烟道阻力损失及烟囱计算根据实例(特选借鉴)

烟道阻力损失及烟囱计算根据实例(特选借鉴)
烟道阻力损失及烟囱计算根据实例(特选借鉴)

15.烟道阻力损失及烟囱计算根据实例计算

烟囱是工业炉自然排烟的设施,在烟囱根部造成的负压——抽力是能够吸引并排烟的动

力。在上一讲中讲到的喷射器是靠喷射气体的喷射来造成抽力的,而烟囱是靠烟气在大气中的浮力造成抽力的,其抽力的大小主要与烟气温度和烟囱的高度有关。

为了顺利排出烟气,烟囱的抽力必须是足够克服烟气在烟道内流动过程中产生的阻力损

失,因此在烟囱计算时首先要确定烟气总的阻力损失的大小。

15.1 烟气的阻力损失

烟气在烟道内的流动过程中造成的阻力损失有以下几个方面:摩擦阻力损失、局部阻力

损失,此外,还有烟气由上向下流动时需要克服的烟气本身的浮力――几何压头,流动速度由小变大时所消耗的速度头——动压头等。

15.1.1 摩擦阻力损失

摩擦阻力损失包括烟气与烟道壁及烟气本身的粘性产生的阻力损失,计算公式如下:

t m h d

L h λ=(mmH 2O) )1(2h 0204t g

w βγ+= (mmH 2O) 式中:λ—摩擦系数,砌砖烟道λ=0.05

L —计算段长度,(m )

d —水力学直径

)(4m u

F d = 其中 F —通道断面积(㎡);

u —通道断面周长(m );

t h —烟气温度t 时的速度头(即动压头)(mmH 2O);

0w —标准状态下烟气的平均流速(Nm/s );

0γ—标准状态下烟气的重度(㎏/NM 3

); β—体积膨胀系数,等于

2731; t —烟气的实际温度(℃) 15.1.2 局部阻力损失

局部阻力损失是由于通道断面有显著变化或改变方向,使气流脱离通道壁形成涡流而引

起的能量损失,计算公式如下:

)1(2020t g

w K Kh h t βγ+==(㎜H 2O) 式中 K —局部阻力系数,可查表。

15.1.3 几何压头的变化

烟气经过竖烟道时就会产生几何压头的变化,下降烟道增加烟气的流动阻力,烟气要克

服几何压头,此时几何压头的变化取正值,上升烟道与此相反,几何压头的变化取负值。几何压头的计算公式如下:

)(y k j H h γγ-=(㎜H 2O )

式中 H —烟气上升或下降的垂直距离(m )

k γ—大气(即空气)的实际重度 (kg/m 3

) y γ—烟气的实际重度(kg/m 3)

图15.1 为大气中每米竖烟道的几何压头,曲线是按热空气算出的,烟气重度与空气重

度差别不大时,可由图15.1查取几何压头值。

图15.1 每米高度引起几何压头变化的数值

15.2 烟道计算

15.2.1 烟气量

烟气在进入烟道时过剩空气量较燃烧时略大,而且在烟道内流动过程中由于不断地吸入

空气而烟气量在不断地变化,尤其在换热器、烟道闸板和人孔等处严密性较差,空气过剩量都有所提高,在烟囱根处空气过剩量变得最大。因此,在计算烟道时,在正常烟气量的基础上根据烟道严密性的好坏应做适当的调整,以使计算烟气量符合实际烟气量。空气吸入量大

约可以按炉内烟气量的10~30%计算,炉子附近取下限,烟囱附近取上限。

15.2.2烟气温度

烟气温度指烟气出炉时的实际温度,而不是炉尾热电偶的测定值,应是用抽气热电偶测

出的烟气本身的温度。烟气温度与炉型及炉底强度有关。连续加热炉的烟气温度比较稳定,

均热炉和其他热处理炉等周期性的间歇式工作的炉子不单烟气量随着加热工艺变化,而且烟

气温度也有较大的变化,因此,烟道计算时应采用典型工艺段的烟气出炉温度。

烟气在烟道内的流动过程中由于空气的吸入和散热、吸热现象的发生,使烟气温度不断

发生变化,因此烟道计算中采用每算阶段的实际温度,一般采用计算算段的平均烟气温度。

一般情况下,烟道内烟气温降可参照图15.2 选用。

图15.2 每米烟道烟气温降

1-地下烟道,无冷风吸入口 2-地上烟道,带绝热层,无冷风吸入口 3-地上烟道,不带

绝热层,无冷风吸入口 4-用于四台井式炉、四台台车式热处理炉的地下烟道,烟道全长约

40米,分布有三个不太严密的检查口,烟囱底部带有喷射排烟装置时的实测烟气温降。

15.2.3烟气流速与烟道断面

烟道内烟气流速可参考下列数据采用:

烟道烟气流速

表15.1 烟气温度(℃)<400 400~500 500~700 700~800

烟气流速(Nm/s) 2.5~3.5 2.5~1.7 1.7~1.4 1.4~1.2

烟道为砌砖烟道时,根据采用的烟气流速计算烟道断面积,然后按砌砖尺寸选取相近的标准烟道断面,再以此断面为基础计算出该计算段的烟气流速。

15.2.4 烟道计算

【例题】混合煤气发热量Q=2000Kcal/Nm 3,煤气消耗量B=7200Nm 3

/h 。当α=1.1时,查燃料燃烧图表得烟气量为2.87Nm 3/ Nm 3煤气,烟气重度=1.28 Kg/ Nm 3

。排烟系统如图15.3

图15.3 排烟系统图

当α=1.1时,出炉烟气量为V=7200×2.87=20660 Nm 3/h=5.75 Nm 3/S.计算分四个计算段进行。

第Ⅰ计算段:炉尾下降烟道,烟道长2.5m ,竖烟道入口烟气温度为900℃。采用烟气流速s m w /5.21='时,烟道断面2177.05.2375.5m f =?=

',选用1044×696断面,21727.0m f =,此时烟气速度s m w /64.2727

.0375.51=?=;当量直径m u F d 835.0)

696.004.1(2727.0441=+?==; 烟道温降51=?t ℃/m

时 ,第Ⅰ计算段内烟气平均温度894)5.25(5.09001=?-=t ℃,末端温度8885.259001=?-=''t ℃;此计算段烟气速度头O mmH t g w h t 221021194.1)273

8941(28.16.1964.2)2731(2=+?=+=γ (1)动压头增量t h ?:

炉尾烟气温度为

900℃,流速为 1.2m/s 时,动压头

h O mmH t 2240.027*******.16.192.1=???

? ??+?= 动压头增量O mmH h h h t t t 2154.140.094.1=-=-=?

(2)几何压头:ji h

)(y k ji H h γγ-=

30/3.0273

8941128.111m kg t y =+=+?=βγγ 48.2)3.0293.1(5.2=-=ji h ㎜H 2O

也可以查图15.1计算

(3)局部阻力损失ji h :

由炉尾进入三个下降烟道,查表得局部阻力系数K=2.3,

O mmH h k h t j 2146.494.13.2=?=?=

(4)摩擦阻力损失1m h :

O mmH h d L h t m 2111129.094.1835

.05.205.0=??=?=λ 第Ⅰ计算段阻力损失为:

O mmH h I 277.829.046.448.254.1=+++=

第Ⅱ计算段:换热器前的水平烟道,烟道长9m 。 烟道断面为1392×1716,其面积F 2=2.18㎡,当量直径查表得d 2=1.55m 温降42=?t ℃/m 时平均温度870)94(5.08882=?-=t ℃末端温度

O mmH h t 22291.1)273

8701(28.16.1964.2=+?=;此计算段动压头8522=''t ℃。 W

烟囱计算

烟囱高度的确定 具有一定速度的热烟气从烟囱出口排除后由于具有一定的初始动量,且温度高于周围气温而产生一定浮力,所以可以上升至很高的高度。这相对增加了烟囱的几何高度,因此烟囱的有效高度为: 式中:H—烟囱的有效高度,m; —烟囱的几何高度,m; —烟囱抬升高度,m 。 根据《锅炉大气污染物排放标准》(GB13271—2014)规定,每个新建锅炉房只能设一根烟囱,烟囱高度应根据锅炉房装机总容量确定,按下表规定执行。 由于给定的锅炉型号为:SHS20-25,蒸发量为20t/h。故选定烟囱几何高度H s=45m. 烟气释放热计算 取环境大气温度20℃,大气压力=98kPa =0.35 =0.3511.051 =122.51kw 式中:烟气热释放率, kw; ?大气压力,取邻近气象站年平均值; ?实际排烟量,/s ?烟囱出口处的烟气温度,433.15k; ?环境大气温度,取=273.15+20=293.15k 烟囱直径的计算 烟囱平均内径可由下式计算 式中:—实际烟气流量,; —烟气在烟囱内的流速,,取20。 取烟囱直径为DN850mm;

校核流速。 烟囱抬升高度的计算 式中:—烟囱出口流速,取20; —烟囱出口内径,; —烟囱出口处平均风速,取10. 故最终烟囱的有效高度H为: H=+=45+5.35=50.35m 取51m。 式中:—烟囱抬升高度,m; —烟囱几何高度,m。 烟囱高度校核 假设吸收塔的吸收效率为80%,可得排放烟气中二氧化硫的浓度为:二氧化硫排放的排放速率: 用下式校核 : 式中:σy/σz—为一个常数,一般取0.5-1此处取0.8; 最大地面浓度 查得国家环境空气质量二级标准时平均的浓度为,所以设计符合要求。 烟囱的阻力损失计算 标准状况下的烟气密度为,则可得在实际温度下的密度为: 烟囱阻力可按下式计算: 式中:—摩擦阻力系数,无量纲,本处取0.02; —管内烟气平均流速,;

烟道阻力损失及烟囱计算根据实例

15.烟道阻力损失及烟囱计算根据实例计算 烟囱是工业炉自然排烟的设施,在烟囱根部造成的负压——抽力是能够吸引并排烟的动力。在上一讲中讲到的喷射器是靠喷射气体的喷射来造成抽力的,而烟囱是靠烟气在大气中的浮力造成抽力的,其抽力的大小主要与烟气温度和烟囱的高度有关。 为了顺利排出烟气,烟囱的抽力必须是足够克服烟气在烟道内流动过程中产生的阻力损失,因此在烟囱计算时首先要确定烟气总的阻力损失的大小。 15.1 烟气的阻力损失 烟气在烟道内的流动过程中造成的阻力损失有以下几个方面:摩擦阻力损失、局部阻力损失,此外,还有烟气由上向下流动时需要克服的烟气本身的浮力――几何压头,流动速度由小变大时所消耗的速度头——动压头等。 15.1.1 摩擦阻力损失 摩擦阻力损失包括烟气与烟道壁及烟气本身的粘性产生的阻力损失,计算公式如下: t m h d L h λ =(mmH 2O) )1(2h 020 4t g w βγ+= (mmH 2O) 式中:λ—摩擦系数,砌砖烟道λ=0.05 L —计算段长度,(m ) d —水力学直径 )(4m u F d = 其中 F —通道断面积(㎡); u —通道断面周长(m );

t h —烟气温度t 时的速度头(即动压头)(mmH 2O); 0w —标准状态下烟气的平均流速(Nm/s ); 0γ—标准状态下烟气的重度(㎏/NM 3); β—体积膨胀系数,等于 273 1 ; t —烟气的实际温度(℃) 15.1.2 局部阻力损失 局部阻力损失是由于通道断面有显著变化或改变方向,使气流脱离通道壁形成涡流而引起的能量损失,计算公式如下: )1(202 t g w K Kh h t βγ+==(㎜H 2O) 式中 K —局部阻力系数,可查表。 15.1.3 几何压头的变化 烟气经过竖烟道时就会产生几何压头的变化,下降烟道增加烟气的流动阻力,烟气要克服几何压头,此时几何压头的变化取正值,上升烟道与此相反,几何压头的变化取负值。几何压头的计算公式如下: )(y k j H h γγ-=(㎜H 2O ) 式中 H —烟气上升或下降的垂直距离(m ) k γ—大气(即空气)的实际重度 (kg/m 3) y γ—烟气的实际重度(kg/m 3) 图15.1 为大气中每米竖烟道的几何压头,曲线是按热空气算出的,烟气重度与空气重度差别不大时,可由图15.1查取几何压头值。

烟道计算式

目前新建住宅的厨房常采用集中排烟方式,该方式主要有变压式和止回阀式两种。但根据使用情况了解到,这两种方式排烟能力普遍不足,在高层建筑中问题尤为突出。部分住户烟气排不出去,还有的排烟系统中所有的住户厨房排烟效果均达不到要求。对于住宅厨房排烟,以往利用的是自然通风计算方法,即忽略排油烟机静压,认为只是热压作用使得烟气从室内排至大气,各住户排油烟机的流量相等,事实并非如此。自然通风的计算方法已不适用于现代住宅厨房排烟。这是由于现在国内外生产的排油烟机流量大、风压高,烟气从室内经过烟道排至室外所依靠的动力主要是排油烟机提供的压力,而热压所起的作用很小。本文利用流体动力学基本原理对住宅厨房集中排烟系统进行了理论计算,找出了影响排烟效果的因素,分析排烟系统出现排烟能力不足的原因,为更好地设计住宅厨房集中排烟系统提供理论依据。 1 集中排烟系统理论计算 图1是住宅厨房集中排烟系统示意图。根据流体动力学原理,图1中第I层厨房烟气进入到烟道的能量的文程为: 式中pai——第i层室内空气压力,Pa; ρy ——烟气密度,kg/m3; υai——排油烟机进口处烟气流速,m/s; Δpei——第i层排油烟精数全压,Pa; pi——第i层烟道内压力,Pa; υi1——第i层烟道内烟气平均流速,m/s; ζ1——止回阀阻力系数,本文取ζ 2ζ/. 5; ζhl——烟气由排烟短管流入烟道的局部阻力系数,本文取ζh1=0.0869~2.12; qI ——第i层排油烟机流量,m/s3; Ay——排烟短管横截面积,m2。 烟气从第i层刷至避风风帽出口处的能量方程为: 式中H0——层高,m; g——重力加速度,m/s2; pao——风帽出口处空气压力,Pa; υo——风帽出口处烟气速度,m/s; N——高层住宅楼总层数; n——同时开机数; λ——沿程阻力系数,本文λ=0.04; de——烟道当量直径,m;

管道压力损失

除尘系统中的管道压力损失计算 管道的压力损失就是含尘空气在管道中流动的压力损失.它等于管道沿程(摩擦)压力损失和局部损失之和 ,在实际计算中以最长沿程一条管道进行计算,其计算结果作为风机造型的参考依据. 一:管道的沿程压力损失 1. a △P m =△P m λR S P -----湿周,既管道的周长(m ) 左管道系统计算中,一般先计算出单位长度的摩擦损失,通常也称比摩阻(Pa/m ): △P m =λ 比摩阻力可通过查阅图表14-1得出,我公司的管道主要应用于除尘系统中,考虑到含尘空气中粉尘沉降的问题,除尘管道内的风速选择为25~28m/s. 4R S 1 2 V 2e

根据计算图标得出的以下数据: 局部阻力引起的能量损失,称之为局部压力损失或局部损失。 局部损失可按下列公式计算: △P J =δ △P J ----局部压力损失(Pa ) δ------局部阻力系数 2 V 2e

局部阻力系数δ可根据不同管道组件:如进出风口、弯头、三通等的不同尺寸比例,在相关资料中可查得,然后再根据上式计算出局部损失的大小。 例如:整体压制900圆弯头:当r/D=1.5时 δ=0.15 当r/D=2.0时 δ=0.13 当r/D=2.5时 δ=0.12 0总之,△P 为数。 F---Pq---风机全压(Pa ) Q---风机风量(m 3/s ) η----风机效率(一般为0.8~0.86) K---安全系统(1.0~1.2) 上式所得结果即为风机数电机功率,实际使用功率为:

Fs= Fs/F 即为风机的实际使用负载率 Pq*Q 1000* η

烟囱阻力及自拔力计算

代谢病医院DN1200烟囱自生通风力及阻力计算 1、烟囱自生通风力计算 烟道长度: Ф1200:垂直段L1=17m Ф1200:长度18m 计算:1、烟囱自生力通风力hzs hzs=h(ρko-ρ) g (Pa) 式中:ρko—周围空气密度,按ρko= Kg/m3 ρ—烟气密度,Kg/m3 g—重力加速度, s2 h—计算点之间的垂直高度差,h=12m 标准状况下的烟气密度ρ0 =Kg/m3 则ρ=ρ0273/273+t =*273/273+170=m3 hzs=12*、考虑当地大气压,温度及烟囱散热的修正。 当地大气压P=,最热天气地面环境温度t=29℃ 则ρk=ρko(273/273+29)*100480/101325= Kg/m3 烟囱内每米温降按℃考虑,则出口烟气温度为: 170-(17+18)*=℃ 则烟气内的平均烟温为(170+)/2=℃ 烟囱内烟气的平均密度为: ρ=*[273/(273+]*100480/101325 =m3 修正后的hzs=17*()*=(pa)

2、烟囱阻力计算 已知条件: 锅炉三台,每台烟气量:5100m3/h 烟道长度: Ф1200:垂直段L1= 17m Ф1200:水平长度18m 入口温度:170℃ 烟囱出口温度:℃ ΣΔhy=Δh m+Δh j+Δh yc 式中Δh m——烟道摩擦阻力 Δh j ——局部阻力 Δh yc——烟囱出口阻力 Δh m=λ·L/d dl ·(w2/2)·ρ pa 式中λ——摩擦阻力系数,对金属烟道取 L——烟道总长度,L=35m W——烟气流速,m/s 3*5100* m3/h =s *2)2*3600 d dl——烟道当量直径,圆形烟道为其内径 ρ——烟气密度,Kg/m3 ρ=ρ0·273/(273+t pj)= ρ0——标准状况下烟气密度, Kg/m3;t pj——烟气平均温度Δh m=*35/*2)*= pa Δh j =(90度弯头个数**w2/2*p =(3**2*

管道压力损失计算

冷热水管道系统的压力损失 无论在供暖、制冷或生活冷热水系统,管道是传送流量和热量必不可少的部分。计算管道系统的压力损失有助于: (1) 设选择正确的管径。 (2) 设选择相应的循环泵和末端设备。也就是让系统水循环起来并且达到热能传送目的 的设备。 如果不进行准确的管道选型,会导致系统出现噪音、腐蚀(比如管道阀门口径偏小)、严重的能耗及设备的浪费(比如管道阀门水泵等偏大)等。 管道系统的水在流动时遇到阻力而造成其压力下降,通常将之简称为压降或压损。 压力损失分为延程压力损失和局部压力损失: — 延程压力损失指在管道中连续的、一致的压力损失。 — 局部压力损失指管道系统内特殊的部件,由于其改变了水流的方向,或者使局部水流通道变窄(比如缩径、三通、接头、阀门、过滤器等)所造成的非连续性的压力损失。 以下我们将探讨如何计算这两种压力损失值。在本章节内我们只讨论流动介质为水的管道系统。 一、 延程压力损失的计算方式 对于每一米管道,其水流的压力损失可按以下公式计算 其中:r=延程压力损失 Pa/m Fa=摩擦阻力系数 ρ=水的密度 kg/m 3 v=水平均流速 m/s D=管道内径 m 公式(1) 延程压力损失 局部压力损失

管径、流速及密度容易确定,而摩擦阻力系数的则取决于以下两个方面: (1)水流方式,(2)管道内壁粗糙程度 表1:水密度与温度对应值 水温°C10 20 30 40 50 60 70 80 90 密度 kg/m3999.6 998 995.4 992 987.7 982.8 977.2 971.1 964.6 1.1 水流方式 水在管道内的流动方式分为3种: —分层式,指水粒子流动轨迹平行有序(流动方式平缓有规律) —湍流式,指水粒子无序运动及随时变化(流动方式紊乱、不稳定) —过渡式,指介于分层式和湍流式之间的流动方式。 流动方式通过雷诺数(Reynolds Number)予以确定: 其中: Re=雷诺数 v=流速m/s D=管道内径m。 ?=水温及水流动力粘度,m2/s 表2:水温及相关水流动力粘度 水温m2/s cSt °E 10°C 1.30×10-6 1.30 1.022 20°C 1.02×10-6 1.02 1.000 30°C 0.80×10-6 0.80 0.985 40°C 0.65×10-6 0.65 0.974 50°C 0.54×10-6 0.54 0.966 60°C 0.47×10-6 0.47 0.961 70°C 0.43×10-6 0.43 0.958 80°C 0.39×10-6 0.39 0.956 90°C 0.35×10-6 0.35 0.953 通过公式2计算出雷诺数就可判断水流方式: Re<2,000:分层式流动 Re:2,000-2,500:过渡式流动

管道阻力损失计算

管道的阻力计算 风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。通常直管中以摩擦阻力为主,而弯管以局部阻力阻力为主(图6-1-1)。 图6-1-1 直管与弯管 (一)摩擦阻力 1.圆形管道摩擦阻力的计算 根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算: (6-1-1) 对于圆形风管,摩擦阻力计算公式可改为: (6-1-2) 圆形风管单位长度的摩擦阻力(又称比摩阻)为: (6-1-3) 以上各式中 λ——摩擦阻力系数;

v——风秘内空气的平均流速,m/s; ρ——空气的密度,kg/m3; l——风管长度,m; Rs——风管的水力半径,m; f——管道中充满流体部分的横断面积,m2; P——湿周,在通风、空调系统中即为风管的周长,m; D——圆形风管直径,m。 摩擦阻力系数λ与空气在风管内的流动状态和风管管壁的粗糙度有关。在通风和空调系统中,薄钢板风管的空气流动状态大多数属于紊流光滑区到粗糙区之间的过渡区。通常,高速风管的流动状态也处于过渡区。只有流速很高、表面粗糙的砖、混凝土风管流动状态才属于粗糙区。计算过渡区摩擦阻力系数的公式很多,下面列出的公式适用范围较大,在目前得到较广泛的采用: (6-1-4) 式中K——风管内壁粗糙度,mm; D——风管直径,mm。 进行通风管道的设计时,为了避免烦琐的计算,可根据公式(6-1-3)和(6-1-4)制成各种形式的计算表或线解图,供计算管道阻力时使用。只要已知流量、管径、流速、阻力四个参数中的任意两个,即可利用线解图求得其余的两个参数。线解图是按过渡区的λ值,在压力B0=101.3kPa、温度t0=20℃、宽气密度ρ0=1.204kg/m3、运动粘度 v0=15.06×10-6m2/s、管壁粗糙度K=0.15mm、圆形风管等条件下得出的。当实际使用条件下上述条件不相符时,应进行修正。 (1)密度和粘度的修正 (6-1-5) 式中Rm——实际的单位长度摩擦阻力,Pa/m; Rmo——图上查出的单位长度摩擦阻力,Pa/m; ρ——实际的空气密度,kg/m3; v——实际的空气运动粘度,m2/s。

烟囱设计规范

锅炉房烟囱设计 新建锅炉房的烟囱设计应符合下列要求: 1.燃煤、燃油(轻柴油、煤油除外)锅炉房烟囱高度的规定: 1)每个新建锅炉房只允许设一个烟囱,烟囱高度可按表8.4.10-1规定执行。 表8.4.10-1燃煤、燃油(轻柴油、煤油除外)锅炉房烟囱最低允许高度(GB 13271-2001)

表8.4.10-3燃煤锅炉砖烟囱出口内径参考值 表8.4.10-4燃油、燃气锅炉钢制烟囱出口内径参考值 6.当烟囱位于飞行航道或飞机场附近时,烟囱高度不得超过有关航空主管部门的规定。烟囱上应装信号灯,并刷标志颜色。 7.自然通风的锅炉,烟囱高度除应符合上述规定外,还应保证烟囱产生的抽力,能克服锅炉和烟道系统的总阻力。对于负压燃烧的炉膛,还应保证在炉膛出口处有20~40Pa的负压。每米烟囱高度产生的烟气抽力参见表8.4.10-5。 表8.4.10-5烟囱每米高度产生的抽力(Pa)

2.计算方法二:

烟囱的阻力计算: 1.烟囱的摩擦阻力Pycm(单位为Pa): 2.烟囱出口阻力Pycc(单位为Pa): 3.烟囱总阻力Pyc(单位为Pa):

砖烟囱和钢筋混凝土烟囱的结构应符合下列要求: 1.砖烟囱的最大高度不宜超过50m。 2.烟囱下部应设清灰孔,清灰孔在锅炉运行期间应严密封好(可用黄泥砖密封)。 3.烟囱底部应设置比水平烟道入口低0.5~1.0m的积灰坑。 4.当烟囱和水平烟道有两个接入口时,两个接口一般应相对设置,并用与水平烟道成45o角的隔板分开,隔板高出水平烟道的部分,不得小于水平烟道高度的 1/2。 5.烟囱应设置维修爬梯和避雷针。 钢烟囱的设计应符合下列要求: 1.钢烟囱应有足够的强度和刚度,烟囱壁厚要考虑一定量的腐蚀裕度,当烟囱高度为20~40m,直径为0.2~1.0m时,无内衬的筒体壁厚取4~10mm,有内衬的 壁厚取8~18mm。 2.当烟囱高度和直径之比超过20时,必须设置可靠的牵引拉绳,拉绳沿圆周等 弧度布置3~4根。 3.烟囱与基础连接部分一般制作锥形,支撑板厚度一般为20~40mm。4.带内衬的钢烟囱,内衬可分段支承,每段长4~6m,内衬和筒体之间保持20~50mm的间隙,并应在顶部装防护环板将内衬盖住。 5.钢烟囱宜选用由专业厂加工制造的焊制不锈钢烟囱。

烟气系统计算

项目名称:北京东环热力计算书编号:C-DH-01 锅炉/热泵15T20T25T热泵 燃气量Nm3/h11501533.41865418.8烟气量Nm3/h1380018401223805025.7 烟道直径0.851 1.10.6 区段1-换热器前 烟温℃85.585.390150标态密度kg/Nm3 1.24 1.24 1.24 1.24流速m/s8.888.558.707.65动压头Pa37.1934.5035.3123.44 烟道长度m7775沿程阻力系数/0.1650.1400.1270.167弯头阻力系数/0.8960.8960.896 1.26大小头阻力系数/ 1.1 1.1 1.1 1.1流动阻力Pa80747559 区段2-换热器后 烟气量Nm3/h1200616009194714372 烟温℃30303030标态密度kg/Nm3 1.31 1.31 1.31 1.31流速m/s 6.53 6.29 6.32 4.77动压头Pa25.1423.3323.5713.43烟道长m2222烟囱高m15151515 沿程阻力系数0.400.340.310.57大小头阻力系数0.40.40.40.4烟囱入口阻力系数 1.2 1.2 1.2 1.2烟囱出口阻力系数 1.1 1.1 1.1 1.1环境温度C15151515烟囱自生通风力pa7777 流动阻力Pa71646437 富裕系数 1.1 1.1 1.1 1.1总流动阻力Pa167152153106锅炉/热泵出口余压Pa800600680400换热器设计风阻Pa220230250100 尾部烟道系统压头富余量Pa413218277194 结论合格合格合格合格

水系统管道阻力计算

空调水系统的水力计算 根据舒适性空调冷热媒参数,应对冷热源装置、末端设备、循环水泵功率等进行考虑,因此,空调冷水供回水温差应大于等于5℃。 一、沿程阻力(摩擦阻力) 流体流经一定管径的直管时,由于流体内摩擦力而产生的阻力,阻力的大小与路程长度成正比的叫做沿程阻力,即 (1-1) 若直管段长度l=1m时, 则 式中λ——摩擦阻力系数,m; ——管道直径,m; R——单位长度直管段的摩擦阻力(比摩阻),Pa/m; ——水的密度,kg/m3; ——水的流速,m/s。 对于紊流过渡区域的摩擦阻力系数λ,可由经验公式计算得到。当水温为20℃时,冷水管道的摩擦阻力计算表可以从《实用供热空调设计手册》中查询。根据管径、流速,查出管道动压、流量、比摩阻等参数。 计算管道沿程阻力时,室内冷、热负荷是计算管道管径大小的基本依据,对于PAU机组管道管径进行计算时,应考虑其提供的仅为新风负荷,室内负荷是由风机盘管承担。所以这种空调末端承担负荷应计算精确,以避免负荷叠加。同时应清楚了解水管系统的方式,如同程式,异程式。不同的接管方式对沿程阻力具有一定的影响。在计算工程中,比摩阻宜控制在100-300Pa/m,通常不应超过400Pa/m。 二、局部阻力 (一)局部阻力及其系数

在管内水的流动过程中,当遇到各种配件如阀门、弯头等时,由于涡流而导致能量损失,这部分损失习惯上称为局部阻力()。

(2-1)式中——管道配件的局部阻力系数; ——水流速度,m/s。 常用管道的配件可以通过相应的表格进行查询。根据管道管径的不同以及管道上的阀门、弯头、过滤器、除污器、水泵入口等能出现局部阻力的类别进行查询,得到不同的局部阻力系数,再利用公式计算出局部阻力。 对于三通而言,不同的混合方向及方式,会出现不同的阻力系数,且数值相差比较大。因此,查询三通阻力系数时,应根据已有的混合方式进行查询,进而得到更准确的局部阻力系数。 在实际计算水管局部阻力时,应先确定管道上的管件种类、数目,尤其是水管接进机组、水泵、末端。可参见设备安装详图,其中会画出相应的管道配件。 (二)当量长度 利用相同管径直管段的长度表示局部阻力,这样称为局部阻力当量长度(m): 式中——管道配件的局部阻力系数。 根据各种阀门、弯头、三通以及特殊配件(突扩、突缩、胀管、凸出管等)的工程直径,可以查出相应的当量长度。 三、设备压力损失 空调系统中含有很多制冷、制热设备,如冷凝器、蒸发器、冷却水塔、冷热盘管等等。这些设备自身都有一定的压力损失。在水系统的水力计算中,除了管道部分的阻力之外,还有设备的压力损失。将这两部分加起来,才是整个系统的水力损失。 但是因为设备的生产厂家、型号、运行条件及工况的不同,压力损失相差比较大,一般情况下,是由设备厂家提供该设备的压力损失。若缺乏该方面的资料,可以按照经验值进行估算。估算值见表3-1。

烟囱设计规范样本

烟囱设计规范

锅炉房烟囱设计 新建锅炉房的烟囱设计应符合下列要求: 1.燃煤、燃油(轻柴油、煤油除外)锅炉房烟囱高度的规定:1)每个新建锅炉房只允许设一个烟囱,烟囱高度可按表8.4.10-1 规定执行。 表8.4.10-1燃煤、燃油(轻柴油、煤油除外)锅炉房烟囱最低允 许高度(GB 13271- ) 2)锅炉房装机总容量>28MW(40t/h)时,其烟囱高度应按批准的环境影响报告书(表)要求确定,且不得低于45m。新建烟囱周围半径200m距离内有建筑物时,其烟囱应高出最高建筑物3m以 上。 燃气、燃油(轻柴油、煤油)锅炉烟囱高度应按批准的环境影响报告书(表)要求确定,且不得低于8m。 2.各种锅炉烟囱高度如果达不到上述规定时,其烟尘、SO2、NOx

最高允许排放浓度,应按相应区域和时段排放标准值50%执行。 3.出力≥1t/h或0.7MW的各种锅炉烟囱应按《锅炉烟尘测试方法》(GB5468)和《固定污染源排气中颗粒物测定与气态污染物采样方法》(GB/T16157- )的规定,设置便于永久采样孔及其相关 设施。 4.锅炉房烟囱高度及烟气排放指标除应符合上述1~3款(摘自GB13271- )的规定外,尚应满足锅炉房所在地区的地方排放标 准或规定的要求。 5.烟囱出口内径应保证在锅炉房最高负荷时,烟气流速不致过高,以免阻力过大;在锅炉房最低负荷时,烟囱出口流速不低于2.5~3m/s,以防止空气倒灌。烟囱出口烟气流速参见表8.4.10- 2,烟囱出口内径参见表8.4.10-3和表8.4.10-4。 表8.4.10-2烟囱出口烟气速表(m/s) 表8.4.10-3燃煤锅炉砖烟囱出口内径参考值

通风管道阻力计算

通风管道阻力计算 风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。 一、摩擦阻力根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算: ΔPm=λν2ρl/8Rs 对于圆形风管,摩擦阻力计算公式可改写为: ΔPm=λν2ρl/2D 圆形风管单位长度的摩擦阻力(比摩阻)为: Rs=λν2ρ/2D 以上各式中 λ————摩擦阻力系数 ν————风管内空气的平均流速,m/s; ρ————空气的密度,Kg/m3; l ————风管长度,m ; Rs————风管的水力半径,m; Rs=f/P f————管道中充满流体部分的横断面积,m2; P————湿周,在通风、空调系统中既为风管的周长,m; D————圆形风管直径,m。 矩形风管的摩擦阻力计算 我们日常用的风阻线图是根据圆形风管得出的,为利用该图进行矩形风管计算,需先把矩形风管断面尺寸折算成相当的圆形风管直径,即折算成当量直径。再由此求得矩形风管的单位长度摩擦阻力。当量直径有流速当量直径和流量当量直径两种; 流速当量直径:Dv=2ab/(a+b) 流量当量直径:DL=1.3(ab)0.625/(a+b)0.25 在利用风阻线图计算是,应注意其对应关系:采用流速当量直径时,必须用矩形中的空气流速去查出阻力;采用流量当量直径时,必须用矩形风管中的空气流量去查出阻力。 二、局部阻力当空气流动断面变化的管件(如各种变径管、风管进出口、阀门)、流向变化的管件(弯头)流量变化的管件(如三通、四通、风管的侧面送、排风口)都会产生局部阻力。

锅炉烟囱阻力计算

序号名称符号单位计算公式2台1T蒸汽锅炉计 算结果1(立管用 DN350) 2台1T蒸汽锅炉 计算结果2(立 管用DN400) 2台2100Kw汽锅炉 计算结果(立管用 DN600) 锅炉功率700Kw700Kw2100Kw 燃气发热值Q气kJ/Nm3给定36533.0036533.0036533.00 燃气耗量Bj Nm3/h根据锅炉燃烧计算80.0080.00225.50单台锅炉烟气总量Vy实m3/h Vy实=Vy*(Bj)1150.001150.003115.00锅炉烟气总量Vy总m3/h2300.002300.006230.00 烟囱垂直高度H m给定90.0090.0090.00 锅炉的排烟温度t1℃170.00170.00170.00室外温度t℃30.0030.0030.00 锅炉台数n1台 2.00 2.00 2.00 锅炉总吨位D t/h 2.00 2.00 6.00锅炉总吨位求根√D√D 1.41 1.41 2.45修正系数A钢板0.900.900.90主烟囱内烟气的平均温度t2℃t2=t1-H·A/2/√D141.36141.36153.47 支烟囱直径d1m给定0.300.300.50 总烟道直径d2m给定0.400.400.70烟囱直径(立管段)d3m给定0.350.400.60单台锅炉烟气量G1m3/s热力计算0.320.320.87总烟气量G总m3/s0.640.64 1.73 系数a燃气(油)锅炉358.00358.00358.00烟囱截面及长度 支烟囱截面积S1m2(d1/2)2×3.140.070.070.20烟道截面积(水平段)S2m2(d 2 /2)2×3.140.1260.1260.385 烟囱截面积(垂直段)S3m2(d 3 /2)2×3.140.0960.1260.283支烟囱长度L1m 2.00 2.00 2.00总烟道水平段长度L2m给定82.0082.0082.00 锅炉烟囱通风阻力计算

管道压力损失计算

管道总阻力损失hw=∑hf+∑hj, hw—管道的总阻力损失(Pa); ∑hf—管路中各管段的沿程阻力损失之和(Pa); ∑hj—管路中各处局部阻力损失之和(Pa)。 hf=RL、 hf—管段的沿程损失(Pa); R—每米管长的沿程阻力损失,又称比摩阻(Pa/m); L—管段长度(m), R的值可在水力计算表中查得。 也可以用下式计算, hf=[λ×(L/d)×γ ×(v^2)]÷(2×g), L—管段长度(m); d—管径(m); λ—沿程阻力因数; γ—介质重度(N/m2); v—断面平均流速(m/s); g—重力加速度(m/s2)。 管段中各处局部阻力损失 hj=[ζ×γ ×(v^2)]÷(2×g), hj—管段中各处局部阻力损失(Pa); ζ—管段中各管件的局部阻力因数,可在管件的局部阻力因数表中查得。(引自《简明管道工手册》.P.56—57) 管道压力损失怎么计算

其实就是计算管道阻力损失之总和。 管道分为局部阻力和沿程阻力:1、局部阻力是由管道附件(弯头,三通,阀等)形成的,它和局阻系数,动压成正比。局阻系数可以根据附件种类,开度大小通过查手册得出,动压和流速的平方成正比。2、沿程阻力是比摩阻乘以管道长度,比摩阻由管道的管径,内壁粗糙度,流体流速确定 总之,管道阻力的大小与流体的平均速度、流体的粘度、管道的大小、管道的长度、流体的气液态、管道内壁的光滑度相关。它的计算复杂、分类繁多,误差也大。如要弄清它,应学“流体力学”,如难以学懂它,你也可用刘光启著的“化工工艺算图手册”查取。 管道主要损失分为沿程损失和局部损失。Δh=ΣλL/d*(v2/2g)+Σξv2/2g。其中的λ和ξ都是系数,这个是需要在手册上查询的。L-------管路长度。d-------管道内径。v-------有效断面上的平均流速,一般v=Q/s,其中Q是流量,S是管道的内截面积。希望你能看懂 液体压力计算公式是什么 1mm水柱=10pa 10m=100000pa= 1毫米汞柱(mmHg)=帕(Pa) 1工程大气压=千帕(kPa) 对静止液体,就是初中的公式 压强P=ρgh 压力F=PS 如果受力表面不规则,需要积分计算 常用两种方法计算: 1.液体在柱形器具中,且放在水平面上,此时: F=G液=m液g=ρ液gV液

燃煤锅炉房烟道风道阻力计算

燃煤锅炉房烟道风道阻力计算 2008-06-19 15:33:43| 分类:热电联盟| 标签:|字号大中小订阅 1.锅炉烟气系统总阻力按下式计算: h=hL+hbt+hsm+hky+hcc+hyd+hys (8.4.5-1) 式中h 烟气系统总阻力(Pa); hL 炉膛出口处的负压(Pa)有鼓风机时,一般取hL=20~40Pa;无鼓风机时,取hL=20~30Pa hbt 锅炉本体受热面阻力(Pa),由锅炉制造厂提供;hsm 省煤器阻力(Pa),由锅炉制造厂提供; hky 空气预热器阻力(Pa),由锅炉制造厂提供; hcc 除尘器阻力(Pa),根据除尘设备厂提供资料确定一般对旋风除尘器其阻力约为600~800Pa,多管除尘器阻力约为800~lO00Pa,水膜降尘器阻力约为800~1200Pa;电除尘器阻力每级约200~300Pa,一般为1~3级;布袋除尘器阻力与积灰厚度和清灰频率有关,一般设计可按500~1200Pa考虑 hyd 烟道阻力(Pa),hyd包括摩擦阻力hm和局部阻力hj;hm和hj按本条第3款计算 hys 烟囱阻力(Pa) 2.燃煤锅炉空气系统的总阻力按下式计算: h=hfd+hky+hLP+hr (8.4.5-2) 式中h 空气系统总阻力(Pa); hfd 风道阻力(Pa),包括摩擦阻力hm和局部阻力hj,见本条第3款; hky 空气预热器阻力(Pa),由锅炉制造厂提供; hLp 炉排阻力(Pa); hr 燃料层阻力(Pa) 炉排与燃料层的阻力取决于炉子型式和燃料层厚度等因素,宜取制造厂给定数据为计算依据对于出力为6t/h以下的锅炉,可参考表8.4.5-1 表8.4.5-1层燃炉炉排下所需空气压力 炉排型式炉排下风压(Pa) 备注 倾斜往复炉炉排200~500 表中较大的阻力用于燃烧细粉末多的烟煤、无烟 煤、贫煤和结焦性较强的煤种 快装锅炉链条炉排350~700 3.烟道和风道的阻力包括摩擦阻力和局部阻力两部分组成,按下式进行计算: Δhd=Δhm+Δhj=9.8×(λL +ε)× ω2 ×ρ0× 273 (8.4.5-3) d 2 273+t =4.9×(λL +ε)×ω2×ρ0× 273 d 273+t 式中Δhd—烟道或风道阻力(Pa);

(完整版)管道内的局部阻力及损失计算

第四节管道内的局部阻力及损失计算 在实际的管路系统中,不但存在上一节所讲的在等截面直管中的沿程损失,而且也存在有各种各样的其它管件,如弯管、流道突然扩大或缩小、阀门、三通等,当流体流过这些管道的局部区域时,流速大小和方向被迫急剧地发生改变,因而出现流体质点的撞击,产生旋涡、 二次流以及流动的分离及再附壁现象。此时由于粘性的作用,流体质点间发生剧烈的摩擦和动量交换,从而阻碍着流体的运动。这种在局部 障碍物处产生的损失称为局部损失,其阻力称为局部阻力。因此一般的管路系统中,既有沿程损失,又有局部损失。 4.4.1 局部损失的产生的原因及计算 一、产生局部损失的原因 产生局部损失的原因多种多样,而且十分复杂,因此很难概括全面。这里结合几种常见的管道来说明。 ()() 图4.9 局部损失的原因 对于突然扩张的管道,由于流体从小管道突然进入大管道如图 4.9 ()所示,而且由于流体惯性的作用,流体质点在突然扩张 处不可能马上贴附于壁面,而是在拐角的尖点处离开了壁面,出现了一系列的旋涡。进一步随着流体流动截面面积的不断的扩张,直到 2 截面处流体充满了整个管截面。在拐角处由于流体微团相互之间的摩擦作用,使得一部分机械能不可逆的转换成热能,在流动过程中,不断地 有微团被主流带走,同时也有微团补充到拐角区,这种流体微团的不断补充和带走,必然产生撞击、摩擦和质量交换,从而消耗一部分机械 能。另一方面,进入大管流体的流速必然重新分配,增加了流体的相对运动,并导致流体的进一步的摩擦和撞击。局部损失就发生在旋涡开 始到消失的一段距离上。 图4.9()给出了弯曲管道的流动。由于管道弯曲,流线会发生弯曲,流体在受到向心力的作用下,管壁外侧的压力高于内侧的 压力。在管壁的外侧,压强先增加而后减小,同时内侧的压强先减小后增加,这样流体在管内形成螺旋状的交替流动。 综上所述,碰撞和旋涡是产生局部损失的主要原因。当然在 1-2之间也存在沿程损失,一般来说,局部损失比沿程损失要大得多。 在测量局部损失的实验中,实际上也包括了沿程损失。 二、局部损失的计算 如前所述,单位重量流体的局部能量损失以表示

烟囱阻力计算

地址:天津市津南区裕和工业小区11门乙 Add: No.11 YUHE industrial district JINNAN district TIANJIN CHINA 1 TIANJIN ALLRIGHT ELETROMECHANICAL EQUIPMENT CO., LTD 富康新城烟囱系统阻力计算 一、工程基本资料 排烟设备:热水锅炉; 排烟设备数量:6台; 燃料种类:天然气; 排烟量:3750m 3/h ·台(经验数据); 排烟温度:220℃(经验数据); 二、烟气密度的计算 220℃时烟气的密度为: 742 .022******* 34.12732730=+?=+? =t ρρ㎏/m3; 三、烟囱内部阻力计算 A 区组: 1、烟囱水平管道37m ,垂直烟囱20m 的摩擦阻力 m yc P ?(Pa )为: pj pj PJ m yc d H P ρωλ2 2 =? 即: m yc P ?=(0.02×37×6.2×6.2×0.74)÷(2×0.7)=15.04(Pa ) m yc P ?=(0.02×20×2.76×2.76×0.74)÷(2×0.93)=1.21(Pa ) 2、出口阻力: c C c yc A P ρω2 2=?=1.1×2.76×2.76×0.74÷2=3.1(Pa ) 3、转向场所阻力: 转向场所数量为4处,阻力为:

地址:天津市津南区裕和工业小区11门乙 Add: No.11 YUHE industrial district JINNAN district TIANJIN CHINA 2 TIANJIN ALLRIGHT ELETROMECHANICAL EQUIPMENT CO., LTD 机组出口弯头阻力: pj C w yc P ρωξ 2 2=?=0.7×6.51×6.51×0.74÷2=10.98(Pa ) 水平管道弯头阻力: pj C w yc P ρωξ 2 2=?=0.7×6.2×6.2×0.74÷2=9.96×2=19.92(Pa ) 4、烟道总阻力为: yc P ?=15.04+1.21+3.1+10.98+19.92=40.25(Pa ) B 区组 1、水平管道79m ,垂直烟囱20m 的摩擦阻力 m yc P ?(Pa )为: pj pj PJ m yc d H P ρωλ2 2 =? 即: m yc P ?=(0.02×79×6.2×6.2×0.74)÷(2×0.7)=32.1(Pa ) m yc P ?=(0.02×20×2.98×2.98×0.74)÷(2×0.95)=1.38(Pa ) 2、出口阻力: c C c yc A P ρω2 2=?=1.1×2.98×2.98×0.74÷2=3.61(Pa ) 3、转向场所阻力:转向场所数量为5处 机组出口弯头阻力: pj C w yc P ρωξ 2 2=?=0.7×6.51×6.51×0.74÷2=10.98(Pa ) 水平管道弯头阻力: pj C w yc P ρωξ 2 2=?=0.7×6.2×6.2×0.74÷2=9.96×4=39.84(Pa )

管道总阻力与热损失计算

按甲方要求比较φ426X8以及φ377X7两种蒸汽管道阻力损失以及管道热损失,计算结果如下: 原始数据:蒸气流量30t/h,管径φ426X8/φ377X7 压力0.49mpa,温度202C ?,管道长度360m,弯头数6个 一 阻力损失计算 蒸汽管道阻力损失为沿程阻力y p ?和局部阻力j p ?之和,沿程阻力包括360米长直管段,局部阻力计算包含6个90度弯头。 查《动力管道手册》可知 202 C ?蒸汽密度为32.23/kg m ρ=,比体积为30.45/m kg φ426X8钢管摩擦阻力系数10.0144λ= φ377X7钢管摩擦阻力系数10.0148λ= 根据蒸汽管道管径计算公式n D = 其中:n D —管道内径,G —介质的质量流量t/h, v —介质比体积3/m kg , w —介质流速m/s 计算得到 φ426X8 的管道内蒸汽流速为410= 128m /s w = φ377X7 的管道内蒸汽流速为363= 136m /s w = 比摩阻 Rm 为22 m r w R d ρ=

22 10.0144 2.232829.5220.426m r v R d ρ??===? 222 0.0148 2.233656.7220.377 m r v R d ρ??===? 计算结果示意如下: 二 热损失 设计人员确定本次管道保温材料采用岩棉制品。 查保温材料特性可知岩棉制品热导率m 0.033+0.00018T λ=(其中m T 为绝热层内外表面温度的算术平均值取m 20220 T 1112 C ?+= =)所以 0.033+0.00018111=0.05298λ=? 选取保温厚度130mm. 由《动力管道手册》得保温层表面散热损失公式为 000 () 11ln 2i t t q D D D πλα-= + 其中:t —管道外壁温度,0t —保温结构周围环境温度,λ—保温材料导热系数,0D —管道保温层外径,i D —管道保温层内径,α—保温层外表面向大气的散热系数,取11.63α= 管径为φ426X8 的蒸汽管道单位长度热损失为

烟道阻力损失及烟囱计算1

15.烟道阻力损失及烟囱计算 烟囱是工业炉自然排烟的设施,在烟囱根部造成的负压——抽力是能够吸引并排烟的动力。在上一讲中讲到的喷射器是靠喷射气体的喷射来造成抽力的,而烟囱是靠烟气在大气中的浮力造成抽力的,其抽力的大小主要与烟气温度和烟囱的高度有关。 为了顺利排出烟气,烟囱的抽力必须是足够克服烟气在烟道内流动过程中产生的阻力损失,因此在烟囱计算时首先要确定烟气总的阻力损失的大小。 15.1 烟气的阻力损失 烟气在烟道内的流动过程中造成的阻力损失有以下几个方面:摩擦阻力损失、局部阻力损失,此外,还有烟气由上向下流动时需要克服的烟气本身的浮力――几何压头,流动速度由小变大时所消耗的速度头——动压头等。 15.1.1 摩擦阻力损失 摩擦阻力损失包括烟气与烟道壁及烟气本身的粘性产生的阻力损失,计算公式如下: t m h d L h λ=(mmH 2O) )1(2h 0204t g w βγ+= (mmH 2O) 式中:λ—摩擦系数,砌砖烟道λ=0.05 L —计算段长度,(m ) d —水力学直径 )(4m u F d = 其中 F —通道断面积(㎡); u —通道断面周长(m ); t h —烟气温度t 时的速度头(即动压头)(mmH 2O);

0w —标准状态下烟气的平均流速(Nm/s ); 0γ—标准状态下烟气的重度(㎏/NM 3); β—体积膨胀系数,等于273 1; t —烟气的实际温度(℃) 15.1.2 局部阻力损失 局部阻力损失是由于通道断面有显著变化或改变方向,使气流脱离通道壁形成涡流而引起的能量损失,计算公式如下: )1(2020t g w K Kh h t βγ+==(㎜H 2O) 式中 K —局部阻力系数,可查表。 15.1.3 几何压头的变化 烟气经过竖烟道时就会产生几何压头的变化,下降烟道增加烟气的流动阻力,烟气要克服几何压头,此时几何压头的变化取正值,上升烟道与此相反,几何压头的变化取负值。几何压头的计算公式如下: )(y k j H h γγ-=(㎜H 2O ) 式中 H —烟气上升或下降的垂直距离(m ) k γ—大气(即空气)的实际重度 (kg/m 3) y γ—烟气的实际重度(kg/m 3) 图15.1 为大气中每米竖烟道的几何压头,曲线是按热空气算出的,烟气重度与空气重度差别不大时,可由图15.1查取几何压头值。

管道内压力损失的计算

管道内压力损失的计算 一、液体在直管中流动时的压力损失 液体在直管中流动时的压力损失是由液体流动时的摩擦引起的,称之为沿程压力损失,它主要取决于管路的长度、内径、液体的流速和粘度等。液体的流态不同,沿程压力损失也不同。液体在圆管中层流流动在液压传动中最为常见,因此,在设计液压系统时,常希望管道中的液流保持层流流动的状态。 1.层流时的压力损失 在液压传动中,液体的流动状态多数是层流流动,在这种状态下液体流经直管的压力损失可以通过理论计算求得。 圆管中的层流 (1)液体在流通截面上的速度分布规律。如图所示,液体在直径d 的圆管中作层流运动,圆管水平放置,在管内取一段与管轴线重合的小圆柱体,设其半径为r ,长度为l 。在这一小圆柱体上沿管轴方向的作用力有:左端压力p 1,右端压力p 2,圆柱面上的摩擦力为F f ,则 其受力平衡方程式为: 122()0 f p p r F π--= ( 由式(2-6)可知: 式中:μ 因为速度增量du 与半径增量dr 符号相反,则在式中加一负号。 Δp =p 1- p 2 Δp 、式(2-45)代入式(2-44),则得: 对式积分得: 当r =R 时,u =0,代入(2-47)式得: 则 22()4p u R r l μ?= - 由式可知管内流速u 沿半径方向按抛物线规律分布,最大流速在轴线上,其值为:

2max 4pR u l μ? = (1) (1)? 管路中的流量。图(b)所示抛物体体积,是液体单位时间内流过通流截面的体积即 流量。为计算其体积,可在半径为r 处取一层厚度为 的微小圆环面积,通过此环 形面积的流量为: 对式积分,即可得流量q : (2) (2)? 平均流速。设管内平均流速为 υ 对比可得平均流速与最大流速的关系: υ=max 2 u (4)沿程压力损失。层流状态时,液体流经直管的沿程压力损失可从式求得: 232lv p d μ?= 由式可看出,层流状态时,液体流经直管的压力损失与动力粘度、管长、流速成正比,与管径平方成反比。 在实际计算压力损失时,为了简化计算,得μ=υd ρ/Re ,并把 μ=υd ρ/Re 代入,且分子分母同乘以2g 得 : 2 64...Re 2l l v p g d g ρ?= 式中:λ为沿程阻力系数。它的理论值为λ=64/Re ,而实际由于各种因素的影响,对光滑金属管取λ=75/Re ,对橡胶管取λ=80/Re 。 2.紊流时的压力损失层流流动中各质点有沿轴向的规则运动。而无横向运动。紊流的重要特性之一是液体各质点不再是有规则的轴向运动,而是在运动过程中互相渗混和脉动。这种极不规则的运动,引起质点间的碰撞,并形成旋涡,使紊流能量损失比层流大得多。 由于紊流流动现象的复杂性,完全用理论方法加以研究至今,尚未获得令人满意的成果,故仍用实验的方法加以研究,再辅以理论解释,因而紊流状态下液体流动的压力损失仍用式来计算,式中的λ值不仅与雷诺数Re 有关,而且与管壁表面粗糙度Δ 有关,具体的 λ值见表2-5。 表2-5圆管紊流时的λ值 2.局部压力损失 局部压力损失是液体流经阀口、弯管、通流截面变化等所引起的压力损失。液流通过这些地方时,由于液流方向和速度均发生变化,形成旋涡,使液体的质点间相互撞击,从而产生较大的能量损耗。 突然扩大处的局部损失

相关文档
最新文档