K-Means聚类算法-模式识别

K-Means聚类算法-模式识别
K-Means聚类算法-模式识别

K-Means聚类算法

1.算法原理

k-means是划分方法中较经典的聚类算法之一。由于该算法的效率高,所以在对大规模数据进行聚类时被广泛应用。目前,许多算法均围绕着该算法进行扩展和改进。

k-means算法以k为参数,把n个对象分成k个簇,使簇内具有较高的相似度,而簇间的相似度较低。k-means算法的处理过程如下:首先,随机地选择k个对象,每个对象初始地代表了一个簇的平均值或中心;对剩余的每个对象,根据其与各簇中心的距离,将它赋给最近的簇;然后重新计算每个簇的平均值。这个过程不断重复,直到准则函数收敛。通常,采用平方误差准则,其定义如下:

这里E是数据库中所有对象的平方误差的总和,p是空间中的点,mi 是簇Ci的平均值。该目标函数使生成的簇尽可能紧凑独立,使用的距离度量是欧几里得距离,当然也可以用其他距离度量。k-means聚类算法的算法流程如下:

输入:包含n个对象的数据库和簇的数目k;

输出:k个簇,使平方误差准则最小。

步骤:

(1) 任意选择k个对象作为初始的簇中心;

(2) repeat;

(3) 根据簇中对象的平均值,将每个对象(重新)赋予最类似的簇;

(4) 更新簇的平均值,即计算每个簇中对象的平均值;

(5) 直到不再发生变化。

2.主要代码

主程序:

clc;

clear;

close all;

%% 聚类算法测试

nSample = [500, 500, 500];

% 3维情况

dim = 3;

coeff = {

[-2 0.8; -1 0.9; 2 0.7;], ....

[1 0.9; -2 0.7; -2 0.8; ], ...

[-2 0.7; 2 0.8; -1 0.9; ], };

data = createSample(nSample, dim , coeff);

%% 得到训练数据

nClass = length(nSample);

tlabel = [];

tdata = [];

for i = 1 : nClass

tlabel = [tlabel; i * ones(nSample(i), 1)];

tdata = [tdata; data{i}];

end

%% 调用k-means聚类算法

[ label ] = stpKMeans( tdata, nClass);

%% 绘图

result = cell(1, nClass);

index = 0;

for i = 1 : nClass

index = find(label(:,1) == i);

result{i} = tdata(index, :);

end

figure;

subplot(1, 2, 1);

plot3(data{1}(:, 1), data{1}(:, 2), data{1}(:, 3), '*', ...

data{2}(:, 1), data{2}(:, 2), data{2}(:, 3), 'o', ...

data{3}(:, 1), data{3}(:, 2), data{3}(:, 3), 'x');

title('初始数据');

subplot(1, 2, 2);

plot3(result{1}(:, 1), result{1}(:, 2), result{1}(:, 3), '*', ... result{2}(:, 1), result{2}(:, 2), result{2}(:, 3), 'o', ...

result{3}(:, 1), result{3}(:, 2), result{3}(:, 3), 'x');

title('K-Means聚类结果');

K-Means核心算法:

function [ label ] = stpKMeans( data, k)

%% KMeans 聚类算法,参考

%

https://www.360docs.net/doc/b914197115.html,/William_Fire/archive/2013/02/09/2909499.html %

%% 输入

% data 原始数据

% k 聚多少个簇

%

%% 输出

% label 按照data数据的顺序,每个样本的簇号的列表

[n, dim] = size(data);

label = zeros(n, 1);

% 任选k个对象作为初始的簇中心

seq = stpRandN_K(n, k);

nowMeans = data(seq, :);

for i = 1 : k

label(seq(i)) = i;

end

dist = zeros(n, k);

while(true)

% 计算数据到每个簇的欧几里得距离

for i = 1 : k

temp = data;

for j = 1 : dim

% 先让数据减去第j个特征

temp(:, j) = data(:, j) - nowMeans(i, j);

end

% 点乘后再相加球的距离的平方

temp = temp .* temp;

dist(:, i) = sum(temp, 2);

end

% 从k种距离中找出最小的,并计算修改次数(label跟上一次不一样)

[~, label2] = min(dist, [], 2);

editElem = sum(label(:, 1) ~= label2(:, 1));

label = label2;

% for i = 1 : n

% % 根据均值将当前的每个元素重新分簇

% minDist = inf;

% index = -1;

% % 从当前的k个均值中找到离元素i最近的一个,将其划分到该簇% for j = 1 : k

% dist = data(i,:) - nowMeans(j, :);

% dist = dot(dist, dist);

%

% if(dist < minDist)

% % 修改最近的距离,并记录测试的簇号% minDist = dist;

% index = j;

% end

% end

%

% % 判断是该元素是否重新划分了簇

% if(index ~= label(i) )

% editElem = editElem + 1;

% label(i) = index;

% end

%

% end

if editElem == 0

% 表示本次没有修改,那么跳出循环

break;

end

% 重新分簇后,重新计算均值

for i = 1 : k

% 计算第k簇的均值

[index] = find(label(:, 1) == i );

nowMeans(i, :) = mean(data(index, :)); end

end

end

从n个元素中随机抽取K个元素的代码:

function [ out ] = stpRandN_K(n, k)

%% 从1-n中随机选中k个不同的元素

data = 1 : n;

for i = 1 : k

index = floor( (n-i+1)*rand() ) + i;

% 交换i和index上的数据

temp = data(index);

data(index) = data(i);

data(i) = temp;

end

out = data(1:k);

end

图片聚类测试代码:

close all;

clc;

clear;

rgbdata = imread('data\\g-1.jpg');

labdata = stpRgb2Lab(rgbdata);

[sm, sn, ~] = size(labdata);

sN = sm * sn;

nClass = 4;

labdata = reshape(labdata, sN, 3);

[ label ] = stpKMeans( labdata, nClass);

label = reshape(label, sm, sn);

figure;

subplot(1, 2, 1);imshow(rgbdata);

hold on;

subplot(1, 2, 2);

TX = 1 : sn;

TY = 1 : sm;

imagesc(TX, TY, label);

3.结果分析

针对给定的参数

K-Means算法三类聚类结果:

图1 初始数据和K-Means聚类结果

当初始数据给为如下时:

K-Means算法三类聚类结果:

图2 初始数据和K-Means聚类结果

由此可以看到,K-Means算法会把一些偏离中心较远的点分到其它簇内。4.用于图片的结果

以图片的在Lab颜色空间的三通道作为三个特征,每个像素为一个样本点,进行图片聚类,此时,如果类数为8,则得到:

图3a 图片聚类(8类)结果

图3b 图片聚类(8类)结果聚类数量变为15时结果如下:

图4a 图片聚类(15类)结果

图4b 图片聚类(15类)结果当聚类为4的时候,结果为:

图5a 图片聚类(4类)结果

图5b 图片聚类(4类)结果

聚类分析K-means算法综述

聚类分析K-means算法综述 摘要:介绍K-means聚类算法的概念,初步了解算法的基本步骤,通过对算法缺点的分析,对算法已有的优化方法进行简单分析,以及对算法的应用领域、算法未来的研究方向及应用发展趋势作恰当的介绍。 关键词:K-means聚类算法基本步骤优化方法应用领域研究方向应用发展趋势 算法概述 K-means聚类算法是一种基于质心的划分方法,输入聚类个数k,以及包含n个数据对象的数据库,输出满足方差最小标准的k个聚类。 评定标准:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。聚类相似度是利用各聚类中对象的均值所获得一个“中心对象”(引力中心)来进行计算。 解释:基于质心的划分方法就是将簇中的所有对象的平均值看做簇的质心,然后根据一个数据对象与簇质心的距离,再将该对象赋予最近的簇。 k-means 算法基本步骤 (1)从n个数据对象任意选择k 个对象作为初始聚类中心 (2)根据每个聚类对象的均值(中心对象),计算每个对象与这些中心对象的距离;并根据最小距离重新对相应对象进行划分 (3)重新计算每个(有变化)聚类的均值(中心对象) (4)计算标准测度函数,当满足一定条件,如函数收敛时,则算法终止;如果条件不满足则回到步骤(2) 形式化描述 输入:数据集D,划分簇的个数k 输出:k个簇的集合 (1)从数据集D中任意选择k个对象作为初始簇的中心; (2)Repeat (3)For数据集D中每个对象P do (4)计算对象P到k个簇中心的距离 (5)将对象P指派到与其最近(距离最短)的簇;

(6)End For (7)计算每个簇中对象的均值,作为新的簇的中心; (8)Until k个簇的簇中心不再发生变化 对算法已有优化方法的分析 (1)K-means算法中聚类个数K需要预先给定 这个K值的选定是非常难以估计的,很多时候,我们事先并不知道给定的数据集应该分成多少个类别才最合适,这也是K一means算法的一个不足"有的算法是通过类的自动合并和分裂得到较为合理的类型数目k,例如Is0DAIA算法"关于K一means算法中聚类数目K 值的确定,在文献中,根据了方差分析理论,应用混合F统计量来确定最佳分类数,并应用了模糊划分嫡来验证最佳分类数的正确性。在文献中,使用了一种结合全协方差矩阵RPCL算法,并逐步删除那些只包含少量训练数据的类。文献中针对“聚类的有效性问题”提出武汉理工大学硕士学位论文了一种新的有效性指标:V(k km) = Intra(k) + Inter(k) / Inter(k max),其中k max是可聚类的最大数目,目的是选择最佳聚类个数使得有效性指标达到最小。文献中使用的是一种称为次胜者受罚的竞争学习规则来自动决定类的适当数目"它的思想是:对每个输入而言不仅竞争获胜单元的权值被修正以适应输入值,而且对次胜单元采用惩罚的方法使之远离输入值。 (2)算法对初始值的选取依赖性极大以及算法常陷入局部极小解 不同的初始值,结果往往不同。K-means算法首先随机地选取k个点作为初始聚类种子,再利用迭代的重定位技术直到算法收敛。因此,初值的不同可能导致算法聚类效果的不稳定,并且,K-means算法常采用误差平方和准则函数作为聚类准则函数(目标函数)。目标函数往往存在很多个局部极小值,只有一个属于全局最小,由于算法每次开始选取的初始聚类中心落入非凸函数曲面的“位置”往往偏离全局最优解的搜索范围,因此通过迭代运算,目标函数常常达到局部最小,得不到全局最小。对于这个问题的解决,许多算法采用遗传算法(GA),例如文献中采用遗传算法GA进行初始化,以内部聚类准则作为评价指标。 (3)从K-means算法框架可以看出,该算法需要不断地进行样本分类调整,不断地计算调整后的新的聚类中心,因此当数据量非常大时,算法的时间开销是非常大 所以需要对算法的时间复杂度进行分析,改进提高算法应用范围。在文献中从该算法的时间复杂度进行分析考虑,通过一定的相似性准则来去掉聚类中心的候选集,而在文献中,使用的K-meanS算法是对样本数据进行聚类。无论是初始点的选择还是一次迭代完成时对数据的调整,都是建立在随机选取的样本数据的基础之上,这样可以提高算法的收敛速度。

模式识别(K近邻算法)

K 近邻算法 1.算法思想 取未知样本的x 的k 个近邻,看这k 个近邻中多数属于哪一类,就把x 归于哪一类。具体说就是在N 个已知的样本中,找出x 的k 个近邻。设这N 个样本中,来自1w 类的样本有1N 个,来自2w 的样本有2N 个,...,来自c w 类的样本有c N 个,若c k k k ,,,21 分别是k 个近邻中属于c w w w ,,,21 类的样本数,则我们可以定义判别函数为: c i k x g i i ,,2,1,)( == 决策规则为: 若i i j k x g max )(=,则决策j w x ∈ 2.程序代码 %KNN 算法程序 function error=knn(X,Y ,K) %error 为分类错误率 data=X; [M,N]=size(X); Y0=Y; [m0,n0]=size(Y); t=[1 2 3];%3类向量 ch=randperm(M);%随机排列1—M error=0; for i=1:10 Y1=Y0; b=ch(1+(i-1)*M/10:i*M/10); X1=X(b,:); X(b,:)=[]; Y1(b,:)=[]; c=X; [m,n]=size(X1); %m=15,n=4 [m1,n]=size(c); %m1=135,n=4 for ii=1:m for j=1:m1 ss(j,:)=sum((X1(ii,:)-c(j,:)).^2); end [z1,z2]=sort(ss); %由小到大排序 hh=hist(Y1(z2(1:K)),t); [w,best]=max(hh); yy(i,ii)=t(best); %保存修改的分类结果 end

蚁群聚类算法综述

计算机工程与应用2006.16 引言 聚类分析是数据挖掘领域中的一个重要分支[1],是人们认 和探索事物之间内在联系的有效手段,它既可以用作独立的 据挖掘工具,来发现数据库中数据分布的一些深入信息,也 以作为其他数据挖掘算法的预处理步骤。所谓聚类(clus- ring)就是将数据对象分组成为多个类或簇(cluster),在同一 簇中的对象之间具有较高的相似度,而不同簇中的对象差别大。传统的聚类算法主要分为四类[2,3]:划分方法,层次方法, 于密度方法和基于网格方法。 受生物进化机理的启发,科学家提出许多用以解决复杂优 问题的新方法,如遗传算法、进化策略等。1991年意大利学A.Dorigo等提出蚁群算法,它是一种新型的优化方法[4]。该算不依赖于具体问题的数学描述,具有全局优化能力。随后他 其他学者[5~7]提出一系列有关蚁群的算法并应用于复杂的组优化问题的求解中,如旅行商问题(TSP)、调度问题等,取得 著的成效。后来其他科学家根据自然界真实蚂蚁群堆积尸体分工行为,提出基于蚂蚁的聚类算法[8,9],利用简单的智能体 仿蚂蚁在给定的环境中随意移动。这些算法的基本原理简单懂[10],已经应用到电路设计、文本挖掘等领域。本文详细地讨现有蚁群聚类算法的基本原理与性能,在归纳总结的基础上 出需要完善的地方,以推动蚁群聚类算法在更广阔的领域内 到应用。 2聚类概念及蚁群聚类算法 一个簇是一组数据对象的集合,在同一个簇中的对象彼此 类似,而不同簇中的对象彼此相异。将一组物理或抽象对象分组为类似对象组成的多个簇的过程被称为聚类。它根据数据的内在特性将数据对象划分到不同组(或簇)中。聚类的质量是基于对象相异度来评估的,相异度是根据描述对象的属性值来计算的,距离是经常采用的度量方式。聚类可用数学形式化描述为:设给定数据集X={x 1 ,x 2 ,…,x n },!i∈{1,2,…,n},x i ={x i1 ,x i2 , …,x

KMeans聚类算法模式识别

K-Means聚类算法 1.算法原理 k-means是划分方法中较经典的聚类算法之一。由于该算法的效率高,所以在对大规模数据进行聚类时被广泛应用。目前,许多算法均围绕着该算法进行扩展和改进。 k-means算法以k为参数,把n个对象分成k个簇,使簇内具有较高的相似度,而簇间的相似度较低。k-means算法的处理过程如下:首先,随机地选择k个对象,每个对象初始地代表了一个簇的平均值或中心;对剩余的每个对象,根据其与各簇中心的距离,将它赋给最近的簇;然后重新计算每个簇的平均值。这个过程不断重复,直到准则函数收敛。通常,采用平方误差准则,其定义如下: 这里E是数据库中所有对象的平方误差的总和,p是空间中的点,mi 是簇Ci的平均值。该目标函数使生成的簇尽可能紧凑独立,使用的距离度量是欧几里得距离,当然也可以用其他距离度量。k-means聚类算法的算法流程如下: 输入:包含n个对象的数据库和簇的数目k; 输出:k个簇,使平方误差准则最小。 步骤: (1) 任意选择k个对象作为初始的簇中心; (2) repeat; (3) 根据簇中对象的平均值,将每个对象(重新)赋予最类似的簇; (4) 更新簇的平均值,即计算每个簇中对象的平均值;

(5) 直到不再发生变化。 2.主要代码 主程序: clc; clear; close all; %% 聚类算法测试 nSample = [500, 500, 500]; % 3维情况 dim = 3; coeff = { [-2 0.8; -1 0.9; 2 0.7;], .... [1 0.9; -2 0.7; -2 0.8; ], ... [-2 0.7; 2 0.8; -1 0.9; ], }; data = createSample(nSample, dim , coeff); %% 得到训练数据 nClass = length(nSample); tlabel = []; tdata = []; for i = 1 : nClass

大数据时代的空间数据挖掘综述

第37卷第7期测绘与空间地理信息 GEOMATICS &SPATIAL INFORMATION TECHNOLOGY Vol.37,No.7收稿日期:2014-01-22 作者简介:马宏斌(1982-),男,甘肃天水人,作战环境学专业博士研究生,主要研究方向为地理空间信息服务。 大数据时代的空间数据挖掘综述 马宏斌1 ,王 柯1,马团学 2(1.信息工程大学地理空间信息学院,河南郑州450000;2.空降兵研究所,湖北孝感432000) 摘 要:随着大数据时代的到来,数据挖掘技术再度受到人们关注。本文回顾了传统空间数据挖掘面临的问题, 介绍了国内外研究中利用大数据处理工具和云计算技术,在空间数据的存储、管理和挖掘算法等方面的做法,并指出了该类研究存在的不足。最后,探讨了空间数据挖掘的发展趋势。关键词:大数据;空间数据挖掘;云计算中图分类号:P208 文献标识码:B 文章编号:1672-5867(2014)07-0019-04 Spatial Data Mining Big Data Era Review MA Hong -bin 1,WANG Ke 1,MA Tuan -xue 2 (1.Geospatial Information Institute ,Information Engineering University ,Zhengzhou 450000,China ; 2.Airborne Institute ,Xiaogan 432000,China ) Abstract :In the era of Big Data ,more and more researchers begin to show interest in data mining techniques again.The paper review most unresolved problems left by traditional spatial data mining at first.And ,some progress made by researches using Big Data and Cloud Computing technology is introduced.Also ,their drawbacks are mentioned.Finally ,future trend of spatial data mining is dis-cussed. Key words :big data ;spatial data mining ;cloud computing 0引言 随着地理空间信息技术的飞速发展,获取数据的手 段和途径都得到极大丰富,传感器的精度得到提高和时空覆盖范围得以扩大,数据量也随之激增。用于采集空间数据的可能是雷达、红外、光电、卫星、多光谱仪、数码相机、成像光谱仪、全站仪、天文望远镜、电视摄像、电子 显微镜、CT 成像等各种宏观与微观传感器或设备,也可能是常规的野外测量、人口普查、土地资源调查、地图扫描、 地图数字化、统计图表等空间数据获取手段,还可能是来自计算机、 网络、GPS ,RS 和GIS 等技术应用和分析空间数据。特别是近些年来,个人使用的、携带的各种传感器(重力感应器、电子罗盘、三轴陀螺仪、光线距离感应器、温度传感器、红外线传感器等),具备定位功能电子设备的普及,如智能手机、平板电脑、可穿戴设备(GOOGLE GLASS 和智能手表等),使人们在日常生活中产生了大量具有位置信息的数据。随着志愿者地理信息(Volunteer Geographic Information )的出现,使这些普通民众也加入到了提供数据者的行列。 以上各种获取手段和途径的汇集,就使每天获取的 数据增长量达到GB 级、 TB 级乃至PB 级。如中国遥感卫星地面站现在保存的对地观测卫星数据资料达260TB ,并以每年15TB 的数据量增长。比如2011年退役的Landsat5卫星在其29年的在轨工作期间,平均每年获取8.6万景影像,每天获取67GB 的观测数据。而2012年发射的资源三号(ZY3)卫星,每天的观测数据获取量可以达到10TB 以上。类似的传感器现在已经大量部署在卫 星、 飞机等飞行平台上,未来10年,全球天空、地空间部署的百万计传感器每天获取的观测数据将超过10PB 。这预示着一个时代的到来,那就是大数据时代。大数据具有 “4V ”特性,即数据体量大(Volume )、数据来源和类型繁多(Variety )、数据的真实性难以保证(Veracity )、数据增加和变化的速度快(Velocity )。对地观测的系统如图1所示。 在这些数据中,与空间位置相关的数据占了绝大多数。传统的空间知识发现的科研模式在大数据情境下已经不再适用,原因是传统的科研模型不具有普适性且支持的数据量受限, 受到数据传输、存储及时效性需求的制约等。为了从存储在分布方式、虚拟化的数据中心获取信息或知识,这就需要利用强有力的数据分析工具来将

k-means聚类算法的研究全解

k-means聚类算法的研究 1.k-means算法简介 1.1 k-means算法描述 给定n个对象的数据集D和要生成的簇数目k,划分算法将对象组织划分为k个簇(k<=n),这些簇的形成旨在优化一个目标准则。例如,基于距离的差异性函数,使得根据数据集的属性,在同一个簇中的对象是“相似的”,而不同簇中的对象是“相异的”。划分聚类算法需要预先指定簇数目或簇中心,通过反复迭代运算,逐步降低目标函数的误差值,当目标函数收敛时,得到最终聚类结果。这类方法分为基于质心的(Centroid-based)划分方法和基于中心的(Medoid-based)划分方法,而基于质心的划分方法是研究最多的算法,其中k-means算法是最具代表和知名的。 k-means算法是1967年由MacQueen首次提出的一种经典算法,经常用于数据挖掘和模式识别中,是一种无监督式的学习算法,其使用目的是对几何进行等价类的划分,即对一组具有相同数据结构的记录按某种分类准则进行分类,以获取若干个同类记录集。k-means聚类是近年来数据挖掘学科的一个研究热点和重点,这主要是因为它广泛应用于地球科学、信息技术、决策科学、医学、行为学和商业智能等领域。迄今为止,很多聚类任务都选择该算法。k-means算法是应用最为广泛的聚类算法。该算法以类中各样本的加权均值(成为质心)代表该类,只用于数字属性数据的聚类,算法有很清晰的几何和统计意义,但抗干扰性较差。通常以各种样本与其质心欧几里德距离总和作为目标函数,也可将目标函数修改为各类中任意两点间欧几里德距离总和,这样既考虑了类的分散度也考虑了类的紧致度。k-means算法是聚类分析中基于原型的划分聚类的应用算法。如果将目标函数看成分布归一化混合模型的似然率对数,k-means算法就可以看成概率模型算法的推广。 k-means算法基本思想: (1)随机的选K个点作为聚类中心; (2)划分剩余的点; (3)迭代过程需要一个收敛准则,此次采用平均误差准则。 (4)求质心(作为中心); (5)不断求质心,直到不再发生变化时,就得到最终的聚类结果。 k-means聚类算法是一种广泛应用的聚类算法,计算速度快,资源消耗少,但是k-means算法与初始选择有关系,初始聚类中心选择的随机性决定了算法的有效性和聚

模式识别感知器算法求判别函数

感知器算法求判别函数 一、 实验目的 掌握判别函数的概念和性质,并熟悉判别函数的分类方法,通过实验更深入的了解判别函数及感知器算法用于多类的情况,为以后更好的学习模式识别打下基础。 二、 实验内容 学习判别函数及感知器算法原理,在MATLAB 平台设计一个基于感知器算法进行训练得到三类分布于二维空间的线性可分模式的样本判别函数的实验,并画出判决面,分析实验结果并做出总结。 三、 实验原理 3.1 判别函数概念 直接用来对模式进行分类的准则函数。若分属于ω1,ω2的两类模式可用一方程d (X ) =0来划分,那么称d (X ) 为判别函数,或称判决函数、决策函数。如,一个二维的两类判别问题,模式分布如图示,这些分属于ω1,ω2两类的模式可用一直线方程 d (X )=0来划分。其中 0)(32211=++=w x w x w d X (1) 21,x x 为坐标变量。 将某一未知模式 X 代入(1)中: 若0)(>X d ,则1ω∈X 类; 若0)(3时:判别边界为一超平面[1]。 3.2 感知器算法 1958年,(美)F.Rosenblatt 提出,适于简单的模式分类问题。感知器算法是对一种分

类学习机模型的称呼,属于有关机器学习的仿生学领域中的问题,由于无法实现非线性分类而下马。但“赏罚概念( reward-punishment concept )” 得到广泛应用,感知器算法就是一种赏罚过程[2]。 两类线性可分的模式类 21,ωω,设X W X d T )(=其中,[]T 1 21,,,,+=n n w w w w ΛW ,[]T 211,,,,n x x x Λ=X 应具有性质 (2) 对样本进行规范化处理,即ω2类样本全部乘以(-1),则有: (3) 感知器算法通过对已知类别的训练样本集的学习,寻找一个满足上式的权向量。 感知器算法步骤: (1)选择N 个分属于ω1和 ω2类的模式样本构成训练样本集{ X1 ,…, XN }构成增广向量形式,并进行规范化处理。任取权向量初始值W(1),开始迭代。迭代次数k=1。 (2)用全部训练样本进行一轮迭代,计算W T (k )X i 的值,并修正权向量。 分两种情况,更新权向量的值: 1. (),若0≤T i k X W 分类器对第i 个模式做了错误分类,权向量校正为: ()()i c k k X W W +=+1 c :正的校正增量。 2. 若(),0T >i k X W 分类正确,权向量不变:()()k k W W =+1,统一写为: ???∈<∈>=21T ,0,0)(ωωX X X W X 若若d

K-means-聚类算法研究综述

K-means聚类算法研究综述 摘要:总结评述了K-means聚类算法的研究现状,指出K-means聚类算法是一个NP难优化问题,无法获得全局最优。介绍了K-means聚类算法的目标函数,算法流程,并列举了一个实例,指出了数据子集的数目K,初始聚类中心选取,相似性度量和距离矩阵为K-means聚类算法的3个基本参数。总结了K-means聚类算法存在的问题及其改进算法,指出了K-means 聚类的进一步研究方向。 关键词:K-means聚类算法;NP难优化问题;数据子集的数目K;初始聚类中心选取;相似性度量和距离矩阵 Review of K-means clustering algorithm Abstract: K-means clustering algorithm is reviewed. K-means clustering algorithm is a NP hard optimal problem and global optimal result cannot be reached. The goal,main steps and example of K-means clustering algorithm are introduced. K-means algorithm requires three user-specified parameters: number of clusters K,cluster initialization,and distance metric. Problems and improvement of K-means clustering algorithm are summarized then. Further study directions of K-means clustering algorithm are pointed at last. Key words: K-means clustering algorithm; NP hard optimal problem; number of clusters K; cluster initialization; distance metric K-means聚类算法是由Steinhaus1955年、Lloyed1957年、Ball & Hall1965年、McQueen1967年分别在各自的不同的科学研究领域独立的提出。K-means聚类算法被提出来后,在不同的学科领域被广泛研究和应用,并发展出大量不同的改进算法。虽然K-means聚类算法被提出已经超过50年了,但目前仍然是应用最广泛的划分聚类算法之一[1]。容易实施、简单、高效、成功的应用案例和经验是其仍然流行的主要原因。 文中总结评述了K-means聚类算法的研究现状,指出K-means聚类算法是一个NP难优化问题,无法获得全局最优。介绍了K-means聚类算法的目标函数、算法流程,并列举了一个实例,指出了数据子集的数目K、初始聚类中心选取、相似性度量和距离矩阵为K-means聚类算法的3个基本参数。总结了K-means聚类算法存在的问题及其改进算法,指出了K-means聚类的进一步研究方向。 1经典K-means聚类算法简介 1.1K-means聚类算法的目标函数 对于给定的一个包含n个d维数据点的数据集 12 {x,x,,x,,x} i n X=??????,其中d i x R ∈,以及要生成的数据子集的数目K,K-means聚类算法将数据对象组织为 K个划分{c,i1,2,} k C K ==???。每个划分代表一个类c k,每个类c k有一个类别中心iμ。选取欧氏距离作为相似性和 距离判断准则,计算该类内各点到聚类中心 i μ的距离平方和 2 (c) i i k i k x C J xμ ∈ =- ∑(1) 聚类目标是使各类总的距离平方和 1 (C)(c) K k k J J = =∑最小。 22 1111 (C)(c) i i K K K n k i k ki i k k k x C k i J J x d x μμ ==∈== ==-=- ∑∑∑∑∑ (2)其中, 1 i i ki i i x c d x c ∈ ? =? ? ? 若 若 ,显然,根据最小二乘 法和拉格朗日原理,聚类中心 k μ应该取为类别 k c类各数据点的平均值。 K-means聚类算法从一个初始的K类别划分开始,然

模式识别关于男女生身高和体重的神经网络算法

模式识别实验报告(二) 学院: 专业: 学号: 姓名:XXXX 教师:

目录 1实验目的 (1) 2实验内容 (1) 3实验平台 (1) 4实验过程与结果分析 (1) 4.1基于BP神经网络的分类器设计 .. 1 4.2基于SVM的分类器设计 (4) 4.3基于决策树的分类器设计 (7) 4.4三种分类器对比 (8) 5.总结 (8)

1)1实验目的 通过实际编程操作,实现对课堂上所学习的BP神经网络、SVM支持向量机和决策树这三种方法的应用,加深理解,同时锻炼自己的动手实践能力。 2)2实验内容 本次实验提供的样本数据有149个,每个数据提取5个特征,即身高、体重、是否喜欢数学、是否喜欢文学及是否喜欢运动,分别将样本数据用于对BP神经网络分类器、SVM支持向量机和决策树训练,用测试数据测试分类器的效果,采用交叉验证的方式实现对于性能指标的评判。具体要求如下: BP神经网络--自行编写代码完成后向传播算法,采用交叉验证的方式实现对于性能指标的评判(包含SE,SP,ACC和AUC,AUC的计算可以基于平台的软件包); SVM支持向量机--采用平台提供的软件包进行分类器的设计以及测试,尝试不同的核函数设计分类器,采用交叉验证的方式实现对于性能指标的评判; 决策树--采用平台提供的软件包进行分类器的设计以及测试,采用交叉验证的方式实现对于性能指标的评判(包含SE,SP,ACC和AUC,AUC的计算基于平台的软件包)。 3)3实验平台 专业研究方向为图像处理,用的较多的编程语言为C++,因此此次程序编写用的平台是VisualStudio及opencv,其中的BP神经网络为自己独立编写,SVM 支持向量机和决策树通过调用Opencv3.0库中相应的库函数并进行相应的配置进行实现。将Excel中的119个数据作为样本数据,其余30个作为分类器性能的测试数据。 4)4实验过程与结果分析 4.1基于BP神经网络的分类器设计 BP神经网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。其学习规则是使用梯度下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hidden layer)和输出层(output layer)。 在独自设计的BP神经中,激励函数采用sigmod函数,输入层节点个数为5,

matlab实现Kmeans聚类算法

matlab实现Kmeans聚类算法 1.简介: Kmeans和应用于混合高斯模型的受限EM算法是一致的。高斯混合模型广泛用于数据挖掘、模式识别、机器学习、统计分析。Kmeans 的迭代步骤可以看成E步和M步,E:固定参数类别中心向量重新标记样本,M:固定均值只考虑(估计)了均值,而没有估计类别的方差,所以聚类的结构比较适合于特征协方差相等的类别。 Kmeans在某种程度也可以看成Meanshitf的特殊版本,Meanshift 是所以Meanshift可以用于寻找数据的多个模态(类别),利用的是梯度上升法。在06年的一篇CVPR文章上,证明了Meanshift方法是牛顿拉夫逊算法的变种。Kmeans和EM算法相似是指混合密度的形式已知(参数形式已知)情况下,利用迭代方法,在参数空间中搜索解。而Kmeans和Meanshift相似是指都是一种概率密度梯度估计的方法,不过是Kmean选用的是特殊的核函数(uniform kernel),而与混合概率密度形式是否已知无关,是一种梯度求解方式。 k-means是一种聚类算法,这种算法是依赖于点的邻域来决定哪些点应该分在点,也可以对高维的空间(3维,4维,等等)的点进行聚类,任意高维的空间都可以。 上图中的彩色部分是一些二维空间点。上图中已经把这些点分组了,并使用了不同的颜色对各组进行了标记。这就是聚类算法要做的事情。 这个算法的输入是: 1:点的数据(这里并不一定指的是坐标,其实可以说是向量)

2:K,聚类中心的个数(即要把这一堆数据分成几组) 所以,在处理之前,你先要决定将要把这一堆数据分成几组,即聚成几类。但并不是在所有情况下,你都事先就能知道需要把数据聚成几类的。意味着使用k-means就不能处理这种情况,下文中会有讲解。 把相应的输入数据,传入k-means算法后,当k-means算法运行完后,该算法的输出是: 1:标签(每一个点都有一个标签,因为最终任何一个点,总会被分到某个类,类的id号就是标签) 2:每个类的中心点。 标签,是表示某个点是被分到哪个类了。例如,在上图中,实际上有4中“标签”,每个“标签”使用不同的颜色来表示。所有黄色点我们可以用标签以看出,有3个类离的比较远,有两个类离得比较近,几乎要混合在一起了。 当然,数据集不一定是坐标,假如你要对彩色图像进行聚类,那么你的向量就可以是(b,g,r),如果使用的是hsv颜色空间,那还可以使用(h,s,v),当然肯定可以有不同的组合例如(b*b,g*r,r*b) ,(h*b,s*g,v*v)等等。 在本文中,初始的类的中心点是随机产生的。如上图的红色点所示,是本文随机产生的初始点。注意观察那两个离得比较近的类,它们几乎要混合在一起,看看算法是如何将它们分开的。 类的初始中心点是随机产生的。算法会不断迭代来矫正这些中心点,并最终得到比较靠5个中心点的距离,选出一个距离最小的(例如该点与第2个中心点的距离是5个距离中最小的),那么该点就归属于该类.上图是点的归类结果示意图. 经过步骤3后,每一个中心center(i)点都有它的”管辖范围”,由于这个中心点不一定是这个管辖范围的真正中心点,所以要重新计算中心点,计算的方法有很多种,最简单的一种是,直接计算该管辖范围内所有点的均值,做为心的中心点new_center(i). 如果重新计算的中心点new_center(i)与原来的中心点center(i)的距离大于一定的阈值(该阈值可以设定),那么认为算法尚未收敛,使用new_center(i)代替center(i)(如图,中心点从红色点

基于聚类的图像分割方法综述

信息疼术2018年第6期文章编号=1009 -2552 (2018)06 -0092 -03 DOI:10.13274/https://www.360docs.net/doc/b914197115.html,ki.hdzj.2018. 06.019 基于聚类的图像分割方法综述 赵祥宇\陈沫涵2 (1.上海理工大学光电信息与计算机学院,上海200093; 2.上海西南位育中学,上海200093) 摘要:图像分割是图像识别和机器视觉领域中关键的预处理操作。分割理论算法众多,文中 具体介绍基于聚类的分割算法的思想和原理,并将包含的典型算法的优缺点进行介绍和分析。经过比较后,归纳了在具体应用中如何对图像分割算法的抉择问题。近年来传统分割算法不断 被科研工作者优化和组合,相信会有更多的分割新算法井喷而出。 关键词:聚类算法;图像分割;分类 中图分类号:TP391.41 文献标识码:A A survey of image segmentation based on clustering ZHAO Xiang-yu1,CHEN Mo-han2 (1.School of Optical Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai200093,China;2.Shanghai Southwest Weiyu Middle School,Shanghai200093,China) Abstract:Image segmentation is a key preprocessing operation in image recognition and machine vision. There are many existing theoretical methods,and this paper introduces the working principle ol image segmentation algorithm based on clustering.Firstly,the advantages and disadvantages ol several typical algorithms are introduced and analyzed.Alter comparison,the paper summarizes the problem ol the selection ol image segmentation algorithm in practical work.In recent years,the traditional segmentation algorithms were improved and combined by the researchers,it believes that more new algorithms are blown out. Key words:clustering algorithm;image segmentation;classilication 0引百 近年来科学技术的不断发展,计算机视觉和图像 识别发挥着至关重要的作用。在实际应用和科学研 究中图像处理必不可少,进行图像处理必然用到图像 分割方法,根据检测图像中像素不重叠子区域,将感 兴趣目标区域分离出来。传统的图像分割方法:阈值 法[1]、区域法[2]、边缘法[3]等。近年来传统分割算法 不断被研究人员改进和结合,出现了基于超像素的分 割方法[4],本文主要介绍超像素方法中基于聚类的经 典方法,如Mean Shift算法、K-m eans 算法、Fuzzy C-mean算法、Medoidshilt算法、Turbopixels算法和 SLIC 算法。简要分析各算法的基本思想和分割效果。 1聚类算法 1.1 Mean Shil't算法 1975年,Fukunaga[5]提出一种快速统计迭代算法,即Mean Shilt算法(均值漂移算法)。直到1995 年,Cheng[6]对其进行改进,定义了核函数和权值系 数,在全局优化和聚类等方面的应用,扩大了 Mean shil't算法适用范围。1997至2003年间,Co-maniciu[7-9]提出了基于核密度梯度估计的迭代式 搜索算法,并将该方法应用在图像平滑、分割和视频 跟踪等领域。均值漂移算法的基本思想是通过反复 迭代计算当前点的偏移均值,并挪动被计算点,经过 反复迭代计算和多次挪动,循环判断是否满足条件, 达到后则终止迭代过程[10]。Mean shil't的基本形 式为: 收稿日期:2017-06 -13 基金项目:国家自然科学基金资助项目(81101116) 作者简介:赵祥宇(1992-),男,硕士研究生,研究方向为数字图像处理。 —92 —

机器学习在模式识别中的算法研究

机器学习在模式识别中的算法研究 摘要:机器学习是计算机开展智能操作的基础,人工智能的发展依靠机器学习 技术,而机器学习、模式识别与当前人工智能的发展密切相关。本文通过概述机 器学习机制,围绕神经网络、遗传算法、支持向量机、K-近邻法等算法研究当前 机器学习在模拟识别中的应用,为今后模拟识别与人工智能开发与研究提供借鉴。关键词:机器学习;模式识别;人工神经网络 前言: 机器学习技术覆盖了人工智能的各个部分,如自动推理、专家系统、模式识别、智能机器人等。模式识别是将计算机的不同事物划分成不同的类别。人工智 能的模式识别可以利用机器学习算法完善分类能效。因此,机器学习与模式识别 密不可分,本文就机器学习在模式识别领域的学习算法中的应用展开研究。 1、机器学习机制与系统设计 在机器学习模型中,环境可以向系统的学习部件中提供信息,学习部件根据 这些信息调整和修改知识库,提升系统内部执行文件的性能。执行文件再将获得 的信息向学习部件反馈,此过程就是机器学习系统结合外部与内部的环境信息自 动获取知识的过程。机器学习系统设计的构建过程应包含两部分:其一,模型的 选择和构建。其二,学习算法的选择与设计。不同种类的模型具有不同的目标函数,涉及到不同的学习机制,算法的复杂性与能力决定着学习系统的效率与学习 能力。此外,训练样本集的特征与大小的问题也与机器学习系统的性能相关。 2、机器学习在模式识别中的应用 2.1 遗传算法 在机器学习中,特征维数是一大难题,每一种模式中的特征反映出的事物本 质权重均不一致。部分对于分类结果并无积极作用,甚至属于冗余,因此选择特 征尤为关键。遗传算法实际上是寻优算法,可以有效的解决特征选择问题。遗传 算法可以筛选出准确反映出原模式相关信息、影响分类的结果、相互关联性较小 的特征。遗传算法实际是利用达尔文的生物进化思想,在运算领域中巧妙生成一 种寻优算法。该算法是1975年由美国Michigan大学的Holland教授提出的,遗 传算法的主要方法如下:首先,将种群中的个体作为对象,进行一系列的变异、 交叉、选择等操作。其次,利用遗传操作促进群体不断的进化,最终产生最优的 个体,最后,结合个体对于环境的适应程度选择最优良的个体,为其创造机会繁 衍后代。遗传算法程序如下:选择合适的编码策略,确定遗传策略和适应度函数。遗传策略包含种群的选择、大小、交叉概率、变异方法、变异概率等遗传参数; 利用编码策略,将特征集变为位串结构;构建初始化群体;计算整个群体的个体 适应度;结合遗传策略,将交叉、选择等作用在群体中,产生下一代群体;判别 群体性能是否到达某一标准,假若不满足将回到遗传策略阶段。 2.2 k-近邻法 k-nearest neighbor(k-近邻法)被广泛运用在无指导、基于实例的学习方法中, 可以实现线性不可分的样本识别,在之前并不了解待分样本的分布函数。当前被 广泛应用的k-近邻法主要是将待分类样本为重点形成超球体,同时扩展超球的半 径一直到球内包含着K个已知模式的样本,判别k个邻近样本属于哪一种。其主 要分类算法如下:设有c个类别,分别是w1,w2,w3,...,wc,i=1,2,3,...,c.测试样本x

数据挖掘中的聚类算法综述

收稿日期:2006201204;修返日期:2006203219基金项目:国家自然科学基金资助项目(60473117) 数据挖掘中的聚类算法综述 3 贺 玲,吴玲达,蔡益朝 (国防科学技术大学信息系统与管理学院,湖南长沙410073) 摘 要:聚类是数据挖掘中用来发现数据分布和隐含模式的一项重要技术。全面总结了数据挖掘中聚类算法的研究现状,分析比较了它们的性能差异和各自存在的优点及问题,并结合多媒体领域的应用需求指出了其今后的发展趋势。 关键词:数据挖掘;聚类;聚类算法 中图法分类号:TP391 文献标识码:A 文章编号:100123695(2007)0120010204 Survey of Clustering A lgorith m s in Data M ining HE L ing,WU L ing 2da,CA I Yi 2chao (College of Infor m ation Syste m &M anage m ent,N ational U niversity of D efense Technology,Changsha Hunan 410073,China ) Abstract:Clustering is an i m portant technique in Data M ining (DM )f or the discovery of data distributi on and latent data pattern .This paper p r ovides a detailed survey of current clustering algorith m s in DM at first,then it makes a comparis on a mong the m,illustrates the merits existing in the m,and identifies the p r oblem s t o be s olved and the ne w directi ons in the fu 2ture according t o the app licati on require ments in multi m edia domain .Key works:Data M ining;Clustering;Clustering A lgorith m 1 引言 随着信息技术和计算机技术的迅猛发展,人们面临着越来越多的文本、图像、视频以及音频数据,为帮助用户从这些大量数据中分析出其间所蕴涵的有价值的知识,数据挖掘(Data M ining,DM )技术应运而生。所谓数据挖掘,就是从大量无序 的数据中发现隐含的、有效的、有价值的、可理解的模式,进而发现有用的知识,并得出时间的趋向和关联,为用户提供问题求解层次的决策支持能力。与此同时,聚类作为数据挖掘的主要方法之一,也越来越引起人们的关注。 本文比较了数据挖掘中现有聚类算法的性能,分析了它们各自的优缺点并指出了其今后的发展趋势。 2 DM 中现有的聚类算法 聚类是一种常见的数据分析工具,其目的是把大量数据点的集合分成若干类,使得每个类中的数据之间最大程度地相似,而不同类中的数据最大程度地不同。在多媒体信息检索及数据挖掘的过程中,聚类处理对于建立高效的数据库索引、实现快速准确的信息检索具有重要的理论和现实意义。 本文以聚类算法所采用的基本思想为依据将它们分为五类,即层次聚类算法、分割聚类算法、基于约束的聚类算法、机器学习中的聚类算法以及用于高维数据的聚类算法,如图1所示。 聚类 层次聚类算法 聚合聚类:Single 2L ink,Comp lete 2L ink,Average 2L ink 分解聚类 分割聚类算法基于密度的聚类基于网格的聚类 基于图论的聚类 基于平方误差的迭代重分配聚类:概率聚类、最近邻 聚类、K 2medoids 、K 2means 基于约束的聚类算法 机器学习中的聚类算法 人工神经网络方法 基于进化理论的方法:模拟退火、遗传算法用于高维数据的聚类算法 子空间聚类 联合聚类 图1 聚类算法分类示意图 211 层次聚类算法 层次聚类算法通过将数据组织成若干组并形成一个相应的树状图来进行聚类,它又可以分为两类,即自底向上的聚合层次聚类和自顶向下的分解层次聚类。聚合聚类的策略是先将每个对象各自作为一个原子聚类,然后对这些原子聚类逐层进行聚合,直至满足一定的终止条件;后者则与前者相反,它先将所有的对象都看成一个聚类,然后将其不断分解直至满足终止条件。 对于聚合聚类算法来讲,根据度量两个子类的相似度时所依据的距离不同,又可将其分为基于Single 2L ink,Comp lete 2L ink 和Average 2L ink 的聚合聚类。Single 2L ink 在这三者中应用最为广泛,它根据两个聚类中相隔最近的两个点之间的距离来评价这两个类之间的相似程度,而后两者则分别依据两类中数据点之间的最远距离和平均距离来进行相似度评价。 CURE,ROCK 和CHAME LE ON 算法是聚合聚类中最具代 表性的三个方法。 Guha 等人在1998年提出了C URE 算法 [1] 。该方法不用 单个中心或对象来代表一个聚类,而是选择数据空间中固定数目的、具有代表性的一些点共同来代表相应的类,这样就可以

相关文档
最新文档