绝对值的三角不等式典型例题

绝对值的三角不等式典型例题
绝对值的三角不等式典型例题

1.4绝对值三角不等式

☆教学目标:1.理解绝对值的定义,理解不等式基本性质的推导过程;

2.掌握定理1的两种证明思路及其几何意义;

3.理解绝对值三角不等式;

4. ☆教学重点:定理1的证明及几何意义。 ☆教学难点:换元思想的渗透。 ☆教学过程: 一、引入:

证明一个含有绝对值的不等式成立,除了要应用一般不等式的基本性质之外,经常还要用到关于绝对值的和、差、积、商的性质:

(1)b a b a +≥+ (2)b a b a +≤- (3)b a b a ?=? (4)

)0(≠=b b

a b a

请同学们思考一下,是否可以用绝对值的几何意义说明上述性质存在的道理?

实际上,性质b a b a ?=?和

)0(≠=b b

a b a 可以从正负数和零的乘法、除法

法则直接推出;而绝对值的差的性质可以利用和的性质导出。因此,只要能够证明b a b a +≥+对于任意实数都成立即可。我们将在下面的例题中研究它的证明。

现在请同学们讨论一个问题:设a 为实数,a 和a 哪个大?

显然a a ≥,当且仅当0≥a 时等号成立(即在0≥a 时,等号成立。在0

含有绝对值的不等式的证明中,常常利用a a +≥、a a -≥及绝对值的和的性质。

二、典型例题:

例1、证明 (1)b a b a +≥+, (2)b a b a -≥+。 证明(1)如果,0≥+b a 那么.b a b a +=+所以.b a b a b a +=+≥+

,

0<+b a 那么

).

(b a b a +-=+所以

b a b a b a b a +=+-=-+-≥+)()(

(2)根据(1)的结果,有b b a b b a -+≥-++,就是,a b b a ≥++。 所以,b a b a -≥+。 例2、证明 b a b a b a +≤-≤-。 例3、证明 c b c a b a -+-≤-。

思考:如何利用数轴给出例3的几何解释? (设A ,B ,C 为数轴上的3个点,分别表示数a ,b ,c ,则线段.CB AC AB +≤当且仅当C 在A ,B 之间时,等号成立。这就是上面的例3。特别的,取c =0(即C 为原点),就得到例2的后半部分。)

探究:试利用绝对值的几何意义,给出不等式b a b a +≥+的几何解释? 定理1 如果,a b R ∈, 那么b a b a +≥+.

在上面不等式中,用向量,a b

分别替换实数,a b ,

则当,a b

不共线时, 由向量加法三角形法则:

向量,a b ,a b +

构成三角形, 因此有|a+b |<|a |+|b |

其几何意义是什么?

含有绝对值的不等式常常相加减,得到较为复杂的不等式,这就需要利用例1,例2和例3的结果来证明。

例4、已知 2

,2

c b y c a x <

-<

-,求证 .)()(c b a y x <+-+

证明 )()()()(b y a x b a y x -+-=+-+ b y a x -+-≤ (1)

2,2

c b y c a x <

-<

- ,

∴c c c b y a x =+

<

-+-2

2 (2)

由(1),(2)得:c b a y x <+-+)()(

例5、已知.6,4a

y a

x <<

求证:a y x <-32。

证明 6,4a y a x << ,∴2

3,22a

y a x <<,

由例1及上式,a a a y x y x =+

<

+≤-2

2

3232。

注意: 在推理比较简单时,我们常常将几个不等式连在一起写。但这种写

法,只能用于不等号方向相同的不等式。 四、巩固性练习:

1、已知.2,2c b B c a A <-<-求证:c b a B A <---)()(。

2、已知.6

,4

c b y c a x <

-<

-求证:c b a y x <+--3232。

作业:习题1.2 2、3、5

1.4绝对值三角不等式学案

☆预习目标: 1.理解绝对值的定义,理解不等式基本性质的推导过程;

2.了解定理1的两种证明思路及其几何意义;

3.理解绝对值三角不等式。 ☆预习内容:

1.绝对值的定义:a R ?∈,||a ?

?

=???

2. 绝对值的几何意义:

10. 实数a 的绝对值||a ,表示数轴上坐标为a 的点A

20. ?两个实数,a b ,它们在数轴上对应的点分别为,A B ,

那么||a b -的几何意义是 3.定理1的内容是什么?其证法有几种?

4.若实数,a b 分别换成向量,a b

定理1还成立吗?

5、定理2是怎么利用定理1证明的? ☆探究学习:

1、绝对值的定义的应用

例1 设函数()14f x x x =+--.

()1解不等式()2f x >;()2求函数()y f x =的最值.

2. 绝对值三角不等式:探究||a ,||b ,||a b -之间的关系. ①0a b ?>时,如下图, 容易得:||||||a b a b ++.

②0a b ?<时,如图, 容易得:||||||a b a b ++.

③0a b ?=时,显然有:||||||a b a b ++.

综上,得

定理 1 如果,a b R ∈, 那么||||||a b a b ++. 当且仅当 时, 等号成

立.

在上面不等式中,用向量,a b

分别替换实数,a b , 则当,a b 不共线时, 由向量加法三角形法则: 向量,a b

,a b +

构成三角形, 因此有||

||||a b a b ++

它的几何意义就是:

定理1的证明:

定理 2 如果,,a b c R ∈, 那么||||||

a c a

b b

c --+-. 当且仅当 时, 等号成

立.

3、定理应用

例2 (1),a b R ∈证明b a b a -≥+, (2)已知

2

,2

c b y c a x <

-<

-,求证 .)()(c b a y x <+-+。

☆课后练习 :

1.当1≤++∈b

a b a R b a 时,不等式

、 成立的充要条件是

A .ab ≠0

B .a b 220+≠

C .ab <0

D .ab >0

2.对任意实数x ,|1||2|x x a ++->恒成立,则a 的取值范围是 ;

3.对任意实数x ,|1||3|x x a

--+<恒成立,则a 的取值范围是

4.若关于x 的不等式|4||3|x x a -++<的解集不是空集,则a

的取值范围是

.5方程

2

23x x x

++2

23x x x

++=

的解集为 ,不等式22|

|x x x

x

-->

的解集是

.6已知方程1|12||12|+=+--a x x 有实数解,则a

的取值范围为 。

7. 画出不等式1≤+y x 的图形,并指出其解的范围。利用不等式的图形解不等

1?、111<--+x x ; 2?、.12≤+y x

.8解不等式:1?、1

12-<-x x ; 2?、

11

2>-+x x ;

3?、321>+++x x ; 4?、.0312>+--+x x

.9 1?、已知.6

,4

a y a x <

<

求证:a y x <-32。

2?、已知.6

,4

c b y c a x <

-<

-求证:c b a y x <+--3232。

3?、已知 .3

,3

,3

s c C s b B s a A <

-<

-<- 求证: s c b a C B A <++-++)()(

.101?、已知 .,a y a x <

<

求证: .a xy <

2?、已知 .0,>>

.h y

x <

参考答案:

☆课后练习 1. B. 2、a <3 3 、a >4 4、a >7 5、{-3<x <=-2或x >=0}{x<0或x>2} 6、-3<=a<-1

7、先考虑不等式在平面直角坐标系内第一象限的情况。在第一象限内不等式等价于:

0≥x

,0≥y ,1≤+y x .

其图形是由第一象限中直线x y -=1下方的点所组成。

同样可画出二、三、四象限的情况。从而得到不等式1≤+y x 的图形是以原点O 为中心,四个等点分别在坐标轴上的正方形。不等式解的范围一

目了然。

探究:利用不等式的图形解不等式

1. 111<--+x x ; 2..12≤+y x

答案:1、-0.5

8、1?、0-1/2 3?、x<-3或4?、x>-2

.9 1?、已知.6

,4a y a x <

<

求证:a

y x <-32。

证明 6,4

a y a x <

<

,∴2

3,22a y a x <

<,

由例1及上式,a a a y x y x =+<+≤-2

23232。

2?、 3?(解答略) 10、(解答略)

第10课--绝对值不等式(经典例题练习、附答案)

第10课 绝对值不等式 ◇考纲解读 ①理解不等式a b a b a b -≤+≤+ ②掌握解绝对值不等式等不等式的基本思路,会用分类、换元、数形结合的方法解不等式; ◇知识梳理 1.绝对值的意义 ①代数意义:___,(0)___,(0)___,(0)a a a a >??= =?? 时, |()|f x a >?____________; |()|f x a - 例2. 解不等式125x x -++> 变式1:12x x a -++<有解,求a 的取值范围 变式2:212x x a -++<有解,求a 的取值范围 变式3:12x x a -++>恒成立,求a 的取值范围 ◇能力提升 1.(2008湛江二模)若关于x 的不等式||2x a a -<-的解集为{}42|<

(完整版)绝对值三角不等式

1.4 绝对值三角不等式 教案1 (新人教选修4-5) 教学目标: 1:了解绝对值三角不等式的含义,理解绝对值三角不等式公式及推导方法, 会进行简 单的应用。 2:充分运用观察、类比、猜想、分析证明的数学思维方法,体会转化和数形结合的数 学 思想,并能运用绝对值三角不等式公式进行推理和证明。 教学重点:绝对值三角不等式的含义,绝对值三角不等式的理解和运用。 教学难点:绝对值三角不等式的发现和推导、取等条件。 教学过程: 一、复习引入: 关于含有绝对值的不等式的问题,主要包括两类:一类是解不等式,另一类是证明不等式。本节课探讨不等式证明这类问题。 1.请同学们回忆一下绝对值的意义。 ?? ? ??<-=>=0000x x x x x x ,如果,如果,如果。 几何意义:在数轴上,一个点到原点的距离称为这个点所表示的数的绝对值。 2.证明一个含有绝对值的不等式成立,除了要应用一般不等式的基本性质之外,经常还要用到关于绝对值的和、差、积、商的性质: (1)a a ≥,当且仅当0≥a 时等号成立,.a a -≥当且仅当0≤a 时等号成立。 (2)2 a a =, (3) b a b a ?=?, (4) )0(≠= b b a b a 那么? b a b a +=+?b a b a +=- 二、讲解新课: 结论:a b a b ++≤(当且仅当0ab ≥时,等号成立.) 已知,a b 是实数,试证明:a b a b ++≤(当且仅当0ab ≥时,等号成立.) 方法一:证明:10 .当ab ≥0时, 20. 当ab <0时, 探究: ,,a b a b +, 之间的什么关系? b a -

绝对值不等式(经典题型)

1.若a >0,且|x |>a ,则____________;若a >0,且|x |c (c >0)型不等式的解法: 3.解下列不等式. (1)|2x +5|<7. (2)|2x +5|>7+x . (3)|x 2-3x +1|<5. (4)|2x -1|<2-3x . (5)1<|2-x |≤7. (6)1<|x -2|≤3 4.集合A ={x ||2-x |<5},B ={x ||x +a |≥3},且A ∪B =R ,求a 的取值范围 |x -a |+|x -b |≥c |x -a |+|x -b |≤c 5.解不等式 (1)|x -1|+|x -2|>2. (2)|x +2|-|x -1|<2 |(3)x +2|-|x -1|<2x 6.恒成立问题 (1)对任意x ∈R ,若|x -3|+|x +2|>a 恒成立,则实数a 的取值范围 . (2)关于x 的不等式a >|x -3|+|x +2|的解集非空,则实数a 的取值范围 . (3)关于x 的不等式a >|x -3|+|x +2|在R 上无解,则实数a 的取值范围 . (4)若不等式|x +3|-|x -5|x -2x 的解集是________. 10..已知函数f (x )=|x +2|-|x -1|,则f (x )的值域是________. 11. 对于x ∈R ,不等式||x +10-||x -2≥8的解集为______ 12.设函数f(x)=|3x -1|+x +2. (1)解不等式f(x)≤3; (2)若不等式f(x)>a 的解集为R ,求a 的取值范围.

含有绝对值的不等式·典型例题分析

含有绝对值的不等式·典型例题分析 例1 求下列函数的定义域和值域: 分析利用绝对值的基本概念. 解 (1)x+|x|≠0,即|x|≠-x.∴x>0. ∴定义域为(0,+∞),值域为(0,+∞). (2)|x|≥x,x∈R.|x|-x≥0,∴y∈[0,+∞). (3)x+|x|>0,x∈R+.y∈R. 画出函数图象如图5-17所示.不难看出,x∈R,y∈[-1,1]. 说明本例中前三个易错,第四个要分析写出函数表达式,并画出函数图象,此法在求值域时常用. 例2 解不等式|x+1|>|2x-3|-2.

将不等式中的绝对值符号去掉,转化成与之同解的不含绝对值的不等式(组),再去求解.去绝对值符号的关键是找零点(使绝对值等于零的那个数所对应的点),将数轴分成若干段,然后从左向右逐段讨论. (1)当x≤-1时原不等式化为-(x+1)>-(2x-3)-2. ∴x>2与条件矛盾,无解. 综上,原不等式的解为{x|0<x<6}. 注意找零点去绝对值符号最好画数轴,零点分段,然后从左向右逐段讨论,这样做条理分明、不重不漏. 例3 解不等式|x2-4|<x+2. 分析解此题的关键是去绝对值符号,而去绝对值符号有两种方法:

二是根据绝对值的性质:|x|<a?-a<x<a,|x|>a?x>a或x<-a,因此本题有如下两种解法. ∴2≤x<3或1<x<2 故原不等式的解集为{x|1<x<3}. 解法二原不等式等价于-(x+2)<x2-4<x+2 例4 求使不等式|x-4|+|x-3|<a有解的a的取值范围. 分析此题若用讨论法,可以求解,但过程较繁;用绝对值的几何意义去求解十分简便. 解法一将数轴分为(-∞,3],[3,4],(4,+∞)三个区间 当3≤x≤4 时,得(4-x)+(x-3)<a,即a>1;

绝对值不等式练习题知识讲解

绝对值不等式练习题

绝对值的不等式 一、选择题(8分×6=48分) 1.不等式243x 的整数解的个数为 ( ) A 0B 1C 2D 大于2 2.函数22x x y 的定义域是 ( ) A ]2,2[B ),2[]2,(C ),1[]1,(D ) ,2[3.设不等式|x -a|<b 的解集为{x|-1<x <2},则a ,b 的值为 ( ) A .a =1,b =3 B .a =-1,b =3 C .a =-1,b =-3 2 3 ,21 .b a D 4.若两实数y x,满足0xy ,那么总有 ( ) A y x y x B y x y x C y x y x D.x y y x 5.已知,b c a 且,0abc 则 ( ) A c b a B b c a C c b a D c b a 6.)(13)(R x x x f ,当b x 1有),,(4)(R b a a x f 则b a,满足 ( ) A 3a b B 3b a C 3a b D 3 b a 二、填空题(8分×2=16分) 7.不等式x x 512的解集是 8.不等式x x x x 11的解集是 三、解答题(18分×2=36分) 9.解下列不等式:(1)|x +1|>2-x ;(2)|2x -2x -6|<3x

10.已知a x x x f |2||1|)(,(1)当5a 时,求)(x f 定义域; (2)若)(x f 的定义域为R ,求a 的取值范围。附加题:(10分×2=20分) 1.若不等式|1|75x x 与不等式022bx ax 同解,而k b x a x ||||的解集为非,求实数k 的取值范围 2.当10x 时,比较)1(log x a 与)1(log x a 的大小.)1,0(a a

绝对值不等式例题解析

典型例题一 例1 解不等式2321-->+x x 分析:解含有绝对值的不等式,通常是利用绝对值概念? ??<-≥=)0()0(a a a a a ,将不等式中的绝对符号去掉,转化成与之同解的不含绝对值的不等式(组),再去求解.去绝对值符号的关键是找零点(使绝对值等于零的那个数所对应的点),将数轴分成若干段,然后从左向右逐段讨论. 解:令01=+x ,∴ 1-=x ,令032=-x ,∴2 3=x ,如图所示. (1)当1-≤x 时原不等式化为2)32()1(--->+-x x ∴2>x 与条件矛盾,无解. (2)当2 31≤ <-x 时,原不等式化为2)32(1--->+x x . ∴ 0>x ,故2 30≤x 时,原不等式化为 2321-->+x x .∴6<-+-有解的条件为32 7<-a ,即1>a ; 当43≤≤x 时,得a x x <-+-)3()4(,即1>a ;

当4>x 时,得a x x <-+-)3()4(,即27+< a x ,有解的条件为42 7>+a ∴1>a . 以上三种情况中任一个均可满足题目要求,故求它们的并集,即仍为1>a . 解法二:设数x ,3,4在数轴上对应的点分别为P ,A ,B ,如图,由绝对值的几何定义,原不等式a PB PA <+的意义是P 到A 、B 的距离之和小于a . 因为1=AB ,故数轴上任一点到A 、B 距离之和大于(等于1),即134≥-+-x x ,故当1>a 时,a x x <-+-34有解. 典型例题三 例3 已知),0(,20,2M y a b y M a x ∈ε<-<ε<-,求证ε<-ab xy . 分析:根据条件凑b y a x --,. 证明:ab ya ya xy ab xy -+-=- ε=ε?+ε?<-?+-≤-+-=a a M M b y a a x y b y a a x y 22)()(. 说明:这是为学习极限证明作的准备,要习惯用凑的方法. 典型例题四 例4 求证 b a a b a -≥-22 分析:使用分析法 证明 ∵0>a ,∴只需证明b a a b a -≥-222,两边同除2 b ,即只需证明 b a b a b b a -≥-2222 2,即 b a b a b a -≥-22)(1)( 当1≥b a 时,b a b a b a b a -≥-=-222)(1)(1)(;当1

绝对值不等式练习题

一、选择题(8分X 6=48分) 1.不等式3x -4 v2的整数解的个数为() A0 B1 C 2 D 大于2 2.函数y = Jx2 _|x| _2的定义域是() A[-2,2] B(-::,-2] [2, ::) C(-::,-1] [1, ::) D[2,::) 3.设不等式|x —a| v b的解集为{x| —1< x v 2},贝U a, b的值为() A. a = 1, b= 3 B . a=—1, b= 3 1 3 C . a = —1, b= —3 D .a , b — 2 2 4.若两实数x, y满足xy ::: 0 ,那么总有() Cx — yvx—y D. Ax + y2 —x ; (2)| x2—2x —6|<3 x 10.已知f(x) = ,;|x 1| |x -2| a , (1) 当a—5时,求f (x)定义域; (2)若f (x)的定义域为R,求a的取值范围。

含绝对值的不等式解法练习题及答案

例1 不等式|8-3x|>0的解集是 [ ] A B R C {x|x } D {83 } ...≠.?8 3 分析∵->,∴-≠,即≠. |83x|083x 0x 8 3 答 选C . 例2 绝对值大于2且不大于5的最小整数是 [ ] A .3 B .2 C .-2 D .-5 \ 分析 列出不等式. 解 根据题意得2<|x|≤5. 从而-5≤x <-2或2<x ≤5,其中最小整数为-5, 答 选D . 例3 不等式4<|1-3x|≤7的解集为________. 分析 利用所学知识对不等式实施同解变形. 解 原不等式可化为4<|3x -1|≤7,即4<3x -1≤7或-7 ≤-<-解之得<≤或-≤<-,即所求不等式解集为 -≤<-或<≤. 3x 14x 2x 1{x|2x 1x }538 3 538 3 例4 已知集合A ={x|2<|6-2x|<5,x ∈N},求A . 分析 转化为解绝对值不等式. ' 解 ∵2<|6-2x|<5可化为 2<|2x -6|<5 即-<-<,->或-<-,52x 652x 622x 62??? 即<<,>或<,12x 112x 82x 4??? 解之得<< 或<<.4x x 21121 2 因为x ∈N ,所以A ={0,1,5}. 说明:注意元素的限制条件.

例5 实数a ,b 满足ab <0,那么 [ ] A .|a -b|<|a|+|b| · B .|a +b|>|a -b| C .|a +b|<|a -b| D .|a -b|<||a|+|b|| 分析 根据符号法则及绝对值的意义. 解 ∵a 、b 异号, ∴ |a +b|<|a -b|. 答 选C . 例6 设不等式|x -a|<b 的解集为{x|-1<x <2},则a ,b 的值为 [ ] A .a =1,b =3 : B .a =-1,b =3 C .a =-1,b =-3 D a b .=,=123 2 分析 解不等式后比较区间的端点. 解 由题意知,b >0,原不等式的解集为{x|a -b <x <a +b},由于解集又为{x|-1<x <2}所以比较可得. a b 1a b 2a b -=-+=,解之得=,=.?? ? 123 2 答 选D . 说明:本题实际上是利用端点的位置关系构造新不等式组. 例7 解关于x 的不等式|2x -1|<2m -1(m ∈R) 分析 分类讨论. 、 解若-≤即≤,则-<-恒不成立,此时原不等 2m 10m |2x 1|2m 11 2 式的解集为;? 若->即>,则--<-<-,所以-<2m 10m (2m 1)2x 12m 11m 1 2 x <m . 综上所述得:当≤时原不等式解集为; 当>时,原不等式的解集为 m m 1 2 1 2 ? {x|1-m <x <m}. 说明:分类讨论时要预先确定分类的标准.

含绝对值的不等式解法练习题及答案

例1 不等式|8-3x|>0的解集是 [ ] 答选C. 例2 绝对值大于2且不大于5的最小整数是 [ ] A.3 B.2 C.-2 D.-5分析列出不等式.|x|≤5.解根据题意得2<5,,其中最小整数为-5x<-2或2<x≤从而-5≤.选D答 .的解集为________不等式4<|1-3x|≤7例3 利用所学知识对不等式实施同解变形.分析 或-74<3x-1≤74解原不等式可化为<|3x-1|≤7,即 .,5x∈N},求A例4 已知集合A={x|2<|6-2x|<转化为解绝对值不等式.分析 可化为|6-2x|<5<解∵25<|2x-6|<2 ,1,5}.因为x∈N,所以A={0说明:注意元素的限制条件.ab<0,那么例5 实数a,b 满足[ ] |b|A.|a-b|<|a|+|a.|a+b|>-b|B|a+b|<|a-b|C.+|b||b|<||a||aD.-根据符号法则及绝对值的意义.分析 、ab异号,解∵b|.<∴ |a+b||a-.选答 C ba,的值为2}1b|x例6 设不等式-a|<的解集为{x|-<x<,则[ ] A.=3ba=1,3b1aB.=-,=3=-b,1=-a.C. 分析解不等式后比较区间的端点. 解由题意知,b>0,原不等式的解集为{x|a-b<x<a+b},由于解集又为{x|-1<x<2}所以比较可得. 答选D. 说明:本题实际上是利用端点的位置关系构造新不等式组. 例7 解关于x的不等式|2x-1|<2m-1(m∈R) 分析分类讨论. x<m.

{x|1-m<x<m}. 说明:分类讨论时要预先确定分类的标准. 分析一般地说,可以移项后变形求解,但注意到分母是正数,所以能直接去分母. 解注意到分母|x|+2>0,所以原不等式转化为2(3-|x|)≥|x|+2,整理得 说明:分式不等式常常可以先判定一下 分子或者分母的符号,使过程简便. 例9 解不等式|6-|2x+1||>1. 分析以通过变形化简,把该不等式化归为|ax+b|<c或|ax+b|>c型的不等式来解. 解事实上原不等式可化为 6-|2x+1|>1 ① 或 6-|2x+1|<-1 ② 由①得|2x+1|<5,解之得-3<x<2; 由②得|2x+1|>7,解之得x>3或x<-4. 从而得到原不等式的解集为{x|x<-4或-3<x<2或x>3}. 说明:本题需要多次使用绝对值不等式的解题理论. 例10已知关于x的不等式|x+2|+|x-3|<a的解集是非空集合,则实数a的取值范围是 ________. 分析可以根据对|x+2|+|x-3|的意义的不同理解,获得多种方法. 解法一当x≤-2时,不等式化为-x-2-x+3<a即-2x+1<a有解,而-2x+1≥5, ∴a>5. 当-2<x≤3时,不等式化为x+2-x+3<a即a>5. a∴,5>1-2x而有解,a<1-2x即a<3-x+2+x是,不等式化为3>x当. >5. 综上所述:a>5时不等式有解,从而解集非空. 解法二 |x+2|+|x-3|表示数轴上的点到表示-2和3的两点的距离之和,显然最小值为3-(-2)=5.故可求a的取值范围为a>5. 解法三利用|m|+|n|>|m±n|得 |x+2|+|x-3|≥|(x+2)-(x-3)|=5. 所以a>5时不等式有解. 说明:通过多种解法锻炼思维的发散性. 例11 解不等式|x+1|>2-x. 分析一对2-x的取值分类讨论解之. 解法一原不等式等价于: 由②得x>2. 分析二利用绝对值的定义对|x+1|进行分类讨论解之.

课题绝对值三角不等式

课题:绝对值三角不等式 红岭中学 隗双和 教学目标: 知识与技能:了解绝对值三角不等式的含义,理解绝对值三角不等式公式及推导方法, 会 进行简单的应用。 过程与方法:充分运用观察、类比、猜想、分析证明的数学思维方法,体会转化和数形结合 的数学思想,并能运用绝对值三角不等式公式进行推理和证明。 情感、态度与价值观:体验不等式的美感,提高推理能力,增强学习兴趣。能运用所学的知 识,正确地解决的实际问题. 教学重点:绝对值三角不等式的含义,绝对值三角不等式的理解和运用。 教学难点:绝对值三角不等式的发现和推导、取等条件。 授课类型:新授课 课时安排:1课时 教 具:多媒体辅助。 教学过程: 一、复习引入: 关于含有绝对值的不等式的问题,主要包括两类:一类是解不等式,另一类是证明不等式。本节课探讨不等式证明这类问题。 1.请同学们回忆一下绝对值的意义。 ?? ? ??<-= >=0000x x x x x x ,如果,如果,如果。 几何意义:在数轴上,一个点到原点的距离称为这个点所表示的数的绝对值。即 2.证明一个含有绝对值的不等式成立,除了要应用一般不等式的基本性质之外,经常还要用到关于绝对值的和、差、积、商的性质: (1)a a ≥,当且仅当0≥a 时等号成立,.a a -≥当且仅当0≤a 时等号成立。 (2)2 a a =, (3) b a b a ?=?, (4) )0(≠= b b a b a 那么? b a b a +=+?b a b a +=- 二、讲解新课: 结论:a b a b ++≤(当且仅当0ab ≥时,等号成立.) 已知,a b 是实数,试证明:a b a b ++≤(当且仅当0ab ≥时,等号成立.) 探究: ,,a b a b +, 之间的什么关系? b a -

《绝对值三角不等式》教案

《绝对值三角不等式》教案 教学目标 1.了解绝对值三角不等式的含义,理解绝对值三角不等式公式及推导方法, 会进行简 单的应用. 2.充分运用观察、类比、猜想、分析证明的数学思维方法,体会转化和数形结合的数学 思想,并能运用绝对值三角不等式公式进行推理和证明. 教学重、难点 重点:绝对值三角不等式的含义,绝对值三角不等式的理解和运用. 难点:绝对值三角不等式的发现和推导、取等条件. 教学过程 一、复习引入: 关于含有绝对值的不等式的问题,主要包括两类:一类是解不等式,另一类是证明不等式.本节课探讨不等式证明这类问题. 1.请同学们回忆一下绝对值的意义. ?? ???<-=>=0000x x x x x x ,如果,如果,如果. 几何意义:在数轴上,一个点到原点的距离称为这个点所表示的数的绝对值. 2.证明一个含有绝对值的不等式成立,除了要应用一般不等式的基本性质之外,经常还要用到关于绝对值的和、差、积、商的性质: (1)a a ≥,当且仅当0≥a 时等号成立,.a a -≥当且仅当 时等号成立. (2)2a a =, (3)b a b a ?=?, (4))0(≠=b b a b a 那么?b a b a +=+?b a b a +=- 二、讲解新课: 探究:,,,a b a b a b +-之间有什么关系? 结论:a b a b ++≤(当且仅当ab ≥0时,等号成立.) 定理1 a ,b 如果 是实数,则a b a b ++≤(当且仅当ab ≥0时,等号成立.)

探究1:若把a ,b 换为向量b a ,情形又怎样呢? 得到向量形式的不等式 a b a b +<+ 它的几何意义就是三角形的两边之和大于第三边. 由于定理1与三角形之间的这种联系,我们称其中的不等式为绝对值三角形不等式 探究2:当向量a ,b 共线时,有怎样的结论? 一般地,我们有 a b a b ++≤ 为了更好地理解定理1,我们再从代数推理的角度给出它的证明. 证明:(1)当ab ≥0时, ||, ||||||ab ab a b a b =+=====+ (2)当ab <0时, ||, ||||||ab ab a b a b =-+===<==+ a a b +

绝对值不等式练习题

绝对值的不等式 一、选择题(8分×6=48分) 1.不等式243<-x 的整数解的个数为 ( ) A 0 B 1 C 2 D 大于2 2.函数22--=x x y 的定义域是 ( ) A ]2,2[- B ),2[]2,(+∞--∞ C ),1[]1,(+∞--∞ D ),2[+∞ 3.设不等式|x -a|<b 的解集为{x|-1<x <2},则a ,b 的值为 ( ) A .a =1,b =3 B .a =-1,b =3 C .a =-1,b =-3 23 ,21 .==b a D 4.若两实数y x ,满足0+ C y x y x -<- D.x y y x -<+ 5.已知,b c a <-且,0≠abc 则 ( ) A c b a +< B b c a -> C c b a +< D c b a -> 6.)(13)(R x x x f ∈+=,当b x <-1有),,(4)(+∈<-R b a a x f 则b a ,满足 ( ) A 3a b ≤ B 3b a ≤ C 3a b > D 3b a ≥ 二、填空题(8分×2=16分) 7.不等式x x ->+512的解集是 8.不等式x x x x ->-11的解集是 三、解答题(18分×2=36分) 9.解下列不等式:(1)|x +1|>2-x ;(2)|2x -2x -6|<3x

10.已知a x x x f +-++=|2||1|)(,(1)当5-=a 时,求)(x f 定义域; (2)若)(x f 的定义域为R ,求a 的取值范围。 附加题:(10分×2=20分) 1.若不等式|1|75+>-x x 与不等式022 >-+bx ax 同解,而k b x a x ≤-+-||||的解集为非φ,求实数k 的取值范围 2.当10<a a

绝对值三角不等式

1.4绝对值三角不等式 教学目标:1.理解绝对值的定义,理解不等式基本性质的推导过程; 2.掌握定理1的两种证明思路及其几何意义; 3.理解绝对值三角不等式; 4.会用绝对值不等式解决一些简单问题。 教学重点:定理1的证明及几何意义。 教学难点:换元思想的渗透。 教学过程: 一、引入: 证明一个含有绝对值的不等式成立,除了要应用一般不等式的基本性质之外,经常还要用到关于绝对值的和、差、积、商的性质: (1)b a b a +≥+ (2)b a b a +≤- (3)b a b a ?=? (4))0(≠=b b a b a 请同学们思考一下,是否可以用绝对值的几何意义说明上述性质存在的道理? 实际上,性质b a b a ?=?和)0(≠=b b a b a 可以从正负数和零的乘法、除法法则直接推出;而绝对值的差的性质可以利用和的性质导出。因此,只要能够证明b a b a +≥+对于任意实数都成立即可。我们将在下面的例题中研究它的证明。 现在请同学们讨论一个问题:设a 为实数,a 和a 哪个大? 显然a a ≥,当且仅当0≥a 时等号成立(即在0≥a 时,等号成立。在0

专题一、含绝对值不等式的解法(含答案)

第三讲 含绝对值不等式与一元二次不等式 一、知识点回顾 1、绝对值的意义:(其几何意义是数轴的点A (a )离开原点的距离a OA =) ()()()?? ? ??<-=>=0,0,00,a a a a a a 2、含有绝对值不等式的解法:(解绝对值不等式的关键在于去掉绝对值的符号) (1)定义法; (2)零点分段法:通常适用于含有两个及两个以上的绝对值符号的不等式; (3)平方法:通常适用于两端均为非负实数时(比如()()x g x f <); (4)图象法或数形结合法; (5)不等式同解变形原理:即 ()a x a a a x <<-?><0 ()a x a x a a x -<>?>>或0 ()c b ax c c c b ax <+<-?><+0 ()c b ax c b ax c c b ax -<+>+?>>+或0 ()()()()()x g x f x g x g x f <<-?< ()()()()()()x g x f x g x f x g x f <>?>或 ()()()()a x f b b x f a a b b x f a -<<-<><<或0 3、不等式的解集都要用集合形式表示,不要使用不等式的形式。 4、二次函数、一元二次方程、一元两次不等式的联系。(见P8) 5、利用二次函数图象的直观性来研究一元二次方程根的性质和一元二次不等式解集及变化,以及含字母的有关问题的讨论,渗透数形结合思想。 6、解一元二次不等式的步骤: (1)将不等式化为标准形式()002≥>++c bx ax 或()002≤<++c bx ax (2)解方程02=++c bx ax (3)据二次函数c bx ax y ++=2的图象写出二次不等式的解集。 一、 基本解法与思想 解含绝对值的不等式的基本思想是等价转化,即采用正确的方法去掉绝对值符号转化为不含绝对值的不等式来解,常用的方法有公式法、定义法、平方法。 (一)、公式法:即利用a x >与a x <的解集求解。 主要知识: 1、绝对值的几何意义:x 是指数轴上点x 到原点的距离;21x x -是指数轴上1x ,2x 两点间的距离.。 2、a x >与a x <型的不等式的解法。 当0>a 时,不等式>x 的解集是{} a x a x x -<>或, 不等式a x <的解集是} a x a x <<-; 当0的解集是{}R x x ∈ 不等式a x <的解集是?; 3.c b ax >+与c b ax <+型的不等式的解法。

高中数学 绝对值不等式高考题合集详解

绝对值不等式 1.(2015·山东卷)不等式|x -1|-|x -5|<2的解集是( ) A .(-∞,4) B .(-∞,1) C .(1,4) D .(1,5) 解析 当x ≤1时,不等式可化为(1-x )-(5-x )<2,即-4<2,满足题意; 当1a 的解集为M ,且2?M ,则a 的取值范围为( ) A.? ????14,+∞ B.???? ??14,+∞ C.? ????0,12 D.? ?? ??0,12 解析 由已知2?M ,可得2∈?R M 。 于是有???? ??2a -12≤a , 即-a ≤2a -12≤a ,解得a ≥14,故选B 。 答案 B 3.对任意x ,y ∈R ,|x -1|+|x |+|y -1|+|y +1|的最小值为( ) A .1 B .2 C .3 D .4

解析 ∵|x -1|+|x |+|y -1|+|y +1| =(|1-x |+|x |)+(|1-y |+|1+y |) ≥|(1-x )+x |+|(1-y )+(1+y )|=1+2=3, 当且仅当(1-x )·x ≥0,(1-y )·(1+y )≥0,即0≤x ≤1,-1≤y ≤1时取等号, ∴|x -1|+|x |+|y -1|+|y +1|的最小值为3。 答案 C 4.(2015·重庆卷)若函数f (x )=|x +1|+2|x -a |的最小值为5,则实数a =________。 解析 当a ≤-1时, f (x )=|x +1|+2|x -a |=????? -3x +2a -1,x -1, 所以f (x )在(-∞,a )上单调递减,在(a ,+∞)上单调递增, 则f (x )在x =a 处取得最小值f (a )=-a -1, 由-a -1=5得a =-6,符合a ≤-1; 当a >-1时, f (x )=|x +1|+2|x -a | =????? -3x +2a -1,x <-1,-x +2a +1,-1≤x ≤a , 3x -2a +1,x >a 。 所以f (x )在(-∞,a )上单调递减,在(a ,+∞)上单调递增, 则f (x )在x =a 处取最小值f (a )=a +1, 由a +1=5,得a =4,符合a >-1。 综上,实数a 的值为-6或4。 答案 -6或4

绝对值三角不等式讲与练

绝对值三角不等式讲与练 一、引入: 证明一个含有绝对值的不等式成立,除了要应用一般不等式的基本性质之外,经常还要用到关于绝对值的和、差、积、商的性质: (1)b a b a +≥+ (2)b a b a +≤- (3)b a b a ?=? (4) ) 0(≠=b b a b a 请同学们思考一下,是否可以用绝对值的几何意义说明上述性质存在的道理? 实际上,性质b a b a ?=?和 ) 0(≠= b b a b a 可以从正负数和零的乘法、除法 法则直接推出;而绝对值的差的性质可以利用和的性质导出。因此,只要能够证明 b a b a +≥+对于任意实数都成立即可。我们将在下面的例题中研究它的证 明。 现在请同学们讨论一个问题:设a 为实数,a 和a 哪个大? 显然a a ≥,当且仅当0≥a 时等号成立(即在0≥a 时,等号成立。在0

含绝对值的不等式解法练习题及答案

学习好资料欢迎下载 例 1不等式|8-3x|>0的解集是 [] A. B . R C. {x|x ≠88 }D.{ } 33 8 分析∵ |8-3x|>0,∴ 8-3x≠ 0,即x≠. 答选 C. 例 2绝对值大于 2 且不大于 5 的最小整数是 [] A . 3 B. 2 C.- 2 D.- 5 分析列出不等式. 解根据题意得2<|x|≤ 5. 从而- 5≤x<- 2 或 2< x≤ 5,其中最小整数为-5, 答选 D. 例 3 不等式4<|1-3x|≤7的解集为________. 分析利用所学知识对不等式实施同解变形. 解原不等式可化为4< |3x- 1|≤ 7,即 4<3x- 1≤7 或- 7 ≤ 3x- 1<- 4解之得5 < x≤ 8 或- 2≤ x<- 1,即所求不等式解集为33 58 . {x| - 2≤ x<- 1或< x≤} 33 例 4已知集合 A = {x|2 < |6- 2x|< 5,x∈ N} ,求 A .分析转化为解绝对值不等式. 解∵ 2<|6- 2x|< 5 可化为 2< |2x- 6|<5 -5< 2x- 6< 5, 即 2x - 6> 2或 2x - 6<- 2, 1< 2x <11, 即 2x > 8或 2x< 4, 解之得 4< x<11 或 1 < x< 2.22 因为 x∈ N,所以 A = {0 ,1, 5} . 说明:注意元素的限制条件. 例 5实数a,b满足ab<0,那么 []

A . |a-b|< |a|+ |b| B. |a+ b|> |a- b| C. |a+ b|< |a- b| D. |a-b|< ||a|+ |b|| 分析根据符号法则及绝对值的意义. 解∵ a、b 异号, ∴|a+ b|< |a-b|. 答选C. 例 6 设不等式|x-a|<b的解集为{x|-1<x<2},则a,b的值为 [] A . a=1, b= 3 B. a=- 1, b= 3 C. a=- 1, b=- 3 1 3 D . a=2, b=2 分析解不等式后比较区间的端点. 解由题意知, b> 0,原不等式的解集为{x|a - b< x< a+ b} ,由于解集又为{x| - 1<x< 2} 所以比较可得. a- b=- 11 , b=3. ,解之得 a= a+ b= 222 答选 D. 说明:本题实际上是利用端点的位置关系构造新不等式组.例 7 解关于x的不等式|2x-1|<2m-1(m∈R) 分析分类讨论. 解若 2m- 1≤ 0即m≤1 ,则 |2x- 1|< 2m- 1恒不成立,此时原不等 2式的解集为; 若 2m- 1> 0即 m>1 ,则- (2m- 1) < 2x- 1< 2m- 1,所以 1- m< 2 x< m. 综上所述得:当m≤1 时原不等式解集为;2 当 m>1 时,原不等式的解集为2 {x|1 - m< x<m} . 说明:分类讨论时要预先确定分类的标准. 例 8 解不等式3-|x| ≥ 1 .|x|+ 2 2 分析一般地说,可以移项后变形求解,但注意到分母是正数,所以能直接去分母.

高一数学含绝对值不等式的解法练习题

含绝对值的不等式解法 一、选择题 1.已知a <-6,化简26a -得() +6 2.不等式|8-3x |≤0的解集是() A. C.{(1,-1)} D.? ?????38 3.绝对值大于2且不大于5的最小整数是() 4.设A ={x ||x -2|<3},B ={x ||x -1|≥1},则A ∩B 等于() A.{x |-1<x <5} B.{x |x ≤0或x ≥2} C.{x |-1<x ≤0} D.{x |-1<x ≤0或2≤x <5} 5.设集合}110 {-≤≤-∈=x Z x x A 且,}5 {≤∈=x Z x x B 且,则B A Y 中的元素个数是() 6.已知集合M ={R x x x y y ∈-+=,322},集合N ={y ︱32≤-y },则M ∩N () A.{4-≥y y }B.{51≤≤-y y }C.{14-≤≤-y y }D. 7.语句3≤x 或5>x 的否定是() 53<≥x x 或53≤>x x 或53<≥x x 且53≤>x x 且二、填空题 1.不等式|x +2|<3的解集是,不等式|2x -1|≥3的解集是. 2.不等式12 11<- x 的解集是_________________. 三、解答题 1.解不等式1.02122<--x x 2.解不等式x 2-2|x |-3>0 3.已知全集U =R ,A ={x |x 2-2x -8>0},B ={x ||x +3|<2},求: (1)A ∪B ,C u (A ∪B )(2)C u A ,C u B ,(C u A )∩(C u B ) 4.解不等式3≤|x -2|<97.解不等式|3x -4|>1+2x . 5.画出函数|21|x-||x y ++=的图象,并解不等式|x +1|+|x -2|<4.

绝对值不等式练习题

绝对值的不等式练习 班级 学号 姓名 1.不等式243<-x 的整数解的个数为( ) A 0 B 1 C 2 D 大于2 2.若两实数y x ,满足0+ C y x y x -<-D x y y x -<+ 3.已知0,<+>b a b a ,那么( ) A b a > B b a 11> C b a < D b a 11< 4.不等式13-<-x x 的解是( ) A 52<x D 32≤ C c b a +< D c b a -> 6.不等式652>-x x 的解集为( ) A 1{-x B }32{<x 7.若1lg lg ≤-b a ,那么( ) A b a 100≤< B a b 100≤< C b a 100≤<或a b 100≤< D b a b 1010≤≤ 8.函数22--=x x y 的定义域是( ) A ]2,2[- B ),2[]2,(+∞--∞ C ),1[]1,(+∞--∞ D ),2[+∞ 9.不等式b a b a +≤+取等号的条件是 ,b a b a +≤-取等号的条件 . 10.不等式x x ->+512的解集是

11.如果不等式21x 同时成立,则x 的取值范围是 12.不等式x x x x ->-11的解是 13.函数x x x y -+=0 )21(的定义域是 14.不等式331≤-++-x x 16.解不等式:x x +<-1log 2log 4141 17.已知 ,11<++b a a b ,求证:}{a 和}{b 中必有一个大于1,而另一个小于1. 18.使不等式a x x <-+-34有解的条件是( ) A 1>a B 1101< D 3 b a ≥ 20.不等式组?????+-<+-a a

相关文档
最新文档