2020江苏高考数学二轮热点难点微专题突破-微专题01-与解三角形有关的最值问题

2020江苏高考数学二轮热点难点微专题突破-微专题01-与解三角形有关的最值问题
2020江苏高考数学二轮热点难点微专题突破-微专题01-与解三角形有关的最值问题

2020江苏高考数学二轮热点难点微专题突破-

微专题01 与解三角形有关的最值问题

与三角形有关的最值问题主要涉及求三角函数值最值,边长的最值,面积、向量的最值.解决这类的问题方法有:一、 将所给条件转化为三角函数,利用三角函数求解最值;二、 将所给条件转化为边,利用基本不等式或者函数求解最值;三、 建立坐标系,求出动点的轨迹方程,利用几何意义求解最值;四、 多元问题可消元后再用上述方法求解.如2018年T14就是与解三角形有关的最值问题.

【例1】在△ABC 中,已知A ,B ,C 所对的边分别为a ,b ,c ,若a 2+b 2+2c 2=8,则△ABC 面积的最大值为________. 答案:255

解析:(解法1)因为cos C =a 2+b 2-c 22ab =a 2

+b 2

8-a 2-b 2

22ab =3(a 2+b 2)-84ab ≥3ab -4

2ab

,所以

ab ≤

43-2cos C ,从而S =12ab sin C ≤2sin C 3-2cos C .设t =2sin C

3-2cos C

,则3t =2sin C +2t cos C =

2t 2+1·sin(C +φ),其中tan φ=t ,故3t ≤2t 2+1,解得t ≤255,所以S max =25

5,当且仅

当a =b =2155且tan C =5

2

时,等号成立.

(解法2)以AB 所在的直线为x 轴,它的垂直平分线为y 轴,建立如图所示的直角坐标系,则A ????-c 2,0,B ????c 2,0,C (x ,y ),则由a 2+b 2+2c 2=8得????x -c 22+y 2+????x +c

22+y 2+2c 2=8,即x 2

+y 2

=4-5c 24,即点C 在圆x 2+y 2=4-5c 24上,所以S ≤c 2r =

c 2

4-5

4

c 2=12·-54????c 2-852+165≤255,当且仅当c 2

=85时取等号,故S max =255

.

【方法规律】

1. 注意到a 2+b 2+2c 2=8中a ,b 是对称的,因此将三角形的面积表示为S =1

2ab sin C ,利用

余弦定理将ab 表示为C 的形式,进而转化为三角函数来求它的最值.

2. 将c 看作定值,这样满足条件的三角形就有无数个,从而来研究点C 所满足的条件,为此建立直角坐标系,从而根据条件a 2+b 2+2c 2=8得到点C 的轨迹方程,进而来求出边AB 上的高所满足的条件.

3. 解法1是从将面积表示为角C 的形式来加以思考的,而解法2则是将面积表示为边c 的形式来加以思考的.这两种解法都基于一点,即等式a 2+b 2+2c 2=8中的a ,b 是对称关系.解法2则是从运动变化的角度来加以思考的,这体现了三角函数与解析几何之间的千丝万缕的关系.解法1是一种常规的想法,是必须要认真体会的,而解法2就需要学生能充分地认识知识与知识之间的联系.本题对学生的知识的应用要求、思考问题、分析问题、解决问题的能力要求都比较高.

【例2】在△ABC 中,已知角A ,B ,C 的对边分别为a ,b ,c ,tan C =sin A +sin B

cos A +cos B

.

(1) 求角C 的大小;

(2) 若△ABC 的外接圆直径为1,求a 2+b 2+c 2的取值范围. 解析:(1) 因为tan C =sin A +sin B cos A +cos B ,即sin C cos C =sin A +sin B

cos A +cos B ,

所以sin C cos A +sin C cos B =cos C sin A +cos C sin B ,

即sin C cos A -cos C sin A =cos C sin B -sin C cos B ,所以sin(C -A )=sin(B -C ). 所以C -A =B -C 或C -A =π-(B -C )(不成立),即2C =A +B ,所以C =π

3.

(2) (解法1)由C =π3可得c =2R sin C =1×32=3

2,

且a =2R sin A =sin A ,b =2R sin B =sin B .

设A =π3+α,B =π3-α,0

3.

所以a 2+b 2+c 2=34+sin 2A +sin 2B =34+1-cos2A 2+1-cos2B 2

=74-12????cos ????2π3

+2α+cos ????2π3-2α=74+12cos2α. 由-π3<α<π3知-2π3<2α<2π3,-12

4.

(解法2)因为C =π3,所以c =2R sin C =1×32=32

.

又因为c 2

=a 2

+b 2

-2ab cos C ,所以34=a 2+b 2-ab ≥a 2+b 22,故a 2+b 2≤3

2

.

又a 2+b 2=34+ab >3

4

,故a 2+b 2+c 2∈????32,94.

【方法规律】

点评:本题的第(2)问是一种典型问题即三角形中有一个边以及对角为定值,求与两个边或两个角有关系的最值问题.如本题中C =π3,c =3

2,可以求a 2+b 2,a +b ,ab ,sin A +sin B ,

sin A sin B ,cos A +cos B ,cos A cos B 的取值范围.方法有二:一是利用A +B =2π

3,进行消元(代

入消元或中值换元(如本题解法一)),转化为三角函数值域求解;二是利用基本不等式,但基本不等式比较适合求一种最值,求范围有时不适合.本题如果加大难度,可以将三角形改成锐角三角形,这时基本不等式就不太适合了.

(通过本课题的学习,你学到了什么?你还有其它疑惑吗?)

A 组

1.在△ABC 中,已知2cos 2A 2=3

3sin A ,若a =23,则△ABC 周长的取值范围为________.

答案:(43,4+23]

解析:由2cos 2A 2=33sin A ,可得cos A +1=33sin A ,则233sin ????A -π3=1,即sin ????A -π3=32,又0<A <π,可解得A =2π3.所以b sin B =c sin C =a

sin A =4,即b =4sin B ,c =4sin C ,从而a +b

+c =23+4sin B +4sin C =23+4sin B +4sin ????π3-B =23+4sin ????B +π3.又0<B <π3,所以π

3<B +π3<2π

3

,可得43<23+4sin ????π3+B ≤4+23,即a +b +c ∈(43,4+23].

2.在△ABC 中,若sin C =2cos A cos B ,则cos 2A +cos 2B 的最大值为________. 答案:

2+1

2

解析:(解法1)因为sin C =2cos A cos B ,所以sin(A +B )=2cos A cos B ,化简得tan A +tan B =2, cos 2

A +cos 2

B =cos 2A sin 2A +cos 2A +cos 2B sin 2B +cos 2B

1tan 2

A +1+1

tan 2B +1

=tan 2A +tan 2B +2

(tan A tan B )2+tan 2A +tan 2B +1

=(tan A +tan B )2-2tan A tan B +2

(tan A tan B )2+(tan A +tan B )2-2tan A tan B +1 =

6-2tan A tan B

(tan A tan B )2-2tan A tan B +5

.

因为(tan A tan B )2-2tan A tan B +5>0,所以令6-2tan A tan B =t (t >0),则cos 2A +cos 2B =4t

t 2

-8t +32=

4t +32t

-8

≤4

232-8=2+12(当且仅当t =42时取等号). (解法2)由解法1得tan A +tan B =2,令tan A =1+t ,tan B =1-t ,则cos 2A +cos 2B =1

tan 2

A +1+1tan 2

B +1=1t 2+2+2t +1t 2+2-2t =2(t 2+2)(t 2+2)2-4t 2,令d =t 2+2≥2,则cos 2A +cos 2

B =2d

d 2

-4d +8

2d +8d

-4≤2

28-4=2+12,当且仅当d =22时等号成立. (解法3)因为sin C =2cos A cos B ,所以sin C =cos(A +B )+cos(A -B ),即cos(A -B )=sin C +cos C ,cos 2A +cos 2B =1+cos2A 2+1+cos2B 2=1+cos(A +B )cos(A -B )=1-cos C (sin C +cos C )=12-

12(sin2C +cos2C )=12-22sin ????2C +π4≤12+22=2+12,当且仅当2C +π4=3π2,即C =5π

8时取等号.

3.在锐角三角形 ABC 中,已知2sin 2 A + sin 2B = 2sin 2C ,则1tan A +1tan B +1tan C

的最小值为________. 答案:

13

2

解析:因为 2sin 2A +sin 2B =2sin 2C ,所以由正弦定理可得2a 2+b 2=2c 2. 由余弦定理及正弦定理可得cos C =a 2+b 2-c 22ab =b 24ab =b 4a =sin B

4sin A .

又因为sin B =sin(A +C )=sin A cos C +cos A sin C , 所以cos C =sin A cos C +cos A sin C 4sin A =cos C 4+sin C

4tan A

可得tan C =3tan A ,代入tan A +tan B +tan C =tan A tan B tan C 得tan B =4tan A

3tan 2A -1,

所以1tan A +1tan B +1tan C =1tan A +3tan 2A -14tan A +13tan A =3tan A 4+13

12tan A .

因为A ∈????0,π2,所以tan A >0,所以3tan A 4+13

12tan A

≥23tan A 4×1312tan A =13

2

当且仅当3tan A 4=1312tan A ,即tan A =13

3时取“=”.

所以1tan A +1tan B +1tan C 的最小值为13

2

.

4.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,向量m =(a ,b ),n =(cos A ,cos B ),p =?

??

?22sin

B +C

2,2sin A ,若m ∥n ,|p |=3. (1) 求角A ,B ,C 的值;

(2) 若x ∈????0,π

2,求函数f (x )=sin A sin x +cos B cos x 的最大值与最小值. 解析:(1) 因为m ∥n ,所以a cos B =b cos A .

由正弦定理,得sin A cos B =sin B cos A ,所以sin(A -B )=0. 又-π

B +C

2

+4sin 2A =9, 所以8cos 2A 2+4sin 2A =9,所以4cos 2A -4cos A +1=0,所以(2cos A -1)2=0,所以cos A =1

2.

又0

3,

所以A =B =C =π

3

.

(2) f (x )=sin x cos π6+cos x sin π

6=sin ????x +π6. 因为x ∈????0,π2,所以x +π6∈???

?π6,2π

3. 所以x =0时,f (x )min =f (0)=12,x =π

3

时,f (x )max =f ????π3=1.

B 组

1.已知△ABC 中,B =45°,AC =4,则△ABC 面积的最大值为________. 答案:4+42

解析:(解法1)如图,设△ABC 的外接圆为圆O ,其直径2R =AC sin ∠ABC =4sin45°

=4 2.取AC

的中点M ,则OM =Rcos45°=2.过点B 作BH ⊥AC 于点H ,要使△ABC 的面积最大,当且仅当BH 最大.而BH ≤BO +OM ,所以BH ≤R +

2

2

R =22+2,所以(S △ABC )max =????12AC ·BH max

=1

2

×4×(2+22)=4+42,当且仅当BA =BC 时取等号.

(解法2)如图,同上易知,△ABC 的外接圆的直径2R =4 2.

S △ABC =12AB ·BC ·sin B =2R 2sin A sin B sin C =82sin A sin C =42????cos ????3π4-2C +2

2,当A =C =

8

时,(S △ABC )max =4+4 2. 2.已知a ,b ,c 分别为△ABC 的三内角A ,B ,C 的对边,且a cos C +c cos A =2b cos B ,则sin A +sin C 的最大值为________. 答案:3

解析:因为a cos C +c cos A =2b cos B ,

所以sin A cos C +sin C cos A =sin(A +C )=2sin B cos B ,即sin B =2sin B cos B . 又sin B ≠0,故cos B =12.又B ∈(0,π),故B =π3,即A +C =2

3π.

设A =π3+α,C =π3-α,0<A <2π3,0<C <2π3,知-π3<α<π

3

.

故sin A +sin C =sin ????π3+α+sin ????π3-α=2sin π

3

cos α≤3(当α=0即A =C 时取得). 3.已知△ABC 的内角A, B, C 的对边分别是a ,b ,c ,且sin 2A +sin 2B -sin 2C a cos B +b cos A =sin A sin B

c ,若

a +

b =4,则

c 的取值范围为________. 答案:[2,4)

解析:因为sin 2A +sin 2B -sin 2C a cos B +b cos A =sin A sin B c ,由正弦定理,得a 2+b 2-c 2sin C =

ab

sin A cos B +sin B cos A

=ab sin (A +B )=ab sin C ,所以a 2+b 2-c 2

=ab .由余弦定理,得cos C =a 2+b 2-c 22ab =ab 2ab =12,所以

C =π

3,c 2=a 2+b 2-2ab cos C =(a +b )2-3ab =16-3ab ≥16-3×????a +b 22=4,所以c ≥2.又三角形的两边之和大于第三边,所以2≤c <4.

4.在△ABC 中,三边长分别是a ,b ,c ,面积S =a 2-(b -c )2,b +c =8,则S 的最大值是________. 答案:6417

解析:因为S =a 2-(b -c )2,所以1

2bc sin A =-(b 2+c 2-a 2)+2bc =2bc -2bc cos A ,所以sin A

=4(1-cos A ).又sin 2A +cos 2A =1,解得sin A =817,所以S =12bc sin A =417bc ≤417????b +c 22=64

17.

5.在锐角三角形ABC 中,BC =2,sin B +sin C =2sin A ,则中线AD 长的取值范围是________. 答案:?

??

?

3,

132 解析:设△ABC 内角A ,B ,C 所对的边分别为a ,b ,c ,由a =2,sin B +sin C =2sin A ,得b +c =4.因为△ABC 为锐角三角形,所以有?????

b 2

+c 2

>a 2

,a 2+c 2>b 2

a 2+

b 2>

c 2,

即?????

b 2+(4-b )2

>4,4+(4-b )2>b 2

,b 2+4>(4-b )2,

解得3

2

<b

<52,则bc =b (4-b )∈????154,4.因为|AD →

|2=??????12(AB →+AC →)2=14????b 2+c 2+2bc ·b 2+c 2-42bc =14(28

-4bc )=7-bc ∈????3,134,即AD ∈?

???

3,132. 6.在斜三角形ABC 中,1tan A +1

tan B +2tan C =0,则tan C 的最大值是__________.

答案:-3

解析:因为A +B +C =π,所以tan C =-tan(A +B )=-tan A +tan B

1-tan A tan B

.

1tan A +1

tan B +2tan C =0,有tan A +tan B tan A tan B -2(tan A +tan B )1-tan A tan B

=0. 若tan A +tan B =0,则tan C =0,不符合题意, 所以tan A +tan B ≠0,因此1tan A tan B -21-tan A tan B

=0,

解得tan A tan B =1

3,因为A ,B ,C 中至多有一个钝角,所以tan A >0,tan B >0,

tan C =-tan A +tan B 1-tan A tan B

=-tan A +tan B 1-13

=-32(tan A +tan B )≤-3

2×2tan A tan B =- 3.

当且仅当tan A =tan B =3

3

时,上式取等号.

7.在△ABC 中,已知角A ,B ,C 的对边分别是a ,b ,c ,且A ,B ,C 成等差数列. (1) 若BA →·BC →=32,b =3,求a +c 的值;

(2) 求2sin A -sin C 的取值范围.

解析:(1) 因为A ,B ,C 成等差数列,所以B =π

3.

因为BA →·BC →

=32,所以ac cos B =32,所以12ac =3

2,即ac =3.

因为b =3,b 2=a 2+c 2-2ac cos B , 所以a 2+c 2-ac =3,即(a +c )2-3ac =3, 所以(a +c )2=12,所以a +c =23 (2) 2sin A -sin C =2sin ????2π3-C -sin C =2??

??32cos C +12sin C -sin C =3cos C . 因为0<C <2π3,所以3cos C ∈????-3

2,3.

所以2sin A -sin C 的取值范围是?

??

?-

32,3.

8.设△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,且满足(2a +c )BC →·BA →+cCA →·CB →

=0.

(1) 求角B 的大小; (2) 若b =2

3,试求AB →·CB →

的最小值.

解析:(1) 因为(2a +c )BC →·BA →

+cCA →·CB →

=0, 所以(2a +c )ac cos B +cab cos C =0,

即(2a +c )cos B +b cos C =0,则(2sin A +sin C )cos B +sin B cos C =0, 所以2sin A cos B +sin(C +B )=0,即cos B =-12,所以B =2π

3

.

(2) 因为b 2=a 2+c 2-2ac cos 2π

3,所以12=a 2+c 2+ac ≥3ac ,即ac ≤4.

所以AB →·CB →

=ac cos 2π3=-1

2ac ≥-2,即AB →·CB →

的最小值为-2.

江苏省高考数学二轮复习专题八二项式定理与数学归纳法(理)8.1计数原理与二项式定理达标训练(含解析)

计数原理与二项式定理 A组——大题保分练 1.设集合A,B是非空集合M的两个不同子集,满足:A不是B的子集,且B也不是A的子集. (1)若M={a1,a2,a3,a4},直接写出所有不同的有序集合对(A,B)的个数; (2)若M={a1,a2,a3,…,a n},求所有不同的有序集合对(A,B)的个数. 解:(1)110. (2)集合M有2n个子集,不同的有序集合对(A,B)有2n(2n-1)个. 当A?B,并设B中含有k(1≤k≤n,k∈N*)个元素, 则满足A?B的有序集合对(A,B)有n∑ k=1C k n(2k-1)= n ∑ k=0 C k n2k- n ∑ k=0 C k n=3n-2n个. 同理,满足B?A的有序集合对(A,B)有3n-2n个. 故满足条件的有序集合对(A,B)的个数为2n(2n-1)-2(3n-2n)=4n+2n-2×3n. 2.记1,2,…,n满足下列性质T的排列a1,a2,…,a n的个数为f(n)(n≥2,n∈ N*).性质T:排列a1,a2,…,a n中有且只有一个a i >a i+1 (i∈{1,2,…,n-1}). (1)求f(3); (2)求f(n). 解:(1)当n=3时,1,2,3的所有排列有(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2), (3,2,1),其中满足仅存在一个i∈{1,2,3},使得a i>a i+1的排列有(1,3,2),(2,1,3),(2,3,1), (3,1,2),所以f(3)=4. (2)在1,2,…,n的所有排列(a1,a2,…,a n)中, 若a i=n(1≤i≤n-1),从n-1个数1,2,3,…,n-1中选i-1个数按从小到大的顺序排列为a1,a2,…,a i-1,其余按从小到大的顺序排列在余下位置,于是满足题意的排列个数为C i-1 n-1. 若a n=n,则满足题意的排列个数为f(n-1). 综上,f(n)=f(n-1)+n-1 ∑ i=1 C i-1 n-1=f(n-1)+2n-1-1.

解三角形高考大题-带答案

解三角形高考大题,带答案 1. (宁夏17)(本小题满分12分) 如图,ACD △是等边三角形,ABC △是等腰直角三角形, 90ACB =∠,BD 交AC 于E ,2AB =. (Ⅰ)求cos CAE ∠的值; (Ⅱ)求AE . 解:(Ⅰ)因为9060150BCD =+=∠, CB AC CD ==, 所以15CBE =∠. 所以6cos cos(4530)4 CBE =-=∠. ···················································· 6分 (Ⅱ)在ABE △中,2AB =, 由正弦定理 2 sin(4515)sin(9015) AE =-+. 故2sin 30 cos15 AE = 12 4 ? = =. 12分 2. (江苏17)(14分) 某地有三家工厂,分别位于矩形ABCD 的顶点A 、B 及CD 的中点P 处,已知AB=20km ,BC=10km ,为了处理三家工厂的污水,现要在矩形ABCD 的区域上(含边界),且A 、B 与等距离的一点O 处建造一个污水处理厂,并铺设排污管道AO 、BO 、OP ,设排污管道的总长为ykm 。 (1)按下列要求写出函数关系式: ①设∠BAO=θ(rad ),将y 表示成θ的函数关系式; ②设OP=x (km ),将y 表示成x 的函数关系式; (2)请你选用(1)中的一个函数关系式,确定污水处理厂的位置,使三条排污管道总长度最短。 【解析】:本小题考查函数的概念、 解三角形、导数等基本知识,考查数学建模能力、 抽象概括能力和解决实际问题的能力。 (1)①由条件知PQ 垂直平分AB ,若∠BAO=θ(rad ),则 cos cos OA BAO θ = =∠, 故10 cos OB θ = 又1010OP tan θ=-,所以1010 1010cos cos y OA OB OP tan θθθ =++= ++-B A C D E B

2020年高考数学三角函数与解三角形大题精做

2020年高考数学三角函数与解三角形大题精做 例题一:在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知(),2a c b =-m ,()cos ,cos C A =n ,且⊥m n . (1)求角A 的大小; (2)若5b c +=,ABC △a . 例题二:如图,在ABC △中,π 4A ∠=,4AB =,BC =点D 在AC 边上,且1cos 3 ADB ∠=-. (1)求BD 的长; (2)求BCD △的面积. 例题三: ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知()2cos cos 0a c B b A ++=.

(1)求B ; (2)若3b =,ABC △的周长为3+ABC △的面积. 例题四:已知函数()22 cos cos sin f x x x x x =+-. (1)求函数()y f x =的最小正周期以及单调递增区间; (2)已知ABC △的内角A 、B 、C 所对的边分别为a 、b 、c ,若()1f C =,2c =,()sin sin 2sin 2C B A A +-=,求ABC △的面积.

例题一:【答案】(1)π3 A =;(2 )a = 【解析】(1)由⊥m n ,可得0?=m n ,即2cos cos cos b A a C c A =+, 即2sin cos sin cos sin cos B A A C C A =+,即()2sin cos sin B A A C =+, ∵()()sin sin πsin A C B B +=-=,∴2sin cos sin B A B =,即()sin 2cos 10B A -=, ∵0πB <<,∴sin 0B ≠,∴1cos 2 A = , ∵0πA <<,∴π3A =. (2 )由ABC S =△ 1sin 2 ABC S bc A ==△,∴4bc =, 又5b c +=,由余弦定理得()22222cos 313a b c bc A b c bc =+-=+-=, ∴a = 例题二:【答案】(1)3;(2 ) 【解析】(1)在ABD △中,∵1cos 3 ADB ∠=-, ∴sin 3ADB ∠=, 由正弦定理sin sin BD AB BAD ADB =∠∠, ∴4sin 3sin AB BAD BD ADB ∠===∠. (2)∵πADB CDB ∠+∠=, ∴()1cos cos πcos 3 CDB ADB ADB ∠=-∠=-∠=. ∴( )sin sin πsin CDB ADB ADB ∠=-∠=∠= ,sin CDB ∠= 在BCD △中,由余弦定理2222cos BC BD CD BD CD CDB =+-??∠, 得21179233 CD CD =+-??,解得4CD =或2CD =-(舍). ∴BCD △ 的面积11sin 3422S BD CD CDB =??∠=??=. 例题三:【答案】(1)2π3 B =;(2 )ABC S =△ 【解析】(1)∵()2cos cos 0a c B b A ++=, ∴()sin 2sin cos sin cos 0A C B B A ++=,()sin cos sin cos 2sin cos 0A B B A C B ++=,

高中数学解三角形方法大全

解三角形的方法 1.解三角形:一般地,把三角形的三个角和它们的对边叫做三角形的元素。已知三角形的几个元素求 其他元素的过程叫作解三角形。 以下若无特殊说明,均设ABC ?的三个内角C B A 、、的对边分别为c b a 、、,则有以下关系成立: (1)边的关系:c b a >+,b c a >+,a c b >+(或满足:两条较短的边长之和大于较长边) (2)角的关系:π=++C B A ,π<A , C B A sin )sin(=+,C B A cos )cos(-=+,2 cos 2sin C B A =+ (3)边角关系:正弦定理、余弦定理以及它们的变形 板块一:正弦定理及其应用 1.正弦定理: R C c B b A a 2sin sin sin ===,其中R 为AB C ?的外接圆半径 2.正弦定理适用于两类解三角形问题: (1)已知三角形的任意两角和一边,先求第三个角,再根据正弦定理求出另外两边; (2)已知三角形的两边与其中一边所对的角,先求另一边所对的角(注意此角有两解、一解、无解

总结:若已知三角形的两边和其中一边所对的角,解这类三角形时,要注意有两解、一解和无解的可能 如图,在ABC ?中,已知a 、b 、A (1)若A 为钝角或直角,则当b a >时,ABC ?有唯一解;否则无解。 (2)若A 为锐角,则当A b a sin <时,三角形无解; 当A b a sin =时,三角形有唯一解; 当b a A b <

解三角形高考真题(一)

解三角形高考真题(一)

解三角形高考真题(一) 一.选择题(共9小题) 1.△ABC的内角A,B,C的对边分别为a,b,c,已知sinB+sinA(sinC﹣cosC)=0,a=2,c=,则C=() A.B.C.D. 2.在ABC中,角A,B,C的对边分别为a,b,c,若△ABC为锐角三角形,且满足sinB (1+2cosC)=2sinAcosC+cosAsinC,则下列等式成立的是() A.a=2b B.b=2a C.A=2B D.B=2A 3.△ABC的内角A、B、C的对边分别为a、b、c.已知a=,c=2,cosA=,则b=()A.B.C.2 D.3 4.在△ABC中,若AB=,BC=3,∠C=120°,则AC=() A.1 B.2 C.3 D.4 5.△ABC中,角A,B,C的对边分别是a,b,c,已知b=c,a2=2b2(1﹣sinA),则A=()A. B.C.D. 6.在△ABC中,B=,BC边上的高等于BC,则

14.△ABC的内角A,B,C的对边分别为a,b,c,若cosA=,cosC=,a=1,则b= .15.在△ABC中,∠A=,a=c,则= .16.在△ABC中,B=120°,AB=,A的角平分线AD=,则AC= . 17.在△ABC中,AB=,∠A=75°,∠B=45°,则AC= . 18.设△ABC的内角A,B,C的对边分别为a,b,c.若a=,sinB=,C=,则b= .19.如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北30°的方向上,行驶600m后到达B处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD= m. 20.若锐角△ABC的面积为,且AB=5,AC=8,则BC等于. 21.在△ABC中,a=3,b=,∠A=,则∠

高考数学三角函数与解三角形练习题

三角函数与解三角形 一、选择题 (2016·7)若将函数y =2sin 2x 的图像向左平移 12 π个单位长度,则平移后图象的对称轴为( ) A .()26k x k Z ππ =-∈ B .()26k x k Z ππ =+∈ C .()212 k x k Z ππ =-∈ D .()212 k x k Z ππ =+∈ (2016·9)若3 cos( )45 π α-=,则sin 2α =( ) A . 725 B .15 C .1 5 - D .7 25 - (2014·4)钝角三角形ABC 的面积是12 ,AB =1,BC ,则AC =( ) A .5 B C .2 D .1 (2012·9)已知0>ω,函数)4sin()(π ω+ =x x f 在),2(ππ 单调递减,则ω的取值范围是() A. 15 [,]24 B. 13[,]24 C. 1(0,]2 D. (0,2] (2011·5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos2θ =( ) A .45 - B .35 - C .35 D .45 (2011·11)设函数()sin()cos()(0,||)2 f x x x π ω?ω?ω?=+++>< 的最小正周期为π,且()()f x f x -=, 则( ) A .()f x 在(0,)2π 单调递减 B .()f x 在3(,)44 ππ 单调递减 C .()f x 在(0,)2π 单调递增 D .()f x 在3(,)44 ππ 单调递增 二、填空题 (2017·14)函数()23sin 4f x x x =- (0,2x π?? ∈???? )的最大值是 . (2016·13)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos 4 5 A = ,1cos 53C =,a = 1,则b = . (2014·14)函数()sin(2)2sin cos()f x x x ???=+-+的最大值为_________. (2013·15)设θ为第二象限角,若1 tan()42 πθ+=,则sin cos θθ+=_________. (2011·16)在△ABC 中,60,B AC ==o 2AB BC +的最大值为 . 三、解答题

高中数学解三角形最值

高中数学解三角形最值 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

2 三角形中的最值(或范围)问题 解三角形问题,可以较好地考察三角函数的诱导公式,恒等变换,边角转化,正弦余弦定理等知识点,是三角,函数,解析几何和不等式的知识的交汇点,在高考中容易出综合题,其中,三角形中的最值问题又是一个重点。其实,这一部分的最值问题解决的方法一般有两种:一是建立目标函数后,利用三角函数的有界性来解决,二是也可以利用重要不等式来解决。 类型一:建立目标函数后,利用三角函数有界性来解决 例1.在△ABC 中, ,,a b c 分别是内角,,A B C 的对边,且2asinA =(2b+c )sinB+(2c+b )sinC. (1) 求角A 的大小;(2)求sin sin B C +的最大值. 变式1:已知向量(,)m a c b =+,(,)n a c b a =--,且0m n ?=,其中,,A B C 是△ABC 的内角,,,a b c 分别是角,,A B C 的对边. (1) 求角C 的大小;(2)求sin sin A B +的最大值. 解:由m n ?=()a c +()()0a c b b a -+-=,得a 2+b 2—c 2=ab=2abcosC 所以cosC=21 ,从而C=60 故sin sin sin sin(120)O A B A A +=+-=3sin(60 +A) 所以当A=30 时,sin sin A B +的最大值是3 变式2.已知半径为R 的圆O 的内接⊿ABC 中,若有2R (sin 2A —sin 2C )=(2a —b )sinB 成立,试求⊿ABC 的面积S 的最大值。 解:根据题意得:

2019届江苏省高考数学二轮复习微专题3.平面向量问题的“基底法”和“坐标法”

微专题3 平面向量问题的“基底法”与“坐标法” 例1 如图,在等腰梯形ABCD 中,已知AB ∥DC ,AB =2,BC =1,∠ABC =60°,动点E 和F 分别在线段BC 和DC 上.若BE →=λBC →,D F →=19λDC →,则 AE →·A F → 的最小值为 ________. (例1) 变式1 在△ABC 中,已知AB =10,AC =15,∠BAC =π 3,点M 是边AB 的中点, 点N 在直线AC 上,且AC →=3AN → ,直线CM 与BN 相交于点P ,则线段AP 的长为________. 变式2若a ,b ,c 均为单位向量,且a ·b =0,(a -c )·(b -c )≤0,则|a +b -c |的最大值为________. 处理平面向量问题一般可以从两个角度进行: 切入点一:“恰当选择基底”.用平面向量基本定理解决问题的一般思路是:先选择一组基底,再用该基底表示向量,其实质就是利用平行四边形法则或三角形法则进行向量的加减运算和数乘运算. 切入点二:“坐标运算”.坐标运算能把学生从复杂的化简中解放出来,快速简捷地达成解题的目标.对于条件中包含向量夹角与长度的问题,都可以考虑建立适当的坐标系,应用坐标法来统一表示向量,达到转化问题,简单求解的目的.

1. 设E ,F 分别是Rt △ABC 的斜边BC 上的两个三等分点,已知AB =3,AC =6,则AE →·A F → =________. 2. 如图,在矩形ABCD 中,AB =2,BC =2,点E 为BC 的中点,点F 在边CD 上,若AB →·A F →=2,则AE →·B F →=________. 3. 如图,在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若AC →·BE → =33 32 ,则AB 的长为________. (第2题) (第3题) (第4题) 4. 如图,在2×4的方格纸中,若a 和b 是起点和终点均在格点上的向量,则向量2a +b 与a -b 夹角的余弦值是________. 5. 已知向量OA →与OB →的夹角为60°,且|OA →|=3,|OB →|=2,若OC →=mOA →+nOB →,且OC → ⊥AB → ,则实数m n =________. 6. 已知△ABC 是边长为3的等边三角形,点P 是以A 为圆心的单位圆上一动点,点Q 满足AQ →=23AP →+13 AC →,则|BQ → |的最小值是________. 7. 如图,在Rt △ABC 中,P 是斜边BC 上一点,且满足BP →=12 PC → ,点M ,N 在过点P 的直线上,若AM →=λAB →,AN →=μAC → ,λ,μ>0,则λ+2μ的最小值为________. (第7题) (第8题) (第9题) 8. 如图,在平行四边形ABCD 中,AC 与BD 相交于点O ,E 为线段AO 的中点.若BE → =λBA →+μBD → (λ,μ∈R ),则λ+μ=________. 9. 如图,在直角梯形ABCD 中,若AB ∥CD ,∠DAB =90°,AD =AB =4,CD =1, 动点P 在边BC 上,且满足AP →=mAB →+nAD → (m ,n 均为正实数),则1m +1n 的最小值为________. 10. 已知三点A(1,-1),B(3,0),C(2,1),P 为平面ABC 上的一点,AP →=λAB →+μAC → 且AP →·AB →=0,AP →·AC →=3. (1) 求AB →·AC →的值; (2) 求λ+μ的值.

高考解三角形大题(30道)69052

专题精选习题----解三角形 1.在ABC ?中,内角C B A ,,的对边分别为c b a ,,,已知b a c B C A -= -2cos cos 2cos . (1)求A C sin sin 的值; (2)若2,41 cos ==b B ,求ABC ?的面积S . 2.在ABC ?中,角C B A ,,的对边分别是c b a ,,,已知 2sin 1cos sin C C C -=+. (1)求C sin 的值; (2)若8)(422-+=+b a b a ,求边c 的值. 3.在ABC ?中,角C B A ,,的对边分别是c b a ,,. (1)若A A cos 2)6sin(=+π ,求A 的值; (2)若c b A 3,31 cos ==,求C sin 的值.

4.ABC ?中,D 为边BC 上的一点,5 3cos ,135sin ,33=∠==ADC B BD ,求AD . 5.在ABC ?中,角C B A ,,的对边分别是c b a ,,,已知41 cos ,2,1===C b a . (1)求ABC ?的周长; (2)求)cos(C A -的值. 6.在ABC ?中,角C B A ,,的对边分别是c b a ,,.已知)(sin sin sin R p B p C A ∈=+,且241 b a c =. (1)当1,45 ==b p 时,求c a ,的值; (2)若角B 为锐角,求p 的取值范围.

7.在ABC ?中,角C B A ,,的对边分别是c b a ,,.且C b c B c b A a sin )2(sin )2(sin 2+++=. (1)求A 的值; (2)求C B sin sin +的最大值. 8.在ABC ?中,角C B A ,,的对边分别是c b a ,,,已知 412cos -=C . (1)求C sin 的值; (2)当C A a sin sin 2,2==时,求c b ,的长. 9.在ABC ?中,角C B A ,,的对边分别是c b a ,,,且满足 3,5522cos =?=A . (1)求ABC ?的面积; (2)若6=+c b ,求a 的值.

高考文科数学真题大全解三角形高考题学生版

高考文科数学真题大全解 三角形高考题学生版 This manuscript was revised by the office on December 10, 2020.

8.(2012上海)在ABC ?中,若C B A 222sin sin sin <+,则ABC ?的形状是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .不能确定 9.(2013天津理)在△ABC 中,∠ABC =π 4 ,AB =2,BC =3,则sin ∠BAC 等于( ) 10.(2013新标2文) △ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b =2,B = π6,c =π 4 ,则△ABC 的面积为( ) A .23+2 +1 C .23-2 -1 11、(2013新标1文) 已知锐角ABC ?的内角,,A B C 的对边分别为,,a b c ,223cos cos 20A A +=,7a =,6c =,则b =( ) (A )10 (B )9 (C )8 (D )5 12.(2013辽宁)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a sin B cos C +c sin B cos A =1 2b ,且a >b ,则∠B =( ) 13.(2013山东文)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .若B =2A ,a =1,b =3,则c =( ) A .2 3 B .2 D .1 14.(2013陕西)设△ABC 的内角A, B, C 所对的边分别为a, b, c, 若cos cos sin b C c B a A +=, 则 △ABC 的形状为 (A) 锐角三角形 (B) 直角三角形 (C) 钝角三角形 (D) 不确定 15、(2016年新课标Ⅰ卷文)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知5a =,2c =, 2 cos 3 A = ,则b= (A )2 (B )3 (C )2 (D )3 16、(2016年新课标Ⅲ卷文)在ABC △中,π4B ,BC 边上的高等于1 3 BC ,则sin A (A )3 10 (B )1010 (C )55 (D )31010 17、(2016年高考山东卷文)ABC △中,角A ,B ,C 的对边分别是a ,b ,c ,已知22,2(1sin )b c a b A ,则A = (A ) 3π4(B )π3(C )π4(D )π6

最新专题24解三角形中的最值、范围问题(解析版)

专题24 解三角形中的最值、范围问题 解三角形问题是高考高频考点,命题大多放在解答题的第一题,主要利用三角形的内角和定理,正、余弦定理、三角形面积公式等知识解题,解题时要灵活利用三角形的边角关系进行“边转角”“角转边”,另外要注意22,,a c ac a c ++三者的关系. 高考中经常将三角变换与解三角形知识综合起来命题,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理实现边角互化;以上特征都不明显时,则要考虑两个定理都有可能用到.而三角变换中主要是“变角、变函数名和变运算形式”,其中的核心是“变角”,即注意角之间的结构差异,弥补这种结构差异的依据就是三角公式. 1、正弦定理: 2sin sin sin a b c R A B C ===,其中R 为ABC 外接圆的半径 正弦定理的主要作用是方程和分式中的边角互化.其原则为关于边,或是角的正弦值是否具备齐次的特征.如果齐次则可直接进行边化角或是角化边,否则不可行 学/科-+网 例如:(1)2 2 2 2 2 2 sin sin sin sin sin A B A B C a b ab c +-=?+-= (2)cos cos sin cos sin cos sin b C c B a B C C B A +=?+=(恒等式) (3) 22sin sin sin bc B C a A = 2、余弦定理:2 2 2 2cos a b c bc A =+- 变式:()()2 2 21cos a b c bc A =+-+ 此公式在已知,a A 的情况下,配合均值不等式可得到b c +和bc 的 最值 4、三角形中的不等关系 (1)任意两边之和大于第三边:在判定是否构成三角形时,只需验证较小的两边之和是否比第三边大即可.由于不存在等号成立的条件,在求最值时使用较少 (2)在三角形中,边角以及角的三角函数值存在等价关系: sin sin cos cos a b A B A B A B >?>?>?< 其中由cos cos A B A B >?<利用的是余弦函数单调性,而sin sin A B A B >?>仅在一个三角形内有效. 5、解三角形中处理不等关系的几种方法 (1)转变为一个变量的函数:通过边角互化和代入消元,将多变量表达式转变为函数,从而将问题转化为求函数的值域(最值) (2)利用均值不等式求得最值 【经典例题】 例1.【2018届百校联盟TOP20高三四月联考全国一卷】已知四边形 中, ,

解三角形(历届高考题)

解三角形(历届高考题) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

历届高考中的“解三角形”试题精选(自我测试) 1.(A 等于( ) (A )135° (B)90° (C)45° (D)30° 2.(2007重庆理)在ABC ?中,,75,45,300===C A AB 则BC =( ) A.33- B.2 C.2 D.33+ 3.(2006山东文、理)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、 c ,A =3 π ,a =3,b =1,则c =( ) (A )1 (B )2 (C )3—1 (D )3 4.(2008福建文)在中,角A,B,C 的对应边分别为a,b,c,若222a c b +-=,则角B 的值为( ) A.6π B.3π C.6π或56π D.3 π 或23π 5.(2005春招上海)在△ABC 中,若 C c B b A a cos cos cos = =,则△ABC 是( ) (A )直角三角形. (B )等边三角形. (C )钝角三角形. (D )等腰直角三角形. 6.(2006全国Ⅰ卷文、理)ABC ?的内角A 、B 、C 的对边分别为a 、b 、c ,若 a 、 b 、 c 成等比数列,且2c a =,则cos B =( ) A . 14 B .3 4 C .4 D .3 7.(2005北京春招文、理)在ABC ?中,已知C B A sin cos sin 2=,那么ABC ?一定是( ) A .直角三角形 B .等腰三角形 C .等腰直角三角形 D .正三角形 8.(2004全国Ⅳ卷文、理)△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边.如果a 、b 、c 成等差数列,∠B=30°,△ABC 的面积为2 3 ,那么b =( ) A .2 31+ B .31+ C .2 32+ D .32+ 二.填空题: (每小题5分,计30分) 9.(2007重庆文)在△ABC 中,AB =1, B C =2, B =60°,则AC = 。

高中数学解三角形练习及详细答案

解三角形练习 题一:在△ABC中,若∠A=60°,∠B=45°,BC=32,则AC=(). A.43B.2 3 C. 3 D. 3 2 题二:在△ABC中,角A,B,C所对的边分别为a,b,c,已知a=23,c=22,1+tan A tan B= 2c b,则C =(). A.30°B.45° C.45°或135°D.60° 题三:在△ABC中,角A、B、C所对的边分别是a、b、c.若b=2a sin B,则角A的大小为________. 题四:在△ABC中,角A,B,C的对边分别为a,b,c,且满足(2b-c)cos A-a cos C=0.求角A的大小. 题五:在△ABC中,内角A,B,C依次成等差数列,AB=8,BC=5,则△ABC外接圆的面积为________. 题六:在△ABC中,内角A,B,C所对的边分别为a,b,c,已知sin B(tan A+tan C)=tan A tan C. 求证:a,b,c成等比数列. 题七:某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港

口O北偏西30°且与该港口相距20海里的A处,并正以30海里/小时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v海里/小时的航行速度匀速行驶,经过t小时与轮船相遇. (1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少? (2)为保证小艇在30分钟内(含30分钟)能与轮船相遇,试确定小艇航行速度的最小值. 题八:如图,在△ABC中,已知B=π 3,AC=43,D为BC边上一点.若AB=AD,则△ADC的 周长的最大值为________. 题九:如图,在△ABC中,点D在BC边上,AD=33,sin∠BAD=5 13,cos∠ADC= 3 5. (1)求sin∠ABD的值; (2)求BD的长. 题十:如图,在湖面上高为10 m处测得天空中一朵云的仰角为30°,测得湖中之影的俯角为45°,则云距湖面的高度为(精确到0.1 m)(). A.2.7 m B.17.3 m C.37.3 m D.373 m 题十一:在△ABC中,若sin2A+sin2B < sin2C,则△ABC的形状是(). A.锐角三角形B.直角三角形

江苏省高考数学二轮复习 专题10 数列(Ⅱ)

江苏省2013届高考数学(苏教版)二轮复习专题10 数__列(Ⅱ) 回顾2008~2012年的高考题,数列是每一年必考的内容之一.其中在填空题中,会出现等差、等比数列的基本量的求解问题.在解答题中主要考查等差、等比数列的性质论证问题,只有2009年难度为中档题,其余四年皆为难题. 预测在2013年的高考题中,数列的考查变化不大: 1填空题依然是考查等差、等比数列的基本性质. 2在解答题中,依然是考查等差、等比数列的综合问题,可能会涉及恒等关系论证和不等关系的论证. 1.在等差数列{a n }中,公差d =12,前100项的和S 100=45,则a 1+a 3+a 5+…+a 99=________. 解析:S 100=1002(a 1+a 100)=45,a 1+a 100=9 10 , a 1+a 99=a 1+a 100-d =25 . a 1+a 3+a 5+…+a 99=50 2 (a 1+a 99)=502×25 =10.

答案:10 2.已知数列{a n }对任意的p ,q ∈N * 满足a p +q =a p +a q ,且a 2=-6,那么a 10=________. 解析:由已知得a 4=a 2+a 2=-12,a 8=a 4+a 4=-24,a 10=a 8+a 2=-30. 答案:-30 3.设数列{a n }的前n 项和为S n ,令T n = S 1+S 2+…+S n n ,称T n 为数列a 1,a 2,…,a n 的“理 想数”,已知数列a 1,a 2,…,a 500的“理想数”为2 004,那么数列12,a 1,a 2,…,a 500的“理想数”为________. 解析:根据理想数的意义有, 2 004=500a 1+499a 2+498a 3+…+a 500 500, ∴501×12+500a 1+499a 2+498a 3+…+a 500 501 = 501×12+2 004×500 501 =2 012. 答案:2 012 4.函数y =x 2 (x >0)的图象在点(a k ,a 2 k )处的切线与x 轴交点的横坐标为a k +1,k 为正整数, a 1=16,则a 1+a 3+a 5=________. 解析:函数y =x 2 (x >0)在点(16,256)处的切线方程为y -256=32(x -16).令y =0得a 2 =8;同理函数y =x 2(x >0)在点(8,64)处的切线方程为y -64=16(x -8),令y =0得a 3=4;依次同理求得a 4=2,a 5=1.所以a 1+a 3+a 5=21. 答案:21 5.将全体正整数排成一个三角形数阵: 按照以上排列的规律,第n 行(n ≥3)从左向右的第3个数为________.

解三角形专题练习【附答案】

解三角形专题(高考题)练习【附答案】 1、在ABC ?中,已知内角3 A π = ,边BC =设内角B x =,面积为y . (1)求函数()y f x =的解析式和定义域; (2)求y 的最大值. 8、△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且有sin2C+3cos (A+B )=0,.当 13,4==c a ,求△ABC 的面积。 2、已知ABC ?中,1||=AC ,0120=∠ABC , θ=∠BAC , 记→ → ?=BC AB f )(θ, (1)求)(θf 关于θ的表达式; (2)(2)求)(θf 的值域; 3、在△ABC 中,角A 、B 、C 所对的边分别是a ,b ,c ,且.2 1 222ac b c a =-+ (1)求B C A 2cos 2 sin 2 ++的值; (2)若b =2,求△ABC 面积的最大值. 4、在ABC ?中,已知内角A 、B 、C 所对的边分别为a 、b 、c ,向量(2sin ,m B =, 2cos 2,2cos 12B n B ? ?=- ?? ?,且//m n 。 (I )求锐角B 的大小; (II )如果2b =,求ABC ?的面积ABC S ?的最大值。 5、在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且.cos cos 3cos B c B a C b -= (I )求cos B 的值; (II )若2=?,且22=b ,求c a 和b 的值. 6、在ABC ?中,cos 5A = ,cos 10 B =. (Ⅰ)求角 C ; (Ⅱ)设AB =,求ABC ?的面积. 7、在△ABC 中,A 、B 、C 所对边的长分别为a 、b 、c ,已知向量(1,2sin )m A =u r ,(sin ,1cos ),//,.n A A m n b c =++=r u r r 满足 (I )求A 的大小;(II )求)sin(6π+B 的值. 8、△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且有sin2C+3cos (A+B )=0,.当 A B C 120° θ

三角函数与解三角形大题部分-高考数学解题方法训练

专题05 三角函数与解三角形大题部分 【训练目标】 1、掌握三角函数的定义,角的推广及三角函数的符号判断; 2、熟记同角三角函数的基本关系,诱导公式,两角和差公式,二倍角公式,降幂公式,辅助角公式,并能熟练的进行恒等变形; 3、掌握正弦函数和余弦函数的图像与性质,并能正确的迁移到正弦型函数和余弦型函数; 4、掌握三角函数的图像变换的规律,并能根据图像求函数解析式; 5、熟记正弦定理,余弦定理及三角形的面积公式; 6、能熟练,灵活的使用正弦定理与余弦定理来解三角形。 【温馨小提示】 此类问题在高考中属于必考题,难度中等,要想拿下,只能有一条路,多做多总结,熟能生巧。 【名校试题荟萃】 1、(浙江省诸暨中学2019届高三期中考试题文) 已知函数. (1).求 )(x f 的最小正周期和单调递增区间; (2).当时,求函数)(x f 的最小值和最大值 【答案】(1)π, (2) 【解析】 (1) ,π=T , 单调递增区间为; (2)

∴当时,,∴. 当时,,∴. 2、(河北省衡水中学2019届高三上学期三调考试数学文)试卷)已知中,角所对的边分别是,且,其中是的面积,. (1)求的值; (2)若,求的值. 【答案】 (1);(2). (2),所以,得①, 由(1)得,所以. 在中,由正弦定理,得,即②, 联立①②,解得,,则,所以. 3、(湖北省武汉市部分市级示范高中2019届高三十月联考文科数学试题)已知函数f(x)=sin(ωx+)- b(ω>0,0<<π的图象的两相邻对称轴之间的距离,若将f(x)的图象先向右平移个单位,再向上平移个单位,所得图象对应的函数为奇函数. (1)求f(x)的解析式并写出单增区间; (2)当x∈,f(x)+m-2<0恒成立,求m取值范围. 【答案】

解三角形最值问题

三角形最值问题 课前强化 1.在△ABC 中,已知0 45,2,===B cm b xcm a ,如果利用正弦定理解三角形有两解,则x 的取值范围是 ( ) A.222 <x< B.222≤<x C.2x > D.2x < 2.△ABC 中,若sinA :sinB :sinC=m :(m+1):2m, 则m 的取值范围是( ) A.(0,+∞) B.( 2 1,+∞) C.(1,+∞) D.(2,+∞) 3.在△ABC 中,A 为锐角,lg b +lg(c 1)=lgsin A =-lg 2, 则△ABC 为( ) A. 等腰三角形 B. 等边三角形 C. 直角三角形 D. 等腰直角三角形 4.在△ABC 中,根据下列条件解三角形,则其中有两个解的是( ) A.0 075,45,10===C A b B.080,5,7===A b a C.060,48,60===C b a D.045,16,14===A b a 5.△ABC 的三内角,,A B C 所对边的长分别为,,a b c 设向量(,) p a c b =+ (,)q b a c a =-- ,若//p q ,则角C 的大小为 (A)6π (B)3π (C) 2π (D) 23 π 6.如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为 ( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .由增加的长度决定 最值范围问题: 7、在ABC ?中,角所对的边分别为且满足(I )求角的大小;(II )求)cos(sin 3C B A +-的最大值,并求取得最大值时角的大小. ,,A B C ,,a b c sin cos .c A a C =C ,A B

江苏南通市2018届高三数学第二次调研试卷含答案

江苏南通市2018届高三数学第二次调研 试卷(含答案) 南通市2018届高三第二次调研测试 数学Ⅰ 参考公式:柱体的体积公式,其中为柱体的底面积,为高. 一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上. 1.已知集合,则▲. 2.已知复数,其中为虚数单位.若为纯虚数,则实数a 的值为▲. 3.某班40名学生参加普法知识竞赛,成绩都在区间上,其频率分布直方图如图所示, 则成绩不低于60分的人数为▲. 4.如图是一个算法流程图,则输出的的值为▲. 5.在长为12cm的线段AB上任取一点C,以线段AC,BC 为邻边作矩形,则该矩形的面积 大于32cm2的概率为▲. 6.在中,已知,则的长为▲. 7.在平面直角坐标系中,已知双曲线与双曲线有公共的

渐近线,且经过点 ,则双曲线的焦距为▲. 8.在平面直角坐标系xOy中,已知角的始边均为x轴的非负半轴,终边分别经过点 ,,则的值为▲. 9.设等比数列的前n项和为.若成等差数列,且,则的值为▲. 10.已知均为正数,且,则的最小值为▲. 11.在平面直角坐标系xOy中,若动圆上的点都在不等 式组表示的平面区域 内,则面积最大的圆的标准方程为▲. 12.设函数(其中为自然对数的底数)有3个不同的零点,则实数 的取值范围是▲. 13.在平面四边形中,已知,则的值为▲. 14.已知为常数,函数的最小值为,则的所有值为▲.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答.解答时应写出文字说明、 证明过程或演算步骤. 15.(本小题满分14分) 在平面直角坐标系中,设向量,,. (1)若,求的值;

相关文档
最新文档