铁碳微电解填料工程设计

铁碳微电解填料工程设计
铁碳微电解填料工程设计

铁碳微电解填料工程设计

张琪铁碳微电解填料潍坊普茵沃润环保科技与中山大学联合研制的微电解反应器应用于工业废水的处理过程,在使用中通过严格控制流速及曝气量,并通过独特的设计使处理效果达到最佳。具有成本低廉,效果显著的特点。普茵沃润环保科技有限公司是一家致力于环保技术创新,环保设备制造,环保产品集成供应和相关技术服务为一体的环保专业技术企业。以环保高科技为先导,以吸收国外先进技术为基础,以改进创新为发展动力,以加工制造为根本,开发并推出多项具有竞争力的产品,形成了技术不断创新,产品质量不断提高的发展局面。

主要涉及城镇污水和工业废水处理领域;对各种废水治理工程的设计,施工,安装调试及总承包拥有丰富的经验及解决方案。

公司产品涉及:活性铁碳微电解填料,负载型氧化铜反应填料及各种新型环保设备。其中活化铁碳微电解填料是由具有高低电位差的金属合金融合催化剂采用微孔活化技术生产而成,经过上百次对企业废水进行试验,让配方更加合理,杜绝了同类产品开始使用时效果明显日后效能逐渐下降的弊端,在使用过称中效能更加长久;产品中添加的多种微量元素,促进了铁离子释放,使废水处理效果更加显著。同时采用科学的高温烧结养护过程使产品强度高,使用时不会因为水浸过久而松软变散导致损耗过多;不但降低了产品使用成本,同时也使处理效果大幅提升。

1,解决了微电解污水处理工艺填料板结,钝化,活化,更换的难题,并具有持续高活性铁床优点。

2,内电解阴阳极及催化剂通过高温形成架构式合金结构,不会像铁碳混合组配那样容易出现阴阳极分离,影响原电池反应。

3,采用微孔活化技术,比表面积大,同时配加催化剂,对废水处理提供了更大的电流密度和更好的微电解反应效果,反应速率快。

4,由于微电解和催化剂的双重作用,同比传统铁碳填料对针对有机物浓度大,高毒性,高色度,难生化废水的处理。

5,电解处理方法可以达到化学沉淀除磷的效果,还可以通过还原除重金属。废水经微电解处理后会在水中形成原生态的亚铁或铁离子,具有比普通混凝剂更好的混凝作用。

6,Fe2+催化作用,在微电解后投加H2O2,即芬顿氧化工艺,对一些难降解化工废水CODcr 的去解率可达75-95%。

7,该技术通过高温烧结等手段将铁及金属催化剂与炭包容在一起形成架构式铁炭结。

潍坊普茵沃润环保科技有限公司是致力于生产污水处理产品的专业化高科技公司。本公司人才济济,凝聚一批具有责任心以及创业精神的高素质员工团队,公司与中山大学共同研发的

新型包容式微电解技术可高效去除废水中高浓度有机物,提高可生化性,同时还可避免运行

过程中的填料钝化,板结等现象。并聘用美国美世学院大中华区总监Mel Sun先生为我们公司的管理顾问,从企业管理到产品生产销售的全环节为我们定身打造全员责任流程,以确保

我们的产品,服务达到一流水准。我们还与国内多所知名院校专家联合研制开发高科技水处理添加剂和设备,聘请在英国从事环保水处理工作20余年的姜亚伟博士作为我们的科研总监,负责指导我们产品的研制开发工作。

铁碳微电解工艺详细资料

微电解法是利用金属腐蚀原理,形成原电池对废水进行处理的良好工艺,又称内电解法,铁屑过滤法等。该法具有适用范围广,处理效果好,使用寿命长,成本低廉及操作维护方便等优点,并使用废铁屑为原料,也不需消耗电力资源,具有“以废治废”的意义,使得该工艺技术自诞生开始,即在美,苏,日等国家引起广泛重视,已有很多的专利,并取得了一些实用性的成果。该工艺是在20世纪7O年代应用到废水治理中的,而我国从2O世纪8O年代开始这一领域的研究,也已有不少文献报导。特别是近几年来,进展较快,在印染废水,电镀废水,石油化工废水及含砷含氰废水的治理方面相继有研究报导,有的已投入实际运行。

产品概述:

微电解技术是目前处理高浓度,难降解有机废水的一种理想工艺,又称内电解。它是在无需外接电源的情况下自身产生1.2伏电位差对废水进行电解处理能达到降解有机污染的目的。当系统通水后设备内会形成无数的微电池系统构成磁场产生电位差。铁在酸性条件下释放铁离子生成新生态Fe2 。Fe2 具有氧化--还原的作用,能与废水中的许多组分发生氧化还原反;

⑴将六价铬还原为三价铬;⑵将汞离子还原为单质贡;⑶将硝基还原为氨基;⑷将偶氮废水的有色基团或助色基团氧化--还原;达到降解脱色作用;提高了废水的可生化性。生成的Fe2 加减调PH值进一步产生Fe3 ;Fe3 是一种很好的絮凝剂。它们的水合物具有较强的吸附-絮凝作用,Fe3 在减的作用下进一步产生氢氧化亚铁和氢氧化铁胶体絮凝剂。它们的吸附能力远远高于那些外加化学药剂水解得到的絮凝剂;分散在水污中的悬浮物,,有毒物,金属离子及有极大分子能被吸附-絮凝沉淀。其工作原理:电化学,氧化—还原,物理吸附及絮凝--沉淀的共同作用对废水进行处理。

1 基本原理

微电解反应器内的填料主要有两种:一种为单纯的铁刨花;另一种为铸铁屑与惰性碳颗粒(如

石墨,活性碳,焦炭等)的混台填允体。两种填料均具有微电解反应所需的基本元素:Fe和C。低电位的Fe与高电位的C在废水中产生电位差,具有一定导电性的废水充当电解质,形成无数的原电池,产生电极反应和由此所引起的一系列作用,改变废水中污染物的性质,从而达到

废水处理的目的。

1.1 电极反应

阳极(Fe):

阴极(C):

当有O2时:

由上述反应的标准电极电位E0可知,酸性充氧条件下电极反应的E0最大,有O2存在得情况下电极反应进行得最快,该反应不断消耗废水中的H +,使其pH值上升。因此,pH低,酸度大时,氧的电极电位提高,微电池的电位差加大,促进了电极反应的进行。这从理论上解释了酸性废水微电解反应效果较好的原因。

1.2 氧化还原反应

1.2.1 铁的还原作用

铁是活泼金属,在酸性条件下可使一些重金属离子和有机物还原为还原态,例如:

(1)将汞离子还原为单质汞:

(2)将六价铬还原为三价铬:

(3)将偶氮型染料的发色基还原:

(4)将硝基还原为胺基:

铁的还原作用使废水中重金属离子转变为单质或沉淀物而被除去,使一些大分子染料降解为小分子无色物质,具有脱色作用,同时提高了废水的可生化性。

1.2.2 氢的氧化还原作用

电极反应中得到的新生态氢具有较大的活性。能与废水中许多组分发生氧化还原作用,破坏发色,助色基团的结构,使偶氮键破裂,大分子分解为小分子,硝基化台物还原为胺基化合物,达到脱色的目的。一般地,[H]是在Fe2+的共同作用下将偶氮键打断,将硝基还原为胺基。

1.3 电化学附集

当铁与碳化铁或其他杂质之间形成一个小的原电池,将在其周围产生一个电场,许多废水中

存在着稳定的胶体如印染废水,当这些胶体处于电场下时将产生电泳作用而被附集。

在电场的作用下,胶体粒子的电泳速度可由下式求出:

式中:V——胶体粒子的电泳速度(cm/s)

——电位(V)

D——分散介质的介电常数

E——电场强度(V/cm)

——分散介质的粘度(Pa?S)

K——系数

例如采用电位差为1.2V的废铁屑和焦炭粒,浸泡在电位为0.30mV的废水溶液中,粒料间的分离距离为0.10cm,可以得到5?0-3cm/s的分离速度,从理论上计算20s就可完成电泳沉积过程。

1.4 物理吸附

在弱酸性溶液中,铁屑丰富的比表面积显出较高的表面活性,能吸附多种金属离子,能促进金

属的去除,同时铁屑中的微碳粒对金属的吸附作用也是不可忽视的。而且铸铁是一种多孔性的物质,其表面具有较强的活性,能吸附废水中的有机污染物,净化废水,特别是加入烟道灰等物质时,其很大的比表面积和微晶表面上含有大量不饱和键和含氧活性基团,在相当宽的pH 值范围内对染料分子都有吸附作用。

1.5 铁的混凝沉淀

在酸性条件下,用铁屑处理废水时,会产生Fe2 和Fe3 。Fe2 和Fe3 是很好的絮凝剂,把溶液pH调至碱性且有O2存在时,会形成Fe(OH)2和Fe(OH)3很好的絮凝剂,发生絮凝沉淀。反应式如下:

生成的Fe(OH)3 是胶体絮凝剂,它的吸附能力高于一般药剂水解得到的Fe(OH)3吸附能力。这样,废水中原有的悬浮物,通过微电池反应产生的不溶物和构成色度的不溶性染料均可被

其吸附凝聚。

1.6 铁离子的沉淀作用

在电池反应的产物中,Fe2 和Fe3 也将和一些无机物发生反应生成沉淀物而去除这些无机物,以减少其对后续生化工段的毒害性。如S2一,CN-等将生成

FeS,Fe3[Fe(CN)6]2,Fe4[Fe(CN)6]3等沉淀而被去除。

2 工艺影响因素及设计参数

影响微电解工艺处理废水效果的因素有许多,如pH值,停留时间,处理负荷,铁屑粒径,铁碳比,通气量等。这些因素的变化都会影响工艺的效果,有些可能还会影响到反应的机理。

2.1 pH值

通常pH值是一个比较关键的因素,它直接影响了铁屑对废水的处理效果,而且在pH值范围不同时,其反应的机理及产物的形式都大不相同。一般低pH值时,因有大量的H+,而会使反应快速地进行,但也不是pH值越低越好,因为pH值的降低会改变产物的存在形式,如破坏反

应后生成的絮体,而产生有色的Fe2+使处理效果变差。而pH值在中性或碱性条件下,许多实际运行表明进行得不理想或根本不反应。因此,一般控制在pH值为偏酸性条件下,当然这也因根据实际废水性质而改变。

2.2 停留时间

停留时间也是工艺设计的一个主要影响因素,停留时间的长短决定了氧化还原等作用时间的长短MA羰奔湓匠ぃ趸乖茸饔靡步械迷匠沟祝捎谕A羰奔涔ぃ崾固南牧吭黾樱佣谷艹龅腇e2+大量增加,并氧化成为Fe3+,造成色度的增加及后续处理的种种问题。所以停留时间并非越长越好,而且对各种不同的废水,因其成分不同,其停留时间也不一样。建议设计参数:染料废水停留时间为30min;硝基苯废水停留时间为40~60min;制罐废水停留时间为7~1Oh;制药生产废水停留时间为4h;含油废水停留时间为30~40min。停留时间还取决于进水的初始pH值,进水的初始pH值低时,则停留时间可以相对取得短一点;相反,进水的初始pH值高时,停留时间也应相对的长一点。停留时间还反映了铁屑用量,停留时间长也就是说单位废水的铁屑用量大。两个参数可以相互校核,共同控制。

2.3 Fe/C比

加入碳是为了组成宏观电池,当铁中碳屑量低时,增加碳屑,可使体系中的原电池数量增多,提高对有机物等的去除效果。但当碳屑过量时,反而抑制了原电池的电极反应,更多表现为吸附,所以Fe/C比也应有一个适当值,且加入的碳的种类可以为活性炭或焦炭,碳种类对有机物等去除率影响不大,因此按经济因素考虑应选焦炭为最佳,具体设计参数为Fe/C (体积比)=1~

1.5。

2.4 铁屑粒度的影响

铁屑粒度越小,单位重量铁屑中所含的铁屑颗粒越多,使电极反应中絮凝过程增加,利于提高去除率。另一方面铁屑粒度越小,颗粒的比表面积越大。微电池数也增加,颗粒间的接触更加紧密,延长了过柱时间,也提高了去除率。但粒度越小,使单位时间处理的水量太小,且易产生堵塞,结块等不利影响,故一般的粒度以60~80目为佳。

2.5 通气量

对铁屑进行曝气利于氧化某些物质,如三价砷等,也增加了对铁屑的搅动,减少了结块的可能性,且进行摩擦后,利于去除铁屑表面沉积的钝化膜,且可以增加出水的絮凝效果,但曝气量过大也影响水与铁屑的接触时间,使去除率降低。在中性条件下,通过曝气,一方面提供更充足的氧气,促进阳极反应的进行。另一方面也起到搅拌,振荡的作用,减弱浓差极化,加速电极反应的进行,并且通过向体系加入催化剂改进阴极的电极性能,提高其电化学活性来促进电极反

应的进行,已取得了显著效果。

2.6 铁屑活化时间

由于铁屑表面存在有氧化膜钝层,因此在使用之前应对铁屑表面进行活化。研究表明,用稀盐酸进行活化时,当进行20min后,反应的K值基本已经稳定,故活化时间可以以20min为宜。

2.7 温度

温度的升高可使还原反应加快,但是加快最大的是反应初期,且由于维持一定的温度需要保温等措拖,一般的工业应用不予以考虑,均在常温下进行反应。

2.8 铁粉品种

一般使用的铁屑有铸铁屑和钢铁屑两种。铸铁屑含碳量高,处理效果好,但材料来源不易,絮体易破碎,强度低,易压碎结块;钢铁屑含碳量稍低而效果差,但材料易得。在流动水体中,能与废水接触均匀,不易短流或结块,表面钝化物也易被带走,自然更新力强,且增大停留时间,效果也能接近铸铁屑。磁性铸铁粉处理含铬电镀废水,取得了极佳的净化效果。磁性铸铁粉主要强化了铸铁粉表面的微电池作用,同时也加速了铁粉表面和溶液中的氧化还原速度,也能加速絮体的沉降过程。

1,微电解填料的应用及发展

1.1 印染废水的处理

印染废水是印染企业生产过程中排放的各种废水混合后的总称。我国日排放印染废水量为(300~400)×104 t,是各行业中的排污大户之一。印染废水主要由退浆废水,煮炼废水,漂白废水,丝光废水,染色废水和印花废水组成,其中含有大量的染料,助剂,浆料,酸碱,纤维杂质及无机盐等,其特点是有机物含量高,碱度高,色度深,组成复杂,可生化性差,而且其中的硝基,胺基化合物及铜,铬,锌,砷等重金属元素具有较大的生物毒性。长期以来,印染废水一直是工业废水处理的重点和难点。近年来随着染料工业的飞速发展和印染后整理技术的进步,PVA浆料,各种新型助剂和整理剂等抗光解,耐氧化和抗生物降解的有机物被越来越多的应用,排出废水的BOD5/ COD值一般在20%左右,色度有时可高达4000倍以上,印染废水的处理难度不断加大。因此有针对性的开发高效率,低成本的处理技术,是印染行业面临的重大课题。针对这一点,近几年国内外都开展了一系列的研究工作,取得了显著的进展和突破。

新技术的应用:

近年来,铁碳微电解研究成果和技术专利已经成功应用于各种规模的印染企业的废水治理工程。利用铁碳微电解技术处理印染废水,可以有效提高废水的可生化性,脱色率几乎可以达到100%,并且铁碳微电解技术是利用铁元素和碳元素自身发电,不用外加电流,因此操作方便,运行成本低廉。

印染废水水量大,色度深,碱性强,水质变化大,难降解有机污染物含量高。目前,印染废水普遍采用生化法,混凝沉淀法,混凝气浮法和活性炭吸附法进行处理。这些方法投资费用高,管理难度大,脱色效果和去除率都不理想。近几年来报道了许多用电化学法处理印染废水的研究成果和技术专利,并应用于各种规模的印染企业的废水治理工程,收到了良好的效果。利用微电解法处理染料废水,CODcr去除率达67%左右,脱色率几近100%。结果表明酸性废水有利于去除CODcr,和脱色,选择pH值为4的酸性废水为宜;延长微电解反应时间有利于提高处理效果,但会增加投资和运行费用,反应时间控制在5O min为宜;石灰乳的用量过多或过少均会影响CODcr的去除,调pH值为9时较合适;微电解反应器选择铁屑与焦炭的质量比为1:1效果最佳。铁炭微电解法处理实际生产染料废水,实验结果表明,微电解法对染料废水有明显的去除效果,进水pH为l左右,接触时间为0.5h时,COD的去除率在60%左右,色度去除率大于94%;微电解法主要通过氧化还原作用和铁的絮凝作用去除COD和色度。【【【【微电解填料【用户体验】开始啦!提供免费的“微电解填料样品”进行实验;开通了“微电解填料咨询热线”;同时提供全面详细的微电解填料资料等等。】】】】

3.2 含砷废水的处理

随着冶金和化工等行业发展以及贫矿的开发,砷伴随主要元素被开发出来,进入废水中的砷

数量相当大。据1995年中国环境状况公报报道,95年砷排放量达到1084吨,比94年增长4.4%,1996年中国环境状况公报报道,96年砷排放量达到1132吨,比95年增长4.2%。含砷废水有酸性和碱性,当中一般也含有其它重金属离子。砷与铅等共同作用会使废水的毒性更大,国内外都曾发现废水中砷的中毒事件。

含砷废水中砷的存在形态受pH的影响很大,在中性条件下,可溶砷的数量达到最大,随着pH的升高或降低其溶解的数量都将降低。pH为5.0时,溶液中砷主要以无机砷的形态存在,当pH为6.5时,有机砷为其主要存在形态。但由于含砷废水的来源并不单一,其成分也是复杂多变的。

含砷废水的处理在六十年代就已得到世人的关注。如能回收利用则不仅可解决了砷对环境的污染问题,而且经济效益显著,节约资源。目前,比较系统的处理方法有化学沉淀法,物理法以及新兴的,最具发展前途的—新型铁碳微电解技术。

砷化物是一种高毒性物质,对环境污染严重。含砷废水目前常采用离子交换法,沉淀法和浮选法治理。陆萸英等对含砷废水处理进行了系统的概述。在上述方法中,沉淀法加入沉淀剂的量较难控制,过少除不尽砷,过多会造成二次污染。浮选法则因泥渣中含水量大,也易造成二次污染。Nazarora G N等报道了消耗Fe电极的电凝结方法处理含砷废水,但此法耗电量很大。彭根槐等人对铁屑微电池反应处理含砷废水进行了研究,结果表明通过腐蚀电池电极反应产

生的Fe2 ,在碱性条件下絮凝共沉淀去除砷,去除率可达93%以上。

3.3 印刷电路板生产工业废水的处理

我国信息电子产业的快速发展为印刷电路板行业的快速发展提供了良好的市场环境。电子通讯设备,电子计算机,家用电器等电子产品产量的持续增长为印刷电路板行业的快速增长提

供了强劲动力。2008年,中国印刷电路板总产值约为272.5亿美元,是全球最大的印刷电路板生产地。而在印刷电路板生产过程中有多种含重金属污染物的废水和含高浓度的有机废水排出,而如何处理这些废水就引起了市场的关注。印刷电路板废水主要含有铜离子,废水基本呈酸性。采用新型铁碳微电解工艺可以有效破除重金属络合物,有效降低COD。

随着电子工业的发展,印刷电路板的需求量增大,生产厂家及生产产量的增加,使废水量也不断增加。这种废水主要污染物为氨水,EDTA等多种络合剂及Cu2+,Ni2 等多种金属离子。国内一般采用分质处理法处理,将废水分为含络合剂废水和无络合剂废水,前者用加碱或硫

酸调pH值再加沉淀剂,经沉淀过滤处理后排放.后者可直接加碱或硫化物作沉淀剂,沉淀过滤,达到净化的目的。在国外,最近有采用TMA(三硫三秦三钠盐)作沉淀剂,可避免硫化物二次污染。美国一些公司采用离子交换与隔膜电解相结台处理含络合剂重金属离子废水,这些方法去除率不高,一般较难使排放水达标。穆传奇研究报道了铁屑法处理印刷电路板废水,在酸性条件下,利用铁屑和电极反应产生的Fe2+还原重金属离子,并通过Fe(OH)3絮凝共沉的原理去除重金属离子,使废水达标排放,效果良好。处理后,出水中铜和镍离子含量均小于

O.2mg/L。这项技术已推广应用。

结语

微电解工艺自2O世纪7O年代发展以来,已成功地应用于印染废水,电镀废水等多行业废水的处理工程。实际运行结果表明,该工艺具有良好的处理效果,对染料的脱色,除Cr6+,除砷氟,除油等均有良好的效果。且该工艺以废治废,运行费用低,具有良好的工业应用前景。微电解技术是目前处理高浓度废水的理想工艺,工作原理基于电化学,氧化-还原,物理吸附以及絮凝沉淀的共同作用对废水进行处理。普茵沃润公司生产的微电解填料是利用高温烧结以及现代化冶炼技术生产,每批次产品高温养护周期达到7-10天。当微电解水处理系统通水后,填充在废水中的微电解填料自身产生1.2伏电位差并形成无数的微电池系统。产生的新生态[H],fe2 等能与废水发生氧化还原作用,能够明显破坏有色废水中的发色基团或助色基团,甚至断链,达到降解脱色作用。生成的fe2 进一步氧化成fe3 ,它们的水合物具有较强的吸附-絮凝作用,特别是加碱调ph值后生成氢氧化铁和氢氧化铁胶体絮凝剂,其吸附能力更加突出显著。该法处理水质广泛,具有适用范围广,效果好,成本低廉,操作维护方便,不需电力消耗的

优点。普遍用于难降解的高浓度废水的处理,不但大幅降低色度和cod,而且可以明显提高废水的可生化性,并不会对水质造成二次污染。

公司承诺:

(1)我公司的每一份样品均来自工厂的产品,广大客户均可留样封存备验,假一罚十。

(2)公司拥有多名工程技术人员,将会热情无偿地为您提供21小时服务咨询,并免费提供微电解工艺以及罐体,池体图纸。

(3)在ph值3-4条件下运行,我公司填料年损耗量低于15%,此数据已得到广大客户认证。注意事项:

(1)未投入使用的微电解填料,要保持干燥,避免浸水或者受潮。

(2)已经投入使用的微电解填料,工程停止运转之后仍然要用废水浸泡,不要暴露在空气中,以免氧化。

(3)视情况定期对填料进行反冲洗,以提高填料的处理效果。

(4)填料使用ph值理论上在3-4间效果最佳,ph值越低填料损耗同时相应增加,但对某些废水ph值的设定要依据试验结果确定。

铁碳微电解结构分析

萍乡拓步环保研发生产的第三代铁碳微电解填料TPFC采用规整球形结构,填充空隙更均匀,废水与颗粒表面接触更充分,传质效率更高,反应更彻底。应用于微电解反应器,可高效去除废水中重金属离子、色度、高浓度有机物(COD),对环状及长链大分子有机物进行开环断链,对有毒、有害有机污染物破解有毒官能团,提高工业废水的可生化性。反应活性高,不钝化,不板结,不堵塞,可定期反洗,产品使用过程无需更换,只需定期补充即可。与市场上炼钢球团改性铁粒对比,该产品处理效率提高一倍以上。 一、新型铁碳微电解填料TPFC应用特点 1、活性高 TPFC新型铁碳微电解填料内含稀贵微量元素M,铁-碳-催化元素M-形成空间网状结构,提高氧化还原电位,采用高温磁化构架、微孔活化技术,形成多孔结构,比表面积大,表面Zeta电位高,能大幅度降低污染物开环、断链及降解反应的活化能,提高反应速率和净化效率。 2、孔隙率高,堆密度低 TPFC新型铁碳微电解填料采用专业构架成孔技术,孔隙率高,堆密度0.8-1.2g/cm3,材料省,大幅度降低工程成本。 3、清洗方便,高效稳定 TPFC新型铁碳微电解填料采用规整球形颗粒结构,区别于市场上所有其它类型微电解填料,反洗更容易,更节水,产品活性稳定高效。

4、无钝化 TPFC新型铁碳微电解填料将微电解正负极材料有机地结合到一体,即在单个颗粒内同时形成无数个正负电极对,使放电反应永远畅通无阻,从根本上避免微电解工艺由于材料表面致密氧化物覆盖导致的钝化现象发生。真正实现无钝化、无需更换,只需根据其缓慢溶解速度,定期补加即可。 5、无堵塞无板结 TPFC新型铁碳微电解填料为单一材料(多元素复合一体),无需组配,密度一致,可定期反冲洗,从根本上解决使用过程中材料间杂质堵塞、填料板结等问题。 6、消耗量少 TPFC新型铁碳微电解填料放电反应效率高,去除单位COD微电解材料消耗量少,产生污泥量小,处理成本低。 7、预处理(解毒)作用稳定确保后续生化高效运行 TPFC新型铁碳微电解填料采用过滤方式,来水水质波动对出水水质影响小,能充分确保出水水质可生化性满足后续生化处理要求,维持生化处理单元平稳高效运行,最终确保出水水质达标。 8、系列产品针对性更强,更高效 TPFC新型铁碳微电解填料根据不同废水类型研发专用型号产品,针对性更强、技术更专业、处理效率更高。

铁碳微电解结构分析图文稿

铁碳微电解结构分析文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

萍乡拓步环保研发生产的第三代TPFC采用规整球形结构,填充空隙更均匀,废水与颗粒表面接触更充分,传质效率更高,反应更彻底。应用于微电解反应器,可高效去除废水中重金属离子、色度、高浓度有机物(COD),对环状及长链大分子有机物进行开环断链,对有毒、有害有机污染物破解有毒官能团,提高工业废水的可生化性。反应活性高,不钝化,不板结,不堵塞,可定期反洗,产品使用过程无需更换,只需定期补充即可。与市场上炼钢球团改性铁粒对比,该产品处理效率提高一倍以上。 一、新型铁碳TPFC应用特点 1、活性高 TPFC新型铁碳微电解填料内含稀贵微量元素M,铁-碳-催化元素M-形成空间网状结构,提高氧化还原电位,采用高温磁化构架、微孔活化技术,形成多孔结构,比表面积大,表面Zeta电位高,能大幅度降低污染物开环、断链及降解反应的活化能,提高反应速率和净化效率。 2、孔隙率高,堆密度低 TPFC新型铁碳微电解填料采用专业构架成孔技术,孔隙率高,堆密度0.8- 1.2g/cm3,材料省,大幅度降低工程成本。 3、清洗方便,高效稳定 TPFC新型铁碳微电解填料采用规整球形颗粒结构,区别于市场上所有其它类型微电解填料,反洗更容易,更节水,产品活性稳定高效。

4、无钝化 TPFC新型铁碳微电解填料将微电解正负极材料有机地结合到一体,即在单个颗粒内同时形成无数个正负电极对,使放电反应永远畅通无阻,从根本上避免微电解工艺由于材料表面致密氧化物覆盖导致的钝化现象发生。真正实现无钝化、无需更换,只需根据其缓慢溶解速度,定期补加即可。 5、无堵塞无板结 TPFC新型铁碳微电解填料为单一材料(多元素复合一体),无需组配,密度一致,可定期反冲洗,从根本上解决使用过程中材料间杂质堵塞、填料板结等问题。 6、消耗量少 TPFC新型铁碳微电解填料放电反应效率高,去除单位COD微电解材料消耗量少,产生污泥量小,处理成本低。 7、预处理(解毒)作用稳定确保后续生化高效运行 TPFC新型铁碳微电解填料采用过滤方式,来水水质波动对出水水质影响小,能充分确保出水水质可生化性满足后续生化处理要求,维持生化处理单元平稳高效运行,最终确保出水水质达标。 8、系列产品针对性更强,更高效 TPFC新型铁碳微电解填料根据不同废水类型研发专用型号产品,针对性更强、技术更专业、处理效率更高。

规整化铁碳微电解填料制备方法

规整化铁碳微电解填料制备方法 CN 101817574 B 摘要 规整化铁碳微电解填料及其制备方法属污水处理技术领域,本发明填料为铁屑:直径0.1~1mm,重量百分比50~80%;粉末状活性炭:直径小于0.1mm,重量百分比5~17%;粘土:直径小于0.15mm,重量百分比15~35%。本发明铁碳微电解填料制备方法的步骤:a.将按重量百分比的填料均匀混合;b.加水将混合物制成直径3~10mm的颗粒状填料;c.将上述填料入烘箱,于30~50℃下烘干;d.将填料移入马弗炉,隔绝氧条件下于250~600℃下焙烧2~4小时;e.待填料焙烧结束、冷却后,制得规整化铁碳微电解填料。本发明可防止铁碳微电解填料板结、钝化,填料易装填,污水处理效果良好,成本低廉,制备简单。 权利要求(1) 1. 一种规整化铁碳微电解填料制备方法,其特征在于包括下列步骤:a.将按重量百分比的填料均勻混合,填料为包括下列名称、规格和重量百分比的材料:铁屑:直径为0. 1?1mm,重量百分比为50?80% ;粉末状活性炭:直径小于0. 1mm,重量百分比为5?17% ;粘土:直径小于0. 15mm,重量百分比为15?35% ;b.逐渐加水,缓慢将混合物摇制成直径为3?IOmm的颗粒状填料;c.将制得的直径为3?IOmm的颗粒状填料放入烘箱,于30?50°C下烘干;d.将填料移入马弗炉中,在隔绝氧的条件下,于250?600°C下焙烧2?4小时;e.待填料焙烧结束、冷却后,制得规整化铁碳微电解填料。 说明 规整化铁碳微电解填料制备方法 技术领域 [0001] 本发明属铁碳微电解污水处理方法技术领域,具体涉及一种铁碳微电解填料的制备方法。 背景技术 [0002] 微电解法是利用金属腐蚀原理,形成原电池对废水进行处理的良好工艺,又称为内电解法、零价铁法、铁屑过滤法、铁碳法,是一项被广泛研究与应用的废水处理技术,因其工艺简单、操作方便,且可达到“以废治废”的目的,近年来受到广泛重视。 [0003] 但大量研究结果表明,该法在应用中存在诸多缺陷,填料运行一段时间后,由于铁的腐蚀,容易出现结块和沟流,使铁碳微电解填料处理效果降低,同时铁屑表面会生成一层金属氧化物和氢氧化物膜,致使铁屑钝化,进而导致微电解过程中断,影响处理效果。 发明内容 [0004] 本发明的目的在于提供一种可防止铁碳微电解填料板结、钝化,对污水有良好处理效果的微电解填料制备方法。

铁碳微电解填料塔

铁碳微电解填料塔 山东铁碳微电解填料水处理参数:ph值停留时间曝气絮凝沉淀 (铁碳微电解填料)方案------印染废水水量大、色度深、碱性强、水质变化大,难降解有机污染物含量高。 目前,印染废水普遍采用生化法、混凝沉淀法、混凝气浮法和活性炭吸附法进行处理。这些方法投资费用高,管理难度大,脱色效果和去除率都不理想。 近几年来报道了许多用电化学法处理印染废水的研究成果和技术专利,并应用于各种规模的印染企业的废水治理工程,收到了良好的效果。 利用微电解法处理染料废水,CODcr去除率达67%左右,脱色率几近100%。结果表明酸性废水有利于去除CODcr,和脱色,选择pH值为4的酸性废水为宜;延长微电解反应时间有利于提高处理效果,但会增加投资和运行费用,反应时间控制在5O min为宜;石灰乳的用量过多或过少均会影响CODcr的去除,调pH值为9时较合适;微电解反应器选择铁屑与焦炭的质量比为1:1效果佳。 铁炭微电解法处理实际生产染料废水,《铁炭微电解填料报道》实验结果表明,微电解法对染料废水有明显的去除效果,进水pH为l左右、接触时间为0.5h时,COD的去除率在60%左右,色度去除率大于94%;微电解法主要通过氧化还原作用和铁的絮凝作用去除COD 和色度。 (铁碳微电解填料)方案------工艺影响因素及设计参数: 影响微电解工艺处理废水效果的因素有许多,如pH值、停留时间、处理负荷、铁碳比、通气量等。这些因素的变化都会影响工艺的效果,有些可能还会影响到反应的机理。 pH值 通常pH值是一个比较关键的因素,它直接影响了铁碳填料对废水的处理效果,而且在pH 值范围不同时,其反应的机理及产物的形式都大不相同。 一般低pH值时,因有大量的H+,而会使反应快速地进行,但也不是pH值越低越好,因为pH值的降低会改变产物的存在形式,如破坏反应后生成的絮体,而产生有色的Fe2+使处理效果变差。因此,一般控制在pH值为偏酸性条件下,当然这也因根据实际废水性质而改变。 停留时间 停留时间也是工艺设计的一个主要影响因素,停留时间的长短决定了氧化还原等作用时间的长短。停留时间越长,氧化还原等作用也进行得越彻底,但由于停留时间过长,会使铁的消耗量增加,从而使溶出的Fe2+大量增加,并氧化成为Fe3+,造成色度的增加及后续处理的种种问题。 停留时间并非越长越好,而且对各种不同的废水,因其成分不同,其停留时间也不一样。停留时间还取决于进水的初始pH值,进水的初始pH值低时,则停留时间可以相对取得短一点;相反,进水的初始pH值高时,停留时间也应相对的长一点。

废水处理之铁碳微电解技术解析

废水处理之铁碳微电解技术解析 1、铁碳微电解法概述 铁屑(较多使用铸铁屑)为铁-碳合金,当浸没在废水溶液中时,就构成一个完整的微电池回路,形成一种内部电解反应,这就是微电解。而在铸铁屑中再加入惰性碳(如石墨、焦炭、活性炭、煤等)颗粒时,铁屑与炭粒接触,形成的大原电池即为铁碳微电解法。 2、技术原理 铁碳微电解技术主要利用了铁的还原性、铁的电化学性、铁离子的絮凝吸附三者共同作用来净化废水。 铁碳微电解工艺的电解材料一般采用铸铁屑和活性炭或者焦炭,当材料浸没在工业废水(例如焦化废水、电镀废水)中时,发生内部和外部两方面的电解反应。一方面铸铁中含有微量的碳化铁,碳化铁和纯铁存在明显的氧化还原电势差,这样在铸铁屑内部就形成了许多细微的原电池,纯铁作为原电池的阳极,碳化铁作为原电池的阴极,在含有酸性电解质的水溶液中发生电化学反应,使铁变为二价铁离子进入溶液。此外,铸铁屑和其周围的炭粉又形成了较大的原电池,因此在利用微电解进行废水处理的过程实际上是内部和外部双重电解的过程,或者称之为存在微观和宏观的原电池反应。另外,为了增加电位差,促进铁离子的释放,也可在铁碳微电解填料中加入一定比例催化剂。 发生电化学反应过程如下: 阳极(Fe):Fe-2e→Fe2+E(Fe/Fe2+)=0.44V 阴极(C):2H++2e→H2E(H+/H2)=0.00V 反应中,产生了初生态的Fe2+和原子H,它们具有高化学活性,能改变废水中许多有机物的结构和特性,使有机物发生断链、开环等作用。 若有曝气,还会发生下面的反应: O2+4H++4e→2H2OE(O2)=1.23V O2+2H2O+4e→4OH-E(O2/OH-)=0.41V Fe2++O2+4H+→2H2O+Fe3+

铁碳微电解填料预处理工艺

铁碳微电解填料水处理--铁碳微电解填料预处理工艺 科学的铁碳微电解填料最佳配方:经过上百次对企业废水进行试验,在取得第一手试验数据的基础上反复调整配方,让配方更加合理,杜绝了很多同类产品开始使用时效果明显日后效能逐渐下降的弊端,使普茵沃润环保的产品在使用过称中效能更加长久,并且在产品中添加了许多微量元素,以促进铁离子释放,使废水处理效果更加显著。 科学的铁碳微电解填料高温烧结养护过程:使烧结后的产品强度高,在使用过称中不会因为水侵过久而松软变散导致损耗过多;成品率大为提高,降低了产品成本,以达到薄利多销让利于客户的目的。 科学的质量保证服务体系:让您在使用过程中无后顾之忧,我们的产品顾问随时接受您的咨询并可以上门指导服务,帮助您使用调试。 <一>铁碳微电解填料参数/实验数据: 【性质】免更换效率高防板结钝化 【用途】各种高浓度废水的去除,降低色度、COD,去除重金属,提高B/C比值,提高可生化性。 【主要成分】铁(75%-85%)碳(10%-20%)少量贵金属、催化元素 【使用方法】添加到微电解设施中使用 【包装】袋装 【注意事项】 ①填料要保持干燥,避免浸水或受潮。 ②已经投入使用的填料,工程停止运转之后仍要用废水浸泡,以免氧化。 ③视情况定期对填料进行反冲洗。 【技术指标】 ①比重:1.1吨/立方米 ②比表面积:1.2平方米/克 ③空隙率:65% ④物理强度:≥1000KG/CM <二>铁碳微电解填料--污水处理方案--【适用废水种类】: (1)染料、印染废水;焦化废水;石油化工废水; ----经微电解处理后,色度、COD大幅度降低,同B/C比值显著提高。 (2)石油废水;皮革废水、造纸废水、木材加工废水; ----经微电解处理后,色度、COD大幅度降低;同B/C比值显著提高。 (3)电镀废水;印刷废水;采矿废水;其他含重金属废水; ----经微电解处理后,色度、COD大幅度降低,同时达到去除重金属的目的。(4)有机磷农药废水,有机氯农药废水; ----经微电解处理后,色度、cod\大幅降低,除磷、除硫化物的同时可生化性大幅提高。 铁碳微电解填料,铁碳微电解填料厂家,铁碳微电解填料价格 铁碳填料/铁炭填料,铁碳填料/铁炭填料厂家,铁碳填料/铁炭填料价格 <三>铁碳微电解填料-铁炭微电解【作用原理】 微电解技术是目前处理高浓度、高色度、高含盐量、难生物降解有机废水的一种理想工艺,又称内电解法。铁碳微电解填料浸入废水中时,由于铁和碳之间的电

铁碳微电解处理高浓度有机废水

微电解法 技术概述: 微电解法是利用金属腐蚀原理,形成原电池对废水进行处理的良好工艺,又称内电解法、铁屑过滤法等。该法具有适用范围广、处理效果好、使用寿命长、成本低廉及操作维护方便等优点,并使用废铁屑为原料,也不需要消耗电力资源,使得该工艺技术自诞生开始,即在美、苏、日等国家引起广泛重视,已有很多的专利,并取得了实用性的成果。该工艺是20世纪70年代应用到废水治理中的,而我国从20世纪80年代开始这一领域的研究,也已有不少文献报道。特别是近几年来,进展较快,在印染、造纸、电镀、石油化工废水以及含砷、含氰废水治理方面相继有运行报道。 微电解技术是目前处理高浓度有机废水的一种理想工艺,又称内电解法。它是在不通电的情况下,利用填充在废水中的微电解材料自身产生1.2V电位差对废水进行电解处理,以达到降解有机污染物的目的。当系统通水后,设备内会形成无数的微电池系统,在其作用空间构成一个电场。在处理过程中产生的新生态[H] 、Fe2 + 等能与废水中的许多组分发生氧化还原反应,比如能破坏有色废水中的有色物质的发色基团或助色基团,甚至断链,达到降解脱色的作用;生成的Fe2 + 进一步氧化成Fe3 +,它们的水合物具有较强的吸附- 絮凝活性,特别是在加碱调pH 值后生成氢氧化亚铁和氢氧化铁胶体絮凝剂,它们的吸附能力远远高于一般药剂水解得到的氢氧化铁胶体,能大量吸附水中分散的微小颗粒,金属粒子及有机大分子。其工作原理基于电化学、

氧化- 还原、物理吸附以及絮凝沉淀的共同作用对废水进行处理。该法具有适用范围广、处理效果好、成本低廉、操作维护方便,不需消耗电力资源等优点。该工艺用于难降解高浓度废水的处理可大幅度地降低COD和色度,提高废水的可生化性,同时可对氨氮的脱除具有很好的效果。 传统上微电解工艺所采用的微电解材料一般为铁屑和木炭,使用前要加酸碱活化,使用的过程中很容易钝化板结,又因为铁与炭是物理接触,之间很容易形成隔离层使微电解不能继续进行而失去作用,这导致了频繁地更换微电解材料,不但工作量大成本高还影响废水的处理效果和效率。另外,传统微电解材料表面积太小也使得废水处理需要很长的时间,增加了吨水投资成本,这都严重影响了微电解工艺的利用和推广。 铁碳微电解填料是目前处理印染、电镀、造纸、医药、硝基苯、苯胺、有机硅、印刷线路板、焦化、畜牧、双氧水化工、石油化工、橡胶助剂化工以及含苯环化工废水的一种理想工艺。 但是传统的微电解填料(铁屑+碳粒)有板结缺陷。 由我公司研发的铁碳微电解填料,突破了传统填料板结钝化的瓶颈,使得铁碳微电解技术被冰封之后重新得以推广。 铁碳微电解填料通过13000摄氏度的严格控温技术将铁及金属催化剂与炭包容在一起形成架构式铁炭结构。 ①此结构铁与炭永远是一体,不会像铁炭组配组合容易出现铁与炭分

微电解铁碳填料工艺流程

新效【铁碳微电解】普茵沃润-----行业资讯----介绍: 普茵沃润微电解填料----铁碳填料----内电解填料---污水处理填料--------用于染料废水、焦化废水、石油化工废水、皮革废水、造纸废水、木材加工废水、电镀废水、印刷废水、采矿废水、含重金属废水、农药废水 目录 1基本内容 1基本内容 微电解填料 新型【微电解填料】和传统【微电解填料】的比较 微电解处理技术各单元可作为单独处理方法使用,也可作为生物处理的前处理工艺,利于污泥的沉降和生物挂膜。新产品的面世,相信所有用户在关心效果的同时还关注着产品价格,下面将说明下本产品的市场价格以及定价的依据,并将新型填料的使用成本和传统填料作个对比。 一、传统铁碳床微电解填料 1、铁屑刨花(含碳量约2%):如今市场价格在3000元/吨上下浮动,折合3.5~4.0吨/立方,市场价格在1.0~1.2万元/立方;

2、维持初始的处理效果的时间只能1~2月; 3、带来板结、钝化、铁泥堵塞,对设备带来损伤,并需要更换新的填料,实际使用成本高得惊人 二、铁碳床微电解新型填料: (1)原料99%高纯铁粉、高纯碳粉、多种活性金属等;(2)工艺:高温烧结难度极高,铁粉烧结的同时保存碳粉,还要在规整化的填料表面产生无数的微孔,使之比表面结最大化,微电解效果显著,让生物挂膜容易。 (3)价格计算:高纯铁粉、碳粉进来市场价格上涨很多,算上人工成本及能耗等加工成本,价格初步定在12000~15000之间。 2014全国一级建造师资格测试备考资料真题集锦建筑工程经济建筑工程项目管理建筑工程法规专业工程管理和实务 (4)新型填料的消耗量:每年只需补充少量即可,但没有传统填料更换的麻烦和上述三大问题,而且对设备损害减少。和传统填料相比,在实际使用中,新型填料增长了使用寿命,减少了对设备的损耗,延长了设备的使用寿命,且无需大量人力更换填料,节约了劳动力,总体费用会比使用传统填料节约大笔费用。 微电解法用于废水的处理微电解技术是目前处理高浓度有机废水的一种理想工艺,又称内电解法. 新型活性催化微电解

铁碳微电解及光催化实验

铁碳微电解填料-光芬顿实验 1.1 方法提要 在酸性环境下时,铁碳微电解填料内部铁碳原子之间产生电极电位差,形成原电池系统,使某些物质还原,断键,降解,改变溶液中某些物质分子结构。 2.仪器 电磁式空气泵(50L/min,带曝气头);烧杯:1000 mL,100mL;玻璃棒;酸度计;磁力搅拌器;秒表 3.试剂 3.1硫酸溶液(1+3):将1体积硫酸(ρ20=1.84g/mL)在水浴冷却下缓缓加入到3体积纯水中;氢氧化钠溶液(100g/L):称取10g氢氧化钠(NaOH),溶于纯水中,稀释至100ml;聚合氯化铝溶液(PAC)(30g/L):称取3g聚合氯化铝,溶于纯水中,稀释至100ml;聚丙烯酰胺溶液(PAM)(3g/L):称取0.3g 聚丙烯酰胺,溶于纯水中,稀释至100ml;30%过氧化氢。 注:聚合氯化铝及聚丙烯酰胺溶于水后易水解,需现配现用。 4.实验步骤 4.1 将空气泵的曝气头置于1L烧杯底部(中心位置左右)。 4.2 取微电解填料,放入1L烧杯中,压住曝气头,填料层高度到500mL刻度线,使填料均匀分布在烧杯内。 4.3 取要实验的污水,充分混匀后,将PH值调节到2-3,倒入烧杯中,污水高度稍微没过填料层。 4.4 开曝气机曝气,控制气水比大约3:1~5:1(注:如图所示,水面表现沸腾)。

4.5 开始计时,每过10分钟测量污水PH变化,如果PH高于3,滴加适量酸,持续保持PH在3以下。(北方三潍OH铁碳填料活性高,PH值上升较快,一般8-10分钟调节PH值)。 4.6 分别作60分钟、90分钟、120分钟、150分钟实验,较难处理的水可适当延长处理时间。(一般类污水120分钟实验即可,效果显著,具体各种类污水实验时间请咨询北方三潍环保)。 4.7将试样分别倒入另一烧杯中,调节PH值8-9,滴加适量PAC及PAM进行沉淀。 4.8取上清液用定性滤纸过滤。 4.9根据相应国标方法检测,得出结果。 根据大量理论及实践数据,微电解后,产生的过量超高活性亚铁离子与过氧化氢组成芬顿试剂,生成超强氧化性的羟基自由基,在水溶液中与难降解有机物生成有机自由基使之破环、断键,分子结构破坏,最终氧化分解,降低COD、氨氮、色度等效果显著,建议配合芬顿实验得出最佳结果。 5光-芬顿实验 5.1取4.6中的试样300ml,将PH值调节到3-4,分别倒入500ml烧杯中,加入TiO23.6g,用高压采灯照射,并进行曝气搅拌,使TiO2充分与废水溶液接触。 5.2 向试样中滴加2ml双氧水,2g绿矾(具体加药量需根据填料含铁量计算,一般为nFe2+:n双氧水=1:6)。开曝气机曝气,控制气水比大约3:1~5:1(注:水面表现沸腾)。 5.3开始计时,每过10分钟测量污水PH变化,如果PH高于4,滴加适量酸,持续保持PH在3.5左右。

铁碳微电解技术

铁碳微电解技术 一、铁碳微电解法概述 铁屑(较多使用铸铁屑)为铁-碳合金,当浸没在废水溶液中时,就构成一个完整的微电池回路,形成一种内部电解反应,这就是微电解。而在铸铁屑中再加入惰性碳(如石墨、焦炭、活性炭、煤等)颗粒时,铁屑与炭粒接触,形成的大原电池即为铁碳微电解法。 二、技术原理 铁碳微电解技术主要利用了铁的还原性、铁的电化学性、铁离子的絮凝吸附三者共同作用来净化废水。 铁碳微电解工艺的电解材料一般采用铸铁屑和活性炭或者焦炭,当材料浸没在废水中时,发生内部和外部两方面的电解反应。一方面铸铁中含有微量的碳化铁,碳化铁和纯铁存在明显的氧化还原电势差,这样在铸铁屑内部就形成了许多细微的原电池,纯铁作为原电池的阳极,碳化铁作为原电池的阴极,在含有酸性电解质的水溶液中发生电化学反应,使铁变为二价铁离子进入溶液。此外,铸铁屑和其周围的炭粉又形成了较大的原电池,因此在利用微电解进行废水处理的过程实际上是内部和外部双重电解的过程,或者称之为存在微观和宏观的原电池反应。另外,为了增加电位差,促进铁离子的释放,也可在铁碳微电解填料中加入一定比例催化剂。 发生电化学反应过程如下: 阳极(Fe):Fe - 2e→Fe2+ E(Fe/Fe2+)=0.44V 阴极(C) :2H+ + 2e→H 2 E(H+/H 2 )=0.00V 反应中,产生了初生态的Fe2+和原子H,它们具有高化学活性,能改变废水中许多有机物的结构和特性,使有机物发生断链、开环等作用。 若有曝气,还会发生下面的反应: O 2+ 4H+ + 4e→ 2H 2 O E(O 2 )=1.23V

O 2+ 2H 2 O + 4e → 4OH- E(O 2 /OH-)=0.41V Fe2+ + O 2 + 4H+ → 2H 2 O + Fe3+ 反应中生成的OH-是出水pH值升高的原因,而由Fe2+氧化生成的Fe3+逐渐水 解生成聚合度大的Fe(OH) 3 胶体絮凝剂,可以有效地吸附、凝聚水中的悬浮物及 重金属离子,且吸附性能远远高于一般的Fe(OH) 3 ,从而增强对废水的净化效果。 三、工艺流程 图1 铁碳微电解技术工艺流程 铁碳电极反应需要在酸性条件下进行反应才能达到较好的效果,因此在反应之前需要将废水pH值调至3~4,反应结束后pH值为5.7左右,一般的为了除去废水中存在的Fe2+和Fe3+需要加碱将出水pH值调至弱碱性。 四、工艺特点 1、反应速度快。填料采用微孔活化技术,比表面积大,同时配加催化剂,对废水处理提供了更大的电流密度和更好的微电解反应效果,反应速率快,一般工业废水只需要30-60分钟,长期运行稳定有效。 2、作用污染物范围广。微电解处理方法可以达到化学沉淀除磷的效果,还可以通过还原除重金属。对含有偶氟、碳双键、硝基、卤代基结构的难除降解有机物质等都有很好的降解效果。

铁碳塔微电解填料

铁碳塔微电解填料 铁碳塔微电解填料“三步走“《普茵沃润》铁碳微电解填料工艺指导资料”要点“分析; <第一步>微电解原理:当将填料浸入电解质溶液中时,由于Fe和C之间存在1.2V的电极电位差,因而会形成无数的微电池系统,在其作用空间构成一个电场,阳极反应生成大量的Fe2+进入废水,进而氧化成Fe3+,形成具有较高吸附絮凝活性的絮凝剂。阴极反应产生大量新生态的[H]和[O],在偏酸性的条件下,这些活性成分均能与废水中的许多组分发生氧化还原反应,使有机大分子发生断链降解,从而消除了有机物尤其是印染废水的色度,提高了废水的可生化度。工作原理基于电化学、氧化—还原、物理吸附以及絮凝沉淀的共同作用对废水进行处理。<第二步>微电解填料优点:适用范围广,处理效果好,成本低,操作维护方便,不需要消耗电力资源,反应速度快,处理效果稳定,不会造成二次污染,提高废水的可生化性,可以达到化学沉淀除磷,可以通过还原除重金属,也可以作为生物处理的前处理,利于污泥的沉降和生物挂膜。<第三步>不板结:传统填料的板结现象是因为铁颗粒没有被碳颗粒分散均匀的缘故,铁颗粒之间容易生锈板结。而新型微电解填料经过特殊的高温烧结工艺使得本填料中的铁和碳以铁碳包容构架的形式存在,铁骨架与碳链相互交叉,这种交叉性使得铁颗粒被碳颗粒均匀的分散了,因此不会板结。

铁碳微电解工艺从开始应用到现今已表现出了许多的优点,具体可概述如下:(1)可同时处理多种毒物,占地面积小,系统构造简单,整个装置易于定型化及设备制造工业化;(2)适用范围广,在多个行业的废水治理中都有应用,如印染废水、电镀废水、石油化工废水等,均取得了较好的效果;(3)处理效果好,从各个厂的实际运行来看,该工艺对各种毒物的去除效果均较理想;(4)使用寿命长,操作维护方便,微电解塔(床)只要定期地添加填料便可。传统的微电解工艺在实际运行中也暴露了较多的问题,具体可概述如下:(1)铁屑处理装置经一段时间的运行后,铁屑易结块,出现沟流等现象,大大降低处理效果。吴金义等采用铁屑高频结孔技术有效地防止了铁屑结块现象的出现,这种技术在一定的温度下把铁屑烧结成类似活性炭的具有较大比表面积的多孔结构的物质,其中具有许多通道可使废水以较低的水头阻力通过,保证装置长时间地稳定处理效果,目前这种技术有待于继续研究和发展。且微电解塔高时,底部的铁屑压力作用过大,易结块,可能在运行过程中表面沉积沉淀物使铁产生钝化,降低处理效果而需定期反冲洗。(2)铁屑处理废水通常是在酸性条件下进行的,但在酸性条件下,溶出的铁量大,加碱中和时产生沉淀物多,增加了脱水工段的负担,而废渣的最终归属也成了问题。而且塔前与塔后的pH调节也较繁琐,目前在中性条件下的废水处理还有待于进一步研究

铁碳微电解填料工程设计

铁碳微电解填料工程设计 张琪铁碳微电解填料潍坊普茵沃润环保科技与中山大学联合研制的微电解反应器应用于工业废水的处理过程,在使用中通过严格控制流速及曝气量,并通过独特的设计使处理效果达到最佳。具有成本低廉,效果显著的特点。普茵沃润环保科技有限公司是一家致力于环保技术创新,环保设备制造,环保产品集成供应和相关技术服务为一体的环保专业技术企业。以环保高科技为先导,以吸收国外先进技术为基础,以改进创新为发展动力,以加工制造为根本,开发并推出多项具有竞争力的产品,形成了技术不断创新,产品质量不断提高的发展局面。 主要涉及城镇污水和工业废水处理领域;对各种废水治理工程的设计,施工,安装调试及总承包拥有丰富的经验及解决方案。 公司产品涉及:活性铁碳微电解填料,负载型氧化铜反应填料及各种新型环保设备。其中活化铁碳微电解填料是由具有高低电位差的金属合金融合催化剂采用微孔活化技术生产而成,经过上百次对企业废水进行试验,让配方更加合理,杜绝了同类产品开始使用时效果明显日后效能逐渐下降的弊端,在使用过称中效能更加长久;产品中添加的多种微量元素,促进了铁离子释放,使废水处理效果更加显著。同时采用科学的高温烧结养护过程使产品强度高,使用时不会因为水浸过久而松软变散导致损耗过多;不但降低了产品使用成本,同时也使处理效果大幅提升。 1,解决了微电解污水处理工艺填料板结,钝化,活化,更换的难题,并具有持续高活性铁床优点。 2,内电解阴阳极及催化剂通过高温形成架构式合金结构,不会像铁碳混合组配那样容易出现阴阳极分离,影响原电池反应。 3,采用微孔活化技术,比表面积大,同时配加催化剂,对废水处理提供了更大的电流密度和更好的微电解反应效果,反应速率快。 4,由于微电解和催化剂的双重作用,同比传统铁碳填料对针对有机物浓度大,高毒性,高色度,难生化废水的处理。 5,电解处理方法可以达到化学沉淀除磷的效果,还可以通过还原除重金属。废水经微电解处理后会在水中形成原生态的亚铁或铁离子,具有比普通混凝剂更好的混凝作用。 6,Fe2+催化作用,在微电解后投加H2O2,即芬顿氧化工艺,对一些难降解化工废水CODcr 的去解率可达75-95%。

铁碳微电解教学文案

铁碳微电解

3.2 铁碳微电解塔 3.2.1设计原则 微电解是集合电化学、吸附、凝聚和氧化还原反应等作用的结果,主要影响微电解处理效果的因素有pH值、水温、反应时间及曝气程度等。根据国内外对化学合成类废水的研究分析及实验总结,微电解塔对处理该类废水的最适宜工作环境,选定本工程中电解塔的工作环境是:pH=3,铁炭体积比为1:1,铁屑粒径约在5~10目,反应时间为90min。 废水由微电解塔的底部进入塔内,上行经过填料床后,流入上部的周边淹没孔口,进入集水槽。铁碳填料选用LAT-TC03新型微电解填料,上部利用筛网压板来防止填料因为膨胀而发生流失。填料是放置在承托层之上,穿孔板作为支承。采用连续进水、连续曝气的方式,定期对铁碳填料进行反冲洗。冲洗时需关闭微电解塔的进水阀以及集水槽的出水阀。再使冲洗水从上部进水塔内,从底部出水至污泥浓缩池。 塔为玻璃钢结构。塔的内壁做三油两布防腐,外漆采用中灰,一底两面。塔的外壁须设置有卸料口、铁爬梯等。 3.3.2 设计计算 选定本工程中电解塔的工作环境是:pH=3,铁炭体积比为1:1,铁屑粒径约在5~10目,反应时间为90min。[5] 废水由微电解塔的底部进入塔内,上行经过填料床后,流入上部的周边淹没孔口,进入集水槽。铁碳填料选用LAT-TC03新型微电解填料,上部利用筛网压板来防止填料因为膨胀而发生流失。填料是放置在承托层之上,穿孔板作为支承。采用连续进水、连续曝气的方式,定期对铁碳填料进行反冲洗。 (1)微电解塔的有效容积V有效 T V? = Q 有效 式中,V有效——微电解塔的有效容积,m3; Q ——污水流量,m3/h;

(完整版)第三代铁碳微电解填料(TPFC)

(COD),对环状及长链大分子有机物进行开环断链,对有毒、有害有机污染物破解有毒官能团,提高工业废水的可生化性。反应活性高,不钝化,不板结,不堵塞,可定期反洗,产品使用过程无需更换,只需定期补充即可。与市场上炼钢球团改性铁粒对比,该产品处理效率提高一倍以上。 一性能特点与创新点 1、活性高 TPFC新型铁碳微电解填料内含稀贵微量元素M,铁-碳-催化元素M-形成空间网状结构,提高氧化还原电位,采用高温磁化构架、微孔活化技术,形成多孔结构,比表面积大,表面Zeta电位高,能大幅度降低污染物开环、断链及降解反应的活化能,提高反应速率和净化效率。 2、孔隙率高,堆密度低 TPFC新型铁碳微电解填料采用专业构架成孔技术,孔隙率高,堆密度0.8-1.2,材料省,大幅度降低工程成本。 3、规整球形结构清洗更方便,高效更稳定 TPFC新型铁碳微电解填料采用规整球形颗粒结构,区别于市场上所有其它类型微电解填料,反洗更容易,更节水,产品活性稳定高效。 4、无钝化 TPFC新型铁碳微电解填料将微电解正负极材料有机地结合到一体,即在单个颗粒内同时形成无数个正负电极对,使放电反应永远畅通无阻,从根本上避免微电解工艺由于材料表

三应用范围 (1)电镀、电子线路板及金属冶炼行业生产废水; (2)印染废水,尤其是难处理、难脱色的高浓度印花、染整废水废液;(3)皮革生产废水处理; (4)电泳涂装废水; (5)精细化工高浓度、高盐废水; (6)制药、农药行业有毒、高浓度有机废水; (7)石油、焦化、煤化工等难生化降解废水; (8)造纸难生化废水; (9)酱油、醋、酒精等各类发酵工业废水; (10)含硫及其杂环有机化合物废水。

代新型铁碳微电解填料TPFC概述

供应微电解填料(现货)供应微电解填料(现货)拓步环保微电解填料发货周期短,生产量大,放心购买。微电解填料-免更换 一,概述:拓步环保科技与中山大学共同研发的TPFC新型铁碳微电解技术可高效去除废水中高浓度有机物,提高可生化性,同时还可避免运行过程中的填料钝化,板结等现象。.TPFC微电解技术是目前处理高浓度,难降解有机污染的一种理想工艺,又称内电解。它是在无需外接电源的情况下自身产生1.2伏电位差对废水进行电解处理。当系统通水后设备内形成原电池系统,在其周围产生许多电场形成电流。对废水进行电解处理.铁在酸性条件下释放铁离子生成新生态Fe2 。Fe2 具有氧化--还原的作用,能与废水中的许多组分发生氧化还原反; ⑴将六价铬还原为三价铬; ⑵将汞离子还原为单质汞; ⑶将硝基还原为氨基; ⑷将偶氮废水的有色基团或助色基团氧化--还原;达到降解脱色作用;提高了废水的可生化性。生成的Fe2 调PH值进一步产生Fe3 ;Fe3 是一种很好的絮凝剂。它们的水合物具有较强的吸附-絮凝作用,Fe3 在减的作用下进一步产生氢氧化亚铁和氢氧化铁胶体絮凝剂。它们的吸附能力远远高于那些外加化学药剂水解得到的絮凝剂;分散在水污中的悬浮物,,有毒物,金属离子及有极大分子能被吸附-絮凝沉淀。 其工作原理:电化学,氧化—还原,物理吸附及絮凝--沉淀的共同作用对废水进行处理。微电解技术是目前处理印染,电镀,造纸,医药,硝基苯,苯胺,有机硅,印刷线路板,焦化,畜牧,双氧水化工,石油化工,橡胶助剂化工以及含苯环化工废水的一种理想工艺。 微电解技术在去除高浓度废水的色度和降低cod方面有其独到之处。 对于难降解可生化性差的废水,由我公司生产的第三代微电解填料可以将难降解化合物断环断链,提高其可生化性。并且,将其转化为容易降解的物质。因此利用微电解技术配合催化氧化法,是处理该类废水的有效途径。 对于高浓度有机废水,可以利用微电解芬顿技术,高效降低废水的cod。 最重要的一点,由我公司研发的第三代微电解填料,突破了传统填料板结钝化的瓶颈,使得铁碳微电解技术被冰封之后重新得以推广。 该填料通过1050摄氏度的严格控温技术将铁及金属催化剂与炭包容在一起形成架构式铁炭结构。

铁碳微电解填料污泥量测定方法

8 FH铁碳微电解填料污泥量测定方法 8.1 称量法 8.1.1 范围 本标准规定了用称量法测定FH铁碳微电解填料在工业污水处理中自身产生的的污泥量。 8.1.2原理 8.1.2.1 铁碳填料经过反应后,产生的污泥在一定温度下烘干,所得的固体残渣称为污泥总量,包括不易挥发的可溶性铁盐类、碳粉、FH催化剂等。 8.1.2.2烘干温度一般采用105℃±3℃。 8.1.3仪器 8.1.3.1 分析天平,感量0.1 mg。 8.1.3.2 电磁式空气泵(50L/min,带曝气头) 8.1.3.3 电恒温干燥箱(105℃±3℃)。 8.1.3.4 干燥器:用硅胶作干燥剂。 8.1.3.5 烧杯:1000 mL 8.1.3.6 玻璃棒 8.1.3.7 酸度计 8.1.3.8 磁力搅拌器 8.1.3.9 秒表 8.1.4 试剂 8.1.4.1硫酸溶液(1+3):将1体积硫酸(ρ20=1.84g/mL)在水浴冷却下缓缓加入到3体积纯水中。 8.1.4.2 氢氧化钠溶液(100g/L):称取10g氢氧化钠(NaOH),溶于纯水中,稀释至100ml。

8.1.4.3 聚合氯化铝溶液(PAC)(30g/L):称取3g聚合氯化铝,溶于纯水中,稀释至100ml。 8.1.4.4 聚丙烯酰胺溶液(PAM)(3g/L):称取0.3g聚丙烯酰胺,溶于纯水中,稀释至100ml。 8.1.4.5纯水 注:聚合氯化铝及聚丙烯酰胺溶于水后易水解,需现配现用。 8.1.5分析步骤 8.1.5.1 称取FH铁碳微电解填料 8.1.5.1.1 取大约500g FH铁碳微电解填料,浸入纯水中,浸泡时间12 h。 8.1.5.1.2 取出FH铁碳微电解填料,用纯水冲洗,直至冲洗液澄清无固体残留物。 8.1.5.1.3 将FH铁碳微电解填料放入105℃±3℃烘箱内12 h,取出,在分析天平上称量填料准确质量,此数值记做m1 8.1.5.2 FH铁碳微电解填料反应过程 8.1.5.2.1将空气泵的曝气头置于1L烧杯底部(中心位置左右)。 8.1.5.2.2取称量过的FH铁碳微电解填料,放入1L烧杯中,压住曝气头,使填料均 匀分布在烧杯内。 8.1.5.2.3 将纯净水PH值准确调节到3,倒入烧杯中,液面高度稍微没过填料层即可。 8.1.5.2.4 开曝气机曝气,控制气水比大约3:1(液面微沸)。 8.1.5.2.5 开始计时,每过10分钟测量污水PH变化,如果PH高于3,滴加适量酸, 持续保持PH值 3,反应60分钟。 8.1.5.3 称取FH铁碳微电解填料污泥 8.1.5.3.1 将反应后的水样倒入另一烧杯中,调节PH值9,滴加适量的准确体积的PAC 及PAM进行沉淀。根据体积及溶液浓度计算PAC及PAM的准确质量,记做PAC(m3) 及PAM(m4) 8.1.5.3.2 倒去上清液,取底部污泥,放在105℃±3℃烘箱内24 h。取出,于干燥器 内冷却30 min。

铁碳微电解

3.2 铁碳微电解塔 3.2.1设计原则 微电解是集合电化学、吸附、凝聚和氧化还原反应等作用的结果,主要影响微电解处理效果的因素有pH 值、水温、反应时间及曝气程度等。根据国内外对化学合成类废水的研究分析及实验总结,微电解塔对处理该类废水的最适宜工作环境,选定本工程中电解塔的工作环境是:pH=3,铁炭体积比为1:1,铁屑粒径约在5~10目,反应时间为90min 。 废水由微电解塔的底部进入塔内,上行经过填料床后,流入上部的周边淹没孔口,进入集水槽。铁碳填料选用LAT-TC03新型微电解填料,上部利用筛网压板来防止填料因为膨胀而发生流失。填料是放置在承托层之上,穿孔板作为支承。采用连续进水、连续曝气的方式,定期对铁碳填料进行反冲洗。冲洗时需关闭微电解塔的进水阀以及集水槽的出水阀。再使冲洗水从上部进水塔内,从底部出水至污泥浓缩池。 塔为玻璃钢结构。塔的内壁做三油两布防腐,外漆采用中灰,一底两面。塔的外壁须设置有卸料口、铁爬梯等。 3.3.2 设计计算 选定本工程中电解塔的工作环境是:pH=3,铁炭体积比为1:1,铁屑粒径约在5~10目,反应时间为90min 。[5] 废水由微电解塔的底部进入塔内,上行经过填料床后,流入上部的周边淹没孔口,进入集水槽。铁碳填料选用LAT-TC03新型微电解填料,上部利用筛网压板来防止填料因为膨胀而发生流失。填料是放置在承托层之上,穿孔板作为支承。采用连续进水、连续曝气的方式,定期对铁碳填料进行反冲洗。 (1)微电解塔的有效容积V 有效 T Q V ?=有效 式中,V 有效——微电解塔的有效容积,m 3; Q ——污水流量,m 3/h ; T ——微电解塔中水力停留时间,h 。 则,微电解池的有效容积为: 3 3 25.565.15.37m m V =?=有效

铁碳微电解填料【塔】

铁碳微电解填料【塔】 铁碳微电解塔【反应器】设备-张琪 山东铁碳微电解填料水处理参数:ph值停留时间曝气絮凝沉淀 近年来,普茵沃润铁碳微电解研究成果和技术专利已经成功应用于各种规模的印染企业的废水治理工程。利用铁碳微电解技术处理印染废水,可以有效提高废水的可生化性,脱色率几乎可以达到100%,并且铁碳微电解技术是利用铁元素和碳元素自身发电,不用外加电流,因此操作方便,运行成本低廉。 (铁碳微电解填料)方案------印染废水水量大、色度深、碱性强、水质变化大,难降解有机污染物含量高。目前,印染废水普遍采用生化法、混凝沉淀法、混凝气浮法和活性炭吸附法进行处理。这些方法投资费用高,管理难度大,脱色效果和去除率都不理想。近几年来报道了许多用电化学法处理印染废水的研究成果和技术专利,并应用于各种规模的印染企业的废水治理工程,收到了良好的效果。利用微电解法处理染料废水,CODcr去除率达67%左右,脱色率几近100%。结果表明酸性废水有利于去除CODcr,和脱色,选择pH值为4的酸性废水为宜;延长微电解反应时间有利于提高处理效果,但会增加投资和运行费用,反应时间控制在5O min为宜;石灰乳的用量过多或过少均会影响CODcr的去除,调pH值为9时较合适;微电解反应器选择铁屑与焦炭的质量比为1:1效果最佳。铁炭微电解法处理实际生产染料废水,《铁炭微电解填料报道》实验结果表明,微电解法对染料废水有明显的去除效果,进水pH为l左右、接触时间为0.5h时,COD的去除率在60%左右,色度去除率大于94%;微电解法主要通过氧化还原作用和铁的絮凝作用去除COD和色度。 (铁碳微电解填料)方案------工艺影响因素及设计参数: 影响微电解工艺处理废水效果的因素有许多,如pH值、停留时间、处理负荷、铁碳比、通气量等。这些因素的变化都会影响工艺的效果,有些可能还会影响到反应的机理。 pH值 通常pH值是一个比较关键的因素,它直接影响了铁碳填料对废水的处理效果,而且在pH 值范围不同时,其反应的机理及产物的形式都大不相同。一般低pH值时,因有大量的H+,而会使反应快速地进行,但也不是pH值越低越好,因为pH值的降低会改变产物的存在形式,如破坏反应后生成的絮体,而产生有色的Fe2+使处理效果变差。因此,一般控制在pH值为偏酸性条件下,当然这也因根据实际废水性质而改变。 停留时间 停留时间也是工艺设计的一个主要影响因素,停留时间的长短决定了氧化还原等作用时间的长短。停留时间越长,氧化还原等作用也进行得越彻底,但由于停留时间过长,会使铁的消耗量增加,从而使溶出的Fe2+大量增加,并氧化成为Fe3+,造成色度的增加及后续处理的种种问题。所以停留时间并非越长越好,而且对各种不同的废水,因其成分不同,其停留时间也不一样。停留时间还取决于进水的初始pH值,进水的初始pH值低时,则停留时间可以相对取得短一点;相反,进水的初始pH值高时,停留时间也应相对的长一点。 铁碳微电解填料的物理性质:-------------铁炭微电解填料-生产企业 堆积密度:1.0吨/立方米 外观形状:扁球形(2cm-3cm) 强度:1000公斤/平方厘米

相关文档
最新文档