作为被动战略雷达为国家安全服务。还可跟踪探测日冕物质抛射事件,服务于太空天气预报。 带动中国制造技术发展 FAST研究涉及了众多高科技领域,如天线制造、高精度定位与测量、高品质无线电接收机、传感器网络及智能信息处理、超宽带信息传输、海量数据存储与处理等。FAST关键技术成果可应用于诸多相关领域,如大尺度结构工程、公里范围高精度动态测量、大型工业机器人研制以及多波束雷达装置等。FAST的建设经验将对中国制造技术向信息化、极限化和绿色

新手入门天文望远镜使用小常识

新手入门——天文望远镜使用小常识 一、如何调试寻星镜 1、白天,先将主镜筒对准远处的一个目标(约500米远),如烟囱、空调室外机等。装上低倍率目镜(如20MM目镜)寻找目标。将镜筒大致对准目标后,调节焦距系统直到目标清晰,并使之处于主镜中心点,然后将脚架全部锁紧。 2、小心调整寻星镜上的三个螺丝,将主镜看到的目标调到寻星镜的十字架中心。 3、更换高倍率目镜(如10MM目镜),重复上述的步骤。调试时,主镜里的目标始终控制在寻星镜的十字架中心。 *寻星镜调准后,千万不要动它。观测月亮,尽量选择在“弯月”,这时能更清晰的看到环形山、月海等。 二、赤道仪的简介和调整 (一)赤道仪简介 赤道仪有三个轴: 1、地平轴。垂直于地平面,下端与三脚架台连接,上端与极轴连接,有地平高度刻度盘。绕地平轴旋转可调整望远镜的地平方位角。 2、极轴(赤经轴)。一端与地平轴相连,上下扳动极轴可调整地平高度角。另一端与赤纬轴成90o角连接,装有时角度盘,用于望远镜指向的时角(赤经)调整。

3、赤纬轴。与极轴成90o相连,上端与主镜筒成90o相连,以保证镜筒与极轴平行。下端连接平衡锤,装有赤纬度盘,用于望远镜指向的赤纬度调整。 (二)赤道仪的调整 极轴调整。使望远镜极轴和地球自转轴平行,指向北天极。 1、主镜与赤道仪、三角架连接好,把将有“N”标志的一条腿摆在正北方。调整三角架高度,使三角架台水平。 2、松开极轴(赤经轴)螺钉,把主镜旋转到左边或右边。松开平衡锤螺钉,移动平衡锤,使望远镜与锤平衡。把望远镜旋回上方,制紧螺钉。 3、松开地平螺钉,转动赤道仪,使极轴(望远镜)指向北方(指南针定向),制紧螺钉。 4、松开极轴与地平轴连接螺钉,上下扳动极轴,使指针对准观测地点的地理纬度,制紧螺钉。 5、松开赤纬轴螺钉,转动望远镜使其与极轴平行(亦即与当地经线圈平行),制紧螺钉。 6、从望远镜(或调好光轴的寻星镜)中观看北极星是否在视场中央,如有偏差,则需对极轴的地平方位角,地平高度角作精细调整,直至北极星在视场中央不再移动。 7、拧动时角刻度盘,零时(0h)对准指针;拧动赤纬刻度盘,90o对准指针。 至此,望远镜就与地球自转轴、观测点子午面完全平行。

望远镜的基本原理

望远镜的基本原理 望远镜是一种用于观察远距离物体的目视光学仪器,能把远物很小的张角按一定倍率放大,使之在像空间具有较大的张角,使本来无法用肉眼看清或分辨的物体变清晰可辨。所以,望远镜是天文和地面观测中不可缺少的工具。它是一种通过物镜和目镜使入射的平行光束仍保持平行射出的光学系统。一般分为三种。 一、折射望远镜 折射望远镜是用透镜作物镜的望远镜。分为两种类型:由凹透镜作目镜的称伽利略望远镜;由凸透镜作目镜的称开普勒望远镜。两种望远镜的成像原理如图1所示。 图1 伽利略望远镜是物镜是凸透镜而目镜是凹透镜的望远镜。光线经过物镜折射所成的实像在目镜的后方(靠近人目的后方)焦点上,这像对目镜是一个虚像,因此经它折射后成一放大的正立虚像。伽利略望远镜的放大率等于物镜焦距与目镜焦距的比值。其优点是镜筒短而能成正像,但它的视野比较小。把两个放大倍

数不高的伽利略望远镜并列一起、中间用一个螺栓钮可以同时调节其清晰程度的装置,称为“观剧镜”;因携带方便,常用以观看表演等。伽利略发明的望远镜在人类认识自然的历史中占有重要地位。其优点是结构简单,能直接成正像。 开普勒望远镜由两个凸透镜构成。由于两者之间有一个实像,可方便的安装分划板,并且各种性能优良,所以目前军用望远镜,小型天文望远镜等专业级的望远镜都采用此种结构。但这种结构成像是倒立的,所以要在中间增加正像系统。正像系统分为两类:棱镜正像系统和透镜正像系统。我们常见的前宽后窄的典型双筒望远镜既采用了双直角棱镜正像系统。这种系统的优点是在正像的同时将光轴两次折叠,从而大大减小了望远镜的体积和重量。透镜正像系统采用一组复杂的透镜来将像倒转,成本较高。 因单透镜物镜色差和球差都相当严重,现代的折射望远镜常用两块或两块以上的透镜组作物镜。其中以双透镜物镜应用最普遍。它由相距很近的一块冕牌玻璃制成的凸透镜和一块火石玻璃制成的凹透镜组成,对两个特定的波长完全消除位置色差,对其余波长的位置色差也可相应减弱,如图2所示。 图2

天文望远镜的光学系统

1848年建成的辛辛那提天文台折射望远镜影像。 折射望远镜 折射望远镜是一种使用透镜做物镜,利用屈光成像的望远镜。折射望远镜最初的设计是用于侦查和天文观测,但也用于其他设备上,例如双筒望远镜、长焦距的远距照像摄影机镜头。较常用的折射式望远镜的光学系统有两种形式:即伽利略式望远镜和开普勒式望远镜,其优点是成像比较鲜明、锐利;缺点是有色差。 发展历史 折射镜是光学望远镜最早的形式,第一架实用的折射望远镜大约在1608年出现在荷兰,由三个不同的人,密德堡的眼镜制造者汉斯·李普希和杨森、阿克马的雅各·梅提斯,各自独立发明的。伽利略在1609年5月左右在威尼斯偶然听说了这个发明,就依据自己对折射作用的理解,改进并做出了自己的望远镜。然后伽利略将他的发明细节公诸于世,并且在全体的议会中将仪器向当时的威尼斯大公多纳托展示。伽利略也许声称独立地发明了折射望远镜,而没有听到别人也做了相同的仪器。 折射望远镜的设计

架折射望远镜有两个基本的元件,做为物镜的凸透镜和目镜,折射望远镜中的物镜,将光线折射或偏折到镜子的后端。折射可以将平行的光线汇聚在焦点上,不是平行的光线则汇聚到焦平面上。这样可以使远方的物体看得更亮、更清晰和更大。折射望远镜有许多不同的像差和变形需要进行不同类型的修正。 伽利略式望远镜 与伽利略设计出来的原始形式相同的望远镜都称为伽利略望远镜。他使用凸透镜做物镜,和使用凹透镜的目镜。伽利略望远镜的影像是正立的,但视野受到限制,有球面像差和色差,适眼距(eye relief)也不佳。 开普勒式望远镜 开普勒式望远镜是开普勒改善了伽利略的设计,在1611年发明的。他改使用一个凸透镜作为目镜而不是伽利略原来用的一个凹透镜。这样安排的好处是从目镜射出的光线是汇聚的,可以有较大的视野和更大的适眼距,但是看见的影像是倒转的。这种设计可以达到更高的倍率,但需要很高的焦比才能克服单纯由物镜造成的畸变。(约翰·赫维留建造焦长45米的折射镜。)这种设计也使用在显微镜在焦平面上(用于测量被观测的两个物体之间角距离的大小)。 消色差折射镜 消色差的折射镜是在1733年由一位英国律师切斯特·穆尔·霍尔发明的,虽然专利权给了另一位独立发明的约翰Dollond。这项设计使用两片玻璃(有不同色散度的"冕牌玻璃"和"火石玻璃")做物镜,降低了色差和球面像差。两两片玻璃的每一个面都要抛光,然后组合在一起。消色差透镜可以让两种不同波长(通常是红色和蓝色)的光,都能聚焦在相同的焦平面上。 高度消色差折射镜

[世界最大单口望远镜] 世界最大望远镜

竭诚为您提供优质的服务,优质的文档,谢谢阅读/双击去除 [世界最大单口望远镜] 世界最大望远 镜 中国科学院国家天文台主导建设,是具有我国自主知识产权、世界最大单口径、最灵敏的射电望远镜。想知道它到底有多大吗?小编和你一起来探究吧! FAsT简介 FAsT(Five-hundred-meterAperturesphericalradioTelesc ope)500米口径球面射电望远镜位于贵州省黔南布依族苗族自治州平塘县大窝凼的喀斯特洼坑中。500米口径球面射电望远镜被誉为“中国天眼”,由我国天文学家于1994年提出构想,从预研到建成历时22年,于20XX年9月25日

落成,开始接收来自宇宙深处的电磁波。[1]由中国科学院国家天文台主导建设,是具有我国自主知识产权、世界最大单口径、最灵敏的射电望远镜。[2]500米口径球面射电望远镜作为国家重大科技基础设施,“天眼”工程由主动反射面系统、馈源支撑系统、测量与控制系统、接收机与终端及观测基地等几大部分构成。主动反射面是由上万根钢索和4450个反射单元组成的球冠型索膜结构,其外形像一口巨大的锅,接收面积相当于30个标准足球场。利用天然的喀斯特洼坑作为台址,洼坑内铺设数千块单元组成冠状主动反射面,采用轻型索拖动机构和并联机器人实现接收机高精度定位,这是中国‘天眼的三大自主创新。”[1]借助这只巨大的“天眼”,科研人员可以窥探星际之间互动的信息,观测暗物质,测定黑洞质量,甚至搜寻可能存在的星外文明。众多独门绝技让其成为世界射电望远镜中的佼佼者,这也将为世界天文学的新发现提供重要机遇。与德国波恩100米望远镜相比,“天眼”的灵敏度提高了约10倍;与美国阿雷西博350米望远镜相比,“天眼”的综合性能也提高了约10倍。“天眼”能够接收到137亿光年以外的电磁信号,观测范围可达宇宙边缘。从20XX年9月25日起,“天眼”方圆5公里将成为“静默区”。这个庞然大物开始睁开“慧眼” ,专注地捕捉来自宇宙深空的信号。

世界各国军事实力排名

世界各国军事实力排名 最新各国军力排名 1、 美国:全球战略进攻型军队,公认的超级大国,其建立在最发达的工农业生产上,地缘环境好,抗制裁能力超强,其良好的硬件和形象对世界各地精英有强大的吸引力。凭借2战和战后中东地区的冲突,在5大洲都有驻扎大量精锐部队,控制了欧亚多国的政局。(海军和空军武器质量总体领先全球,数量是西欧和日本的总和),信息技术先进,空间技术一流,具有太空战实力,海空军实力优势明显,作战理念先进,特点是先发制人,深入敌国作战,把威胁(包括对本土利益和海外利益的威胁)消灭在萌芽状态,对中俄实行谈判-遏制政策,尽量避免直接作战,对其他国家,实行非友即敌政策,设法尽量军事打击敌对国,此战略在911后在国内受到更多支持。在做为头号强国的几十年内,在全球范围内多次发动中小规模的军事行动,胜多败少,有时陷入泥潭,但对其自身利益不构成致命影响。 2、 俄罗斯:亚欧大陆战略进攻型军队,技术基础好,大规模杀伤性武器数量上仍跟美国不相上下,但是工农业生产相对落后,国内资源非常丰富,抗制裁能力超强,军人素质一流,且能吃苦耐劳,纪律严明,空间技术优势明显,但近年落后于美国。本土外作战的能力一直偏弱,海空军因为多国的战略包围而活动受限制。 3、 法国:全球性军队,微型超级大国,工农业非常发达,体系完整,但因为国小人少,战略资源缺乏,抗制裁能力较弱,北约内部独立的军事大国,海空军队战斗力强而灵活,空间技术在欧洲优势明显,国内精英渴望制定政策协调欧盟各国的利益使欧洲一体化最终统一,以遏制大国对西欧的控制,(2004-2005年独力控制非洲一个跟伊拉克实力相当的国家, 这点较美国成功)。 4、 英国:全球性军队,但军工业体系欠完整,太空作战发展相对落后,故常担当美、法等国的追随者,工业发达,国内战略资源比较丰富,抗制裁能力在西欧各国中最强,20世纪90年代以后英国空间、信息技术发展迅速,总体实力有回升势头,军队作战思想非常先进,文化底蕴深厚,重视情报收集,持久战、反游击战历史悠久。 5、 德国:欧洲地区性的军队,工业生产力非常强,技术尖端,但因美、法的双重控制体系欠完整,因为国小封闭,抗制裁力很弱,其国民素质一流,文化深厚,战斗意志和战术思想闻名世界而富有创造力,陆军战斗力在欧洲首屈一指。 6、 日本:地区性军队,战后在美国的重点支持下,工业生产非常发达,门类齐全,技术先进,但抗制裁能力较弱,在未被完全孤立的情况下能在短时间内武装为亚洲超强的战斗

教您天文望远镜基础知识入门知识讲解

教您天文望远镜基础知识入门 一、望远镜种类 (一)折射式望远镜 折射式望远镜的构造如下图: 折射式望远镜由两个透镜组成:固定在镜筒前端的是物镜(其口径大小直接决定望远镜的性能);在镜筒尾端可以调换的是目镜。

上图为星特朗AstroMaster系列 90EQ 优点:视野较大、星像明亮,使用和维护比较方便,反差及锐利度较同口径的反射镜佳,摄影及高倍行星观测,效果都相当不错。缺点:有色像差(色差)问题,会降低分辨率。 (二)反射式望远镜 反射式望远镜的构造如下图:

上图为牛顿式反射式望远镜。

上图为星特朗AstroMaster系列130EQ 优点:无色差、强光力和大视场,非常适合深空天体的目视观测。缺点:彗差和像散较大,视野边缘像质变差,操作不太容易, 维护相对复杂。 (三)折反射式望远镜 折反射式望远镜的构造如下图:

上图为星特朗Omni XLT 127

综合了折射镜和反射镜的优点:视野大、像质好、镜筒短、携带方便。有施密特-卡塞格林式和马克苏托夫-卡塞格林2种。 三种类型望远镜优缺点对比: (1)折射式:通常小型(口径80毫米以下)折射望远镜具有便携优势,结构简单可靠性高,可以在旅行时随身携带。在拍摄要求不高的情况完全可以满足摄影需求,而且与相机连接简单可以作为长焦镜头使用。 (2)反射式:大口径反射虽然不便携,但比其他类型望远镜有很多优势。首先,造价低廉,很多爱好者可以自己磨制。其次,大口径成像效果更好,利于高倍观测,而且焦比较小,适合观测和拍摄深空天体。 (3)折反式:折反同时具备折射式望远镜的便携和反射式望远镜的成像优势,但价格较贵。 三种望远镜优缺点对比: 折射式 优点:结构简单,便携,成像锐度好, 缺点:镜筒封闭维护保养容易有色差、球差,口径大的价格相对较贵 光学结构:物镜——目镜结构 反射式 优点:口径大,成像亮度高,无色差,价格相对便宜 缺点:不便携,有球差,镜筒开放维护保养相对困难 光学结构:反射镜——副镜——目镜结构 折反式 优点:便携,成像质量较好,镜筒封闭维护保养容易,

世界著名天文学家简介

伽利略是利用望远镜观测天体取得大量成果的第一位科学家。[5]1609年,伽利略在知道荷兰人已有了望远镜后,伽利略创制了天文望远镜(后被称为伽利略望远镜),并用来观测天体,发现许多前所未知的天文现象。他发现所见恒星的数目随着望远镜倍率的增大而增加;银河是由无数单个的恒星组成的;月球表面有崎岖不平的现象(亲手绘制了第一幅月面图),金星的盈亏现象;木星有四个卫星(其实是众多木卫中的最大的四个,现称伽利略卫星)。他还发现太阳黑子,并且认为黑子是日面上的现象。由黑子在日面上的自转周期,他得出太阳的自转周期为28天(实际上是27.35天)。1637年在目力很差情况下,他还发现了月亮的周日和周月天平动。[3]这些发现开辟了天文学的新时代。

伽利略第一个用望远镜观察到土星光环、太阳黑子、月球山岭、金星和水星的盈亏现象、木星的卫星和金星的周相等现象,并从实验中总结出自由落体定律、惯性定律和伽利略相对性原理等。从而推翻了亚里士多德物理学的许多臆断,奠定了经典力学的基础,反驳了托勒密的地心体系,有力地支持了哥白尼的日心学说。 这一系列天文发现轰动了当时的欧洲,伽利略在介绍他新发现的两本书《星际使者》(1610)和《关于太阳黑子的书信》(1613)中,都主张哥白尼的日心说。伽利略以观测到的事实,推动了哥白尼学说的传播。当时的意大利仍处于教会的严酷统治之下,许多人不肯承认同《圣经》和亚里士多德著作相违背的新思想、新事物。1613年,哥白尼的《天体运行论》被宗教法庭列为禁书,伽利略也受到警告,要他放弃哥白尼学说。伽利略没有接受警告,继续写作,1632年他的《两大世界体系的对话》出版,激怒了教会。宗教法庭把伽利略传到法庭,并宣判他有罪,并责令他忏悔,放弃自己证明了的学说,禁止《对话》流传。1633年被判处终生监禁,指定居住于佛罗伦萨效区[3]。他在生命的最后几年里仍努力研究。1634年写成一本力学著作——《关于两门新科学的谈话和数学证明》。

自制天文望远镜(天文爱好者必看)

*自制天文望远镜* 第一章望远镜基本原理 黄隆 1.1 天文望远镜光学原理 望远镜由物镜和目镜组成,接近景物的凸形透镜或凹形反射镜叫做物镜,靠近眼睛那块叫做目镜。远景物的光源视作平行光,根据光学原埋,平行光经过透镜或球面凹形反射镜便会聚焦在一点上,这就是焦点。焦点与物镜距离就是焦距。再利用一块比物镜焦距短的凸透镜或目镜就可以把成像放大,这时观察者觉得远处景物被拉近,看得特别清楚。 折射镜是由一组透镜组成,反射式则包括一块镀了反光金属面的凹形球面镜和把光源作90 度反射的平面镜。两者的吸光率大致相同。折射和反射镜各有优点,现分别讨论。 O=物镜 E=目镜 f =焦点 fo=物镜焦距 fe=目镜焦距 D=物镜口径 d =斜镜 1.2 折射和反射望远镜的选择 折射望远镜的优点 1.影像稳定

折射式望远镜镜筒密封,避免了空气对流现象。 2.彗像差矫正 利用不同的透镜组合来矫正彗像差(Coma)。 3.保养 主镜密封,不会被污浊空气侵蚀,基本上不用保养。 折射望远镜的缺点 1.色差 不同波长光波成像在焦点附近,所以望远镜出现彩色光环围绕成像。矫正色差时要增加一块不同折射率的透镜,但矫正大口径镜就不容易。 2.镜筒长 为了消除色差,设计望远镜时就要把焦距尽量增长,约主镜口径的十五倍,以六吋口径计算,便是七呎半长,而且用起来又不方便,业余制镜者要造一座这样长而稳定度高的脚架很是困难的一回事。 3.价钱贵 光线要穿过透镜关系,所以要采用清晰度高,质地优良的 玻璃,这样价钱就贵许多。全部完成后的价钱也比同一口径的 反射镜贵数倍至十数倍。 反射望远镜的优点

1.消色差 任何可见光均聚焦于一点。 2.镜筒短 通常镜筒长度只有主镜直径八倍,所以比折射镜筒约短两倍。短的镜筒操作力便,又容易制造稳定性高的脚架。 3.价钱便宜 光线只在主镜表面反射,制镜者可以购买较经济的普通 玻璃去制造反射镜的主要部份。 反射望远镜缺点 1.遮光 对角镜放置在主镜前,把部份入射光线遮掉,而对角镜 支架又产生绕射,三支架或四支架的便形成六条或四条由光 星发射出来的光线。可以利用焦比八至十的设计减低遮光 率。 2.影像不稳定 开放式的镜筒往往产生对流现象,很难完满地解决问 题。所以在高倍看行星表面精细部份时便显出不容易了。 3.主镜变形 温度变化和机械因素,使主镜变形,焦点也跟改变,形成球面差,球面差就是主镜旁边缘和近光轴的平行光线聚焦于不同地方,但小口径镜不成问题。 4.保养 镀上主镜表面的铝或银,受空气污染影响,要半年再镀一次。不过一块良好的真空电镀镜面可维持数年之久。 折射望远镜由二块透镜组成,总共要磨四边光学面,反射望远镜只需要磨一边光学面,所以制造反射式望远镜花费较少时间。技术精良的话,一副自制的六吋口径反射望远镜质素随时超过市面出售的三吋折射望远镜。

波多黎各、美国阿雷西博天文望远镜介绍

波多黎各、美国阿雷西博天文望远镜介绍 (1)简介 阿雷西博天文台位于波多黎各阿雷西博市,是由美国国际斯坦福研究协会(SRI)、宇宙空间研究组织(USRA)和波多黎各城市大学(UMET),在美国国家科学基金会(NSF)的合作框架下共同运行使用的。该天文台也被称为国家天文和电离层中心(NAIC),尽管从NAIC的字面上看它包括天文台及其操作人员。该天文台由康奈尔大学从上世纪六十年代开始到2011年建造完成。 该天文台射电望远镜口径1000英尺(305米),接收面积73000平方米,是世界上最大的单口径望远镜。望远镜的主要用途为三方面:射电天文学、高层大气物理学和雷达天文学。科学家们试图利用阿雷西博望远镜提出提案,给独立科学委员会进行评估。 该望远镜于1999年在影视节目中开始亮相,并在开始为SETI@home项目收集数据以后,获得普遍认可。它从2008年起被列入美国国家历史名胜名单。 图3.1 阿雷西博天文台天线远景 (2)基本参数及结构 主接收面直径为1000英尺(305米),建在一个卡斯特天坑留下的一个坑洼里。它拥有全球最大的弧形聚焦面,使得阿雷西博望远镜拥有世界上最强的电磁波收集能力。镜面由38778块穿孔的铝质嵌板所构成,每块嵌板长3到6英尺(1~2米),由网状钢缆支撑。 阿雷西博望远镜有三个雷达发射机,有效各向同性辐射功率分别为2380 MHz下20兆瓦(TW)、430 MHz下2.5兆瓦(峰值)、47MHz和300兆瓦。 该望远镜为球面反射镜,半径为870 英尺,而不是抛物反射面。对于瞄准装置,接收机通过移动来拦截由球面从不同方向反射而来的信号。抛物面反射镜在接收机离开原来位置

全球最佳天文照片

全球最佳天文照片 Abell 78行星状星云 1、Abell 78行星状星云 Abell 78是由一颗即将死亡的恒星在生命的最后时刻燃烧耗尽氢气层和氦气层时所形成的色彩斑斓的残体。星云外层含有大量的电离态氢,而内层则充满了大量的氦。Abell 78位于天鹅座。本照片拍摄于美国亚利桑那州莱蒙山天文台,采用的是24英寸RCOS Carbon Truss f/8天文望远镜。

范德比尔特-戴尔天文台 2、范德比尔特-戴尔天文台 照片中显示的是范德比尔特-戴尔天文台,以及该天文台上空的国际空间站和“奋进”号航天飞机。本照片于去年3月拍摄于田纳西州,图中圆顶房屋为范德比尔特-戴尔天文台的一景。戴尔天文台拥有24英寸卡尔-赛弗特反射望远镜。国际空间站与“奋进”号航天飞机正前后飞过戴尔天文台的上空,“奋进”号滞后国际空间站约20秒钟。本照片是采用索尼Cybershot F717相机以0.5倍广角镜头拍下的画面。

月球半景照片 3、月球半景照片 本照片是一张月球照片的合成图。月球在太阳系中是地球中唯一的天然卫星。月球的正面永远都是向着地球,其原因是潮汐长期作用的结果。另外一面,除了在月面边沿附近的区域因天秤动而中间可见以外,月球的背面绝大部分不能从地球看见。在没有探测器的年代,月球的背面一直是个未知的世界。月球背面的一大特色是几乎没有月海这种较暗的月面特征。而当人造探测器运行至月球背面时,它将无法与地球直接通讯。原始月球照片由一台宾得K10D相机和一台老式的8英寸星特朗天文望远镜所拍摄。

4、夏威夷哈莱亚卡拉天文台 本照片拍摄于哈莱亚卡拉山天文台的背面。该天文台位于夏威夷的毛伊岛哈莱亚卡拉山上,主要配备的是1.2米的施密特天文望远镜。

天文望远镜基础知识介绍

天文望远镜基础知识介绍

天文望远镜基础知识科普 一、望远镜基本原理与天文望远镜 望远镜是一种利用凹透镜和凸透镜观测遥远物体的光学仪器,是通过透镜的光线折射或光线被凹镜反射使之进入小孔并会聚成像,再经过一个放大目镜而使人看到远处的物体,并且显得大而近的一种仪器。所以,望远镜是天文和地面观测中不可缺少的工具。 天文望远镜是望远镜的一种,是观测天体的重要工具,可以毫不夸大地说,没有望远镜的诞生和发展,就没有现代天文学。随着望远镜在各方面性能的改进和提高,天文学也正经历着巨大的飞跃,迅速推进着人类对宇宙的认识。 二、天文望远镜的结构 下面是天文望远镜的结构图,不是说每一款望远镜都是这样的。有的天文望远镜没有寻星镜,有的在镜筒上还安装了中垂来调节平衡。还有会赠送很多其他的天文配件,比如太阳滤镜、增倍镜(巴洛镜)、更多倍数的目镜。 天文望远镜重要部位的作用: 1.主镜筒:观测星星的主要部件。 2. 寻星镜:快速寻找星星。主镜筒通常都以数十倍以上的倍率观测 星体。在找星星时,如果使用数十倍来找,因为视野小,要用主镜筒将星星找出来,可没那麼简单,因此我们就使用一支只有放大数倍的小望远镜,利用它具有较大视野的功能,先将要观测的星星位置找出来,如此就可以在主镜筒,以中低倍率直接观测到该星星。 3. 目镜:人肉眼直接观看的必要部件。目镜起放大作用。通常一部 望远镜都要配备低、中和高倍率三种目镜。 4.天顶镜:把光线全反射成90°的角,便于观察。 5. 三脚架:固定望远镜观察时保持稳定。

三、天文望远镜的性能指标 评价一架望远镜的好坏首先看它的光学性能,然后看它的机械性能的指向精度和跟踪精度是否优良。光学性能主要有以下几个指标: 1.口径:物镜的有效口径,在理论上决定望远镜的性能。口径越大,聚光本领越强,分辨率越高,可用放大倍数越大。 2.集光力:聚光本领,望远镜接收光量与肉眼接收光量的比值。人的瞳孔在完全开放时,直径约7mm。70mm口径的望远镜,集光力是70/7=10倍。 3.分辨率:望远镜分辨影像细节的能力。分辨率主要和口径有关。 4.放大倍数:物镜焦距与目镜焦距的比值,如开拓者60/700天文望远镜,使用H10mm目镜,放大倍数=物镜焦距700mm/目镜焦距10mm=70倍;放大倍数变大,看到的影像也越大。 5.视场:望远镜成像的天空区域在观测者眼中所张的角度,也称视场角。放大倍数越大,视场越小。 6.极限星等:是望远镜所能观测到最暗的星等,主要和口径、焦比有关。正常视力的人,在黑暗、空气透明的场合最暗可看到6等星,而70mm口径望远镜的集光力是肉眼的100倍,能看到比6等星再暗五个星等的11等星。 因此,衡量望远镜的重要参量是口径。 四、天文望远镜的分类 (一)光学望远镜 1609年,伽利略制造出第一架望远镜,至今已有近四百年的历史,其间经历了重大的飞跃,根据物镜的种类可以分为三种: 1.折射望远镜:物镜为凸透镜,位于镜筒的前端,来自天体的光线经物镜折射后成像在焦面上,故称为折射望远镜。优点---使用方便,镜体轻巧,便于

世界十大杰出物理学家排名

世界十大杰出物理学家排名 世界十大杰出物理学家是人们根据物理学家对世 界的贡献而选出的十个杰出代表。 牛顿 艾萨克·牛顿(Isaac Newton,1643.1.4-1727.3.31)——英格兰物理学家、数学家、天文学家、自然哲学家。他在1687年发表的论文《自然哲学的数学原理》里,对万有引力和三大运动定律进行了描述,不过现在人们仍不知道万有引力等力的作用机制。这些描述奠定了此后三个世纪里物理世界的科学观点,并成为了现代工程学的基础。 爱因斯坦 爱因斯坦(Albert Einstein, 1879.3.14-1955.4.18)——美籍德裔犹太人,举世闻名的物理学家,现代物理学的开创者和奠基人,相对论、“质能关系”、激光的提出者,“决定论量子力学诠释”的捍卫者(振动的粒子)——不掷骰子的上帝。2019年12月26日,爱因斯坦被美国《时代》周刊评选为“世纪伟人”。 麦克斯韦 麦克斯韦(James Clerk Maxwell, 1831.06.13-1879.11.5)——19世纪伟大的英国物理学家、数学家。麦克斯韦主要从事电磁理论、分子物理学、统计物理学、光学、力学、弹性理论方面的研究。尤其是他建立的

电磁场理论,将电学、磁学、光学统一起来,是19世纪物 理学发展的最光辉的成果,是科学史上最伟大的综合之一。他预言了电磁波的存在。这种理论预见后来得到了充分的实验验证。他为物理学树起了一座丰碑。造福于人类的无线电技术,就是以电磁场理论为基础发展起来的。 玻尔 尼尔斯·亨利克·戴维·玻尔(Niels Henrik David Bohr,1885年10月7日~1962年11月18日),丹麦物理 学家。他通过引入量子化条件,提出了玻尔模型来解释氢原子光谱,提出互补原理和哥本哈根诠释来解释量子力学,对二十世纪物理学的发展有深远的影响。玻尔是哥本哈根学派的创始人,哥本哈根大学科学硕士和博士,丹麦皇家科学院院士,曾获丹麦皇家科学文学院金质奖章,英国曼彻斯特大学和剑桥大学名誉博士学位,荣获1922年诺贝尔物理学奖。 亨利·卡文迪许 亨利·卡文迪许(Henry Cavendish,又译亨利·卡文 迪什,1731年10月10日—1810年2月24日),英国物理 学家、化学家。他首次对氢气的性质进行了细致的研究,证明了水并非单质,预言了空气中稀有气体的存在。将电势概念广泛应用于电学,并精确测量了地球的密度,被认为是牛顿之后英国最伟大的科学家之一。在卡文迪许漫长的一生中,他取得了一系列重大发现——其中,他是分离氢的第一人,

天文望远镜的光学形式与优缺点简介

望远镜的光学形式与优缺点简介 望远镜的光学形式分为折射式、反射式、折反射式等三种。 折射望远镜 折射镜的镜片结构是由二片到三片所组合的消色差设计。 优点:焦距长、视野较大、解析力强、拍摄出的星点锐利,星像明亮,最适合于做天体测量方面的工作、观测月球、行星、双星表现出色,较大口径的产品易于地面观景、非常适合做月面及行星的扩大摄影。影像清晰锐利,高对比度、较好的消色差设计、极好的APO高消色差、好的镜片几乎无色差、使用寿命很长,但须注意不要让镜片发霉、易于设置和使用、保养容易,很少或不需要维护、底片比例尺大、对镜筒弯曲不敏感、简单和可靠的设计、密封的镜筒避免了空气扰动图像并保护光学镜片、物镜永久固定式安装,无需校正。 缺点:价格高昂。大口径规格比较昂贵、较重、长度和体积比同等口径和焦距的牛顿反射或折反望远镜更大、存在一些色彩畸变(消色差双胶合透镜)、有残余的色差,从而降低了分辨率、优质折射镜的物镜是2片双分离消色差物镜或3片复消色差物镜。不过,消色差或复消色差并不能完全消除色差,所谓消色差物镜只是对白光中7种色光的2种色光(红和兰光)消除色差,而复消色差物镜除了对2种色光

消色差之外,还对第3种色光(黄光)消除了剩余色差。短焦的折射镜有周边像差的现象,但这些缺点现已可解决。口径无法做太大,增大口径的成本因素限制了商业产品的最大尺寸,经济的设计大多为中小口径产品、巨大的光学玻璃浇制也十分困难,对紫外、红外波段的辐射吸收很厉害、到1897年叶凯士望远镜建成,折射望远镜的发展达到了顶点,此后的这一百年中再也没有更大的折射望远镜出现。这主要是因为从技术上无法铸造出大块完美无缺的玻璃做透镜,并且,由于重力使大尺寸透镜的变形会非常明显,因而丧失明锐的焦点。反射式望远镜: 优点:口径较大,影像明亮。成本低,没有色差,可做较大的口径,适合做星云、星团的摄影。没有色差,能在广泛的可见光范围内记录天体发出的信息,且相对于折射望远镜比较容易制作。 缺点:口径越大,视场越小,光轴需常调整,反射镜面镀膜易氧化,物镜需要定期镀膜(三至五年),否则星星愈看愈暗,保养较为繁复。反射镜的慧差和像散较大,使得视野边缘像质变差,周边像差使星象肥大。彗形像差,这已被克服。 常用的反射镜有牛顿式和卡塞格林式2种。 牛顿反射望远镜 光学系统简单、价格便宜,球面反射镜在后端,目镜在前端侧面;牛顿反射望远镜采用一面凹面镜作为主要物镜,光进入镜筒的底端,然后折回开口处的第二反射镜,再次改变方向进入目镜焦平面。目镜为便于观察,被安置靠近望远镜镜筒顶部的侧方。牛顿反射望远镜用

天文望远镜各种类目镜的详细介绍与图解

目鏡的作用是把望遠鏡主鏡的影像放大,雖然一塊透鏡也可以造成目鏡,但為了達至最佳效果,大多數的目鏡都是由二塊或者多至七塊透鏡組成。 目鏡主要由兩組透鏡合成,對著主鏡,接收著主鏡光束的透鏡稱為視場透鏡(field lens),接近眼睛的

透鏡是目透鏡(eye lens)。 正目鏡和負目鏡 目鏡可分為正目鏡和負目鏡,正目鏡表示望遠鏡成形的實像 ( real image ) 在目鏡之外;負目鏡則表示望遠鏡的的虛像 ( virtual image ) 出現於目鏡內。所以正目鏡可當普通放大鏡用,把擺放在目鏡前的物體放大,負目鏡則不可以。 a.出射瞳孔 ( Exit pupil )

由主鏡射進來目鏡的光束,再離開目鏡的目透鏡成為細小光束的橫切直徑,就是出射瞳孔,或稱作藍斯登環 ( Ramsden disk ) 。出射瞳孔愈大,影像愈光亮。 出射瞳孔最好能夠配合人的瞳孔在晚間的寬度,約 5mm 至 9mm,這樣在黑夜觀看暗星体最恰當。應該要說清楚一點,出射瞳孔是要比我們的瞳孔細一些,否則進入不到眼睛的多餘光,便給浪費了. 出射瞳孔

出射瞳孔的直徑由入射瞳孔光束的大小所限制,入射瞳孔即望遠鏡的口徑,它們的關係在第一章中己列出。至於量度出射瞳孔的直徑,我們可以用一張白紙或磨砂玻璃放在目鏡後,量度最清晰的光環。得到它的直徑後,我們還可以用下列公式求出不知目鏡焦距的值。 例: 望遠鏡直徑 8 吋,焦距 56 吋,由望遠鏡系統量度到的出射瞳孔直徑是 1/14 吋,求自製目鏡的焦距。

出射瞳孔直徑和觀察用途 倍率出射瞳孔直徑每吋放大倍數觀察對象 十分低倍4~7 mm3~6 x寬視野深空星體。 低倍2~4 mm6~12 x常用倍率,找尋星星和觀看深空星體。 中倍1~2 mm12~25 x 月亮,行星,細小深空星體,寬視角雙星。 高倍0.7~1.0 mm25~35 x 月亮,在大氣穩定下觀看行星,雙星,星團。 十分高倍0.5~0.7 mm35~50 x大氣穩定下觀看行星和窄視角雙星。 b.目視距離 ( Eye relief )

揭秘全球十大最大天文望远镜

揭秘全球十大最大天文望远镜 在1608年10月2日,荷兰官员在认真地思考一项专利申请,这是眼镜店老板汉斯·利伯谢(Hans Lippershey)提交的一项发明,他声称这种装置能够将一定距离的物体看起来如同就在身边,通过它能够放大物体和景象。这就是最早纪录的望远镜概念。几个月之后,意大利物理、天文学家伽利略手中便拿着望远镜进行天文观测。 最初的望远镜非常简单,是由非常小的镜片组成,放在一个手臂长的内空木管中。然而,400年之后的今天,世界上最大的望远镜则要求建造在高耸的山脉上,数吨的钢铁用于支撑巨大的镜面,从而使科学家能够观测太空中广袤的区域。2008年6月,在召开的一次天文学家讨论发言会议上,戴卫·索贝尔 (Dava Sobel)宣称,通过望远镜观测太空是人类作为一种生命体形式完成最杰出的成就之一。 以下是全球十大最大天文望远镜,其中的照片是这些地面上最大的光学/红外线望远镜拍摄完成的。

1、加那列大型望远镜(Gran Telescopio Canarias) 加那列大型望远镜 目前,世界上最大的地面基础望远镜就是加那列大型望远镜,它位于西班牙帕尔马加那列岛屿中的一个小岛上,据称,加那列岛屿安置了多个大型望远镜。该望远镜的镜面直径为10.4米,是由36个定制的镜面六角形组件构成,安装需要精确至1毫米范围。它共投资1.75亿美元,是由西班牙政府、两所墨西哥研究机构和美国佛罗里达州大学共同合作建造的。 在将望远镜组件安装之前,每个组件都被命名为本地群岛中民间传说中的神灵名字,或以岛上动植物名称命名。 加那列大型望远镜拍摄的图片

加那列大型望远镜拍摄的图片 今年8月,加那列大型望远镜的36个镜面组件最后一批安装完成,然而它的第一次亮相是在2007年7月,当时仅安装了12个镜面组件。它观测的第一颗恒星是非常接近于北极星的“第谷1205081”(Tycho 1205081),之后这个大型望远镜更多捕捉的天文图片是拍摄一组交互式影响的星系——UGC 10923。每次拍摄结果都显示恒星形成区域出现了膨胀,拍摄曝光时间为50秒。

天文望远镜基础知识

天文望远镜基础知识 天文望远镜的光学系统 根据物镜的结构不同,天文望远镜大致可以分为三大类:以透镜作为物镜的,称为折射望远镜;用反射镜作为物镜的,称为反射望远镜;既包含透镜,又有反射镜的,称为折反射望远镜。往往有的天文爱好者买了一块透镜,以为这就解决了望远镜的物镜问题。其实,一块透镜成像会产生象差,现在,正规的折射天文望远镜的物镜大都由2~4块透镜组成。相比之下,折射天文望远镜用途较广,使用方便,比较适合做天文普及工作。 反射望远镜的光路可分为牛顿系统和卡塞格林系统等。一般说来,对天文普及工作,特别是对观测经验不足的爱好者来说,牛顿式反射望远镜使用起来不太方便,其物镜又需经常镀膜,维护起来也麻烦。折反射望远镜是由透镜和反射镜组成。天体的光线要受到折射和反射。这类望远镜具有光力强,视场大和能消除几种主要像差的优点。这类望远镜又分施密特系统、马克苏托夫系统和施密特卡塞格林系统等。根据我们多年实践的经验,中国科学院南京天文仪器厂生产的120折射天文望远镜对于天文普及工作和广大天文爱好者来说,是一种既方便又实用的仪器。 望远镜的光学性能 在天文观测的对象中,有的天体有视面,有的没有可分辨的视面;有的天体光极强,有的又特微弱;有的是自己发光,有的是反射光。观测者应根据观测目的,选用不同的望远镜,或采用不同的方法进行观测;一般说来,普及性的天文观测多属于综合性的,要考虑“一镜多用”。选择天文望远镜时,一定要充分了解它的基本光学性能。 口径--指物镜的有效直径,常用D来表示; 相对口径--指物镜的有效口径和它的焦距之比,也称为焦比,常用A表示;即A=D/F。 一般说来,折射望远镜的相对口径都比较小,通常在1/15~1/20,而反射望远镜的相对口径都比较大,通常在1/3.5~1/5。观测有一定视面的天体时,其视面的线大小和F成正比,其面积与F2成正比。象的光度与收集到的光量成正比,即与D2成正比,和象的面积成反比,即与F2成反比。 放大率--指目视望远镜的物理量,即角度的放大率。它等于物镜焦距和目镜焦距之比。 不少人提到天文望远镜时,首先考虑的就是放大倍率。其实,天文望远镜和显微镜不一样,地面天文观测的效果如何,除仪器的优劣外,还受地球大气的明晰度和宁静度的影响,受观测地的环境等诸因素的制约。而且,一架天文望远镜有几个不同焦距的目镜,也就是有几个不同的放大倍率可用。观测时,绝不是以最大倍率为最佳,而应以观测目标最清晰为准。 分辨角--指望远镜能够分辨出的最小角距。目视观测时,望远镜的分辨角=140(角秒)/D (毫米),D为物镜的有效口径。 视场--指天文望远镜所见的星空范围的角直径。

相关文档
最新文档