专题 与绝对值函数有关的参数最值)

专题 与绝对值函数有关的参数最值)
专题 与绝对值函数有关的参数最值)

专题 与绝对值函数有关的参数最值及范围问题

类型一 常数项含参数

1.已知函数f (x )=x 2﹣5|x ﹣a|+2a

(Ⅰ)若0<a <3,x ∈[a ,3],求f (x )的单调区间;

(Ⅱ)若a≥0,且存在实数x 1,x 2满足(x 1﹣a )(x 2﹣a )≤0,f (x 1)=f (x 2)=k .设|x 1﹣x 2|的最大值为h (k ),求h (k )的取值范围(用a 表示).

2已知0a ≥ ,函数2()5||2f x x x a a =--+

(Ⅰ)若函数()f x 在[0,3]上单调,求实数a 的取值范围;

(Ⅱ)若存在实数12,x x ,满足12()()0x a x a --≤ 且12()()f x f x =,求当a 变化时,12x x +的取值范围.

3. 已知函数()f x 和()g x 的图象关于原点对称,2()2f x x x =+.

(1)若函数1()()22

h x f x x x a =---有四个不同零点,求实数a 的取值范围 (2)如果对于任意x R ∈,不等式()()1g x c f x x +≤--恒成立,求实数c 的取值范围

5.已知函数2()|1|f x x x a =++-,其中a 为实常数.

(1)判断()f x 的奇偶性;

(2)判断在上的单调性;

(3)若对任意x R ∈,使不等式()2||f x x a ≤-恒成立,求a 的取值范围.

6.已知函数2()2||f x x x a =--.(1)若函数()y f x =为偶函数,求a 的值;

(2,求函数()y f x =的单调递增区间; (3)0>a 时,对任意的[0,)x ∈+∞,(1)2()f x f x -≥恒成立,求实数a 的取值范围.

7.已知函数

,, (1)若

,试判断并用定义证明函数的单调性; (2)当时,求函数

的最大值的表达式; (3)是否存在实数

,使得有且仅有3个不等实根,且它们成等差数列,若存在,求出所有

的值,若不存在,说明理由.

()f x 11[,]22-

8已知函数()()112+++=x b x x f 是定义在[]a a ,2-上的偶函数,()()t x x f x g -+=,其中t b a ,,均为常数。(1)求实数b a ,的值;(2)试讨论函数()x g y =的奇偶性;

(3)若2121≤≤-

t ,求函数()x g y =的最小值。

9 .已知二次函数()b ax x x f ++=22为偶函数,()m x x g +-=)13(,

()()()212≠+=c x c x h .关于x 的方程()()x h x f =有且仅有一根2

1. (Ⅰ)求c b a ,,的值;

(Ⅱ)若对任意的[]1,1-∈x ,()()x g x f ≤恒成立, 求实数m 的取值范围; (Ⅲ)令()()()x f x f x -+=1?,若存在[]1,0,21∈x x 使得()()()m g x x ≥-21??,求实数m 的取值范围

含参不等式恒成立问题中求参数取值范围一般方法(教师版)

恒成立问题是数学中常见问题,也是历年高考的一个热点。大多是在不等式中,已知一个变量的取值范围,求另一个变量的取值范围的形式出现。下面介绍几种常用的处理方法。 一、分离参数 在给出的不等式中,如果能通过恒等变形分离出参数,即:若()a f x ≥恒成立,只须求出()max f x ,则()m ax a f x ≥;若()a f x ≤恒成立,只须求出()min f x ,则()m in a f x ≤,转化为函数求最值。 例1、已知函数()lg 2a f x x x ??=+ - ???,若对任意[)2,x ∈+∞恒有()0f x >,试确定a 的取值范围。 解:根据题意得:21a x x + ->在[)2,x ∈+∞上恒成立, 即:23a x x >-+在[)2,x ∈+∞上恒成立, 设()23f x x x =-+,则()2 3924f x x ??=--+ ??? 当2x =时,()max 2f x = 所以2a > 例2、已知(],1x ∈-∞时,不等式() 21240x x a a ++-?>恒成立,求a 的取值范围。 解:令2x t =,(],1x ∈-∞ (]0,2t ∴∈ 所以原不等式可化为:22 1t a a t +-<, 要使上式在(]0,2t ∈上恒成立,只须求出()2 1t f t t +=在(]0,2t ∈上的最小值即可。 ()22211111124t f t t t t t +????==+=+- ? ? ???? 11,2t ??∈+∞???? ()()min 324f t f ∴== 234a a ∴-< 1322 a ∴-<< 二、分类讨论 在给出的不等式中,如果两变量不能通过恒等变形分别置于不等式的两边,则可利用分类讨论的思想来解决。 例3、若[]2,2x ∈-时,不等式2 3x ax a ++≥恒成立,求a 的取值范围。 解:设()2 3f x x ax a =++-,则问题转化为当[]2,2x ∈-时,()f x 的最小值非负。 (1) 当22a -<-即:4a >时,()()min 2730f x f a =-=-≥ 73 a ∴≤又4a >所以a 不存在;

含绝对值函数的最值问题

专题三: 含绝对值函数的最值问题 1. 已知函数2()2||f x x x a =-- (0>a ),若对任意的[0,)x ∈+∞,不等式(1)2()f x f x -≥恒成立,求实数a 的取值范围、 不等式()()12f x f x -≥化为()2 212124x x a x x a ----≥-- 即:()242121x a x a x x ---+≤+-(*)对任意的[)0,x ∈+∞恒成立因为0a >,所以分如下情况讨论: ①当0x a ≤≤时,不等式(*)24120[0,]x x a x a ++-≥?∈对恒成立 ②当1a x a <≤+时,不等式(*)即24160(,1]x x a x a a -++≥?∈+对恒成立 由①知102 a <≤,2()416(,1]h x x x a a a ∴=-+++在上单调递减 2662a a ∴≤--≥-或 11626222 a -<∴-≤≤Q 2、已知函数f (x )=|x -a |,g (x )=x 2+2ax +1(a 为正数),且函数f (x )与g (x )的图象在y 轴上的截距相等.(1)求a 的值;(2)求函数f (x )+g (x )的最值. 【解析】(1)由题意f (0)=g (0),∴|a |=1、又∵a >0,∴a =1、 (2)由题意f (x )+g (x )=|x -1|+x 2+2x +1、 当x ≥1时,f (x )+g (x )=x 2+3x 在[1,+∞)上单调递增, 当x <1时,f (x )+g (x )=x 2+x +2在????? ???-121上单调递增,在(-∞,12-]上单调递减. 因此,函数f (x )+g (x )在(-∞,12-]上单调递减,在????? ???-12+∞上单调递增. 2min ()4120[0,]()(0)120 1 02 g x x x a a g x g a a =++-≥∴==-≥∴<≤Q 在上单调递增只需2min ()(1)420h x h a a a ∴=+=+-≥只需

绝对值函数最值问题(含答案修改版)

绝对值函数最值问题 一、准备在两个小区所在街道上建一所医院,使得两个小区到医院的距离之和最小,问医院应该建在何处? 先来证明一个引理: 引理:||||||y x y x +≥+……(1),当且仅当0≥xy 时等号成立 要证(1)式成立,只需证xy xy xy y x xy y x ≥++≥++||,2||22 2 2 2 也即是,上式显然成立,故原命题得证。 将上式的y y -换成可得 ||||||y x y x -≥+……(2),当且仅当0≤xy 时等号成立 定理:对于任意123,,a a a ……,n a 如果123a a a ≤≤≤……1n n a a -≤, 当n 为奇数时 ()12 3||||||f x x a x a x a =-+-+-+……1||||n n x a x a -+-+-的最小值在x 等于123,,a a a ……n a 的中位 数时取到,即12 n x a +=时有最小值, 即是()123||||||f x x a x a x a =-+-+-+ (112) ||||n n n x a x a f a -+??+-+-≥ ?? ? 当n 为偶数时 ()123||||||f x x a x a x a =-+-+-+……1||||n n x a x a -+-+-的最小值在x 属于123,,a a a ……n a 的中间 两个数的范围时取到,即1 22,n n x a a +?? ∈???? 时有最小值。此时 ()123 ||||||f x x a x a x a =-+-+-+ (11) 22||||n n n n x a x a f a o r f a -+?? ??+-+-≥ ? ??? ?? 该定理的证明,只需最小的与最大的结合,在中位数时同时取到最小值。 二、求下列函数的最小值: 1、()|2||1|-+-=x x x f

高中数学 含绝对值的函数图象的画法及其应用素材

含绝对值的函数图象的画法及其应用 一、三点作图法 三点作图法是画函数)0(||≠++=ak c b ax k y 的图象的一种简捷方法(该函数图形形状似“V ”,故称V 型图)。 步骤是:①先画出V 型图顶点?? ? ?? - c a b ,; ②在顶点两侧各找出一点; ③以顶点为端点分别与另两个点画两条射线,就得到函数)0(||≠++=ak c b ax k y 的图象。 例1. 作出下列各函数的图象。 (1)1|12|--=x y ;(2)|12|1+-=x y 。 解:(1)顶点?? ? ??-12 1 ,,两点(0,0) ,(1,0)。其图象如图1所示。 图1 (2)顶点?? ? ?? - 121 ,,两点(-1,0) ,(0,0)。其图象如图2所示。 图2 注:当k>0时图象开口向上,当k<0时图象开口向下。函数图象关于直线a b x -=对称。 二、翻转作图法 翻转作图法是画函数|)(|x f y =的图象的一种简捷方法。 步骤是:①先作出)(x f y =的图象;②若)(x f y =的图象不位于x 轴下方,则函数 )(x f y =的图象就是函数|)(|x f y =的图象; ③若函数)(x f y =的图象有位于x 轴下方的,则可把x 轴下方的图象绕x 轴翻转180°到x 轴上方,就得到了函数|)(|x f y =的图象。 例2. 作出下列各函数的图象。 (1)|1|||-=x y ;(2)|32|2 --=x x y ;(3)|)3lg(|+=x y 。 解:(1)先作出1||-=x y 的图象,如图3,把图3中x 轴下方的图象翻上去,得到图4。图4就是要画的函数图象。 图3 图4

含参数二次函数分类讨论的办法总结

二次函数求最值参数分类讨论的方法 分类讨论是数学中重要的思想方法和解题策略,它是根据研究对象的本质属性 的相同点和不同点,将对象分为不同种类然后逐类解决问题. 一般地,对于二次函数y=a (x m )2+n ,x ∈[t ,s ]求最值的问题;解决此类问题的基本思路为:根据对称轴相对定义域区间的位置,利用分类讨论思想方法。为做到 分类时不重不漏,可画对称轴相对于定义域区间的简图分类。 ①表示对称轴在区间[t ,s ]的左侧,②表示对称轴在区间[t ,s ]内且靠近区 间的左端点,③表示对称轴在区间内且靠近区间的右端点,④表示对称轴在区间[t ,s ]的右侧。然后,再根据口诀“开口向上,近则小、远则大”;“开口向下,近则大、 远则小”即可快速求出最值。 含参数的二次函数求最值的问题大致分为三种题型,无论哪种题型都围绕着对称 轴与定义域区间的位置关系进行分类讨论 题型一:“动轴定区间”型的二次函数最值 例1、求函数2()23f x x ax =-+在[0,4]x ∈上的最值。 分析:先配方,再根据对称轴相对于区间的位置讨论,然后根据口诀写出最值。 解:222()23()3f x x ax x a a =-+=-+- ∴此函数图像开口向上,对称轴x=a ①、当a <0时,0距对称轴x=a 最近,4距对称轴x=a 最远, ∴x=0时,min y =3,x=4时,max y =19-8a ②、当0≤a<2时,a 距对称轴x=a 最近,4距对称轴x=a 最远, ∴x=a 时,min y =3-a2,x=4时,max y =19-8a ③、当2≤a<4时,a 距对称轴x=a 最近,0距对称轴x=a 最远, ① ② ③ ④ t t +s 2s

二次函数求最值参数分类讨论的方法(可编辑修改word版)

t t + s 2 s ① ② ③ ④ 二次函数求最值参数分类讨论的方法 分类讨论是数学中重要的思想方法和解题策略,它是根据研究对象的本质属性的相同点和不同点,将对象分为不同种类然后逐类解决问题. 一般地,对于二次函数 y=a (x m )2+n ,x ∈[t ,s ]求最值的问题;解决此类问题的基本思路为:根据对称轴相对定义域区间的位置,利用分类讨论思想方法。为做到分类时不重不漏, 可画对称轴相对于定义域区间的简图分类。 ①表示对称轴在区间[t ,s ]的左侧,②表示对称轴在区间[t ,s ]内且靠近区间的左端点,③表示对称轴在区间内且靠近区间的右端点,④表示对称轴在区间[t ,s ]的右侧。然后,再根据口诀“开口向上,近则小、远则大”;“开口向下,近则大、远则小”即可快速求出最值。 含参数的二次函数求最值的问题大致分为三种题型,无论哪种题型都围绕着对称轴与定义域区间的位置关系进行分类讨论 题型一:“动轴定区间”型的二次函数最值 例1、求函数 f (x ) = x 2 - 2ax + 3 在 x ∈[0, 4] 上的最值。 分析:先配方,再根据对称轴相对于区间的位置讨论,然后根据口诀写出最值。 解: f (x ) = x 2 - 2ax + 3 = (x - a )2 + 3 - a 2 ∴此函数图像开口向上,对称轴 x=a ①、当 a <0 时,0 距对称轴 x=a 最近,4 距对称轴 x=a 最远, ∴x=0 时, y min =3,x=4 时, y max =19-8a ②、当 0≤a<2 时,a 距对称轴 x=a 最近,4 距对称轴 x=a 最远, ∴x=a 时, y min =3-a2,x=4 时, y max =19-8a ③、当 2≤a<4 时,a 距对称轴 x=a 最近,0 距对称轴 x=a 最远, ∴x=a 时, y min =3-a2,x=0 时, y max =3 ④、当 4≤a 时,4 距对称轴 x=a 最近,0 距对称轴 x=a 最远, ∴x=4 时, y min =19-8a ,x=0 时, y max =3 例 2、已知函数 f (x ) = ax 2 + (2a -1)x - 3 在区间[- 3 , 2] 上最大值为 1,求实数 a 的值 2 分析:取 a=0,a≠0,分别化为一次函数与二次函数,根据一次函数、二次函数的性质分

关于某绝对值函数的问题解决精华(含问题详解)

. 下载可编辑 . 关于绝对值函数的问题解决 有一道某地高三模拟考试题,涉及到绝对值函数,用来说明数学中的分类讨论思想非常有代表性。 试题 已知函数1)(2 -=x x f ,|1|)(-=x a x g . (1) 若关于x 的方程)(|)(|x g x f =只有一个实数解,数a 的取值围; (2) 若当R x ∈时,不等式)()(x g x f ≥恒函数成立,数a 的取值围; (3) 求函数)(|)(|)(x g x f x h +=在区间[-2,2]上的最大值(直接写出结果......,不需给出演..... 算步骤... ). 解答 (1)方程|()|()f x g x =,即2|1||1|x a x -=-,变形得|1|(|1|)0x x a -+-=,显然,1x =已是该方程的根,从而欲原方程只有一解,即要求方程|1|x a +=,有且仅有一个等于1的解或无解 ,结合图形得0a < . (2)不等式()()f x g x ≥对x ∈R 恒成立,即2(1)|1|x a x --≥(*)对x ∈R 恒成立, ①当1x =时,(*)显然成立,此时a ∈R ;

. 下载可编辑 . ②当1x ≠时,(*)可变形为21|1| x a x -≤-,令21,(1),1()(1),(1).|1|x x x x x x x ?+>?-==?-+<-? 因为当1x >时,()2x ?>,当1x <时,()2x ?>-, 所以()2x ?>-,故此时2a -≤. 综合①②,得所数a 的取值围是2a -≤. (3)因为2()|()|()|1||1|h x f x g x x a x =+=-+-=2221,(1),1,(11),1,(1).x ax a x x ax a x x ax a x ?+--?--++->即时,结合图形可知()h x 在[2,1]-上递减,在[1,2]上递增, 且(2)33,(2)3h a h a -=+=+,经比较,此时()h x 在[2,2]-上的最大值为33a +. ② 当01,22 a a 即0≤≤≤≤时,结合图形可知()h x 在[2,1]--,[,1]2a -上递减, 在[1,]2 a --,[1,2]上递增,且(2)33,(2)3h a h a -=+=+,2()124a a h a -=++, 经比较,知此时()h x 在[2,2]-上的最大值为33a +. ③ 当10,02 a a -<<即-2≤≤时,结合图形可知()h x 在[2,1]--,[,1]2a -上递减, 在[1,]2 a --,[1,2]上递增,且(2)33,(2)3h a h a -=+=+,2()124a a h a -=++, 经比较,知此时()h x 在[2,2]-上的最大值为3a +. ④ 当3 1,222a a -<-<-即-3≤≤时,结合图形可知()h x 在[2,]2a -,[1,]2 a -上递减,

高中一轮复习__含绝对值的函数

学案17 含绝对值的函数 一、课前准备: 【自主梳理】含绝对值的函数本质上是分段函数,往往需要先去绝对值再结合函数图像进行研究,主要有以下3类: 1.形如)(x f y =的函数,由于0 )(0)()()()(<≥???-==x f x f x f x f x f y ,因此研究此类函数往往结合函数图像,可以看成由)(x f y =的图像在x 轴上方部分不变,下方部分关于x 轴对称得到; 2.形如)(x f y =的函数,此类函数是偶函数,因此可以先研究0≥x 的情况,0”之一). (2)函数2ln -=x y 的图像与函数1=y 的图像的所有交点的横坐标之和为________. (3)函数x y 21log =的定义域为],[b a ,值域为[0,2],则b -a 的最小值为_______.

导数求最值(含参)

含参导数求最值问题(1—2) 编制人:闵小梅审核人:王志刚 【使用说明及学法指导】 1.完成预习案中的相关问题; 2.尝试完成探究案中合作探究部分,注意书写规范; 3.找出自己的疑惑和需要讨论的问题准备课堂讨论质疑。 【学习目标】 1.掌握利用导数求函数最值的方法 2.会用导数解决含参函数的综合问题 【预习案】 一、知识梳理 函数的最值与导数 (1)函数f(x)在[a,b]上有最值的条件 如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值. (2)求y=f(x)在[a,b]上的最大(小)值的步骤 ①求函数y=f(x)在(a,b)内的极值. ②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值. 二、尝试练习 1.设函数f(x)=x3-x2 2 -2x+5,若对任意的x∈[-1,2],都有f(x)>a,则实 数a的取值范围是________ (-∞,7 2 ) 2.已知函数f(x)=ax3-3x+1对x∈(0,1]总有f(x)≥0成立,则实数a的取值范围是________ [4,+∞)

【探究案】 一、合作探究: 例1. 设函数f (x )=ln x +ln(2-x )+ax (a >0). (1)当a =1时,求f (x )的单调区间; 增(0,2),减(2,2) (2)若f (x )在(0,1]上的最大值为12,求a 的值. a =12 二、拓展探究: 例2. 已知函数f(x)=lg(x +a x -2),其中a >0且为常数. (1)当a∈(1,4)时,求函数f(x)在[2,+∞)上的最小值;ln a 2 (2)若对任意x∈[2,+∞)恒有f(x)>0,试确定实数a 的取值范围.(2,+∞) 三、深层探究:单调性的应用 例3.求f (x )=ax x e -? (a >0)在x ∈[1,2]上的最大值

探究绝对值函数最值的求法

探究绝对值函数最值的求法

探究绝对值函数最值的求法及应用 2011年陕西省理科高考试题第14题。题目是:植树节某班20名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距10米,开始时需将树苗集中放置在某一树坑旁 边,使每位同学从各自树坑出发前来领取树苗往返所走的路程总和最小,这个最小值为 米。该题考查了求绝对值函数的最小值问题,转化为求函数y=|x-10|+|x-20|+|x-30|+|x -200|g g g ——的最小值问题。另外2009年上海高考有一道数学试题;其题目是:某地街道呈现东—西、南—北向的网络格状,相邻街距都为1。两街道相交的点称为格点。若以互相垂直一两条街道为轴建立直角坐标系,现有下述格点(-2,2),(3,1),(3,4),(-2,3),(4,5)(6,6)为报刊零售点,请确定一个格点(除零售点外) 为发行站,使6个零售点沿街道发行站之同路程的和最短。该题也需要转化为求绝对值函数 z=2|x+2|+2|x-3|+|x-4|+|x-6|+|y-1|+|y-2|+|y-3|+|y-4|+|y-5|+|y-6|的最小值问题。 那么如何求这种多个绝对值和的函数的最小值问题呢?对此,笔者运用以下方法进行了探索研究,得出了解决这种问题的基本方法,以此与各位同仁商榷。 一、 利用函数图象研究这类函数的值域,从而达到求函数的最值:由于含绝对值函数可以等价化为分段函数,因此运用函数的图象求函数的最值。 例1求函数y=|2x-1|的最小值。 解:由于函数 12x-1x 2y=|2x-1|=1-2x+1x<)2 ? ≥??? ???()(, 作出其图象如右图:由图象可知其当12 x =时,

含有参数的函数最值问题导学案(1218)

五环学习法高中数学学科导学稿 编写人:许鲔潮 审稿人:郭沂 编写时间:2015-12-11 课题:含有参数的函数最值问题 (人教A 版数学新课标教材必修1水平考试综合题复习) 学习目标 1.理解含参数的函数最值问题特征; 2.通过含参数的函数最值问题的求解探究解题策略; 3.培养学生分析解决水平考试综合问题的能力。 4.培养学生利用分类讨论、化归、数形结合、分离变量等数学思想与方法进行解题的意 识。 一.回忆旧知(本节课学习你可能要用到下面的知识) (1)函数零点概念:对于函数))((D x x f y ∈=,把使得_________成立的实数x 叫做函数))((D x x f y ∈=的零点。 (2)函数零点的意义:函数)(x f y =的零点就是方程 的________,亦即函数)(x f y =的图象与x 轴交点的______。即:方程0)(=x f 有实数根?函数)(x f y =的图象与x 轴有交点?函数)(x f y =有零点。 (3)二次函数)0(2 ≠++=a c bx ax y 的零点: 1)△>0,方程02=++c bx ax 有两不等实根,二次函数的图象与x 轴有___个交点,二次函数有______个零点; 2)△=0,方程02=++c bx ax 有两相等实根,二次函数的图象与x 轴有一个交点,二次函数有______个零点; 3)△<0,方程02=++c bx ax 无实根,二次函数的图象与x 轴有______交点,二次函数有______零点。 (4)零点存在性定理:如果函数)(x f y =在区间],[b a 上的图象是连续不断的一条曲线,并且有________,那么函数)(x f y =在区间),(b a 内有零点。即存在),(b a c ∈,使得______,这个c 也就是方程的根。 二.自主学习(自学复习下面内容,并完成下列问题) 1.复习《高中数学必修课程综合测评2015》,P4知识点23: 二次方程()()2 00f x ax bx c a =++=>实根分布及条件; 2.复习《高中数学必修课程综合测评2015》,P7 ,练习15. 编号 Sxbx1 0)(=x f

高考数学提分专练绝对值函数最值问题(含答案)

绝对值函数最值问题 一、准备在两个小区所在街道上建一所医院,使得两个小区到医院的 距离之和最小,问医院应该建 在何处? 来证明一个引理: 引理:||||||y x y x +≥+……(1),当且仅当0≥xy 时等号成立 要证(1)式成立,只需证xy xy xy y x xy y x ≥++≥++||,2||22222也即是,上式显然成立,故原命题得证。 将上式的y y -换成可得 ||||||y x y x -≥+……(2),当且仅当0≤xy 时等号成立 定理:对于任意123,,a a a ……,n a 如果123a a a ≤≤≤……1n n a a -≤, 当n 为奇数时 ()123||||||f x x a x a x a =-+-+-+……1||||n n x a x a -+-+-的最小值在x 等 于123,,a a a ……n a 的中位数时取到,即12 n x a +=时有最小值, 即是()123||||||f x x a x a x a =-+-+-+ (112) ||||n n n x a x a f a -+??+-+-≥ ?? ? 当n 为偶数时 ()123||||||f x x a x a x a =-+-+-+……1||||n n x a x a -+-+-的最小值在x 属

于123,,a a a ……n a 的中间两个数的范围时取到,即1 2 2 ,n n x a a +??∈??? ? 时有最 小值。此时 ()123||||||f x x a x a x a =-+-+-+…… 1122||||n n n n x a x a f a or f a -+???? +-+-≥ ? ????? 该定理的证明,只需最小的与最大的结合,在中位数时同时取到最小值。 二、求下列函数的最小值: 1、()|2||1|-+-=x x x f ()()1|21||2||1|=---≥-+-x x x x ,当且仅当()(),021等号成立≤--x x 也即是[]2,1∈x 时等号成立。 1)(≥∴x f 2、()|3||2||1|-+-+-=x x x x f ()()[]时等号成立。 当且仅当时等号成立当2,0|2|3,1,2|31||3||1|=≥-∈=---≥-+-x x x x x x x ()()时等号成立当且仅当22=≥∴x x f 2.1、求x 的范围使得函数|1||||2|)(-+++=x x x x f 为增函数(12年北约自招试题) 对于绝对值函数(也称“折线函数”)问题,主要有两种解决思路:1、利用绝对值的几何意义(求最值时非常方便),2、找零点直接去绝对值,转化为分段函数。

把求参数取值范围转化为两个函数最值问题时几个易错点

把求参数取值范围转化为两个函数最值问题时几个易错点 ——有关用量词叙述的几类问题 易错点1:对()()恒成立,使得2121,,x g x f B x A x >∈?∈?求参数m 的取值范围。 最值满足条件: 思路分析:由于21,x x 取值的任意性,所以要使()()21x g x f >恒成立,只需所有的()1x f 值大于所有 的()2x g 值,故只须()()max min x g x f > 易错点2:对()()恒成立,使得2121,,x g x f B x A x >∈?∈?求参数m 的取值范围。 最值满足条件: 思路分析:由于1x 在区间A 上的取值具有任意性,2x 在区间B 上的取值只要求存在性,所以要使 ()()21x g x f >恒成立,只需所有的()1x f 值大于某一个()2x g 值,或说存在一个()2x g 值小于所有的 ()1x f 值,故只须()()min min x g x f >(或()()min min x f x g <) 易错点3:对()()恒成立,使得2121,,x g x f B x A x >∈?∈?求参数m 的取值范围。 最值满足条件: 思路分析:由于1x 在区间A 取值只要求存在性,2x 在区间B 上的取值具有任意性,所以要使 ()()21x g x f >恒成立,只需存在一个()1x f 值大于所有的()2x g 值,故只须()()max max x g x f >(或()()max max x f x g <) 易错点4:对()()成立,使得2121,,x g x f B x A x >∈?∈?求参数m 的取值范围。 最值满足条件: 思路分析:由于1x 在区间A 取值只要求存在性,2x 在区间B 上的取值也只要求存在性,所以要使 ()()21x g x f >恒成立,只需存在一个()1x f 值大于某一个()2x g 值,故只须()()min max x g x f > 易错点5:对()()成立,使得2121,,x g x f B x A x =∈?∈?求参数m 的取值范围。 最值满足条件: 思路分析:对于区间A 上的任意1x 或说每一个1x ,都会得到一个确定的函数值()1x f ,要保证总存在 ()2x g 与()1x f 相等,只须()x g y =的值域包含()x f y =的值域,即

含绝对值的函数问题

含绝对值的函数问题专练 1.画出函数y = 31x -的图象,并利用图象回答:k 为何值时,方程 31x -=k 无解?有一个解?有两个解? 【答案】当k =0或k≥1时,方程有一个解;当0x2,都有m[g(x1)-g(x2)]>x1f(x1)-x2f(x2)恒成立,求实数m 的取值范围. 【答案】(1) 102 x y -+=;(2)答案见解析;(3) [)1,+∞. 4.已知函数()3f x mx =+, ()22g x x x m =++. (1)判断函数()()()F x f x g x =-是否有零点; (2)设函数()()()1G x f x g x =--,若()G x 在[]1,0-上是减函数,求实数m 的取值范围. 【答案】(1)函数()()f x g x -有零点(2)0m ≤或2m ≥ 5.设a 为实数,函数f(x)=x2+|x -a|+1,x ∈R. (1)讨论f(x)的奇偶性; (2)求f(x)的最小值. 【答案】(1)当0a =时, ()f x 偶函数,当0a ≠时, ()f x 为非奇非偶函数;(2)34 a -+. 6.已知函数2()1f x x =-,()|1|g x a x =-. (1)若关于x 的方程|()|()f x g x =只有一个实数解,求实数a 的取值范围;

有限区间上含参数的二次函数的最值问题

有限区间上含参数的二次函数的最值问题 执教:吴雄华 时间:2006-9 班级:高三(1) 班 教学目标: 知识与技能: 1.掌握定义在变化区间上的一元二次函数最值的求解方法; 2.掌握系数含参数的一元二次函数在定区间上最值的求解方法; 过程与方法: 3.加深学生运用分类讨论和数形结合数学思想方法的体验; 情感、态度与价值观:4.通过学生自己的探索解决问题,增强其学习数学的兴趣和信心; 5.培养学生严密的分析和解决问题的能力。 教学重点:含参数的一元二次函数的最值问题的求解。 教学难点:分类讨论与数形结合数学思想方法的运用。 教学内容 教师活动 学生活动 一.复习一元二次函数最值的求 法。 1. 没有限定区间的情况。 2. 有限定区间的情况。 提问一:我们已学习了哪些一元二次函数求最值问题?请同学指出类型和求解方法。 回答一:两种情况,分别为没有限定区间的情况和有限定区间的情况。 前者用配方法即可,后者先配方,再借助图像来观察函数在给定区间上的单调性,从而得出函数的最值。 二.研究定义在变化区间上的一 元二次函数最值问题的求解。 例1已知函数()222++=x x x f , (1)若R x ∈,求函数的最值; (2)若[]1,3x ∈,求函数的最值; (3)若]3,2[-∈x ,求函数的最值; (4)若[]R a a a x ∈+∈,2,,求函数的最小值; (5)[]R a a a x ∈+∈,2,,求函数的最大值。 ?? ? ??-<++-<≤--≥++=.3,106;13,1; 1,2222min a a a a a a a y ?????-<++-≥++=. 2,22;2,1062 2max a a a a a a y 给出例1。 借助(1)(2)(3)复习,请同学口头回答解法。 提问二:(4)题与(1)(2)(3)题有什么联系和区别? 提示后请同学们完成(4)题。 允许讨论。 其中请两位同学在黑板上分别完成(4)(5)题。 教师巡视,若多数同学感到困难,则再提示要不要通过图像来解答。 学生完成后讲评。 提问三:请同学指出分类讨论的依据,并对问题类型归纳。 读题后思考(1)(2)(3)题,口头回答解法。 回答二:都是一元二次函数求最值的问题,但(4)题中函数的定义域(区间)是变化的。 区间变化,函数的最值相应变化。故要进行分类讨论。 先独立思考,有困难再讨论,最后完成解答。 回答三: 最小值:对此区间是否有函数的对称轴穿过进行讨论; 最大值对此区间的两个端点离对称轴的远近讨论。

《含参数的函数的极值》专题

《含参数的函数的极值》专题 2019年( )月( )日 班级 姓名 1.函数f (x )=3x 2-ln x -x 的极值点的个数是( ) A .0 B .1 C .2 D .3 答案 B 2.若a >0,b >0,且函数f (x )=4x 3-ax 2-2bx +2在x =1处有极值,则ab 的最大值等于( ) A .2 B .3 C .6 D .9 答案 D 3.若函数f (x )=2x 3-9x 2+12x -a 恰好有两个不同的零点,则a 的值可能为( ) A .4 B .6 C .7 D .8 答案 A 4.函数f (x )=x 2-a ln x (a ∈R )不存在极值点,则a 的取值范围是( ) A .(-∞,0) B .(0,+∞) C .[0,+∞) D .(-∞,0] 答案 D 5.若函数f (x )=x 2e x -a 恰有三个零点,则实数a 的取值范围是( ) A.????4e 2,+∞ B.??? ?0,4 e 2 C .(0,4e 2) D .(0,+∞) 答案 B 6.已知函数f (x )=ln x +1 2ax 2-(a +1)x +1在x =1处取得极小值,则实数a 的取值范围是 ( ) A .(-∞,1] B .(-∞,1) C .(1,+∞) D .(0,+∞) 答案 C 7.已知函数f (x )=ax 3+bx 2+cx 的图象如图所示,且f (x )在x =x 0与x =2处取得极值,则f (1)+f (-1)的值一定( ) A .等于0 B .大于0 C .小于0 D .小于或等于0 答案 B 8.函数f (x )=ax 2+bx 在x =1 a 处有极值,则 b 的值为________. 答案 -2 9.函数f (x )=ax 3+x +1有极值的充要条件是________. 答案 a <0 10.若函数f (x )=x 3+x 2-ax -4在区间(-1,1)上恰有一个极值点,则实数a 的取值范围为

探求绝对值函数最值的求法

探究绝对值函数最值的求法及应用 陕西省西乡县第二中学:王仕林 邮编:723500 2011年陕西省理科高考试题第14题。题目是:植树节某班20名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距10米,开始时需将树苗集中放置在某一树坑旁边,使每位同学从各自树坑出发前来领取树苗往返所走的路程总和最小,这个最小值为 米。该题考查了求绝对值函数的最小值问题,转化为求函数 的最小值问题。另外2009年上海高考有一道数学试题;其题 y=|x-10|+|x-20|+|x-30|+|x -200|A A A ——目是:某地街道呈现东—西、南—北向的网络格状,相邻街距都为1。两街道相交的点称为格点。若以互相垂直一两条街道为轴建立直角坐标系,现有下述格点(-2,2),(3,1),(3,4),(-2,3),(4,5)(6,6)为报刊零售点,请确定一个格点(除零售点外) 为发行站,使6个零售点沿街道发行站之同路程的和最短。该题也需要转化为求绝对值函数 的最小值问题。那么如何求这种多 z=2|x+2|+2|x-3|+|x-4|+|x-6|+|y-1|+|y-2|+|y-3|+|y-4|+|y-5|+|y-6|个绝对值和的函数的最小值问题呢?对此,笔者运用以下方法进行了探索研究,得出了解决这种问题的基本方法,以此与各位同仁商榷。 一、利用函数图象研究这类函数的值域,从而达到求函数的最值:由于含绝对值函数可以等价 化为分段函数,因此运用函数的图象求函数的最值。 例1求函数的最小值。 y=|2x-1|解:由于函数, 12x-1x 2 y=|2x-1|=1-2x+1x<2 ? ≥??????(((作出其图象如右图:由图象可知其当时, 1 2 x =原绝对值函数的最小值为0。例2求函数的最小值。 |21||22|y x x =-++解:由于该函数 ,作出|21||22|y x x =-++14x+1(x 2 1 1=3(-

多个绝对值求和型函数最值问题的求解方法

多个绝对值求和型函数最值问题的求解方法 命题设a 1≤a 2 ≤a 3 ≤…≤a n , Y=︱x-a 1︱+︱x-a 2 ︱+︱x-a 3 ︱+…+︱x-a n ︱,求y达到最小值的条件: (1)当n=2k时,x∈﹝a k,,a k+1 ﹞,y值达到最小; (2)当n=2k-1时,x=a k 时,y值达到最小。 利用绝对值的几何意义,可以方便的证明。(思考:穿根法思想试试?) 证明:(1)当n=2k时 若a k<a k+1 ︱x-a1︱+︱x-a2k︱≥a2k-a1, 当且仅当x∈﹝a1,,a2k﹞时等号成立, ︱x-a2︱+︱x-a2k-1︱≥a2k-1-a2,当且仅当x∈﹝a2,,a2k-1﹞时等号成立, … ︱x-a k︱+︱x-a k+1︱≥a k+1-a k, 当且仅当x∈﹝a k,a k+1﹞时等号成立; 因为﹝a k,a k+1﹞是以上各区间的公共的子区间, 所以当且仅当x∈﹝a k,a k+1﹞时,以上各式的等号能同时成立,y才能达到最小。 若a k=a k+1时,当且仅当x=a k=a k+1时,以上各式的等号能同时成立,y才能达到最小。(2)当n=2k-1时, ︱x-a1︱+︱x-a2k-1︱≥a2k-1-a1,当且仅当x∈﹝a1,a2k-1﹞时等号成立, ︱x-a2︱+︱x-a2k-2︱≥a2k-2-a2,当且仅当x∈﹝a2,a2k-2﹞时等号成立, … ︱x-a k-1︱+︱x-a k+1︱≥a k+1-a k-1,当且仅当x∈﹝a k-1,a k+1﹞时等号成立; ︱x-a k︱≥0,当且仅当x=a k时等号成立 因为x=a k是以上各区间唯一公共的元素, 所以当且仅当x=a k时,以上各式的等号能同时成立,y才能达到最小。 例1 y=︱x-1︱+︱x-2︱+︱x-3︱+…+︱x-19︱,求y的最小值。 解析:共19项,中项为10,由以上定理知,当且仅当x=10时,y值达到最小。 代人x=10,y min =90. 例2(第19届“希望杯”高二2试) 如果对于任意实数x,都有 y=︱x-1︱+︱x-2︱+︱x-3︱+…+︱x-2008︱≥m成立,那么m的最大值是:(A)1003×1004 (B)10042(C)1003×1005 (D)1004×1005 解析:m的最大值,即是y的最小值。 绝对值和式共2008项,中间两项分别是1004和1005, 当且仅当x∈﹝1004,1005﹞时,y能达到最小, 取x=1004或x=1005代人,y min =10042,故选(B). 例3 y=︱x-1︱+︱x-2︱+︱x-3︱+︱x-4︱>4,求x的解集。 解析:共4项,中间两项分别是2和3,当且仅当x∈﹝2,3﹞时,y min =4。 所以原不等式的解集是{x︱x<2或x>3}.

探究绝对值函数最值的求法

探究绝对值函数最值的 求法 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

探究绝对值函数最值的求法及应用 2011年陕西省理科高考试题第14题。题目是:植树节某班20名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距10米,开始时需将树苗集中放置在某一树坑 旁边,使每位同学从各自树坑出发前来领取树苗往返所走的路程总和最小,这个最小值为米。该题考查了求绝对值函数的最小值问题,转化为求函数y=|x-10|+|x-20|+|x-30|+|x-200| ——的最小值问题。另外2009年上海高考有一道数学试题;其题目是:某地街道呈现东—西、南—北向的网络格状,相邻街距都为1。两街道相交的点称为格点。若以互相垂直一两条街道为轴建立直角坐标系,现有下述格点(-2,2),(3,1),(3,4),(-2,3),(4,5)(6,6)为报刊零售点,请确定一个格点(除零售点外)为发行站, 使6个零售点沿街道发行站之同路程的和最短。该题也需要转化为求绝对值函数 z=2|x+2|+2|x-3|+|x-4|+|x-6|+|y-1|+|y-2|+|y-3|+|y-4|+|y-5|+|y-6|的最小值问题。那么如何求这种 多个绝对值和的函数的最小值问题呢对此,笔者运用以下方法进行了探索研究,得出了解决这种问题的基本方法,以此与各位同仁商榷。 一、利用函数图象研究这类函数的值域,从而达到求函数的最值:由于含绝对值函数可 以等价化为分段函数,因此运用函数的图象求函数的最值。 例1求函数y=|2x-1|的最小值。 解:由于函数 1 2x-1x 2 y=|2x-1|= 1 -2x+1x<) 2 ? ≥ ?? ? ? ?? () ( , 1 2 x=时, 作出其图象如右图:由图象可知其当 原绝对值函数的最小值为0。 例2求函数|21||22| y x x =-++的最小值。解:由于该函数

专题 与绝对值函数有关的参数最值)

专题 与绝对值函数有关的参数最值及范围问题 类型一 常数项含参数 1.已知函数f (x )=x 2﹣5|x ﹣a|+2a (Ⅰ)若0<a <3,x ∈[a ,3],求f (x )的单调区间; (Ⅱ)若a≥0,且存在实数x 1,x 2满足(x 1﹣a )(x 2﹣a )≤0,f (x 1)=f (x 2)=k .设|x 1﹣x 2|的最大值为h (k ),求h (k )的取值范围(用a 表示). 2已知0a ≥ ,函数2()5||2f x x x a a =--+ (Ⅰ)若函数()f x 在[0,3]上单调,求实数a 的取值范围; (Ⅱ)若存在实数12,x x ,满足12()()0x a x a --≤ 且12()()f x f x =,求当a 变化时,12x x +的取值范围. 3. 已知函数()f x 和()g x 的图象关于原点对称,2()2f x x x =+. (1)若函数1()()22 h x f x x x a =---有四个不同零点,求实数a 的取值范围 (2)如果对于任意x R ∈,不等式()()1g x c f x x +≤--恒成立,求实数c 的取值范围

5.已知函数2()|1|f x x x a =++-,其中a 为实常数. (1)判断()f x 的奇偶性; (2)判断在上的单调性; (3)若对任意x R ∈,使不等式()2||f x x a ≤-恒成立,求a 的取值范围. 6.已知函数2()2||f x x x a =--.(1)若函数()y f x =为偶函数,求a 的值; (2,求函数()y f x =的单调递增区间; (3)0>a 时,对任意的[0,)x ∈+∞,(1)2()f x f x -≥恒成立,求实数a 的取值范围. 7.已知函数 ,, (1)若 ,试判断并用定义证明函数的单调性; (2)当时,求函数 的最大值的表达式; (3)是否存在实数 ,使得有且仅有3个不等实根,且它们成等差数列,若存在,求出所有 的值,若不存在,说明理由. ()f x 11[,]22-

相关文档
最新文档