飞思卡尔S12系列寄存器和中断

飞思卡尔S12系列寄存器和中断
飞思卡尔S12系列寄存器和中断

S12的输入/输入端口(I/O口)

I/O端口功能

可设置为通用I/O口、驱动、内部上拉/下拉、中断输入等功能。

设置I/O口工作方式的寄存器有:

DDR、IO、RDR、PE、IE和PS。

DDR:设定I/O口的数据方向。

IO :设定输出电平的高低。

RDR:选择I/O口的驱动能力。

PE:选择上拉/下拉。

IE:允许或禁止端口中断。

PS:1、中断允许位置位时,选择上升沿/下降沿触发中断;2、中断禁止时且PE有效时,用于选择上拉还是下拉。

I/O端口设置

1、A口、B口、E口寄存器

(1)数据方向寄存器DDRA、DDRB、DDRE

DDRA、DDRB、DDRE均为8位寄存器,复位后其值均为0。

当DDRA=0、DDRB=0、DDRE=0 时A口、B口和E口均为输入口。

否则,A口、B口、E口为输出口。当DDRA、DDRB、DDRE的任何一

位置1时,则该位对应的引脚被设置为输出。

例如,将A口设置为输出口,则其C语言程序的语句为:DDRA=0xff;(2)A口、B口、E口上拉控制寄存器PUCR

PUCR为8位寄存器,复位后的值为0。当PUPAE、PUPBE、PUPEE被设置为1时,A口、B口、E口具有内部上拉功能;为0时,上拉无效。当A口、B口、E口为地址/数据总线时,PUPAE和PUPBE无效。

(3)A口、B口、E口降功率驱动控制寄存器RDRIV

RDRIV为8位寄存器,复位后的值为0,此时,A口、B口、E口驱动保持全功率;当RDPA、RDPB、RDPE为1时,A口、B口、E口输出引脚的驱动功率下降

(4)数据寄存器PORTA、PORTB、PORTE

PORTA、PORTB、PORTE均为8位寄存器,复位后的值为0,端口引脚输出低电平;要使引脚输出高电平,相应端口对应位应该置1。

由于PE0是/XIRQ、PE1是IRQ,因此,PE0和PE1只能设置为输入。

2、H口寄存器

(1)H口I/O寄存器PTH

任意时间读/写。

当某一引脚对就的数据方向位设置为1时,读操作返回的是这个端口寄存器的值;否则,读的是引脚的值。

(2)端口H输入寄存器PTIH

只可读,不可写。

读该寄存器返回的是引脚状态。该寄存器可检测相应引脚的输出是否过载或短路。

(3)数据方向寄存器DDRH

(4)端口H降功率驱动寄存器RDRH

(5)端口H拉动装置使能寄存器PERH

任意时间读/写。

如果端口H是输入口,该寄存器将配置被激活的上拉或下拉装置。

当PERH某一位为1时,对应装备上拉或下拉使能。

当PERH某一位为0时,对应装备上拉或下拉禁止。

(6)端口H极性选择寄存器PPSH

任意时间读/写。

该寄存器有两个作用:选择激活的中断边沿的极性;选择上拉或下拉。

当PPSH某一位为1时,H口对应引脚信号上升沿将使PIFH寄存器中相应位置位;当PERH对应位置1且端口定义为输入口时,引脚和下拉装置连接。当PPSH某一位为0时,H口对应引脚信号下降沿将使PIFH寄存器中相应位置位;当PERH对应位置1且端口定义为输入口时,引脚和上拉装置连接。

(7)H口中断使能寄存器PIEH

任意时间读/写。

PIEH寄存器可设置端口H相应引脚的外部中断边沿使能或禁止。

PIEH某一位置1时,对应引脚的中断使能。

PIEH某一位置0时,对应引脚的中断禁止。

(8)口中断标志寄存器PIFH

任意时间读/写。

当对应引脚出现活动的边沿时,PIFH相应位被置1。是上升沿或下降沿,由PPSH寄存器相应位的状态决定。

为了清除标志位,向PIFH对应位写“1”。写“0”无效。

3、J口寄存器

(1)J口I/O寄存器PTJ

任意时间读/写。

当数据方向寄存器对应位置1时,读PTJ将返回PTJ中的值;否则读返回对应引脚的值。

(2)J口输入寄存器PTIJ

只读不写。

读该寄存器将返回引脚的值。

该寄存器可检测相应引脚的输出是否过载或短路。

(3)J口数据方向寄存器DDRJ

(4)J口降功率驱动寄存器RDRJ

(5)J口拉动装备使能寄存器PERJ

(6)J口极性选择寄存器PPSJ

任意时间读/写。

该寄存器有两个作用:选择激活的中断边沿的极性;选择上拉或下拉。

当PPSJ某一位为1时,J口对应引脚信号上升沿将使PIFJ寄存器中相应位置位;当PERJ对应位置1且端口定义为输入口时,引脚和下拉装置连接。

当PPSJ某一位为0时,J口对应引脚信号下降沿将使PIFJ寄存器中相应位置位;当PERJ对应位置1且端口定义为输入口时,引脚和上拉装置连接。(7)J口中断使能寄存器PIEJ

任意时间读/写。

PIEJ寄存器可设置端口J相应引脚的外部中断边沿使能或禁止。

PIEJ某一位置1时,对应引脚的中断使能。

PIEJ某一位置0时,对应引脚的中断禁止.

(8)J口中断标志寄存器PIFJ

任意时间读/写。

当对应引脚出现活动的边沿时,PIFJ相应位被置1。是上升沿或下降沿,由PPSJ寄存器相应位的状态决定。

为了清除标志位,向PIFJ对应位写“1”。写“0”无效。

4、M口寄存器

(1)M口I/O寄存器PTM

任意时间读/写。

当数据方向寄存器对应位置1时,读PTM将返回PTM中的值;否则读PTM将返回对应引脚的值。

(2)M口输入寄存器PTIM

只读不写。

读该寄存器将返回引脚的值。

该寄存器可检测相应引脚的输出是否过载或短路。

(3)M口数据方向寄存器DDRM

Byteflight/CAN/BDLC强制将与其输出对应的引脚置为输出状态;同时,将与其输入对应的引脚置为输入状态。

(4)M口降功率驱动寄存器RDRM

(5)M口拉动装备使能寄存器PERM

任意时间读/写。

如果端口用于输入或“线或”输出,该寄存器配置被激活的上拉或下拉装置。当端口用于推挽输出时,相应位无效。

(6)M口极性选择寄存器PPSM

任意时间读/写。

当PPSM的某一位被置为1时,如果PERM对应位使能,并且端口用于通用或BDLC输入,则一个下拉装备被连接到M口对应引脚上。

当PPSM的某一位被清0时,如果PERM对应位使能,并且端口用于通

用、Byteflight或RXCAN输入,则一个上拉装备被连接到M口对应引脚上。(7)M口线或模式寄存器WOMM

该寄存器配置输出引脚为线或。如果应用于Byteflight、CAN和BDLC 输出且许多几种串行模式的多点连接,则该寄存器的某一位对于用于输入的相应引脚无影响。

当WOMM某一位置为1时,输出缓冲器工作在开漏输出状态。

当WOMM某一位清为0时,输出缓冲器工作在推挽输出状态。

5、P口寄存器

(1)P口I/O寄存器PTP

任意时间读/写。

如果PWM通道使能,则PWM功能优先于通用I/O功能。如果相应通道使能,通道6~0只能输出;如果停机特性使能,则通道7可作为PWM输出与输入。

SPI功能也优先于通用I/O功能。

(2)P口输入寄存器PTIP

(3)P口数据方向寄存器DDRP

如果PWM对应通道或SPI模式使能,则该寄存器对引脚无效。

(4)P口降功率驱动寄存器RDRP

(5)P口拉动装置使能寄存器PERP

(6)P口极性选择寄存器PPSP

任意时间读/写。

该寄存器有两个作用:选择激活的中断边沿的极性;选择上拉或下拉。

当PPSP某一位为1时,P口对应引脚信号上升沿将使PIFP寄存器中相应位置位;当PERP对应位置1且端口定义为输入口时,引脚和下拉装置连接。

当PPSP某一位为0时,P口对应引脚信号下降沿将使PIFP寄存器中相应位置位;当PERP对应位置1且端口定义为输入口时,引脚和上拉装置连接。

(7)P口中断使能寄存器PIEP

任意时间读/写。

PIEP寄存器可设置端口P相应引脚的外部中断边沿使能或禁止。

PIEP某一位置1时,对应引脚的中断使能。

PIEP某一位置0时,对应引脚的中断禁止。

(8)P口中断标志寄存器PIFP

任意时间读/写。

当对应引脚出现活动的边沿时,PIFP相应位被置1。是上升沿或下降沿,由PPSP寄存器相应位的状态决定。

为了清除标志位,向PIFP对应位写“1”。写“0”无效。

6、S口寄存器

(1)S口I/O寄存器PTS

(2)S口输入寄存器PTIP

(3)S口数据方向寄存器DDRS

(4)S口降功率驱动寄存器RDRS

(5)S口拉动装置使能寄存器PERS

(6)S口极性选择寄存器PPSS

任意时间读/写。

该寄存器有两个作用:选择激活的中断边沿的极性;选择上拉或下拉。

当PPSP某一位为,PERP对应位置1且端口定义为输入口时,引脚和下拉装置连接。

当PPSP某一位为0,PERP对应位置1且端口定义为线或输出口时,引脚和上拉装置连接。

(7)S口线或模式寄存器WOMS

该寄存器配置输出引脚为线或。如果应用于SPI和SCI输出且许多几种串行模式的多点连接,则该寄存器的某一位对于用于输入的相应引脚无影响。

当WOMM某一位置为1时,输出缓冲器工作在开漏输出状态。

当WOMM某一位清为0时,输出缓冲器工作在推挽输出状态。

S12微控制器中断模块

中断源:中断请求信号的来源。

S12微控制器的中断源:特殊中断源、外部中断源、端口中断源、定时中断源、通信中断源、A/D中断源等。

中断过程

①外部或内部中断源提出中断请求,如果存在中断标志位,则硬件置相应中断标志位。

②如果开放了CPU对相应中断源的中断请求的响应,CPU将暂停当前程序段的执行,I清0,即关中断,将断点地址与相关寄存器的值压入堆栈保护起来。

③跳转到中断入口地址执行指令,进而执行中断服务程序。中断服务程序中清标志位。

④将压入堆栈的数据放回相关寄存器,断点地址放回PC。

⑤返回暂停的程序段继续执行。

1、不可屏蔽中断XIRQ

中断入口地址:$fff4、$fff5。C语言中断号:5。

(1)中断允许位X

将CCR中的X位清0,就开放了CPU对XIRQ中断请求的响应。

C语言程序中,使用如下指令可开放XIRQ的中断:

ASM LDAA #$10;

ASM TAP;

(2)中断请求信号

低电平有效。

(3)实验

①实验要求

在main()中顺序点亮8支发光管,每次点亮1支。

在XIRQ的中断服务程序中反向点亮8支发光管,每次点亮2支。

②电路连接

发光管由A口驱动;将E口与B口连接,由PB0为XIRQ提供中断请

求信号。

2、可屏蔽中断IRQ

中断入口地址:$fff2、$fff3。C语言中断号:6。

(1)中断允许总控制位I

将CCR中的I位清0,就开放了CPU对可屏蔽中断源的中断请求的响应。

(2)IRQ控制寄存器IRQCR

程序中,IRQCR使用符号INTCR代替。

①IRQ中断触发方式选择位IRQE

当IRQE=1时,IRQ引脚下降沿触发中断。

当IRQE=0时,IRQ引脚低电平沿触发中断。

②IRQ中断允许控制位IRQEN

当IRQEN=1时,IRQ引脚与中断逻辑连接,IRQ中断允许。

当IRQEN=0时,IRQ引脚与中断逻辑断开,IRQ中断禁止。

(3)实验

①实验要求

在main()中顺序点亮8支发光管,每次点亮1支。

在IRQ的中断服务程序中反向点亮8支发光管,每次点亮2支。

②电路连接

发光管由A口驱动;将E口与B口连接,由PB1为IRQ提供中断请求信号。

3、H口中断

中断入口地址:$ffcc、$ffcd。C语言中断号:25。

(1)中断允许总控制位I

将CCR中的I位清0,就开放了CPU对可屏蔽中断源的中断请求的响应。(2)相关寄存器

①H口中断触发方式选择寄存器PPSH

当PPSHx=1时,PTHx引脚信号上升沿将使PIFHx=1。

当PPSHx=0时,PTHx引脚信号下降沿将使PIFHx=1。

②H口中断允许控制寄存器PIEH

当PIEHx=1时,PTHx引脚信号的中断请求允许。

当PIEHx=0时,PTHx引脚信号的中断请求禁止。

③H口中断标志寄存器PIFH

PPSHx位的状态,决定PIFHx是上升沿或下降沿被置1。

在H口的中断服务程序中,向PIFHx位写“1”可使PIFHx=0。写“0”无效。

(3)实验

①实验要求

在main()中顺序点亮8支发光管,每次点亮1支。

在H口的中断服务程序中反向点亮8支发光管。当PTHx引脚中断时,点亮x+1支发光管。

②电路连接

发光管由A口驱动;将H口与B口连接,由B口相应引脚为H口相应引脚提供中断请求信号。

4、中断优先级实验

I位控制的高优先级中断寄存器HPRIO。

设置某一个由I控制的中断源的中断优先级为高优先级时,只需要向HPRIO写入该中断源的中断入口地址偶字节的低8位值。

(1)XIRQ与IRQ中断优先级实验

①实验要求

在main()中顺序点亮8支发光管,每次点亮1支。

在IRQ的中断服务程序中顺序点亮8支发光管,每次点亮2支,并产生XIRQ中断信号。在XIRQ的中断服务程序中顺序点亮8支发光管,每次点亮4支。

②电路连接

发光管由A口驱动;将E口与B口连接,由B口相应引脚为E口相应引脚提供中断请求信号。

2)IRQ与H口中断优先级实验

①实验要求

在main()中顺序点亮8支发光管,每次点亮1支。

在IRQ的中断服务程序中顺序点亮8支发光管,每次点亮2支,并产生H口中断信号。在H口的中断服务程序中顺序点亮8支发光管,每次点亮4支。

②电路连接

发光管由A口驱动;将E口与B口连接,由B口相应引脚为E口相应引脚提供中断请求信号;将H口与P口连接,由P口相应引脚为H口相应引脚提供中断请求信号

飞思卡尔锁相环

备战飞思卡尔智能车大赛.开始模块总结. 锁相环设置. 公式: PLLCLK=2*OSCCLK*(SYNR+1)/(REFDV+1), fbus=PLLCLK/2 void INIT_PLL(void) { CLKSEL &= 0x7f; //选用外部时钟.准备设置锁相环 PLLCTL &= 0x8F; //禁止锁相环 SYNR = 0xc9; //设置SYNR REFDV = 0x81; //设置REFDV PLLCTL |=0x70; //锁相环使能 asm NOP; asm NOP; //两个机器周期缓冲时间 while(!(CRGFLG&0x08)); //等待锁相环锁定 CLKSEL |= 0x80; //设置锁相环为时钟源 } 飞思卡尔XS128的PLL锁相环详细设置说明——关于如何提高总线工作频率PLL锁相环就相当于超频 单片机超频的原因和PC机是个一道理。分频的主要原因是外设需要的工作频率往往远低于CPU/MEMORY 这也和PC机南北桥的原理类似。总线频率设置过程 1、禁止总中断 2、寄存器CLKSEL(时钟选择寄存器)的第七位置0 即CLKSEL_PLLSEL=0。选择时钟源为外部晶振OSCCLK(外接晶振频率) 在PLL(锁相环)程序执行前 内部总线频率为OSCCLK/2 3. PLLCTL_PLLON=1 打开PLL 4.设置SYNR 时钟合成寄存器 、REFDV 时钟分频寄存器 、POSTDIV三个寄存器的参数 5、_asm(nop) _asm(nop);加入两条空指令 使锁相环稳定 6、while(!(CRGFLG_LOCK==1));//时钟校正同步 7、CLKSEL_PLLSEL=1; 下面详细说一下频率的计算一、时钟合成寄存器SYNR寄存器结构 VCOFRQ[1:0]控制压控振动器VCO的增益 默认值为00 VCO的频率与VCOFRQ[1:0]对应表

飞思卡尔单片机编程

关于Codewarrior 中的 .prm 文件 网上广泛流传的一篇文章讲述的是8位飞思卡尔单片机的内存映射,这几天,研究了一下Codewarrior 5.0 prm文件,基于16位单片机MC9S12XS128,一点心得,和大家分享。有什么错误请指正。 正文: 关于Codewarrior 中的.prm 文件 要讨论单片机的地址映射,就必须要接触.prm文件,本篇的讨论基于Codewarrior 5.0 编译器,单片机采用MC9S12XS128。 通过项目模板建立的新项目中都有一个名字为“project.prm”的文件,位于Project Settings->Linker Files文件夹下。一个标准的基于XS128的.prm文件起始内容如下: .prm文件范例: NAMES END SEGMENTS RAM = READ_WRITE DATA_NEAR 0x2000 TO 0x3FFF;

READ_ONLY DATA_NEAR IBCC_NEAR 0x4000 TO 0x7FFF; ROM_C000 = READ_ONLY DATA_NEAR IBCC_NEAR 0xC000 TO 0xFEFF; //OSVECTORS = READ_ONLY 0xFF10 TO 0xFFFF; EEPROM_00 = READ_ONLY DATA_FAR IBCC_FAR 0x000800 TO 0x000BFF; EEPROM_01 = READ_ONLY DATA_FAR IBCC_FAR 0x010800 TO 0x010BFF; EEPROM_02 = READ_ONLY DATA_FAR IBCC_FAR 0x020800 TO 0x020BFF; EEPROM_03 = READ_ONLY DATA_FAR IBCC_FAR 0x030800 TO 0x030BFF; EEPROM_04 = READ_ONLY DATA_FAR IBCC_FAR 0x040800 TO 0x040BFF; EEPROM_05 = READ_ONLY DATA_FAR IBCC_FAR 0x050800 TO 0x050BFF; EEPROM_06 = READ_ONLY DATA_FAR IBCC_FAR 0x060800 TO 0x060BFF; EEPROM_07 = READ_ONLY DATA_FAR IBCC_FAR 0x070800 TO 0x070BFF; PAGE_F8 = READ_ONLY DATA_FAR IBCC_FAR 0xF88000 TO 0xF8BFFF;

飞思卡尔智能车比赛细则

2016

目录

第十一届竞赛规则导读 参加过往届比赛的队员可以通过下面内容了解第十一届规则主要变化。如果第一次参加比赛,则建议对于本文进行全文阅读。 相对于前几届比赛规则,本届的规则主要变化包括有以下内容: 1.本届比赛新增了比赛组别,详细请参见正文中的图1和第四章的“比赛任务” 中的描述; 2.第十届电磁双车组对应今年的A1组:双车追逐组。其它组别与新组别的对应 关系请参见图2; 3.为了提高车模出界判罚的客观性,规则提出了两种方法:路肩法和感应铁丝 法,详细请见赛道边界判定”; 4.改变了原有的光电计时系统,所有赛题组均采用磁感应方法计时,详细请参 见“计时裁判系统”; 5.取消了第十届的发车灯塔控制的方式; 6.赛道元素进行了简化,详细请参见“赛道元素”; 7.赛道材质仍然为PVC耐磨塑胶地板,但赛题组A2不再需要赛道。 8.对于车模所使用的飞思卡尔公司MCU的种类、数量不再限制。 9.比赛时,每支参赛队伍的赛前准备时间仍然为20分钟,没有现场修车环节。

一、前言 智能车竞赛是从2006开始,由教育部高等教育司委托高等学校自动化类教学指导委员会举办的旨在加强学生实践、创新能力和培养团队精神的一项创意性科技竞赛。至今已经成功举办了十届。在继承和总结前十届比赛实践的基础上,竞赛组委会努力拓展新的竞赛内涵,设计新的竞赛内容,创造新的比赛模式,使得围绕该比赛所产生的竞赛生态环境得到进一步的发展。 为了实现竞赛的“立足培养、重在参与、鼓励探索、追求卓越”的指导思想,竞赛内容设置需要能够面向大学本科阶段的学生和教学内容,同时又能够兼顾当今时代科技发展的新趋势。 第十一届比赛的题目在沿用原来根据车模识别赛道传感器种类进行划分的基础类组别之上,同时增加了以竞赛内容进行划分的提高类组别,并按照“分赛区普及,全国总决赛提高”的方式,将其中一个类别拓展出创意类组别。第十一届比赛的题目各组别分别如下: ●基础类包括B1光电组、B2摄像头组、B3电磁直立组、B4电轨组; ●提高类包括A1双车追逐组、A2信标越野组; ●创意类包括I1 电轨节能组。 图 1 不同组别,不同挑战度 每个组别在选用的车模、赛道识别方法、完成任务等方面存在差别,对于参赛选手不同学科知识和能力要求也不同,制作的挑战度也有较大的区别。相比较而言,

飞思卡尔智能车竞赛新手入门建议

每年都会有很多新人怀着满腔热情来做智能车,但其中的很多人很快就被耗光了热情和耐心而放弃。很多新人都不知道如何入手,总有些有劲无处使的感觉,觉得自己什么都不会,却又不知道该干什么。新人中存在的主要问题我总结了以下几点: l缺乏自信,有畏难情绪 作为新人,一切都是新的。没有设计过电路,没有接触过单片机,几乎什么都不会。有些新人听了两次课,看了两篇技术报告,就发现无数不懂不会的东西,于是热情在消退,信心在减弱。这些都是放弃的前兆。殊不知,高手都是从新人过来的,没有谁天生什么都会做。一件事件,如果还没开始做,就自己否定自己,认为自己做不到,那么肯定是做不到的。 l习惯了被动接收知识,丧失了主动学习的能力。 现在的学生大多从小习惯了被灌输知识,只学老师教的,只学老师考的。殊不知一旦走向社会,将不再有老师来教,不再有应付不完的考试。做智能车和传统的教学不同,学生将从被动学习的地位转变为主动学习。就算有指导老师,有指导的学长,但也都处于被动地位,往往都不会主动来教。有的学生一开始就没有转变思想,还希望就像实验课一样,老师安排好步骤1,2,3……,然后自己按照老师安排好的步骤按部就班的完成。这样的学生,往往都丧失了提出问题和分析问题的能力,只是一个应付考试的机器。要知道,解决问题的第一步是提出问题,如果总等着别人来教,那么问题永远会挡在你面前。 l缺乏团队精神和合作意识 智能车比赛是以团队的形式参赛,只依靠个人能力单兵作战就能取得好成绩的是很少很少的。当今社会,任何人的成功都离不开身后的团队的支撑。智能车是一个很复杂的系统,电路、机械、传感器、单片机、底层驱动、控制算法……。如果所有的任务都是一个人去完成,固然锻炼了自己,但想做的很好却很不现实。很多新人,来到实验室,来到一个陌生的环境和团队,连向学长请教,和同学交流的勇气都没有,又如何融入团队呢。除了要主动融入团队,还要培养自己的团队意识。团队精神往往表现为一种责任感,如果团队遇到问题,每个人都只顾自己,出了错误,不想着解决问题,而是互相推诿埋怨。这样的团队,肯定是无法取得好成绩的。 l缺乏耐心和细心的精神 其实把一件事做好很简单,细心加上耐心。不细心就想不到,没有耐心,即使想到了也做不到。做事怕麻烦,将就,说白了就是惰性在作祟。明明可以把支架做的更轻更漂亮,明明可以把程序写的更简洁,明明可以把电路设计得更完善……。其实,每个人都有很大潜力,如果不逼自己一次,你永远不知道自己的潜力有多

飞思卡尔MC9S12XS128单片机中断优先级设置简易教程

本教程试图用最少的时间教你飞思卡尔XS128单片机的中断优先级设置方法和中断嵌套的使用,如果是新手请先学习中断的基本使用方法。 先来看看XS128 DataSheet 中介绍的相关知识,只翻译有用的: 七个中断优先级 每一个中断源都有一个可以设置的级别 高优先级中断的可以嵌套低优先级中断 复位后可屏蔽中断默认优先级为1 同一优先级的中断同时触发时,高地址(中断号较小)的中断先响应 注意:高地址中断只能优先响应,但不能嵌套同一优先级低地址的中断 下面直接进入正题,看看怎么设置中断优先级: XS128中包括预留的中断一共有128个中断位,如果为每个中断都分配一个优先级寄存器的话会非常浪费资源,因此飞思卡尔公司想出了这样一种办法:把128个中断分为16个组,每组8个中断。每次设置中断时,先把需要的组别告诉某个寄存器,再设置8个中断优先寄存器的某一个,这样只需9个寄存器即可完成中断的设置。 分组的规则是这样的:中断地址位7到位4相同的中断为一组,比如MC9SX128.h中 这些中断的位7到位3都为D,他们就被分成了一组。0~F正好16个组。

INT_CFADDR就是上面说到的用来设置组别的寄存器: 我们需要设置某个组别的中断时,只要写入最后8位地址就行了,比如设置SCI0的中断优先级,就写入0xD0。 设置好组别之后,我们就要该组中相应的中断进行设置,设置中断的寄存器为 这其实是一组寄存器,一共有8个,每个都代表中断组中的一个中断。对应规则是这样的:中断地址的低四位除以2 比如还是SCI0,低四位是6,除以二就是3,那么我们就需要设置INT_CFDATA3 往INT_CFDATAx中写入0~7就能设置相应的中断优先级了 拿我本次比赛的程序来举个例子:我们的程序中需要3个中断:PIT0,PORTH,SCI0。PIT0定时检测传感器数值,PORTH连接干簧管进行起跑线检测,SCI0接收上位机指令实现急停等功能。因此中断优先级要SCI0>PORTH>PIT0。 我们先要从头文件中找出相应中断的地址: PIT0【7:4】位为7,选择中断组: INT_CFADDR=0x70;

飞思卡尔单片机寄存器及汇编指令详解

附录I:寄存器地址列表 直接页面寄存器总结

高页面寄存器总结

非易失寄存器总结 注:直接页面寄存器表地址的低字节用粗体显示,直接寻址对其访问时,仅写地址低字节即可。第2列中寄存器名用粗体显示以区别右边的位名。有0的单元格表示未用到的位总是读为0,有破折号的单元格表示未用或者保留,对其读不定。

附录II 指令接与寻址方式 HCS08指令集概括 运算符 () = 括号种表示寄存器或存储器位置的内容 ← = 用……加载(读: “得到”) & = 布尔与 | = 布尔或 ⊕= 布尔异或 ×= 乘 ÷ = 除 : = 串联 + = 加 - = 求反(二进制补码) CPU registers A =>累加器 CCR =>条件代码寄存器 H =>索引寄存器,高8位 X => 索引寄存器,低8位 PC =>程序计数器 PCH =>程序计数器,高8位 PCL =>程序计数器,低8位 SP =>堆栈指针 存储器和寻址 M =>一个存储区位置或者绝对值数据,视寻址模式而定 M:M + 0x0001 => 两个连续存储位置的16位值.高8位位于M的地址,低8位位于更高的连续地址. 条件代码寄存器(CCR)位 V => 二进制补码溢出指示,第7位 H => 半进位,第4位 I => 中断屏蔽,第 3位 N => 求反指示器, 第2位 Z => 置零指示器, 第1位 C => 进/借, 第0位 (进位第 7位 ) CCR工作性符号 – => 位不受影响 0 = > 位强制为0 1 = > 位强制为1

= >根据运算结果设置或清除位 U = > 运算后没有定义 机器编码符号 dd =>一个直接寻址0x0000–0x00FF的低8位(高字节假设为0x00) ee => 16位偏移量的高8位 ff => 16位偏移量的低8位 ii => 立即数的一个字节 jj => 16位立即数值的高位字节 kk => 16位立即数值的低位字节 hh => 16位扩展寻址的高位字节 ll => 16位扩展寻址的低位字节 rr => 相对偏移量 n —任何表达范围在0–7之间的一个有符号数的标号或表达式 opr8i —任何一个表达8位立即值的标号或表达式 opr16 —任何一个表达16位立即值的标号或表达式 opr8a —任何一个表达一个8位值的标号或表达式.指令对待这个8位值为直接页面64K 字节地址空间(0x00xx)中地址的低8位. opr16a —任何一个表达16位值的标号或表达式.指令对待这个值为直接页面64K字节地址空间. oprx8 —任何一个表达8位无符号值的标号或表达式,用于索引寻址. oprx16 —任何一个16位值的标号或表达式.因为HCS08有一个16位地址总线,这可以为一个有符号或者无符号值. rel —任何指引在当前指令目标代码最后一个字节之后–128 to +127个字节之内的标号或表达式.汇编器会计算包括当前指令目标代码在内的8位有符号偏移量. 寻址方式 隐含寻址(Inherent)如CLRA,只有操作码,无操作数,需要操作的数据一般为CPU寄存器,因此不需要再去找操作数了。(INH) 立即寻址 (Immediate)如LDA #$0A,“$”表示16进制,此时操作数位于FLASH空间,与程序一起存放。(IMM) 直接寻址 (Direct)如 LDA $88,只能访问$0000-$00FF的存储器空间,指令短速度快; (DIR) 扩展寻址 (Extended)如果操作数地址超出了$00FF,自动为扩展寻址;(EXT) 相对寻址(Relative)如BRA LOOP,指令中一般给出8位有符号数表示的偏移量。(REL) 变址寻址 (Indexed) 采用[H:X]或SP作为指针的间接寻址方式。( IX )( IX1 )( IX2 ) 变址寻址 (Indexed) 1〉无偏移量:CLR ,X 简写(IX) 2〉无偏移量,指令完成后指针加1(H:X = H:X + 0x0001) ,简写(IX+)只用于指令MOV和CBEQ指令中;

飞思卡尔杯智能车竞赛报告总结

1.1. 系统分析 智能车竞赛要求设计一辆以组委会提供车模为主体的可以自主寻线的模型车,最后成绩取决于单圈最快时间。因此智能车主要由三大系统组成:检测系统,控制系统,执行系统。其中检测系统用于检测道路信息及小车的运行状况。控制系统采用大赛组委会提供的16位单片机MC9S12XS128作为主控芯片,根据检测系统反馈的信息新局决定各控制量——速度与转角,执行系统根据单片机的命令控制舵机的转角和直流电机的转速。整体的流程如图1.1,检测系统采集路径信息,经过控制决策系统分析和判断,由执行系统控制直流电机给出合适的转速,同时控制舵机给出合适的转角,从而控制智能车稳定、快速地行驶。 图2.1 1.2. 系统设计 参赛小车将电感采集到的电压信号,经滤波,整流后输入到XS128单片机,用光电编码器获得实时车速,反馈到单片机,实现完全闭环控制。速度电机采用模糊控制,舵机采用PD控制,具体的参数由多次调试中获得。考滤到小车设计的综合性很强,涵盖了控制、传感、电子、电气、计算机和机械等多个学科领域,因此我们采用了模块化设计方法,小车的系统框图如图2.2。

第五届全国大学生智能汽车竞赛技术报告 图2.2 1.3. 整车外观 图2.3

1.4. 赛车的基本参数 智能车竞赛所使用的车模是东莞市博思公司生产的G768型车模,由大赛组委会统一提供,是一款带有摩擦式差速器后轮驱动的电动模型车。车模外观如图3.1。车模基本参数如表3.1。 图3.1 表3.1车模基本参数 1.5. 赛车前轮定位参数的选定

第五届全国大学生智能汽车竞赛技术报告 现代汽车在正常行驶过程中,为了使汽车直线行驶稳定,转向轻便,转向后能自动回正,减少轮胎和转向系零件的磨损等,在转向轮、转向节和前轴之间须形成一定的相对安装位置,叫车轮定位,其主要的参数有:主销后倾、主销内倾、车轮外倾和前束。模型车的前轮定位参数都允许作适当调整,故此我们将自身专业课所学的理论知识与实际调车中的赛车状况相结合,最终得出赛车匹配后的前轮参数[6]。 1.5.1. 主销后倾角 主销后倾角是指在纵向平面内主销轴线与地面垂直线之间的夹角γ,如图3-2。模型车的主销后倾角可以设置为0、 2°?3°、 4°?6°,可以通过改变上横臂轴上的黄色垫片来调整,一共有四个垫片,前二后二时为0°,前一后三为2°?3°,四个全装后面时为4°?6°。 由于主销后倾角过大时会引起转向沉重,又因为比赛所用舵机特性偏软,所以不宜采用大的主销后倾角,以接近0°为好,即垫片宜安装采用前二后二的方式,以便增加其转向的灵活性。如图3.3。 图3.2 图3.3 1.5. 2. 主销内倾角 主销内倾角是指在横向平面内主销轴线与地面垂直线之间的夹角β,如图3.4,它的作用也是使前轮自动回正。对于模型车,通过调整前桥的螺杆的长度可以改变主销内倾角的大小,由于前轴与主销近似垂直的关系,故主销内倾角

飞思卡尔单片机复习题

复习题: 1.根据总线时钟频率会计算TCNT计数时钟周期的最大值?最小值?溢出周期最大值? 如:fbus=2.4576MHz,值分别为多少?若fbus=8MHz呢? 2.熟悉LED共阴极共阳字型码的计算。 3.熟悉A W60各输入输出端口功能。 4. 不带缓冲和带缓冲的PWM有什么差异性? 5.为什么要将某些寄存器名和寄存器位在头文件中进行宏定义? 6.简述中断的作用与处理过程。 7.AW60 MCU都有哪些中断源? 8.为了实现对键盘的编程,如何区分按键是否真正地被按下,还是抖动?如何处理重键问题? 9.为了实现对键盘的编程,如何识别键盘上的按键? 10.实现计数与定时的基本方法有哪些?比较它们的优缺点。 11.比较AW60定时器模块实现输出比较功能与PWM功能的异同点。 12.为什么要对采集的数据进行滤波,有哪些滤波方法? 13.什么是输出比较?主要用途是什么? 14.什么是中断?什么是中断向量?什么是中断向量地址?GP32一共有多少个中断源? 15.什么是LED静态扫描、LED动态扫描? 16.请描述键盘逐行逐列扫描法原理。判断是否有键按下通常有哪两种方法?各有何优缺点?17.键盘设计思路中是如何获取按键的行列位置信息的?以3*3键盘为例。 18.LED和LCD各有何特点? 19.什么是脉宽调制波?脉宽调制输出功能主要用途是什么? 20.微控制器的片外晶体振荡器的频率是不是越高越好?为什么? 21.简述定时接口的基本原理。 22.如果系统中需要9个按键,那么矩阵式键盘接口方案应如何设计?并编写键盘初始化子程序及读取键值子程序,键值存入A中,若无键按下,为$FF。 23.设计并编程:仿照本章给出的定时器1通道0输入捕捉中断里程,捕捉两路输入信号,分别用相应的指示灯指示。 24.使用中断方式,对通道0输入的模拟信号连续采样8次,送入缓冲区。 25.用AW60不带缓冲的输出比较功能产生周期约为1S的方波。设内部总线时钟频率为32.768KHz。26.根据P178页码图9-3硬件连接图,编写程序完成在四个8段数码管上显示8字循环的程序。27.根据P178页码图9-3硬件连接图,编写程序完成在四个8段数码管上的4个8段abcdefgh 轮流点亮。 28.编写一个子程序对T1CH0初始化,使T1CH0产生20ms定时中断,并编写T1CH0中断服务程序使PTC0输出周期为1S的方波。设fbus=8MHz。 29.复习所有的实验。 30.复习所有的例题、作业题。 题型:选择题(30分)、问答题(40分)、编程题(30分) 1

飞思卡尔技术报告

K60模块分配 K60的简介,我们本次使用了以下模块。 1. FTM模块:K60中集成3个FTM模块,而今年我们选用两个B车进行追踪循迹。B车模使用单电机、单舵机,另外需要一个编码器。所以对3个FTM模块进行如下配置:FTM0用以产生300Hz PWM信号控制舵机,FMT1用以产生18.5KHz PWM信号控制电机,FTM2用以采集编码器数据。 2. 定时器模块:K60中有多个定时器模块,我们使用了其中2个。其一用以产生5ms 中断,处理相关控制程序。另一个用以超声波模块的计时。 3. SPI模块:我们使用了K60的一个SPI模块,用以和无线射频模块NRF24L01P通信。 4.外部中断:我们使用了三个外部中断。第一个是PORTA的下降沿中断,用以响应干簧管检测到磁铁。第二个是PORTD的跳变沿中断,用以响应超声波模块的输出信号。最后一个是PORTE的下降沿中断,用以响应NRF24L01P模块的相关操作。 数据采集算法 传感器是智能车的眼睛,它们给智能车循迹和追踪提供了必不可少的信息。因此,在智能车软件设计中必须保证数据采集算法的稳定性,同时兼顾其快速性。本车比赛,我们的智能车主要采集以下传感器的数据:电感传感器电路板、编码器、超声波、干簧管。下面主要详述超声波模块、电感传感器电路板的数据采集。 1 .超声波模块数据采集 我们使用的超声波模块的DO引脚输出50Hz的矩形波信号,通过高电平的时间向单片机传递数据。本超声波传感器的高电平时间为声波单程传输的时间,通过这个时间可计算出两车之间的距离。 我们使用外部中断和计时器结合的方式测量高电平时间。首先配置PORTD11为跳变沿中断。中断被触发时,如果PORTD11为高电平则开始计时,如果PORTD11为低电平则停止计时并记录时间间隔。 2. 电感传感器电路板的数据采集 电感传感器电路板通过输出电压的大小反应响应位置和方向的磁场强度。本次比赛中,我们使用了10个电感分布在6个不同位置,因此每个周期都要采集10路ADC数据,每路ADC数据采集32次进行平均滤波。K60芯片中有两路ADC模块,为了最大程度的减少采集数据的时间,我们采用两个ADC模块并行采集的方法。 首先,将10路ADC分为两组,第一组6个使用ADC0模块采集,第二组4个使用ADC1模块采集,两个ADC模块同时采集数据。以第一组为例,依次采集6路ADC 数据,循环32次。当两个ADC模块都完成任务时,ADC转换结束。最后进行平均滤波。 控制算法 1.定位算法 A.两个电感定位算法 在电磁组算法设计中,“差比和”(即用连个电感数据的差除以它们的和)是一个简单易用的定位算法,但是我们测量发现“差比和”算法得出的偏差距离用着较大非线性。如下图所示,其横轴为实际偏差(单位mm),其纵轴为“差比和”得出的偏差。可以发现,在实际偏差较小时,“差比和”算出的偏差变化较快,实际偏差较大时“差比和”算出的偏差变化较缓。

飞思卡尔项目书

飞思卡尔智能车比赛项目 参赛时间:2011.7.16 — 2011.7.20 赛前准备时间:2010.7 ---2011.7 飞思卡尔智能车比赛简介: 为加强大学生实践、创新能力和团队精神的培养,促进高等教育教学改革,受教育部高等教育司委托(教高司函[2005]201号文,附件1),由教育部高等学校自动化专业教学指导分委员会(以下简称自动化分教指委)主办全国大学生智能汽车竞赛。该竞赛是以智能汽车为研究对象的创意性科技竞赛,是面向全国大学生的一种具有探索性工程实践活动,是教育部倡导的大学生科技竞赛之一。该竞赛以“立足培养,重在参与,鼓励探索,追求卓越”为指导思想,旨在促进高等学校素质教育,培养大学生的综合知识运用能力、基本工程实践能力和创新意识,激发大学生从事科学研究与探索的兴趣和潜能,倡导理论联系实际、求真务实的学风和团队协作的人文精神,为优秀人才的脱颖而出创造条件。 该竞赛由竞赛秘书处设计、规范标准硬软件技术平台,竞赛过程包括理论设计、实际制作、整车调试、现场比赛等环节,要求学生组成团队,协同工作,初步体会一个工程性的研究开发项目从设计到实现的全过程。该竞赛融科学性、趣味性和观赏性为一体,是以迅猛发展、前景广阔的汽车电子为背景,涵盖自动控制、模式识别、传感技术、电子、电气、计算机、机械与汽车等多学科专业的创意性比赛。该竞赛规则透明,评价标准客观,坚持公开、公平、公正的原则,力求向健康、普及、持续的方向发展。 该竞赛以飞思卡尔半导体公司为协办方,得到了教育部相关领导、飞思卡尔公司领导与各高校师生的高度评价,已发展成全国30个省市自治区近300所高校广泛参与的全国大学生智能汽车竞赛。2008年起被教育部批准列入国家教学质量与教学改革工程资助项目中科技人文竞赛之一(教高函[2007]30号文)。 全国大学生智能汽车竞赛原则上由全国有自动化专业的高等学校(包括港、澳地区的高校)参赛。竞赛首先在各个分赛区进行报名、预赛,各分赛区的优胜队将参加全国总决赛。每届比赛根据参赛队伍和队员情况,分别设立光电组、摄像头组、电磁组、创意组等多个赛题组别。每个学校可以根据竞赛规则选报不同组别的参赛队伍。全国大学生智能汽车竞赛组织运行模式贯彻“政府倡导、专家主办、学生主体、社会参与”的16字方针,充分调动各方面参与的积极性。 全国大学生智能汽车竞赛一般在每年的10月份公布次年竞赛的题目和组织方式,并开始接受报名,次年的3月份进行相关技术培训,7月份进行分赛区竞赛,8月份进行全国总决赛。 飞思卡尔智能车比赛技术要求:

飞思卡尔S12系列寄存器和中断讲解

S12的输入/输入端口(I/O口) I/O端口功能 可设置为通用I/O口、驱动、内部上拉/下拉、中断输入等功能。 设置I/O口工作方式的寄存器有: DDR、IO、RDR、PE、IE和PS。 DDR:设定I/O口的数据方向。 IO :设定输出电平的高低。 RDR:选择I/O口的驱动能力。 PE:选择上拉/下拉。 IE:允许或禁止端口中断。 PS:1、中断允许位置位时,选择上升沿/下降沿触发中断;2、中断禁止时且PE有效时,用于选择上拉还是下拉。 I/O端口设置 1、A口、B口、E口寄存器 (1)数据方向寄存器DDRA、DDRB、DDRE DDRA、DDRB、DDRE均为8位寄存器,复位后其值均为0。 当DDRA=0、DDRB=0、DDRE=0 时A口、B口和E口均为输入口。 否则,A口、B口、E口为输出口。当DDRA、DDRB、DDRE的任何一 位置1时,则该位对应的引脚被设置为输出。 例如,将A口设置为输出口,则其C语言程序的语句为:DDRA=0xff;(2)A口、B口、E口上拉控制寄存器PUCR PUCR为8位寄存器,复位后的值为0。当PUPAE、PUPBE、PUPEE被设置为1时,A口、B口、E口具有内部上拉功能;为0时,上拉无效。当A口、B口、E口为地址/数据总线时,PUPAE和PUPBE无效。 (3)A口、B口、E口降功率驱动控制寄存器RDRIV RDRIV为8位寄存器,复位后的值为0,此时,A口、B口、E口驱动保持全功率;当RDPA、RDPB、RDPE为1时,A口、B口、E口输出引脚的驱动功率下降 (4)数据寄存器PORTA、PORTB、PORTE PORTA、PORTB、PORTE均为8位寄存器,复位后的值为0,端口引脚输出低电平;要使引脚输出高电平,相应端口对应位应该置1。 由于PE0是/XIRQ、PE1是IRQ,因此,PE0和PE1只能设置为输入。

飞思卡尔智能车比赛个人经验总结

先静下心来看几篇技术报告,可以是几个人一起看,边看边讨论,大致了解智能车制作的过程及所要完成的任务。 看完报告之后,对智能车也有了大概的了解,其实总结起来,要完成的任务也很简单,即输入模块——控制——输出。 (1)输入模块:各种传感器(光电,电磁,摄像头),原理不同,但功能都一样,都是用来采集赛道的信息。这里面就包含各种传感器的原理,选用,传感器电路的连接,还有传感器的安装、传感器的抗干扰等等需要大家去解决的问题。 (2)控制模块:传感器得到了我们想要的信息,进行相应的AD转换后,就把它输入到单片机中,单片机负责对信息的处理,如除噪,筛选合适的点等等,然后对不同的赛道信息做出相应的控制,这也是智能车制作过程中最为艰难的过程,要想出一个可行而又高效的算法,确实不是一件容易的事。这里面就涉及到单片机的知识、C语言知识和一定的控制算法,有时为了更直观地动态控制,还得加入串口发送和接收程序等等。 (3)输出模块:好的算法,只有通过实验证明才能算是真正的好算法。经过分析控制,单片机做出了相应的判断,就得把控制信号输出给电机(控制速度)和舵机(控制方向),所以就得对电机和舵机模块进行学习和掌握,还有实现精确有效地控制,又得加入闭环控制,PID算法。 明确了任务后,也有了较为清晰的控制思路,接下来就着手弄懂每一个模块。虽然看似简单,但实现起来非常得不容易,这里面要求掌握电路的知识,基本的机械硬件结构知识和单片机、编程等计算机知识。最最困难的是,在做的过程中会遇到很多想得到以及想不到的事情发生,一定得细心地发现问题,并想办法解决这些问题。 兴趣是首要的,除此之外,一定要花充足的时间和精力在上面,毕竟,有付出就会有收获,最后要明确分工和规划好进度。

飞思卡尔单片机知识点

1、单片机组成:1> CPU 2> 存储器3>I/O ; 2、存储器包括2大类:ROM , RAM 3、标准ASCII码使用(1)个字节表示字符; 4、BCD码是用()进制表示的()的数据; 5、HCS08QG8的最小系统包括(电源电路,复位电路,下载口,(内部时钟)); 6、QG8管脚数量(16)、只能输入的是(PTA5)、只能输出的是(PTA4)、程序下载的是、接外部时钟的是; 7、QG8的管脚可以作为数字输入输出、也可以作为模拟输入,可以作为模拟输入的有(); 8、QG8管脚复用优先级最低的功能是(I/O); 9、QG8存储器配置中,不同资源的分界线……; 10、CPU寄存器有(A, HX, PC, CCR, SP); 11、可以执行位操作的地址范围(0X0000~0X005F); 12、有地址的寄存器分成了(3)块(0页,高页,非易失); 13、如何在C语言中定义常数(数据类型变量名;),如何指定变量的地址(数据类型变量名@ 地址;); 14、堆栈的管理者是寄存器(SP); 15、SP的复位缺省值是(0X00FF); 16、堆栈对数据的操作特点是(向上生长型:先压后涨、先减后弹); 17、堆栈一般在RAM的高地址区域还是低地址区域?高地址区 18、内部时钟源包括哪4大部分? 19、外部时钟分哪2大类;振荡器,整形外部时钟 20、内部时钟中FLL固定倍频(512倍频); 21、ICS的7种工作模式(FEI, FEE, FBI, FBILP, FBE, FBELP, stop); 22、ICS的内部参考时钟是可以校准、微调的,调整的寄存器名(ICSTRM);该寄存器的数值越大,输出时钟频率越(低); 23、FLASH是按页管理的,页大小(512)字节,每页分(8)行; 24、高页寄存器位于FLASH的最后一页的(第六行/0xFFB0~0xFFBF)位置; 25、FLASH的最后一页最后一行是(中断向量); 26、FLASH块保护寄存器(FPROT);块加密寄存器(FOPT);对应的非易失寄存器分别是(NVOPT, NVPROT); 27、FLASH操作的一般过程是(); 28、FLASH操作的有效命令有(空检查,字节编程,突发模式编程,页擦除,全部ROM 擦除); 29、记录程序运行状态的CPU寄存器是(CCR); 30、指令系统包括6大类指令,分别是(算术运算指令、数据传送指令、数据和位操作、逻辑运算、程序控制、堆栈处理); 31、寻址方式是指(CPU访问操作数和数据的方法); 32、寻址方式包括7大类16种,分别是: INH IMM DTR EXT IX,IX1,IX2,SP1,SP2,IX+,IX1+ REL IMD, DD,IX+D,DIX+ 33、8指令模板和6指令模板分别是(); 34、QG8是高电平复位还是低电平复位?低电平 35、QG8数据存储器RAM的大小为(512)字节; 36、上电复位期间将管脚(A4)设置为(低)电平可以进入调试模式 37、QG8的存储器结构为冯·诺伊曼还是哈佛结构?冯诺依曼

飞思卡尔智能车竞赛策略和比赛方案综述

飞思卡尔智能车竞赛策略和比赛方案综述 一、竞赛简介 起源: “飞思卡尔杯”智能车大赛起源于韩国,是韩国汉阳大学汽车控制实验室在飞思卡尔半导体公司资助下举办的以HCSl2单片机为核心的大学生课外科技竞赛。组委会提供一个标准的汽车模型、直流电机和可充电式电池,参赛队伍要制作一个能够自主识别路径的智能车,在专门设计的跑道上自动识别道路行驶,谁最快跑完全程而没有冲出跑道并且技术报告评分较高,谁就是获胜者。其设计内容涵盖了控制、模式识别、传感技术、汽车电子、电气、计算机、机械、能源等多个学科的知识,对学生的知识融合和实践动手能力的培养,具有良好的推动作用。 全国大学生“飞思卡尔”杯智能汽车竞赛是在规定的模型汽车平台上,使用飞思卡尔半导体公司的8位、16位微控制器作为核心控制模块,通过增加道路传感器、电机驱动电路以及编写相应软件,制作一个能够自主识别道路的模型汽车,按照规定路线行进,以完成时间最短者为优胜。因而该竞赛是涵盖了控制、模式识别、传感技术、电子、电气、计算机、机械等多个学科的比赛。 该竞赛以飞思卡尔半导体公司为协办方,自2006年首届举办以来,成功举办了五届,得到了教育部吴启迪副部长、张尧学司长及理工处领导、飞思卡尔公司领导与各高校师生的高度评价,已发展成全国30个省市自治区200余所高校广泛参与的全国大学生智能汽车竞赛。2008年第三届被教育部批准列入国家教学质量与教学改革工程资助项目中9个科技人文竞赛之一(教高函[2007]30号文,附件2),2009年第四届被邀申请列入国家教学质量与教学改革工程资助项目。 分赛区、决赛区比赛规则 在分赛区、决赛区进行现场比赛规则相同,都分为初赛与决赛两个阶段。在计算比赛成绩时,分赛区只是通过比赛单圈最短时间进行评比。决赛区比赛时,还需结合技术报告分数综合评定。 1.初赛与决赛规则 1)初赛规则 比赛场中有两个相同的赛道。 参赛队通过抽签平均分为两组,并以抽签形式决定组内比赛次序。比赛分为两轮,两组同时在两个赛道上进行比赛,一轮比赛完毕后,两组交换场地,再进行第二轮比赛。在每轮比赛中,每辆赛车在赛道上连续跑两圈,以计时起始线为计时点,以用时短的一圈计单轮成绩;每辆赛车以在两个单轮成绩中的较好成绩为赛车成绩;计时由电子计时器完成并实时在屏幕显示。 从两组比赛队中,选取成绩最好的25支队晋级决赛。技术评判组将对全部晋级的赛车进行现场技术检查,如有违反器材限制规定的(指本规则之第一条)当时取消决赛资格,由后备首名晋级代替;由裁判组申报组委会执委会批准公布决赛名单。 初赛结束后,车模放置在规定区域,由组委会暂时保管。

飞思卡尔智能车程序

Main.c #include /* common defines and macros */ #include /* derivative information */ #pragma LINK_INFO DERIVATIVE "mc9s12db128b" #include "define.h" #include "init.h" // variable used in video process volatile unsigned char image_data[ROW_MAX][LINE_MAX] ; // data array of picture unsigned char black_x[ROW_MAX] ; // 0ne-dimensional array unsigned char row ; // x-position of the array unsigned char line ; // y-position of the array unsigned int row_count ; // row counter unsigned char line_sample ; // used to counter in AD unsigned char row_image ; unsigned char line_temp ; // temperary variable used in data transfer unsigned char sample_data[LINE_MAX] ; // used to save one-dimension array got in interruption // variables below are used in speed measure Unsigned char pulse[5] ; // used to save data in PA process Unsigned char counter; // temporary counter in Speed detect Unsigned char cur_speed; // current speed short stand; short data; unsigned char curve ; // valve used to decide straight or turn short Bounds(short data); short FuzzyLogic(short stand); /*----------------------------------------------------------------------------*\ receive_sci \*----------------------------------------------------------------------------*/ unsigned char receive_sci(void) // receive data through sci { unsigned char sci_data; while(SCI0SR1_RDRF!=1); sci_data=SCI0DRL; return sci_data; } /*----------------------------------------------------------------------------*\ transmit_sci \*----------------------------------------------------------------------------*/ void transmit_sci(unsigned char transmit_data) // send data through sci { while(SCI0SR1_TC!=1); while(SCI0SR1_TDRE!=1);

飞思卡尔单片机外设模块寄存器翻译

PIT 模块译: 翻译来自MC9S12X128英文原文PDF.P347-P357 PIT 块结构图: PIT0中断向量66, 1->67, 2->68, 3->69 PIT 相关寄存器详解: 1、 PITCFLMT :寄存器基本控制和基本时钟加载控制寄存器(8位) 1:PIT 使能 PITSWAI: 0:等待模式下仍然工作 1:等待模式下不工作 PITFRZ: 0:冻结模式下仍然工作 1:冻结模式下不工作 PFLMT1: 写1强制加载基本定时计数器1,写0无效,读也总为0 PFLMT0: 同PFLMT1 2、 PITFLT :PIT 计数器强制加载定时器寄存器(8位)

PFLT[3:0]写1相对应的16位计数寄存器会立即载入相对应的16位计数加载寄存器(PITLDn)中的值。 3、PITCE:PIT通道使能存器(8位) PCE[3:0]:如果PITE已经使能,对寄存器PCEn写1后,每输入一个时钟相对应的计数寄存器 开始递减,写0无效。 4、PITMUX:PIT基本时钟通道选择寄存器(8位) PMUX[3:0]:对PMUXn写1,则对应定时器通道选择基本时钟1作为输入,写0则选择基本时 钟0为输入。 5、PITINTE:PIT定时中断使能寄存器(8位) PINTE[3:0]:对PINTEn写1,当相对应的计数寄存器和基本计数寄存器归0时,产生中断请求,否则无效。 6、PITTF:PIT时钟输出标志寄存器(8位)

7、PITMTLD0-1:PIT基本时钟计数器预加载寄存器(8位) 会被加载到基本定时器n,无论什么时刻PFLMTn置“1”会立即更新基本定时器寄存器的值. 8、PITLD0–3:PIT0-3计数器预加载寄存器(16位) PITLD0-3的值用来加载到相对应计数器0-3的寄存器中。当相应通道计数器归零时,或PITFLT寄存器中相应的强制加载位置“1”时,PITLDn中的值将会被立即加载到PITCNTn。 9、PITCNT0–3:PIT0-3计数寄存器(16位) 变计数周期。

飞思卡尔智能车设计报告

飞思卡尔智能车设计报告

目录 1.摘要 (3) 2.关键字 (3) 3.系统整体功能模块 (3) 4.电源模块设计 (4) 5.驱动电路设计 (4) 6.干簧管设计 (5) 7.传感器模块设计 (6) 8.传感器布局 (6) 9.软件设计 (7) 9.1控制算法 (7) 9.2软件系统实现(流程图) (10) 10.总结 (11) 11.参考文献 (12)

1.摘要 “飞思卡尔”杯全国大学生智能汽车竞赛是由教育部高等自动化专业教学指导分委员会主办的一项以智能汽车为研究对象的创意性科技竞赛,是面向全国大学生的一种具有探索性工程实践活动,是教育部倡导的大学生科技竞赛之一。该竞赛以“立足培养,重在参与,鼓励探索,追求卓越”为指导思想,旨在促进高等学校素质教育,培养大学生的综合知识运用能力、基本工程实践能力和创新意识,激发大学生从事科学研究与探索的兴趣和潜能,倡导理论联系实际、求真务实的学风和团队协作的人文精神,为优秀人才的脱颖而出创造条件。该竞赛以汽车电子为背景,涵盖自动控制、模式识别、传感技术、电子、电气、计算机、机械等多个学科的科技创意性比赛。 本文介绍了飞思卡尔电磁组智能车系统。本智能车系统是以飞思卡尔32 位单片机K60为核心,用电感检测赛道导线激发的电磁信号, AD 采样获得当前传感器在赛道上的位置信息,通过控制舵机来改变车的转向,用增量式PID进行电机控制,用编码器来检测小车的速度,共同完成智能车的控制。 2.关键字 电磁、k60、AD、PID、电机、舵机 3.系统整体功能模块 系统整体功能结构图

4.电源模块设计 电源是一个系统正常工作的基础,电源模块为系统其他各个模块提供所需要的能源保证,因此电源模块的设计至关重要。模型车系统中接受供电的部分包括:传感器模块、单片机模块、电机驱动模块、伺服电机模块等。设计中,除了需要考虑电压范围和电流容量等基本参数外,还要在电源转换效率、噪声、干扰和电路简单等方面进行优化。可靠的电源方案是整个硬件电路稳定可靠运行的基础。 全部硬件电路的电源由7.2V,2A/h的可充电镍镉电池提供。由于电路中的不同电路模块所需要的工作电流容量各不相同,因此电源模块应该包含多个稳压电路,将充电电池电压转换成各个模块所需要的电压。 电源模块由若干相互独立的稳压电源电路组成。在本系统中,除了电机驱动模块的电源是直接取自电池外,其余各模块的工作电压都需要经电源管理芯片来实现。 由于智能车使用7.2V镍镉电池供电,在小车行进过程中电池电压会有所下降,故使用低压差电源管理芯片LM2940。LM2940是一款低压稳压芯片,能提供5V的固定电压输出。LM2940低压差稳压芯片克服了早期稳压芯片的缺点。与其它的稳压芯片一样,LM2940需要外接一个输出电容来保持输出的稳定性。出于稳定性考虑,需要在稳压输出端和地之间接一个47uF低等效电阻的电容器。 舵机的工作电压是6伏,采用的是LM7806。 K60单片机和5110液晶显示器需要3.3伏供电,采用的是LM1117。 5.驱动电路设计 驱动电路采用英飞凌的BTS7960,通态电阻只有16mΩ,驱动电流可达43A,具有过压、过流、过温保护功能,输入PWM频率可达到25KHz,电源电压5.5V--27.5V。BTS7960是半桥驱动,实际使用中要求电机可以正反转,故使用两片接成全桥驱动。如图下图所示。

相关文档
最新文档