北京揽宇方圆WorldView-3卫星影像定标参数

北京揽宇方圆WorldView-3卫星影像定标参数
北京揽宇方圆WorldView-3卫星影像定标参数

Radiometric Use of WorldView-3 Imagery

Technical Note

Date: 2016-02-22

Prepared by: Michele Kuester

This technical note discusses the radiometric use of WorldView-3 imagery. The first two sections briefly describe the WorldView-3 instrument and general radiometric performance including the WorldView-3 relative spectral radiance response and relative radiometric correction of WorldView-3 products. Section 3 covers conversion to top-of-atmosphere spectral radiance and conversion to top-of-atmosphere spectral reflectance. WorldView-3 imagery MUST be converted to spectral radiance at a minimum before radiometric/spectral analysis or comparison with imagery from other sensors in a radiometric/ spectral manner. The information contained in this technical note applies to the raw WorldView-3 sensor performance and linearly scaled top-of-atmosphere spectral radiance products. Caution is advised when applying the equations provided here to pan-sharpened products, dynamic range adjusted (DRA) products, or WorldView-3 mosaics with radiometric balancing because the generation of these products may apply non-linear transformations to the pixel DN values.

1 WorldView-3 Instrument

The WorldView-3 high-resolution commercial imaging satellite was launched on August 13, 2014, from Vandenberg Air Force Base. The satellite is in a nearly circular, sun-synchronous orbit with a period of 97 minutes, an altitude of approximately 617 km, and with a descending nodal crossing time of approximately 10:30 a.m. The revisit is 4.5 days at a greater than 20-deg off nadir angle. WorldView-3 acquires 11-bit data in 9 spectral bands covering panchromatic, coastal, blue, green, yellow, red, red edge, NIR1, and NIR2. An additional shortwave infrared (SWIR) sensor acquires 14-bit data in eight bands covering the 1100 to 2500 nm spectral region. See Table 1 for details. At nadir, the collected nominal ground sample distance is 0.31 m (panchromatic), 1.24 m (multispectral) and 3.7 m (SWIR). Commercially available products are resampled to 0.3 m (panchromatic), 1.2 m (multispectral) and 7.5 m (SWIR). The nominal swath width is 13.1 km (slightly less for the SWIR sensor). The WorldView-3 instrument is a pushbroom imager, which constructs an image one row at a time as the focused image of the Earth through the telescope moves across the linear detector arrays, which are located on the focal plane.

1.1 WorldView-3 Relative Radiance Response

The spectral radiance response is defined as the ratio of the number of photo-electrons measured by the instrument system, to the spectral radiance [W-m-2-sr-1-μm-1] at a particular wavelength present at the entrance to the telescope aperture. It includes not only raw detector quantum efficiency, but also transmission losses due to the telescope optics and filters. The spectral radiance response for each band is normalized by dividing by the maximum response value for that band to arrive at a relative spectral radiance response. The curves for theWorldView-3 visible and near infrared multispectral bands are shown in Figure

1. The curves for the WorldView-3 SWIR bands are shown in Figure

2. The corresponding data are provided in Attachement

A.

Figure 1: WorldView-3 Relative Spectral Radiance Response (nm) for the VNIR bands.

Figure 2: WorldView-3 Relative Spectral Radiance Response (nm) for the SWIR bands.

1.2 WorldView-3 Effective Bandwidth

The effective bandwidth for each band of the WorldView-3 system is defined as:

where Δλ is the effective bandwidth in μm for a given band, and R?(λ) is the relative spectral radiance response for a given band. The effective bandwidths should be used in the conversion to top-of-atmosphere spectral radiance for each band and are listed in Table 1. For reference, the center wavelength for each band is also given. The effective bandwidths are also included in the image metadata (.IMD file extension) accompanying the image product.

Table 1. WorldView-3 Effective Bandwidths

2 Relative Radiometric Correction of WorldView-

3 Products

Relative radiometric calibration and correction are necessary because a uniform scene does not create a uniform image in terms of raw digital numbers (DNs). Major causes of non-uniformity include variability in detector response, variability in electronic gain and offset, lens falloff, and particulate contamination on the focal plane. These causes manifest themselves in the form of streaks and banding in imagery. In the case of a pushbroom system focal plane containing linear arrays, the data from every pixel in a given image column comes from the same detector. Any differences in gain or offset for a single detector show up as a vertical streak in raw imagery. Differences in gain and offset for a single readout register show up as vertical bands as wide as the number of detectors read out by the register. Relative radiometric correction minimizes these image artifacts in WorldView-3 products.

A relative radiometric correction is performed on raw data from all detectors in all bands during the early stages of WorldView-3 product generation. This correction includes a dark offset subtraction and a non-uniformity correction (e.g. detector-to-detector relative gain).

Spectral Band

Center Wavelength

(nm)

Effective Bandwidth, Δλ (μm)Panchromatic 649.40.2896Coastal 427.40.0405Blue 481.90.0540Green 547.10.0618Yellow 604.30.0381Red 660.10.0585Red Edge 722.70.0387NIR1824.00.1004NIR2913.60.0889SWIR11209.10.0330SWIR21571.60.0397SWIR31661.10.0373SWIR41729.50.0416SWIR52163.70.0389SWIR62202.20.0409SWIR72259.30.0476SWIR8

2329.2

0.0679

It is important to note that, after radiometric correction, the corrected detector data are spatially resampled to create a specific WorldView-3 product that has relative radiometrically corrected image pixels. Once spatial resampling is performed, the radiometric corrections are not reversible. Data from all WorldView-3 detectors are relative radiometrically corrected and used to generate WorldView-3 products. To date, no detectors have been declared as non-responsive detectors. The WorldView-3 VNIR instrument collects data with 11 bits of dynamic range. These 11 bits are either stored as 16 bit integers or are scaled down to 8 bits to reduce the file sizes of WorldView-3 products and for use with specific COTS tools that can only handle 8-bit data. The same is done for the 14 bit SWIR data. Whether the final bit depth is 16 or 8 bits, the goal of the relative radiometric correction, other than minimize image artifacts, is to scale all image pixels to top-of-atmosphere spectral radiance so that one absolute calibration factor can be applied to all pixels in a given band.

3 Absolute Radiometric Correction of WorldView-3 Products and Conversion to T op-of-Atmosphere Spectral Radiance

WorldView-3 products are delivered to the customer as relative radiometrically corrected image pixels. Their values are a function of how much spectral radiance enters the telescope aperture and the instrument conversion of that radiation into a digital signal. That signal depends on the spectral transmission of the telescope and filters, the throughput of the telescope, the spectral quantum efficiency of the detectors, and the analog to digital conversion. Therefore, image pixel data are unique to WorldView-3 and should not be directly compared to imagery from other sensors in a radiometric/spectral sense. In addition, bands taken at different TDI levels may give misleading spectral information if left in digital number space. Image pixels should be converted to top-of-atmosphere spectral radiance at a minimum.

A pre-flight calibration has been performed and these data are provided in the .IMD metadata file that is delivered with the imagery. Since launch, DigitalGlobe has performed an extensive vicarious calibration campaign to provide an adjustment to the pre-launch values. The top-of-atmosphere radiance, L, in units of Wμm-1 m-2 sr-1, is then found from the DigitalGlobe image product for each band by converting from digital numbers (DN) using the equation,

The TDI and scan direction specific abscalfactor and effectiveBandwidth are delivered with the imagery in the metadata file. The digital number, DN, is the pixel value found in the imagery. The Gain and Offset are the absolute radiometric calibration band dependent adjustment factors that are given in Table 2. Note that these are not necessarily static values and they are revisited annually.

Table 2. Absolute radiometric Calibration Adjustment Factors for WorldView-3 as of 1/29/2016. It is recommended that these values are used for more accurate at sensor radiance values. Updates will be made available to the public online alongside this technical paper or by request.

CAL VERSION2015v2

BAND GAIN OFFSET

PAN0.923-1.700

The absolute radiometric calibration factor and effective bandwidth values for each band are delivered with every WorldView-3 product and are located in the image metadata files (extension .IMD). An excerpt from a product .IMD file shows the absolute radiometric calibration factor (absCalFactor) and the effective bandwidth (effectiveBandwidth), for example:

BEGIN_GROUP = BAND_C …

absCalFactor = 9.295654e-03;

effectiveBandwidth = 4.730000e-02;

END_GROUP = BAND_C

This example is for the coastal band. There are sections for each band, in particular: BAND_C = Coastal; BAND_B = Blue; BAND_G = Green; BAND_Y = Yellow; BAND_R = Red; BAND_RE = Red Edge; BAND_N = NIR1; BAND_N2= NIR2. Note that the values are provided in scientific notation.

The absolute radiometric calibration factor is dependent on the specific band, as well as the TDI exposure level, line rate, pixel aggregration, and bit depth of the product. Based on these parameters, the appropriate value is provided in the .IMD file. For this reason, care should be taken not to mix absolute radiometric calibration factors between products that might have different collection conditions.

COASTAL 0.863-7.154BLUE 0.905-4.189GREEN 0.907-3.287YELLOW 0.938-1.816RED 0.945-1.350REDEDGE 0.980-2.617NIR10.982-3.752NIR20.954-1.507SWIR1 1.160-4.479SWIR2 1.184-2.248SWIR3 1.173-1.806SWIR4 1.187-1.507SWIR5 1.286-0.622SWIR6 1.336-0.605SWIR7 1.340-0.423SWIR8

1.392

-0.302

4 Conversion to T op-of-Atmosphere Reflectance

For many multispectral analysis techniques such as band ratios, Normalized Difference Vegetation Index (NDVI), matrix transformations, etc., it is common practice to convert multispectral data into reflectance before performing the analysis. In addition, techniques for removal of atmospheric effects range from a simple dark object subtraction or empirical line method, to more robust radiative transfer approaches. These methods require that first the imagery be normalized for solar irradiance and sensor radiance by conversion to top of atmosphere reflectance, ρ(TOA)λ.

where L λ is the at-sensor radiance for the spectral band λ in W/m 2/μm/sr found in the previous section above, d is the Earth-Sun distance in astronomical units, E λ is the band-averaged solar exoatmopsheric irradiance in W/m 2/μm, and is the solar zenith angle.

Top-of-atmosphere reflectance does not account for topographic, atmospheric, or BRDF differences. Consult the references by Schott or Schowengerdt for further discussion on correction for topographic or atmospheric effects. Typically a dark object subtraction technique is recommended at a minimum to reduce atmospheric effects due to the upwelling path radiance (Richards, p. 46, 1999 or Schowengerdt, p. 315, 1997) followed by atmospheric modeling.

4.1 Solar Exoatmospheric Irradiance

The WorldView-3 instrument is sensitive to wavelengths of light in the visible through shortwave-infrared portions of the electromagnetic spectrum as shown in Figure 1 and Figure 2. In this region, top-of-atmosphere radiance measured by WorldView-3 is dominated by reflected solar radiation. Spectral irradiance is defined as the energy per unit area falling on a surface as a function of wavelength. Because the Sun acts like a blackbody radiator, the solar spectral irradiance can be approximated using a Planck blackbody curve at 5900 degrees Kelvin, corrected for the solar disk area and the distance between the Earth and the Sun (Schowengerdt, pp. 36-37, 1997). However, a model of the solar spectral irradiance is better used for this purpose. The solar spectral irradiance curve peaks around 450 nm in the coastal and blue bands and slowly decreases at longer wavelengths. The WRC Solar Spectral Irradiance Curve is shown in Figure 3 as an example. Thuillier 2003 is used for the vicarious calibration work at DigitalGlobe and is our recommended curve. The ChKur and WRC band averaged values are also given as they are also widely used and accepted in the remote sensing community. NOTE: the curves are given for an Earth-Sun distance of 1 Astronomical Unit (AU) normal to the surface being illuminated.

In general, band-averaged solar spectral irradiance is defined as the weighted average of the peak normalized effective irradiance value over the detector bandpass as shown in the following equation:

where Esun λBand is the band-averaged solar spectral irradiance [W-m -2-μm -1] for a given band, Esun(λ) is the solar spectral irradiance curve [W-m -2-μm -1] (WRC shown in Figure 3), and R ?(λ)Band is the relative spectral radiance response for a given band.

∫∫∞

?????=

Band

Band

Band d )

(R d )

(R )Esun(Esun λ

λλ

λλλ

Figure 3: WRC Solar Spectral Irradiance Curve

Specific to WorldView-3, the band-averaged solar spectral irradiance values for an Earth-Sun distance of 1 AU, normal to the surface being illuminated, are listed in Table 3.

Table 3: WorldView-3 Band-Averaged Solar Spectral Irradiance

Spectral Irradiance [W-m-2-μm-1]

Spectral

Band

Thuillier

2003 ChKur WRC

PAN1574.411578.281583.58

COASTAL1757.891743.91743.81

BLUE2004.611974.531971.48

GREEN1830.181858.11856.26

YELLOW1712.071748.871749.4

4.1.2 Earth-Sun Distance

In order to calculate the Earth-Sun distance for a given product, the customer must first use the image acquisition time to calculate the Julian Day. The acquisition time for a product is contained in the image metadata file (.IMD file extension). Acquisition time uses the UTC time format and in the relevant section of the .IMD files looks like: Basic Product:

BEGIN_GROUP = IMAGE_1 … firstLineTime = YYYY_MM_DDThh:mm:ss:ddddddZ; …

END_GROUP = IMAGE_1

Standard (projected) Product:

BEGIN_GROUP = MAP_PROJECTED_PRODUCT …

earliestAcqTime = YYYY_MM_DDThh:mm:ss:ddddddZ; …

END_GROUP = MAP_PROJECTED_PRODUCT

From the UTC time format, retrieve the year, month, day and calculate the Universal Time (UT) from the hours, minutes, and seconds:

RED 1535.331550.581555.11REDEDGE 1348.081303.41343.95NIR11055.941063.921071.98NIR2858.77858.632863.296SWIR 1479.019478.873494.595SWIR 2263.797257.55261.494SWIR 3225.283221.448230.518SWIR 4197.552191.583196.766SWIR 590.417886.565180.365SWIR 685.064282.003574.7211SWIR 776.950774.741169.043SWIR 8

68.0988

66.3906

59.8224

If the customer has an algorithm that can calculate the Julian Day, that value can also be used. Otherwise use the equations

listed below (Meeus, p. 61, 1998). The word “int” listed in the equations means to truncate the decimals and only use the integer part of the number. If the image was acquired in January or February, the year and month must be modified as follows:

Next, calculate the Julian Day (JD):

As an example, the WorldView-2 launch date of October 8, 2009 at 18:51:00 GMT corresponds to the Julian Day 2455113.285. Once the Julian Day has been calculated, the Earth-Sun distance (d ES ) can be determined using the following equations (U.S. Naval Observatory):

NOTE: g is in degrees but most software programs require radians for cosine calculations. Conversion may be necessary for g from degrees to radians. The Earth-Sun distance will be in Astronomical Units (AU) and should have a value between 0.983 and 1.017. For the WorldView-2 launch date, the Earth-Sun distance is 0.998987 AU. At least six decimal places should be carried in the Earth-Sun distance for use in radiometric balancing or top-of-atmosphere reflectance calculations.

3600.0ss.dddddd

60.0mm hh UT DD

day MM month YYYY

year +

+====12month month 1

year year +=?=[][]1524.5B 24.0UT

day )1month (30.6001int )4716year (365.25int JD 4A int A 2B 100year int A ?++

++?++?=?

?

?

???+?=?

?????=)

cos(2g 0.00014cos(g)0.016711.00014d D

0.98560028357.529g 2451545.0

JD D ES ????=?+=?=

4.1.2 Solar Zenith Angle

The solar zenith angle does not need to be calculated for every pixel in an image because the sun angle change is very small over the 13.4 km image swath and the along-track image acquisition time. The average solar zenith angle for the image is sufficient for every pixel in the image. The average sun elevation angle [degrees] for a given product is calculated for the center of the scene and can be found in the .IMD files:

BEGIN_GROUP = IMAGE_1 … meanSunEl = 68.7; …

END_GROUP = IMAGE_1

The solar zenith angle is simply:

This example is for a sun elevation angle of 68.7 degrees, which corresponds to a solar zenith angle of 21.3 degrees.

5 Radiometric Balancing for Multiple Scene Mosaics

For many customers, it may be desirable to create large area mosaics from multiple WorldView-3 scenes. Ignoring geometric effects, adjacent areas might appear to have different brightness values leaving a visible seam between scenes. As stated earlier, WorldView-3 pixel digital numbers are a function of the spectral radiance entering the telescope aperture at the WorldView-3 altitude of 617 km. This top-of-atmosphere spectral radiance varies with Earth-Sun distance, solar zenith angle, topography (the solar zenith angle is calculated for flat terrain so topography adds an extra geometry factor for each spot on the ground), bi-directional reflectance distribution function (BRDF-the target reflectance varies depending on the illumination and observation geometry), and atmospheric effects (absorption and scattering).

Topography, BRDF, and atmospheric effects can be ignored for simple radiometric balancing. Consequently, the major difference between two scenes of the same area is the solar geometry. The solar spectral irradiance values listed in Table 4 correspond to the values for the mean Earth-Sun distance, normal to the surface being illuminated. The actual solar spectral irradiance for a given image varies depending on the Earth-Sun distance and the solar zenith angle during the individual image acquisition. This variation will cause two scenes of the same area (or adjacent areas) taken on different days to have different radiances and hence different image brightnesses. The difference can be minimized by correcting imagery for Earth-Sun distance and solar zenith angle or simply converting to top-of-atmosphere solar reflectance as described in this technical document.

6 Summary

Raw WorldView-3 imagery undergoes a relative radiometric correction process to reduce visible banding and streaking in WorldView-3 products. The products are linearly scaled to absolute spectral radiance. Various types of spectral analysis can be performed on this radiometrically corrected WorldView-3 imagery. Depending on the application, WorldView-3 products may need to be converted to top-of-atmosphere spectral radiance or spectral reflectance. These transformations are performed using the equations listed in this technical note. In the case of large area mosaics, Top-of-atmosphere reflectance is

recommended as a starting point. Additional radiometric balancing may help match the brightness of the scenes used in the

sunEl S ?=0.90θ

mosaic. For customers interested in comparing WorldView-3 products with imagery from other sensors, keep in mind the spectral response curves and gain settings which are specific to WorldView-3. Many of the differences in analysis results can be explained by the differences in the sensors themselves.

7 References

Meuss, Jean. "Astronomical algorithms, 2nd Ed.." Richmond, VA: Willmann-Bell(1998).

Richards, John A. and Xiuping Jia. “Remote Sensing Digital Image Analysis: An Introduction 3rd ed.,” Springer, Berlin, 1999. Schott, John R. “Remote Sensing: The Image Chain Approach,” Oxford University Press, New York(1997). Schowengerdt, Robert A. “Remote Sensing: Models and Methods for Image Processing 2nd ed.,” Academic Press, San Diego(1997).

Thuillier, G., et al. "The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS and EURECA missions." Solar Physics 214.1 (2003): 1-22.

Wehrli, C. “Extraterrestrial Solar Spectrum,” Publication 615, Physikalisch-Metrologisches Observatorium Davos and World Radiation Center, Davos-Dorf, Switzerland, pp. 23(1985).

北京揽宇方圆雷达卫星影像insar技术地面沉降监测中应用

北京揽宇方圆信息技术有限公司 1、引言 在我国,由于人们过度的开采地下资源,引起的地面形变的问题非常突出。地表形变问题给当地的环境造成很大的破坏,直接危害着地面建筑设施和人们的生命安全。因此,对地面形变进行有效的监测可以对研究地表形变的形成机理、变化规律和控制地表变形相当重要,对国民经济的可持续发展有着十分重要的意义。目前地表形变监测的方法有:传统的大地水准测量、GPS技术、摄影测量和卫星合成孔径雷达差分干涉(DInSAR)测量。DInSAR是一项新近发展起来的空间对地观测技术,它具有测量精度高、作业范围大、不受天气条件的限制等技术优势,目前DInSAR及其拓展技术已经在火山、地震、冰川、滑坡和地表形变等研究领域得到广泛的应用。

图1-1DInSAR技术的应用领域 传统的路面沉降监测方法有很大的局限性:都必须预计出大致的沉降位置和范围,从而布置监测点;都是利用离散的观测点获得的沉降数据来建立经验模型,然后通过数值内插方法得到面状沉降;而且对于人员很难到达的区域,实测困难。因此,该方法只能反映局部少数的沉降信息,不能直观、宏观地反应整个沉降区域的沉降状况。表1-1反映了DInSAR技术相比于其他监测方法的优势 表1-1DInSAR技术与其他监测方法的对比 2、DInSAR技术原理 DInSAR是一个多重嵌套的缩写词,由雷达(Radar,Radio Detection and Ranging)、合成孔径雷达(Synthetic Aperture Radar,SAR)、合成孔径雷达干涉测量(SAR Interferometry,InSAR)、合成孔径雷达差分干涉测量(DiferfenceInSAR,DInSAR)嵌套

电梯基本参数汇总

电梯原理结构 电梯的基本结构是:一条垂直的电梯井内,放置一个上下移动的轿箱(Cab)。电梯井壁装有导轨,与轿箱上的导靴限制轿箱的移动。轿箱的支撑及升降有两种方法:曳引式、液压式。 1.电梯参数 1)电梯的用途:客梯、货梯、消防梯等 2)载重(kg):400、630、800、1000、1250、1600、2000、2500等。对于乘客电梯 常用乘客人数(一般按75kg/人)这一参数表示 3)速度(m/s):0.63、1.06、1.60、1.75、2.50、4.00m/s等 4)拖动方式:拽引式、液压式等 5)控制方式:群控、并联、单体集选等 6)轿厢尺寸(与载重、井道相关) 7)厅、轿门的型式:中分式、旁开式、直分式等,按功能分:普通门、消防门双折 门,按控制分:自动门、手动门 8)层站数:如电梯实际行程15层,有11个出入轿厢的层门,则为15层/11站 2.电梯的分类 1)按用途分:客梯、货梯、消防梯等 2)按速度分 3)按拖动方式分:直流、交流、液压、齿轮、螺杆、直线电机 4)按操纵控制方式分: 5)按有无司机分 6)按机房位置分 7)按曳引机结构分:有齿曳引电梯(有减速器)、无齿曳引电梯(没有减速器) 8)其它用途的特殊梯和自动扶梯、自动人行道 3.电梯的基本要求 1)安全可靠,方便舒适。 2)起、制动平稳,噪音低,故障率低。 3)操作方便,平层准确。 a)速度特性 ①电梯速度:当电源为额定频率和额定电压的情况下,轿厢在50%额定载荷时, 向下运行至行程中段时的速度,不得大于额定速度的105%,且不得小于额定速度 的92%。 ②加速度:起动和制动的加、减速度最大值不应大于1.5m/s2。当额定速度1.0m /s≤V≤2.0m/s时,平均加、减速度应不小于0.48m/s2;当额定速度为2.0m /s

Planet遥感卫星全球最大规模的地球影像卫星星座群-北京揽宇方圆

北京揽宇方圆信息技术有限公司 Planet 遥感卫星全球最大规模的地球影像卫星星座群-北京揽宇方圆Planet(曾命名为Planet Lab)遥感卫星群是全球最大规模的地球影像卫星星座群,由美国卫星成像初创公司Planet Labs 研制,有超过150颗在轨卫星(减去已失效的卫星),使全球对地观测进入“每日”时代,有着其他公司无法比拟每天覆盖全球一次的超高频时间分辨率。 Planet 卫星星座可以识别赈灾地点和提高全球发展中国家的农业产量。用户也可以使用这些影像资源进行全球环境保护,比如森林砍伐监测和极地冰盖变化监测。商业应用包括测图、房地产和建筑业、油气资源监测,甚至是交通堵塞监测。如果公司需要对其拥有的高价值、分布式资源进行定期监测,Planet 可以补充或替代使用直升机飞过输油管道来监测油气泄漏,因为Planet 卫星可以快速获取需要的影像。 表1.PLANETSCOPE 轨道参数 参数国际空间站轨道(32颗)太阳同步轨道(100颗) 轨道高度400km 475km 轨道倾角51.6°-98° 纬度覆盖±52°±81.5° 降交点地方时可变9:30-11:30am 回归周期可变每天 表2.PLANETSCOPE 有效载荷技术指标 参数国际空间站轨道(32颗)太阳同步轨道(100颗) 波段范围蓝波455-515nm 蓝波455-515nm 绿波500-590nm 绿波500-590nm 红波590-670nm 红波590-670nm

近红外780-860nm近红外780-860nm 地面采样距离3m 3.7m 幅宽24.6km x16.4km24.6km x16.4km 影像带最大面积(一条轨道)8100km220,000km2 影像获取能力可变 1.5亿km2/天 数据提供起始时间4224842248 北京揽宇方圆信息技术有限公司

默纳克电梯功能参数表

默纳克电梯功能参数表文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

默纳克电梯功能参数表 功能码名称设定范围缺省值单位操作 F0 组基本参数 F0-00 控制方式 0:开环矢量 1:闭环矢量 2:V/F 方式 1 -★ F0-01 命令源选择0:操作面板控制 1:距离控制1 -★ F0-02 面板运行速度0.050 ~ F0-04 0.050 m/s ☆F0-03 运行速度0.250 ~ F0-04 1.600 m/s ★ F0-04 额定速度0.250 ~ 4.000 1.600 m/s ★ F0-05 额定载重300 ~ 9999 1000 kg ★ F0-06 最大频率20.00 ~ 99.00 50.00 Hz ★ F0-07 载波频率0.5 ~ 16.0 6.0 kHz ★ F1 组电机参数 F1-00 编码器类型选择 0:SIN/COS、绝对值型编码器 1:UVW 型编码器 2:ABZ 型编码器 0 -★

F1-01 额定功率0.7 ~ 75.0 机型确定kW ★ F1-02 额定电压0 ~ 600 机型确定V ★ F1-03 额定电流0.00 ~ 655.00 机型确定A ★ F1-04 额定频率0.00 ~ 99.00 机型确定Hz ★ F1-05 额定转速0 ~ 3000 机型确定rpm ★ F1-06 同步机初始角度0.0 ~ 359.9 0 度★ F1-07 同步机断电角度0.0 ~ 359.9 0 度★ F1-08 同步机接线方式0 ~ 15 0 -★ F1-09 同步机电流滤波系数0 ~ 3 0 -★ F1-10 编码器校验选择0 ~ 65535 0 -★ F1-11 带载、空载调谐、井道 自学习 0:无操作 1:带负载调谐 2:无负载调谐 3:井道自学习 0 -★ F1-12 编码器脉冲数0 ~ 10000 2048 PPR ★ F1-13 断线检测时间0 ~ 10.0 1.0 s ★ F1-14 异步机定子电阻0.000 ~ 30.000 机型确定Ω★F1-15 异步机转子电阻0.000 ~ 30.000 机型确定Ω★

四颗worldview卫星影像介绍

北京揽宇方圆信息技术有限公司 WorldView WorldView卫星是Digitalglobe公司的商业成像卫星系统。它由两颗(WorldView-I和WorldView-II)卫星组成。 WorldView-1 WorldView-1卫星为美国DigitalGlobe公司的高分辨率商用卫星,于2007年9月18日成功发射,可提供0.5m分辨率卫星影像。灵活的镜头使其能够快速定位目标和高效的进行立体采集。 WorldView-1卫星基本参数 发射日期2007年9月18日 运行时间超过7年(燃料超过10年以上) 轨道形式太阳同步卫星 轨道高度496公里 飞行周期94.6分钟 影像幅宽17.6公里 重访周期 1.7天(优于1m分辨率) 4.6天(0.5-0.59m分辨率) 空间分辨率全色影像: 0.5m(星下点拍摄) 辐射分辨率11bit 全色波谱范围450-900nm 定位精度设计6.5m,实测4.0-5.5m (无控制点状态) 采集能力75万平方公里 WorldView-2 WorldView-2卫星于2009年秋成功发射,是全球第一颗具有8个多光谱波段的商业高分卫星,运行在770km高的太阳同步轨道上,能够提供0.5米全色影像和1.8米分辨率的多光谱影像 WorldView-2卫星基本参数 发射日期2009年10月8日 运行时间10-12年 轨道形式太阳同步卫星 轨道高度770公里 飞行周期100分钟 影像幅宽16.4公里 重访周期 1.1天(优于1m分辨率) 3.7天(以0.52m分辨率成像时) 空间分辨率全色影像: 0.46m(星下点拍摄) 多光谱影像: 1.85m(星下点拍摄) 辐射分辨率11bit 全色波谱范围全色 多光谱波谱范围蓝:450-510nm

遥感卫星影像数据产品类型有哪些@北京揽宇方圆

北京揽宇方圆信息技术有限公司 北京揽宇方圆具有一支国内领先的遥感应用科研队伍,可根据用户的实际需求,开展航天、航空对地观测数据加工、数据专题应用等服务,用户可以向我中心的数据服务部进行咨询与洽商,具体操作过程见深加工数据订购流程。 遥感影像地图产品 遥感图像是某一时间对地表状况的客观记录。出于对资源、环境等现势性快速了解的需求,应用时间性强的遥感数据资料制作影像地图,在通常情况下已成为解决传统制图周期长等问题的首选方法。通过选择合适的航天、航空对地观测数据源,采用的合理波段组合和有效的信息增强技术,可以得到信息丰富,直观易读的影像。对于政府部门、企事业单位等了解区域地貌类型、资源状况、城市分布以及指导规划等都有很大的帮助。根据经费状况和应用目的不同,用户可以对遥感数据影像图的形式作选择,包括:一般遥感影像图,行政区划遥感影像图,立体影像图,批量的印刷型遥感影像图等。 按地形图标准分幅的影像产品

与上述的遥感数据影像图的主要区别在于这类产品完全按国家标准地形图图幅号进行图像裁切,形成1:2.5万-1:100万系列遥感影像产品,它们拥有与标准地形图一致的坐标系统和地理网格注记,便于比对和野外定位。精度高是其重要特点之一,表现在几何定位上的准确性、辐射水平的连续性和信息的可判读性。我中心特有的高水准预处理级几何精校正技术、几何精校正或正射校正技术、数字镶嵌技术和多源数据融合技术则从技术上保证了这类遥感数据产品的精度要求。目前,通过对数据的深加工处理,按标准地形图分幅的遥感数据影像图产品已受到众多用户的青睐,服务于野外调绘和地形图的更新等方面。 遥感数据融合产品 由于航天、航空对地观测的传感器种类越来越多,多种光谱与几何分辨率、多时相遥感数据源的接收、应用以及对高质量遥感数据的需求是促使各种遥感数据融合技术的出现与发展的直接动力。为了在有限的投资内获得不同遥感数据源的信息优势,以增强对目标物的检测与识别能力,提高遥感数据应用的精度和效率,我中心向用户提供航天、航空数据融合产品,能够针对不同的遥感数据源、不同地物特征和应用目的采用不同的融合方法;或强调信息保持,保证图像判读和统计上的一致性;或突出光谱变异以取变化信息。 专题信息产品 1.土地资源调查 充分利用遥感地球所的航天、航空数据源以及信息处理与应用的技术优势,结合政府部门对土地管理的需求,提供土地利用分类、基本农田、城市建设用地、土地开垦、土地沙漠化、退耕还林还草等方面的动态监测专题图件。 2.生态环境监测

电梯参数及配置

一、电梯基本参数 1、总体要求:设备、安装调试及经政府有关部门验收合格 二、电梯应符合的技术标准: 1、 GB—7588—2003《电梯制造与安装安全规范》 2、 GB/T—10058—1997《电梯技术条件》 3、 GB/T—10059—1997《电梯试验方法》 4、 GB—10060—1993《电梯安装验收规范》 5、 GB/T—7025.1~7025.3—1997《电梯主要参数轿厢、井道、机房的型式尺寸》 6、《高层民用建筑设计防火规范》GB50045-95; 7、《电气装置安装工程电梯电气装置施工及验收规范》GB500182-93;电梯安装工程施工质量验收规范GB50310-2202; 8、其它国家、部、省市现行规范及规定。 三、技术性能指标要求: 1、开门方式:双扇中分自动门 2、微机控制:32位CPU 3、控制系统:投标人应说明系统型号、产地、制造商、CPU数位。 4、拖动系统:全数字矢量变频变压(VVVF)拖动方式。投标人应说明变频器产地、制造厂商、CPU数位。 5、门机系统:VVVF变频无连杆门机系统,投标人应说明门机驱动系统、变频器的产地、制造厂商、CPU位数。 6、曳引机:投标人应说明曳引机形式、产地、制造厂商。 7、电梯机房及曳引机位置:有机房,曳引机安装在井道上方机房内。 8、轿厢装潢及设施:发纹不锈钢轿厢、嵌入式照明、通风装置、应急照明装置。 9、轿厢操纵盘:不锈钢、微动按钮、数字点阵式楼层指示、对讲系统、指示灯和到站钟及其它必备设施。 10、控制按钮及信号装置要求: (1)控制按钮为触摸式;

(2)轿厢信号装置:采用数字点阵式楼层指示器和动态运行方向指示器,隐蔽型对讲。 (3)层门信号装置:设有数字点阵式楼层指示器与动态运行方向指示器。其面板为发纹不锈钢。 11、门套、层门:发纹不锈钢小门套,发纹不锈钢层门; 12、主要元器件:投标人应列出主要元器件的配置、规格及生产厂家。 13、电梯应有维修安全措施。确保维修人员安全,防止乘客因误入维修电梯而发生的各种危险和伤害。 四、功能要求: 1. 电梯的功能配置 除满足各厂家的标准配置外,必须具备以下功能 1.1 安全功能 (1)停电时应急灯设置、自动靠站功能。 (2)故障时自动靠站,满员时自动通过。 (3)消防运行及火灾管制功能,万一发生火灾,拨动消防开关,轿厢选层指令消除,电梯直驶基站楼层。 (4)首层设有供消防队员专用的操作按钮。 1.2 服务功能 (1)集选全自动方式,大画面文字显示,高清晰操纵盘面 (2)对讲机通话 (3)换气扇及照明自动关断功能 (4)超载显示、报警 (5)故障自诊断和记忆功能 (6)轿厢内紧急呼叫按纽 (7)异常时梯门自动反复开关功能 (8)反向运转时取消轿内呼梯功能 (9)开门时间自动设定功能 (10)错误呼叫取消功能 (11)五方通话功能 (12)摄像监控功能 (13)ITV电缆

历史卫星影像图购买选择-1960年至今

购买卫星影像-选择北京揽宇方圆北京揽宇方圆信息技术有限公司,随着遥感卫星技术的普及与开放,各种遥感影像在城市和区域研究中得到了越来越广泛的应用。北京揽宇方圆国家遥感行业的高新技术企业,帮助我们低成本获取高质量卫星影像图提供了一条捷径。 选择卫星数据源 一、卫星类型 (1)光学卫星:worldview1、worldview2、worldview3、worldview4、quickbird、geoeye、ikonos、pleiades、deimos、spot1、kompsat系例、spot2、spot3、spot4、spot5、spot6、spot7、landsat5(tm)、Sentinel-卫星、landsat(etm)、rapideye、alos、kompsat系例卫星、planet卫星、北京二号、高景一号、资源三号、高分一号、高分二号、高分六号、环境卫星。 (2)雷达卫星:terrasar-x、radarsat-2、alos雷达卫星、高分三号卫星、哨兵卫星 (3)侦查卫星:美国锁眼卫星全系例(1960-1980) (4)高光谱类卫星:高分五号、环境小卫星、ASTER卫星、EO-1卫星 二、卫星分辨率 (1)0.3米:worldview3、worldview4 (2)0.4米:worldview3、worldview2、geoeye、kompsat-3A

(3)0.5米:worldview3、worldview2、geoeye、worldview1、pleiades、高景一号 (4)0.6米:quickbird、锁眼卫星 (5)1米:ikonos、高分二号、kompsat、deimos、北京二号 (6)1.5米:spot6、spot7、锁眼卫星 (7)2.5米:spot5、alos、资源三号、高分一号(4颗)、高分六号、锁眼卫星 (8)5米:spot5、rapideye、锁眼卫星、planet卫星4米 (9)10米:spot5、spot4、spot3、spot2、spot1、Sentinel-卫星 (10)15米:landsat5(tm)、landsat(etm)、landsat8、高分一号16米 三、卫星国籍 (1)美国:worldview1、worldview2、worldview3、quickbird、geoeye、ikonos、landsat5(tm)、landsat(etm)、锁眼卫星、planet卫星 (2)法国:pleiades、spot1、spot2、spot3、spot4、spot5、spot6 (3)中国:资源三号、高分一号、高分二号、高分六号、高景卫星、北京二号等 (4)德国:terrasar-x、rapideye (5)加拿大:radarsat-2 四、卫星发射年份 (1)1960-1980年:锁眼卫星(0.6米分辨率至10米) (2)1980-1990年:landsat5(tm)、spot1

worldview3辐射定标的使用方法

Radiometric Use of WorldView-3 Imagery Technical Note Date: 2016-02-22 Prepared by: Michele Kuester This technical note discusses the radiometric use of WorldView-3 imagery. The first two sections briefly describe the WorldView-3 instrument and general radiometric performance including the WorldView-3 relative spectral radiance response and relative radiometric correction of WorldView-3 products. Section 3 covers conversion to top-of-atmosphere spectral radiance and conversion to top-of-atmosphere spectral reflectance. WorldView-3 imagery MUST be converted to spectral radiance at a minimum before radiometric/spectral analysis or comparison with imagery from other sensors in a radiometric/spectral manner. The information contained in this technical note applies to the raw WorldView-3 sensor performance and linearly scaled top-of-atmosphere spectral radiance products. Caution is advised when applying the equations provided here to pan-sharpened products, dynamic range adjusted (DRA) products, or WorldView-3 mosaics with radiometric balancing because the generation of these products may apply non-linear transformations to the pixel DN values. 1 WorldView-3 Instrument The WorldView-3 high-resolution commercial imaging satellite was launched on August 13, 2014, from Vandenberg Air Force Base. The satellite is in a nearly circular, sun-synchronous orbit with a period of 97 minutes, an altitude of approximately 617 km, and with a descending nodal crossing time of approximately 10:30 a.m. The revisit is 4.5 days at a greater than 20-deg off nadir angle. WorldView-3 acquires 11-bit data in 9 spectral bands covering panchromatic, coastal, blue, green, yellow, red, red edge, NIR1, and NIR2. An additional shortwave infrared (SWIR) sensor acquires 14-bit data in eight bands covering the 1100 to 2500 nm spectral region. See Table 1 for details. At nadir, the collected nominal ground sample distance is 0.31 m (panchromatic), 1.24 m (multispectral) and 3.7 m (SWIR). Commercially available products are resampled to 0.3 m (panchromatic), 1.2 m (multispectral) and 7.5 m (SWIR). The nominal swath width is 13.1 km (slightly less for the SWIR sensor). The WorldView-3 instrument is a pushbroom imager, which constructs an image one row at a time as the focused image of the Earth through the telescope moves across the linear detector arrays, which are located on the focal plane. 1.1 WorldView-3 Relative Radiance Response The spectral radiance response is defined as the ratio of the number of photo-electrons measured by the instrument system, to the spectral radiance [W-m-2-sr-1- m-1] at a particular wavelength present at the entrance to the telescope aperture. It includes not only raw detector quantum efficiency, but also transmission losses due to the telescope optics and filters. The spectral radiance response for each band is normalized by dividing by the maximum response value for that band to arrive at a relative spectral radiance response. The curves for theWorldView-3 visible and near infrared multispectral bands are shown in Figure 1. The curves for the WorldView-3 SWIR bands are shown in Figure 2. The corresponding data are provided in Attachement A.

高分一号卫星影像数据免费查询单位

北京揽宇方圆信息技术有限公司 高分一号卫星影像数据免费查询单位高分一号 高分一号卫星是中国高分辨率对地观测系统的第一颗卫星,于2013年4月26日成功发射。“高分一号”的全色分辨率是2米,多光谱分辨率为8米。它的特点是增加了高分辨率多光谱相机,该相机的性能在国内投入运行的对地观测卫星中最强。此外,“高分一号”的宽幅多光谱相机幅宽达到了800公里,重访周期只有4天,“高分一号”实现了高空间分辨率和高时间分辨率的完美结合。它为国土资源部门、农业部门、环境保护部门提供高精度、宽范围的空间观测服务,在地理测绘、海洋和气候气象观测、水利和林业资源监测、城市和交通精细化管理,疫情评估与公共卫生应急、地球系统科学研究等领域发挥重要作用。 高分一号卫星参数 项目 技术性能轨道 轨道类型 太阳同步圆轨道平均轨道高度 644.5km 降交点地方时 10:30AM 回归周期 41天重访、覆盖特性重访:侧摆条件下,2/8m 相机4天 覆盖:16m 相机4天,2/8m 相机41 天 卫星重量 总重量1060kg 卫星尺寸发射状态最大包络 Φ2650mm×2000mm 在轨太阳翼展开后的跨度 7930mm 高分成像谱段/μm 全色:0.45~0.90 B1:0.45~0.52,B2:0.52~0.59 B3:0.63~0.69,B4:0.77~0.89 星下点地面像元分辨率 全色优于2m,多光谱优于8m 地面幅宽 >60km 宽幅成像 谱段/μm B1:0.45~0.52;B2:0.52~0.59; B3:0.63~0.69;B4:0.77~0.89 星下点地面像元分辨率 优于16m 地面幅宽 >800km 姿态控制控制方式 三轴稳定,对地定向

电梯的基本知识—电梯的种类和主要参数

电梯的基本知识—电梯的种类和主要参数 作为电梯的选用者,首先要搞清所需电梯的种类和主要参数以及性能指标等 学习和掌握电梯的基本知识。 31 电梯的种类和主参数 电梯的种类指梯种、控制类型、控制方式、拖动方式、门的形式、机房形式等。 电梯的主参数指额定载重量、额定速度。 根据电梯的种类和主参数,可确定一台电梯的基本要求。 1.电梯的梯种 电梯的种类指技用途来分的电梯种类。如乘客电梯、载货电梯、病床电梯、客货电梯 自动扶梯等。 在选购电梯时,对电檬种类的概念应十分清楚。以载客为主又有载货功能的电梯,应 确定为客货两用梯,而不是也能载人的载货电梯。在公交场所使用的扶梯,应明确为公共 交通型自动扶梯。 2.额定载重和理论运输能力 (1)额定载重。额定载重是电梯的主参数,指设计规定的电梯载重量。通常可分为 100k8、200k8、320kg、400k8、630kB、800k8、1000kg、1250k8、1朗0k8、2000k8、2500kg、 3000k8、5000kB等不同的等级。其中: 杂物电梯限重在200kg以下; 客梯的重量系列为:630kR、800kB、1000kg、1250kg、1600k8; 住宅梯的重量系列为:320ks、400kg、630k8、1000k8; 病床电梯的重量系列为:1600k8、2000kg、2500kg; 载货电梯的重量系列为:630k8、1删kg、1600kg、3000k8、50凹kB。 (2)理论运输能力。是自动扶梯和自动人行道的主参数,指每小时理论运输的人数。 门的种类以门的开合方式来分。 (1)中分式门。门扇对中分开、开合效率高,常用于客梯和客货梯: (2)旁开式门。全部门扇向一边开合,门的开度大,常用于货梯和病床梯o (3)直分式门。不占用轿厢空间,使电梯获得等于轿厢内宽的最大开门宽度 吨位货梯和杂物梯。 7.机房形式 (1)普通机房电梯:机房位厂并道上方,面积至少为井道截砌积的2倍。 建筑物对机房无特别要求时成采用。 (2)小机房电梯。机房位于井道上力,建筑物希望机房小一些时采用。 (3)无机房电梯。在建筑物不能建机房时采用。

高景一号卫星影像购买价格高景一号卫星查询高景一号卫星购买流程

北京揽宇方圆信息技术有限公司 我国首颗0.5米级商业遥感卫星——高景一号(Superview-01)已经进驻太原卫星发射场。该卫星是中国航天科技集团公司商业遥感卫星系统“16+4+4+X”的首发星,由2颗分辨率为0.5米的光学小卫星组成,也是当前我国分辨率最高的商业遥感卫星。 卫星承载一台高性能光学相机,全色分辨率达到0.5米,多光谱分辨率为2米,幅宽12公里,图像质量指标与国际先进Pleiades-1等商业遥感卫星水平相当。 除了优秀的成像质量,高景一号还具有其特有的多模式成像特性,可为不同需求用户提供丰富的图像产品。它有哪些典型的成像模式呢?让我们大家来一睹为快。 (1)多条带拼接成像模式 多条带拼接成像模式是卫星根据成像指令,利用俯仰和滚动方向姿态机动进行若干次准平行且图像间有一定搭接的成像。该模式主要是满足大幅宽用户需求,可在一轨内完成对一个大型城市成像。 大家在用相机拍照时,都会有这样一个感受,想把目标的局部细节照清楚,就得缩小拍照的面积。在遥感卫星上,也是同样的道理,分辨率和幅宽存在着一定的矛盾。多条带拼接成像模式就很好地解决了这个问题。 利用高景一号的敏捷能力,可实现最多5条带拼接成像,成像区域60km×70km,实现了高分辨率和大幅宽的双优势。多条带拼接成像模式见下图。

图1多条带拼接成像模式 (2)多目标成像模式 多目标成像模式是卫星按照成像指令要求,在卫星姿态机动可覆盖范围内对所需要的目标进行成像,成像条带长度可根据需要进行设置。设计该模式的目的是:可提高卫星快速响应能力,应对各种突发事件和紧急任务需求;同时,也可为小区域成像用户特定需求提供服务。 不具备敏捷特性的卫星,在遇到多目标成像任务时,往往需要多轨才能完成。通俗一点说,卫星每次只能完成少数目标的成像任务,其他任务只能等到卫星再次飞行经过该目标才能进行。 得益于敏捷特性,高景一号可以对单个目标范围12km-24km(距离)×500km(方位),一轨内实现任意地区8个目标的成像。多目标成像模式如图2。 图2多目标成像模式 (3)立体成像模式 立体成像模式是卫星根据成像指令,对可成像范围内指定长度的区域,利用俯仰和滚动方向姿态机动从不同的角度进行3次重复地面轨迹成像,形成立体图像。该模式设计目的是满足立体成像和测绘制图用户需求。 顾名思义,立体成像就是可以通过多角度成像,得到目标的三维特性。高景一号利用卫星敏捷能力可以实现同场景的3视观测,成像区域12-24km×120km。立体成像模式如图3。 图3立体成像模式 (4)连续条带成像模式 该成像模式主要是在完成用户对特定区域的成像任务后,积累全球范围的图像数据。成像过程中,卫星侧摆不同角度成像(0-±45°),单轨成像区域12km-24km×4200km。

默纳克电梯功能参数表

默纳克电梯功能参数表 功能码名称设定范围缺省值单位操作 F0 组基本参数 F0-00 控制方式 0:开环矢量 1:闭环矢量 2:V/F 方式 1 -★ F0-01 命令源选择0:操作面板控制 1:距离控制1 -★ F0-02 面板运行速度0.050 ~ F0-04 0.050 m/s ☆ F0-03 运行速度0.250 ~ F0-04 1.600 m/s ★ F0-04 额定速度0.250 ~ 4.000 1.600 m/s ★ F0-05 额定载重300 ~ 9999 1000 kg ★ F0-06 最大频率20.00 ~ 99.00 50.00 Hz ★ F0-07 载波频率0.5 ~ 16.0 6.0 kHz ★ F1 组电机参数 F1-00 编码器类型选择 0:SIN/COS、绝对值型编码器 1:UVW 型编码器 2:ABZ 型编码器 0 -★ F1-01 额定功率0.7 ~ 75.0 机型确定kW ★ F1-02 额定电压0 ~ 600 机型确定V ★ F1-03 额定电流0.00 ~ 655.00 机型确定A ★ F1-04 额定频率0.00 ~ 99.00 机型确定Hz ★ F1-05 额定转速0 ~ 3000 机型确定rpm ★ F1-06 同步机初始角度0.0 ~ 359.9 0 度★ F1-07 同步机断电角度0.0 ~ 359.9 0 度★ F1-08 同步机接线方式0 ~ 15 0 -★ F1-09 同步机电流滤波系数0 ~ 3 0 -★ F1-10 编码器校验选择0 ~ 65535 0 -★ F1-11 带载、空载调谐、井道 自学习 0:无操作 1:带负载调谐 2:无负载调谐 3:井道自学习 0 -★ F1-12 编码器脉冲数0 ~ 10000 2048 PPR ★ F1-13 断线检测时间0 ~ 10.0 1.0 s ★ F1-14 异步机定子电阻0.000 ~ 30.000 机型确定Ω★

IKONOS卫星 遥感影像解译数据 的 波段简介

IKONOS卫星遥感影像解译数据的波段 IKONOS卫星影像

IKONOS卫星简介 IKONOS为美国DigitalGlobe公司的高分辨率遥感卫星,于1999年09月24日发射,其影像分辨率达0.82米,为全球首颗提供1米以下分辨率的商用光学卫星,揭开了高分辨率卫星影像的时代。 IKONOS卫星基本参数 卫星遥感数据分类: 一、卫星分辨率 1.0.3米:worldview3、worldview4 2.0.4米:worldview3、worldview2、geoeye、kompsat-3A

3.0.5米:worldview3、worldview2、geoeye、worldview1、pleiades、高景一号 4.0.6米:quickbird、锁眼卫星 5.1米:ikonos、高分二号、kompsat、deimos、北京二号 6.1.5米:spot6、spot7、锁眼卫星 7.2.5米:spot5、alos、资源三号、高分一号(4颗)、高分六号、锁眼卫星 8.5米:spot5、rapideye、锁眼卫星、planet卫星4米 9.10米:spot5、spot4、spot3、spot2、spot1、Sentinel-卫星 10.15米:landsat5(tm)、landsat(etm)、landsat8、高分一号16米 二、卫星类型 1.光学卫星:spot2、spot3、spot4、spot5、spot6、spot7、worldview1、worldview2、worldview3、worldview4、quickbird、geoeye、ikonos、pleiades、deimos、spot1、kompsat系例、landsat5(tm)、Sentinel-卫星、landsat(etm)、rapideye、alos、kompsat系例卫星、planet卫星、高分一号、高分二号、高分六号、北京二号、高景一号、资源三号、环境卫星。 2.雷达卫星:terrasar-x、radarsat-2、alos雷达卫星、高分三号卫星、哨兵卫星 3.侦查卫星:美国锁眼卫星全系例(1960-1980) 4.高光谱类卫星:高分五号、环境小卫星、ASTER卫星、EO-1卫星 三、卫星国籍 1.美国:worldview1、worldview2、worldview3、quickbird、geoeye、ikonos、landsat5(tm)、landsat(etm)、锁眼卫星、planet卫星 2.法国:pleiades、spot1、spot2、spot3、spot4、spot5、spot6 3.中国:高分一号、高分二号、高分六号、高景卫星、北京二号、资源三号等 4.德国:terrasar-x、rapideye 5.加拿大:radarsat-2 四、卫星发射年份 1.1960-1980年:锁眼卫星(0.6米分辨率至10米) 2.1980-1990年:landsat5(tm)、spot1 3.1990-2000年:spot2、spot3、spot4、landsat(etm)、ikonos 4.2000-2010年:quickbird、worldview1、worldview2、spot5、rapideye、radarsat-2、alos 5.2010-至今:高分一号、高分二号、高分三、高分四、高分五、高分六号、高分七、spot6、spot7、资源三号、worldview3、worldview4、pleiades、高景卫星、planet卫星

0.3米分辨率卫星影像-worldview3卫星销售@北京揽宇

北京揽宇方圆信息技术有限公司 2015年2月25日,美国数字全球(DigitalGlobe)公司在其官网正式宣布“开始向所有用户销售0.3m分辨率卫星观测图像”,并认为“在全球应用市场,更高分辨率的卫星图像如今已成为航空图像的高竞争力替代产品”。这是迄今全球商业卫星遥感公司能够提供的最高分辨率数据产品,将成为商业对地观测领域的里程碑事件。 2014年,全球商业对地观测领域保持蓬勃发展态势,各国纷纷发布或修订新版航天政策法规,大量创新卫星系统相继成功部署。其中,美国放宽商业销售数据分辨率限制以及世界观测-3(WorldView-3)卫星发射入轨尤为引人注目。此前,美国政府禁止商业遥感卫星运营商向美国政府以外的用户销售优于0.5m分辨率的卫星图像数据,这一施行多年的政策早已饱受业界诟病。在DigitalGlobe公司不断争取以及美国政府情报、安全和商务部门的持续磋商下,2014年6月,美国政府最终决定放宽商业销售图像分辨率限制,允许商业公司销售最高0.25m 分辨率的天基对地观测图像。同年8月13日,DigitalGlobe公司成功发射了WorldView-3卫星,全色分辨率高达0.31m,多光谱分辨率高达1.24m。WorldView-3卫星成功发射,使得DigitalGlobe公司在美国新数据政策支持下更具全球竞争力。 WorldView-3是全球分辨率最高的商业光学遥感成像卫星,其分辨率是DigitalGlobe公司竞争对手的5倍。图1是DigitalGlobe公司WorldView-3卫星与该公司运营的WorldView-2卫星拍摄的同一地区的卫星图像对比图,图2是DigitalGlobe公司WorldView-3卫星与其竞争对手卫星拍摄的同一地区的卫星图像对比图。从这两幅图片不难看出,WorldView-3卫星在成像分辨率、图像信噪比、纹理清晰度等方面具有明显优势。DigitalGlobe公司0.3m分辨率卫星图像对应的美国国家图像解析度分级标准(NIIRS)是5.7级,能够识别出地面井盖、建筑物通风孔、消防栓等物体。这一分辨率等级的图像能提供更清晰、更丰富的数据信息,有助于支撑改进决策,提高运营效率,增强政府民用、防务情报、能源以及研发等部门的天基对地观测应用能力。如图3所示,WorldView-3卫星拍摄的新西兰奥克兰市港口图像,其中港口停车场的地面停车位标志线清晰可见。此外,WorldView-3卫星还具备独一无二的短波红外(SWIR)成像能力,能够透视烟尘雾霾、识别矿物和人造物以及评估农作物健康状况。 图1WorldView-3和WorldView-2卫星拍摄的同一地区图像对比

天绘一号卫星影像数据

天绘一号卫星影像数据 天绘一号是中国第一代传输型立体测绘卫星主要用于科学研究国土资源普查地图测绘等领域的科学试验任务,由航天东方红卫星有限公司研制,采用了CAST 2000卫星平台,一体化集成了三线阵CCD相机、2米高分辨率全色相机和多光谱相机等3类5个相机载荷,是当时中国有效载荷比最高的高分辨率遥感卫星。天绘一号实现了中国测绘卫星从返回式胶片型到CCD传输型的跨越式发展,在中国首次实现了影像数据经过地面系统处理,无地面控制点条件下与美国SRTM相对精度12m/6m(平面/高程1σ)同等的技术水平。 天绘一号还形成了中国第一个完全自主产权和国产化的集数据接收、运控管理、产品生产和应用服务为一体的地面应用系统。 截止2014年已经成功发射天绘一号01星、天绘一号02星,两颗卫星在轨组网运行稳定,对地球陆地有效覆盖59.35%,约8843.2万平方公里,对中国陆地有效覆盖97.2%,约933.3万平方公里,已具备规模化数据保障能力。 产品介绍 1A级:原始数据经过相对辐射校正后得到的卫星影像产品,包括影像数据、元数据和浏览图。 2级:1A级数据产品利用系统参数经过几何校正后得到的卫星影像产品,包括影像数据、元数据和浏览图。 1B级:1A级数据产品经过摄影测量处理后得到的卫星影像产品,包括影像数据、元数据、RPC参数和浏览图。 3A级:1A级数据产品利用系统参数和地面控制点经过几何校正后得到的卫星影像产品,包括影像数据、元数据和浏览图。 正射影像(DOM):1B级数据产品经过摄影测量纠正处理形成的卫星影像产品,包括影像数据、元数据和浏览图。 数字高程模型(DEM):1B级三线阵数据产品经过摄影测量匹配与编辑处理形成的描述地球表面起伏的格网数据产品,包括栅格数据、元数据和浏览图。

Sentinel-5P卫星影像-北京揽宇方圆

Sentinel-5P卫星影像-北京揽宇方圆 Sentinel-5P卫星是欧洲GMES(环境与安全全球监视)项目的预先运行低轨卫星任务。该任务由ESA和NSO(荷兰空间办公室)共同努力下促成。用于填补现有的大气监测监视载荷(包括ESA卫星Envisat上的SCIAMACHY和NASA卫星Aura上的OMI)与未来先进载荷(指ESA的卫星Sentinel-5)之间的空档期。Sentinel-5计划于2020年发射,而Envisat任务终结于2012年。 Sentinel-5P(低轨)、Sentinel-4(地球静止轨道)、和Sentinel-5(低轨)三个任务将用于GMES计划大气层服务,主要执行大气成分监测任务。Sentinel-5P任务的目标是在2015~2020年之间提供大气成分监测数据。随后

的继任者是Sentinel-5,计划于2020年发射。 Sentinel-5P与其他相关卫星的时间衔接关系 卫星情况: Sentinel-4和-5卫星任务和之前的任务(Sentinel-1,Sentinel-2和Sentinel-3)并不相像,它们作为从事气象卫星的“宿主”,用于监视大气成分,为哥白尼大气服务项目工作。该任务只有单独一台载荷设备TROPOMI,这是一款推扫型,四通道超光谱成像仪,覆盖了从紫外线到短波红外谱段。2011年12月8日,ESA与Astrium公司签署合同,Astrium公司作为Sentinel-5P卫星的主承包商。 Sentinel-5P卫星采用Astrium公司的AstroBus-L250M卫星平台,该平台继承自西班牙的SEOSat/Ingenio任务,在ESA的控制下发展起来,曾用于SPOT-6和-7卫星项目上,这是两颗商业成像卫星任务。该平台还曾用于出口

相关文档
最新文档