高温煤焦油加氢技术

高温煤焦油加氢技术
高温煤焦油加氢技术

高温煤焦油加氢技术

高温煤焦油与中低温煤焦油都是煤在干馏过程中产生的,但由于其加热终温不同(高温煤焦油为900~1100℃,中温煤焦油为700~900℃,低温煤焦油为 500~600℃)而表现出性质上也有很大差异,高温煤焦油相对密度大于1.0,含大量沥青,几乎完全是由芳香族化合物组成的一种复杂混合物,估计组分总数在1万种左右,从中分离并已认定的单种化合物约500种,其量约占焦油总量的55%。高温焦油中质量分数≥1.0% 的化合物只有10余种,分别是萘(10.0%)、菲(5.0%)、荧蒽(3.3%)、芘(2.1%)、苊烯(2.0%)、芴(2.0%)、蒽(1.5%)、2-甲基萘(1.5%)、咔唑(1.5%)、茚(1.0%)和氧芴(1.0%)等。

高温煤焦油加氢是指在高温、高压和H2存在的条件下,在催化剂床层上对高温煤焦油进行加氢反应,改变其分子结构,并脱除O,N,S 等杂原子,从而获得汽油、柴油、煤油等燃料油品。在目前中国燃料油紧缺的背景下,高温煤焦油加氢具有良好的发展前景。国内对这方面的学术研究越来越多,取得了许多有重要价值的学术成果。

煤炭科学研究总院北京煤化工研究分院的张晓静等开发了一种非均相催化剂的煤焦油悬浮床加氢工艺,采用自主开发的复合型煤焦油加氢催化剂,加氢反应产物分出轻质油后的含有催化剂的尾油大部分直接循环至悬浮床反应器,进一步轻质化,重油全部或最大量循环,实现了煤焦油“吃干榨净”,大大提高了原料和催化剂的利用效率。燕京等采用多种催化剂组成的级配方式对全馏分高温煤焦油进行加氢改质试验研究,在最佳反应条件下,汽油馏分和柴油馏分能达到产物总量的80%。陈松等对脱除沥青后的200~540℃馏分的高温煤焦油在使用专用催化剂的条件下进行加氢裂化,实现了 100% 转化,石脑油馏分收率为13%和柴油馏分收率 80%。田小藏以高温煤焦油为原料,选择加氢保护剂、脱金属剂及加氢精制催化剂,在适宜的工艺条件下,对其进行加氢处理,最后得到了高质量的汽油、柴油产品。常娜等对高温煤焦油在超临界二甲苯中加氢裂解的反应动力学进行了研究,建立起三集总宏观反应动力学模型; 并且研究了沸石催化剂制备条件对超临界汽油中高温煤焦油加氢裂化轻质油收率的影响,优化了催化剂制备条件。

当前高温煤焦油加氢的途径主要有两种: 一种是高温煤焦油切尾馏分加氢,另一种是高温煤焦油全馏分加氢。通过高温煤焦油与中低温煤焦油性质及馏分组成的比较不难看出,高温煤焦油性质比较差,胶质、沥青质及机械杂质含量高,轻馏分含量低。如果想进行全馏分加氢,对于催化剂的要求相当高,且在长周期工业运转的情况下,需要经常更换催化剂,会使运营成本大大提高。因此,到目前为止,除实验室装置外,国内外尚无一家采用高温煤焦油全馏分加氢途径的企业。相对于全馏分加氢而言,切尾馏分加氢在技术上已较为成熟。通过原料预处理工段将高温煤焦油中的胶质、沥青质及机械杂质脱除,剩余较轻组分进入加氢反应器进行加氢处理再经分馏分离,进而生产出合格的燃料油组分。运用此途径加工高温煤焦油的国内首家企业是七台河宝泰隆圣迈煤化工有限公司。

高温煤焦油加氢制燃料油比中低温煤焦油加氢难度大,因此在国内还

处于工业化初级阶段,还没有大规模产业化,国内高温煤焦油加氢工

业化还处于萌芽发展状态,原因在于组分复杂、馏分重、沥青质含量高,加氢难度大。今后的研发重点是开发高活性的催化剂,提高加氢

转化率,在注重提高燃料油收率的同时,也要多联产其它高附加值的

化工产品。

中低温煤焦油加氢两种技术的对比分析

中低温煤焦油加氢两种技术的对比分析 本文对目前中低温煤焦油加氢技术进行了描述,着重对预处理+固定床加氢方案和延迟焦化+固定床的加氢方案的物料平衡进行了分析对比,从油品的产品收率和产品分布等多方面提供了分析数据并为中低温煤焦油的技术的选择提供了可靠的依据。 标签:延迟焦化;中低温煤焦油;产品分布;对比分析 1 概述 我国是属于石油资源短缺,天然气资源不足,煤炭资料则相对丰富的国家,我国国民经济快速发展,迫切需要解决石油和天然气的缺口问题,我国诗世界上最大的煤炭生产和消费大国,煤炭产量和消费量在一次能源中占的比重一直保持在70%以上[1]。在未来50年内,中国能源的70%还要来自煤炭。煤焦油是煤炼焦和煤气化生产过程中的产物,而中低温煤焦油是干馏温度在700至900摄氏度的下的产物。 以生產半焦副产的中低温煤焦油的密度大,粘度、残碳、灰分高,属于重质油。中、低温煤焦油具有巨大的经济价值,选择合适的工艺加工低温煤焦油,使之转变成高附加值的产品是化工行业现实的要求。以中低温煤焦油为原料生产汽油、柴油技术与间接法煤液化生产燃料油相比,具有投资少、耗能少、成本低、效益好等优势。目前采用或者正在研究的中低温煤焦油加氢工艺技术主要有以下几种[2]。 1.1 焦油预处理+固定床加氢方案 预蒸馏——固定床加氢技术的代表企业为辽宁抚顺石油化工研究院,其开发的地位煤焦油加氢技术通过使用蒸馏预处理的方式有效降低了加氢进料中的胶质以及沥青等杂质的含量,从而在一定程度完善了中低温加氢技术中固定床加氢运转周期较长的缺陷。固定床加氢过程挺较为适合加氢精致以及加氢裂化催化剂,实现产品含硫量低于10ug/g,这种身长工艺有着流程合理以及环保等优势,其缺点是无法对高温下分解出的系统等进行加氢。蒸馏塔下层组分存在软化点差以及无法获取沥青的缺点,资源利用率相对不高。 1.2 焦油延迟焦化+固定床加氢方案 所谓的延迟焦化,指的是通过运用煤焦油全馏分进料的流程,在一定温度的条件下,促使其中的重质六分进行裂化,从而获取气体成分以及轻质组分,并且将煤焦油中的胶质以及沥青质等转化成为焦炭,之后加轻质组分以固定床加氢的方式进行石脑油以及柴油的生产。通过延迟焦化方式获取的固定床加氢进料收率通常可达到80%,而焦炭产量也相对较高。延迟焦化的优势在于能有效将煤焦油中的重质成分转变成为轻油产品。其缺点在于生产工艺较为复杂,并且煤焦油资

煤焦油加氢综述

煤焦油加氢综述 摘要:煤经历高温热解,产出大量燃料气体的同时副产煤焦油,而煤焦油的直接燃烧会产生大量的SO 和N0 ,造成严重的环境污染.采用加氢工艺可以完成煤焦油脱硫、脱氮、脱氧、脱金属、不饱和烃饱和、芳烃饱和等反应,从而改善其安定性,获得高品质的清洁燃料油,本文着重介绍常见的几种煤焦油加氢加工工艺 关键词:煤焦油加氢加工工艺 Abstract: coal experience high temperature pyrolysis, output amounts of fuel gas and byproduct coal tar, and coal tar direct combustion produces a large number of SO and N0, causing serious pollution of the environment. The hydrogenation process can be completed in coal tar desulfurization and nitrogen, deoxidization, take off metal, unsaturated hydrocarbons saturated, aromatic saturation and reaction, SO as to improve its stability, get high quality clean fuel oil, this paper introduces several common coal tar hydrogenation processing technology Keywords: coal tar hydrogenation processing technology 前言: 煤是我国的主要化石能源,其主导地位在今后相当长的时间内不会发生根本的变化.【1】煤经历高温热解,产出大量燃料气体的同时副产煤焦油,我国是煤焦油大国,据统计2008年我国煤焦油产量已达1 080万t.【2】我国煤焦油的加工除约2/3通过蒸馏、结晶和精制等工艺提取萘、酚、蒽、苊、吲哚、联苯等化工产品外,其余均作为粗燃料替代重油直接烧掉,而煤焦油的直接燃烧会产生大量的SO 和N0 ,造成严重的环境污染.【3】“研究表明,采用加氢工艺可以完成煤焦油脱硫、脱氮、脱氧、脱金属、不饱和烃饱和、芳烃饱和等反应,从而改善其安定性,获得高品质的清洁燃料油.【4】 一、煤焦油的来源和性质及前景 1.1 煤焦油的来源和性质 煤焦油是煤在干馏和气化过程中获得的液体产物之一。根据干馏方法和温度的不同,煤焦油可分为:低温干馏煤焦油(450~650~C)、低温、中温发生炉煤焦油(600~800℃)、中温立式炉煤焦油 (900 1000℃)、高温炼焦煤焦油(>1000℃)。煤焦油是黑色或黑褐色具有刺激性臭昧的粘稠状液体。 1.2 前景 近几年我国煤焦油加工业迅速发展,煤焦油下游产品应用领域不断拓宽,人们越来越重视煤焦油加工的技术进展状况及发展方向。煤焦油是一个组分上万

煤焦油加氢技术概述.doc

煤焦油加氢技术概述 1.1煤焦油的主要化学反应 煤焦油加氢为多相催化反应,在加氢过程中,发生的主要化学反应有加氢脱硫、加氢脱氮、加氢脱金属、烯烃和芳烃加氢饱和以及加氢裂化等反应: ①加氢脱硫反应 ②加氢脱氮反应 ③芳烃加氢反应 ④烯烃加氢反应 ⑤加氢裂化反应 ⑥加氢脱金属反应 1.2影响煤焦油加氢装置操作周期、产品质量的因素 主要影响煤焦油加氢装置操作周期、产品收率和质量的因素为:反应压力、反应温度、体积空速、氢油体积比和原料油性质等。 1.2.1反应压力 提高反应器压力和/或循环氢纯度,也是提高反应氢分压。提高反应氢分压,不但有利于脱除煤焦油中的S、N等杂原子及芳烃化合物加氢饱和,改善相关产品的质量,而且也可以减缓催化剂的结焦速率,延长催化剂的使用周期,降低催化剂的费用。不过反应氢分压的提高,也会增加装置建设投资和操作费用。 1.2.2反应温度 提高反应温度,会加快加氢反应速率和加氢裂化率。过高的反应温度会降低芳烃加氢饱和深度,使稠环化合物缩合生焦,缩短催化剂的使用寿命。 1.2.3体积空速 提高反应体积空速,会使煤焦油加氢装置的处理能力增加。对于新设计的装置,高体积空速,可降低装置的投资和购买催化剂的费用。较低的反应体积空速,可在较低的反应温度下得到所期望的产品收率,同时延长催化剂的使用周期,但是过低的体积空速将直接影响装置的经济性。 1.2.4氢油体积比 氢油体积比的大小主要是以加氢进料的化学耗氢量为依据,描述的是加氢进料的需氢量相对大小。煤焦油加氢比一般的石油类原料,要求有更高的氢油比。原因是煤焦油组成是以芳烃为主,在反应过程中需要消耗更多氢气;另外芳烃加氢饱和反应是一种强放热反应过程,需要有足够量的氢气将反应热从反应器中带走,避免加氢装置“飞温”。 1.2.5煤焦油性质

煤焦油加氢简介

1.1煤气脱硫、制氢装置 1.1.1概述 1.1.1.1装置概述 a)装置规模 本装置为煤气脱硫、制氢装置。装置规模满足50万吨焦油加氢的需要,建设规模为50000Nm3/h。 (1)装置设计规模: 制氢装置规模为:50000Nm3/h 。 (2)产品及副产品 由于煤干馏分为一、二期分别建设,制氢部分为二期配套,考虑到一、二期煤干馏工艺技术的不同,一、二期的煤气制氢分别考虑为PSA及转化制氢。以下描述的制氢装置建设为同步工程,采用的原料分别为一、二期煤干馏煤气。 原料煤气 小时产量 2.5×105Nm3/h 一期煤气质量:详见下表 使煤气热值降低,但是煤气的发生量比外热式加热时增加了一倍。 直立炭化炉本身加热需要用去煤气总量的35%,兰炭的烘干装置需要用去煤气总量的5%,这样炭化炉每年剩余煤气60%,约12.0×108Nm3/a,可供煤焦油加氢工序。 二期煤气质量:详见下表 无煤气数据 估算数据:(需提供二期煤气数据,包括流量、组成等数据) 煤气流量估算:5000Nm3/h

产品: 氢气: 一期煤干馏煤气PSA制氢:~30000Nm3/h 二期煤干馏煤气转化制氢估算:~10000Nm3/h无煤气数据(如需配套二期煤干馏规模需80~100×104t/h)。 合计:50000Nm3/h(50万吨/年煤焦油加氢配套需要量) 副产品: 解吸气:Ⅰ期: 1.2×105 Nm3/h(可作为燃料气) Ⅱ期:4500Nm3/h(排放) b)生产制度 年操作时间按8000小时考虑,生产班次四班三运转。 c)工艺技术来源 采用国内技术。 d)装置布置原则 在满足工艺流程的前提下,尽量做到设备露天化布置,集中化布置,便于安全检修及生产操作。满足全厂总体规划的要求;注意装置布置的协调性和统一性,适当考虑装置将来的生产和技术改造的要求。结合本装置的施工、维修、操作和消防的需要,综合考虑,设置了必要的车行、消防、检修通道和场地,并在设备的框架和平台上设置必要的安全疏散通道。在满足生产要求和安全防火、防爆的条件下,应做到节省用地、降低能耗、节约投资、有利于环境保护。 1.1.1.2装置组成 由于一、二期煤干馏的工艺技术不同,煤气组成、杂质含量、气量差异很大,因此一、二期制氢装置主项不同,详见表2.3.1-1、2.3.1-2。 表2.3.1-1 Ⅰ期主项表

煤焦油加氢装置工艺简介

煤焦油加氢装置工艺简介 前言 煤焦油(即劣质燃料油)是焦油副产品,是一种碳氢化合物的复杂混合物,大部分为价值较高的稀有种类,是石油化工难以获得的宝贵资源。煤焦油作为一种基础资源,国际市场对它的需求非常旺盛,以其不可替代性在世界经济中占有重要位置,各国均把本国煤焦油作为重要资源加以保护。加上提炼煤焦油对环境的影响较大,发达国家很少自己提炼,宁可在国际市场上大量采购,而日本等资源缺乏国家更是采购煤焦油的大户。 而国内现有的加工煤焦油工艺存在较多的弊端,大多数企业更是直接将煤焦油出售,不仅附加低值,而且给环境造成了很大的污染。于是如何合理利用煤焦油资源,提高企业的经济效益的越来越重要并且越来越迫切。 通过通过采用高压加氢改扬帆是技术,可以降低煤焦油的含量,提高其安定性,并提高其十六烷值,产出满足优质燃料油指标要求的合格气,柴油,。我国优质燃料油短卸,燃料油进口数量逐年递增,随着国际原油价格的逐年提高,采用此工艺加工煤焦油将大大提高其附加值。下面以10万吨/年规模的煤焦油加氢项目为例,做一个详细的介绍。 项目主要工艺指标 项目概况 项目采用上海盛邦石油化工技术有限公司的成套煤焦油加氢工艺及催化剂,以焦炉副产煤焦油为原料,生产优质燃料油。 为保证装置运转“安、稳、长、满、优”,关键设备设计充分考虑装置原料特点。 装置的氢气由净焦炉气氢提纯单元生产。

结论: 本项目采用上海盛邦石油化工技术有限公司的成套煤焦油加氢工艺和成熟的工程技术,投资合理,可确保装置“安、满、长、稳、优”运转装置环保、职业安全卫生及消防等设施的设计符合标准规范。本项目在技术上是可靠的 本项目各项经:济评价指标远好于行业基准值,项目奖及效益较好。并具有较强的抗风险能力,在经济上是完全可行的。 本项目的建设不仅可以解决副产劣质煤焦油污染问题,同时也可以部分解决国内油品紧张。总之,本装置的建设是必要的,应加快建设速度。 原料来源、生产规模、产品方案、 一、原料来源 煤焦油主要来自焦化厂的焦炉副产煤焦油13万吨/年(不足时刻考虑周边地区的 煤焦油资源)作为原料(加氢进料10万吨/年),器性质(假设)见表 原料油全馏分性指标 二、生产规模 公称规模:10万吨/年(单套装置处理能力);加氢部分实际处理煤焦油馏分10万 吨/年。 三、年开工时数8000小时

高温煤焦油加氢制取汽油和柴油

高温煤焦油加氢制取汽油和柴油 摘要:随着油田的不断开采,煤焦油在其生产过程中的低温干馏工艺已经逐步被淘汰出去,但由于我国高温煤焦油加氢工业的发展仍旧处于发展初期,所以要对煤焦油的特点进行深入分析,提高加氢转化率,争取在提高燃料油收率的同时更多的产出其他化工产品。基于此,笔者就高温煤焦油加氢制取汽油及柴油等燃料油进行了简要的阐述。 关键词:高温煤焦油、汽油、柴油 一、前言 随着全球经济的不断增长,社会各界对能源的需求也越来越高。优质的燃料油作为工业燃料,是一种理想的汽油和柴油替代品,并且广泛地用于电厂、冶炼、锻压等行业。在煤焦油中有许多烯烃、多环芳烃等不饱和烃以及氮的化合物质,酸度高、胶质含量高,采用加氢工艺,以达到改善它的稳定性,降低硫、芳烃元素的含量的目的,以此获得石脑油和优质燃料油。此技术采用常减压蒸馏或者其他方法去除重质油,再配合加氢技术脱去煤焦油中的硫,氧,氮和其他的有害成分,让煤焦油中的烯烃饱和,从而改善煤焦油的质量,制取合格的燃料油的替代物。 二、国外煤焦油加工业现状 煤焦油化学至今已有100多年的历史。1822年在英国建立起世界上第一个煤焦油蒸馏工厂,直到20世纪50年代石油大发展时期以前的100多年间,芳烃化学原料、枕木防腐油、道路建筑用沥青、型煤粘结剂等原料只能从煤焦油中获得。19世纪后半期,英国和德国相继开发了以从煤焦油中得到的芳烃为主要原料合成有机染料的工艺,由此奠定了现代有机化学工业的基础。近年来,每年世界煤焦油产量都在2000万t以上,实际进行加工的煤焦油量只有80%左右,从中可获得500多万t各类化工产品。据统计,煤焦油中含有上万种有机化合物,目前可以鉴定出的仅有500余种,其中中性组分有174种(如苯、甲苯、二甲苯、萘、苊、葸、芴和芘等),酸性组分有63种(如酚、甲酚和二甲酚等),碱性组分有113种(如吡啶、吲哚、喹啉和异喹啉等),还含有其它稠环和含氧、含硫等杂环化合物,其中有些产品是不可能或者不能经济地从石油化工原料中取得。因此,煤焦油产品在世界化工原料需求中占有极其重要的地位。 随着多环芳香族化合物在合成医药、农药、染料、涂料及工程塑料等领域的广泛应用,各国都在积极开发研究煤焦油深度加工和分离的新技术。近十几年来,德国和日本等许多发达国家已将煤焦油的分离和利用的重点由高含量组分转向低含量组分,以从中获取合成精细化学品所需的高附加值成分,并且成功的开发

煤焦油加氢装置工艺简介

煤焦油加氢装置工艺简介 刖言 煤焦油(即劣质燃料油)是焦油副产品,是一种碳氢化合物的复杂混合物, 值较高的稀 有种类, 对它的需求非常旺盛, 为重要资源加以保护。 国际市场上大量采购, 而国内现有的加工煤焦油工艺存在较多的弊端, 仅附加低值,而且给环境造成了很大的污染。 济效益的越来越重要并且越来越迫切。 通过通过采用高压加氢改扬帆是技术 ,可以降低煤焦油的含量,提高其安定性,并提高其 十六烷值,产出满足优质燃料油指标要求的合格气 ,柴油,。我国优质燃料油短卸,燃料油进口 数量逐年递增,随着国际原油价格的逐年提高, 采用此工艺加工煤焦油将大大提高其附加值。 下面以10万 吨/年规模的煤焦油加氢项目为例,做一个详细的介绍。 项目主要工艺指标 项目概况 项目采用上海盛邦石油化工技术有限公司的成套煤焦油加氢工艺及催化剂, 煤焦油为原料,生产优质燃料油。 为保证装置运转“安、稳、长、满、优” ,关键设备设计充分考虑装置原料特点。 装置的氢气由净焦炉气氢提纯单元生产。 主要工艺、技术经济指标见表 大部分为价 是石油化工难以获得的宝贵资源。 煤焦油作为一种基础资源, 国际市场 以其不可替代性在世界经济中占有重要位置, 各国均把本国煤焦油作 加上提炼煤焦油对环境的影响较大, 发达国家很少自己提炼,宁可在 而日本等资源缺乏国家更是采购煤焦油的大户。 大多数企业更是直接将煤焦油出售, 于是如何合理利用煤焦油资源, 提高企业的经 以焦炉副产

结论: 本项目采用上海盛邦石油化工技术有限公司的成套煤焦油加氢工艺和成熟的工程技术, 投资合理,可确保装置“安、满、长、稳、优”运转装置环保、职业安全卫生及消防等设施 的设计符合标准规范。本项目在技术上是可靠的 本项目各项经:济评价指标远好于行业基准值, 项目奖及效益较好。 并具有较强的抗风 险能力,在经济上是完全可行的。 本项目的建设不仅可以解决副产劣质煤焦油污染问题, 张。总之,本装置的建设是必要的,应加快建设速度。 原料来源、生产规模、产品方案、 一、原料来源 煤焦油主要来自焦化厂的焦炉副产煤焦油 煤焦油资源)作为原料(加氢进料 10万吨 /年),器性质(假设)见表 原料油全馏分性指标 二、 公称规模:10万吨/年(单套装置处理能力);加氢部分实际处理煤焦油馏分 1 万 吨/年。 三、 年开工时数8000小时 同时也可以部分解决国内油品紧 13万吨/年(不足时刻考虑周边地区的

高中低温煤焦油加氢技术研究进展_刘兰燕

高中低温煤焦油加氢技术研究进展 刘兰燕 (宁波市化工研究设计院有限公司,宁波 315040) 摘要:煤炭是我国的主要能源和化工原料。煤的热解能提供市场所需的多种煤基产品,其副产物之一煤焦油,经加氢可制取汽油、柴油和喷气燃料,是石油的代用品,而且是石油不能完全替代的化工原料。 关键词:高中低温煤焦油;加氢技术;进展 中图分类号:TQ522.64 文献标识码:A 1前言 中国是世界上煤炭资源最丰富的国家之一,煤炭储量远大于石油和天然气。煤炭是我国的主要能源和化工原料。在煤的利用途径中,煤的热解能提供市场所需的多种煤基产品,是洁净、高效和合理利用低阶煤资源,提高煤炭产品附加价值的有效途径。煤的热解也称为干馏或热分解,是指煤在隔绝空气的条件下进行加热,在不同温度下发生一系列物理变化和化学反应的复杂过程。根据煤热解温度的不同,煤焦油可分为低温(<800℃)、中温(800~1000℃)和高温(>1000℃)三种。煤焦油经加氢可制取汽油、柴油和喷气燃料,是石油的代用品,而且是石油不能完全替代的化工原料。 2不同温度煤焦油的来源 低温焦油主要来源于以低变质程度煤为原料的煤气发生炉,用于生产半焦、褐煤干燥、褐煤提质等。干馏温度在 450~650℃,是煤的一次热解物,其组成随煤种及干馏条件的不同而不同。 中温煤焦油来源于 600~800℃发生炉和900~1000℃的立式炉炼焦工艺,与高温煤焦油的主要差别在于焦油的产率相对较高,其组成中酚类含量较高,沥青含量较低,酚含量一般大于 30 wt%,甚至更高,沥青含量在 30 wt%左右,沥青性质与石油沥青相似。分离精制后的产品主要有酚、直链烃、燃料油等。 高温煤焦油来源于炼焦工业,其产量约占装炉煤的 3%~4%,将煤粉放在隔绝空气的炼焦炉中加热,煤热解后得到焦炭、煤焦油、煤气、粗氨水、焦化粗苯以及少量的水。一般条件下,煤焦油会凝结出来。 3煤焦油加氢制燃料油技术路线 煤焦油加氢制燃料油技术以煤焦油为原料,首先进行预分馏切割,切出的煤焦油馏分进入连续操作固定床反应器,在加氢专用催化剂上进行大分子裂化、烯烃及部分芳烃饱和,脱硫、氮、重金属等一系列反应,改变油品的组成、稳定性、颜色、气味、燃烧性能等,再经过分离得到轻质化、清洁化、高值化的燃料油产品。切割剩余的部分经调和改质后可以作为高等级道路沥青也可做碳材料。 煤焦油加氢工艺技术路线具体主要由原料预处理、加氢反应和产品分离三大部分组成。原料预处理部分的设置主要基于中低温煤焦油组成较为复杂,除了芳烃、烷烃、烯烃等外,还存在着沥青重组分、重金属、机械杂质及水分等。沥青是煤焦油蒸馏提取馏分后的残留物,常温下为黑色固体,无固定的熔点,呈玻璃相,受热后软化继而熔化,密度为 1.25~1.35 g/cm3。杂质主要由煤粉、焦油碱、焦油酸及在加工过程中混入的一些固体颗粒物等组成。 沥青重组分、重金属的存在会使焦油流动性

煤焦油加氢技术简介

10万吨/年煤焦油加氢装置 简要说明 1煤焦油加氢生产技术概述 煤焦油的组成特点是硫、氮、氧含量高,多环芳烃含量较高,碳氢比大,粘度和密度大,机械杂质含量高,易缩合生焦,较难进行加工。 煤焦油加氢生产技术首先将煤焦油全馏分原料采用电脱盐、脱水技术将煤焦油原料脱水至含水量小于0.05%,然后再经过减压蒸馏切割掉含机械杂质的重尾馏分,以除去机械杂质(与油相不同的相,表现为固相的物质),使机械杂质含量小于0.03%,得到净化的煤焦油原料。 净化后的煤焦油原料经换热或加热炉加热到所需的反应温度后进入加氢精制(缓和裂化段)进行脱硫、脱氮、脱氧、烯烃和芳烃饱和、脱胶质和大分子裂化反应等,之后经过进入产品分馏塔,切割分馏出汽油馏分、柴油馏分和未转化油馏分;未转化油馏分经过换热或加热炉加热到反应所需的温度后进入加氢裂化段,进行深度脱硫、脱氮、芳烃饱和大分子加氢裂化反应等,同样进入产品分馏塔,切割分馏出反应产生的汽油馏分、柴油馏分和未转化油馏分。 氢气自制氢装置来,经压缩机压缩后分两路,一路进入加氢精制(缓和裂化)段,一路进入加氢裂化段。经过反应的过剩氢气通过冷高分回收后进入氢气压缩机升压后返回加氢精制(缓和裂化)段和加氢裂化段。 2****技术的先进性 ******是一家按照现代企业制度建立的高新科技企业,主要从事炼油、石油化工、煤化工、环保和节能等技术领域的新技术工程开发、技术咨询、技术服务和工程设计及工程总包。 ****汇集了国内炼油、石油化工和煤化工行业大、中型科研院所、设计院及生产企业的优秀技术人才,致力于新工艺、新设备、新材料的工程开发,转化移植和优化组合

国内外先进技术,将最新科技成果向实际应用转化,为客户提供最优化系统整合、客观完善的技术咨询、完整的解决方案,根据用户的要求进行最优化设计,以提高客户竞争和赢利能力。 公司现在的主要业务为炼油、化工装置设计、技术方案和催化剂产品提供。 炼油、化工装置设计包括的装置有加氢、制氢、延迟焦化、重油催化裂化、重整、二烯烃选择性加氢、汽油醚化、气分、聚丙烯等。 ******煤焦油加氢专有工艺技术是在原石油炼制尾油加氢技术的基础上进一步开发的,与常规加氢技术相比该技术有以下优点: 催化剂的先进性 根据煤焦油中不同组分的加氢反应的速度的快慢不同及易结焦特性,胜帮公司优化设计开发了适合煤焦油加氢的前处理的两类催化剂-保护/脱金属催化剂。两类催化剂的加氢活性不同、颗粒度也不同,很好的适应了煤焦油的特点,使煤焦油加氢装置的运转寿命大大延长。 根据煤焦油的H/C小,氢含量低的特点,胜帮公司优化设计开发了适合煤焦油加氢经过前处理后再加氢的催化剂-加氢精制(缓和裂化)催化剂。由于煤焦油氢含量低,加氢过程中会放出大量的热,若催化剂设计不当或装置控制不稳会造成装置飞温,使催化剂和反应器损坏。因此,胜帮公司针对煤焦油的特点开发的加氢精制(缓和裂化)催化剂加氢活性适度、裂化活性适宜,使煤焦油加氢装置的运转寿命大大延长。 根据煤焦油的中有机分子大、氢含量低的特点等特点,胜帮公司优化设计开发了适合煤焦油加氢经过加氢精制(缓和裂化)后再裂化的催化剂-加氢裂化催化剂。由于煤焦油氢含量低,即使经过加氢精制(缓和裂化)段后,其氢含量仍然达不到高压加氢裂化催化剂所能接受的氢含量指标,在这种情况下若采用常规的高压加氢裂化催化剂来裂化大分子,势必会造成裂化催化剂结焦速度加快,影响加氢装置的正常操作。因此,胜帮公司针对煤焦油的特点开发的加氢精制裂化催化剂加氢活性与裂化活性匹配适宜,在裂化过程中还能快速进行小H/C分子的加氢,降低加氢裂化过程中的催化剂结焦机率,影响煤焦油加氢装置的运转寿命。 较少工艺污水排放技术 控制减压塔在适当的真空度条件下操作,以常规的电动真空泵来达到真空度要求,避免使用蒸汽喷射泵带来的大量含油污水排放,对人身健康和环境有利,同时降低装置

中低温煤焦油加氢催化剂制燃料技术简介

中低温煤焦油加氢催化剂制燃料技术简介 【摘要】介绍了国外中低温煤焦油的利用现状及我国目前中低温煤焦油利用中存在的主要问题:没有产业化项目、研究单位分散、缺乏产学研结合的平台等。最后阐述了煤焦油加氢制 燃料的技术路线。 【关键词】煤焦油;加氢催化;技术路线 1.引言 我国是世界上煤炭资源最丰富的国家之一,煤炭储量远大于石油和天然气。在煤的利用途径中,煤的热解能提供市场所需的多种煤基产品,是洁净、高效和合理利用低阶煤资源,提高 煤炭产品附加价值的有效途径。煤的热解也称为干馏或热分解,是指煤在隔绝空气的条件下 进行加热,在不同温度下发生一系列物理变化和化学反应的复杂过程。煤热解的结果是生成 煤气、焦油或称热解油、半焦或焦炭等产品,尤其是低阶煤热解能得到高产率的煤焦油和煤气。根据煤热解温度的不同,煤焦油可分为低温(<800℃)、中温(800℃~1000℃)和高温(>1000℃)三种。作为煤化工产业中重要副产品,煤焦油产量巨大且极具利用价值,是煤 炭清洁高效利用中不可回避的问题。近年,随着我国经济及煤化工产业的迅速发展,煤焦油 的产量也快速增长。中温煤焦油来源于600~800℃发生炉和900~1000℃的立式炉炼焦工艺, 与高温煤焦油的主要差别在于焦油的产率相对较高,其组成中酚类含量较高,沥青含量较低,对于中低温煤焦油,由于其成分集中度很低,主要研究方向是加氢制燃料油。 2.国外中低温煤焦油利用现状 对于中低温煤焦油,由于其成分集中度很低,主要研究方向是加氢制燃料油。就国外而言, 二十世纪二、三十年代德国曾出现过“煤及煤和焦油的高压加氢液化技术”,即所谓的古典加 氢技术,该技术涉及到煤和煤焦油混合体系的加氢,可看作石油加氢及煤焦油加氢技术最早 的起源。在随后的二十世纪四十年代,德国也曾对煤焦油加氢进行过研究,由于当时的工艺 条件中反应压力很高,没有实现产业化。以后几十年由于石油的发现和大量开采,老式加氢 技术的研究开发也就基本停止了。1986年的日本专利“昭61-103988”(申请了中国专利 CN851074411989和美国专利US4855037)以Mo、Co氧化物或Mo、Ni氧化物为催化剂,使 蒸去轻组分后沸点高于280℃的煤焦油组分加氢制得加氢产品。由上知国外直接关于煤焦油 加氢的文献报道较少,且多为专利,尤其二十世纪90年代后的报道更是难以见到。同时, 也未见产业化的报道或实例,这可能与国外一直限制煤焦油产量、将煤焦油加工向不发达国 家转移,煤焦油深加工多元化等产业状况有关。 3.我国目前中低温煤焦油利用中存在的主要问题 进入二十一世纪以来,由于低温干馏工业的发展,我国产生了大量的中低温煤焦油。囿于缺 少与之相适应的先进的加工技术,使得其利用方式相对粗放,不仅产生大量的污染,同时也 造成煤焦油的巨大浪费,这种现状促进了对煤焦油清洁利用技术的研究。由于中低温煤焦油 成分集中度很低,主要研究方向是加氢制燃料油。煤焦油本身成份复杂再加上来源不一使得 煤焦油制燃料油技术的研究变得较为复杂,不同组份和来源的煤焦油可能需要不同的工艺和 相应的催化剂才能实现向燃料油的转化。目前,我国中低温煤焦油利用主要问题在于缺乏集 成化和高效清洁的大规模处理技术。主要原因: (1)实验室研究以模型化合物为主,煤焦油加氢研究较少且往往在只有加氢单元的小装置 上进行简单评价,以基础研究为主,距离中试放大及工业化所需集成化技术要求相去甚远。 (2)研究单位分散,研究驱动力不足,难以持续。大多以项目为节点,技术无法在团队化 组织下持续积累。

煤焦油加氢工艺流程图和主要设备一览表.doc

百度文库 - 让每个人平等地提升自我 煤焦油加氢项目 煤焦油 离心、过滤、换热 减压塔 沥青至造粒设施 加氢精制进料缓冲罐 加氢裂化进料缓冲罐 加氢精制反应器( A 、B 、C ) 加氢裂化反应器( A 、B ) P=16.8MPa P=16.8MPa ° ° t=410 C( 初期) t=402 C( 初期) 精制热高分罐 油 裂化冷高分罐 化 转 氢 气体 液体 未 液体 气体 环 制 精 循 制 精制冷高分罐 精制热低分罐 裂化冷低分罐 裂化 精 体 循环氢 气 压缩机 气体 液体 液体 硫 气 液 脱 精制 精制冷 至 体 体 裂化稳定塔 氢 循环氢 低分罐 体 体 新 压缩机 气 气 充 液体 硫 液 硫 补 氢 脱 油 至 精制 脱 新 化 化 体 至 充 稳定塔 裂 转 补 体 液体 未 新氢 气 新氢 硫 精制分馏塔 裂化分馏塔 压缩机 脱 至 石脑油 柴油 氢 环 循 化 裂

煤焦油加氢装置主要生产设备表 序设备操作条件数量规格介质名称主体材质压力 号名称备注 温度(℃)(台) ( MPa) 一、反应器类 1 加氢精制Ф煤焦油、 H2、 H 2S 反应器 A 1500X13400 加氢精制 Φ 反应器煤焦油、 H2、 H 2S 1800X14678 B/C 加氢裂化 Φ 反应器煤焦油、 H、 H S 1500X10110 2 2 A/B 二、塔类 1 减压塔Ф 2000/2400/1 轻质煤焦油、 Q345R 200 X 25250 重油、水汽 2 精制稳定Ф 600X16000 反应油、 H 、 H S Q245R 塔 2 2 3 精制分馏Ф 1500X2060 石脑油、柴油、 Q345R 塔0 尾油 4 精制柴油 Ф 800X10000 柴油、蒸汽Q245R 汽提塔 5 裂化稳定Ф 400/800X18 反应油、H2 2 Q245R 塔440 、 H S 6 裂化分馏Ф 1500X2060 石脑油、柴油、 Q345R 塔0 尾油 7 裂化柴油 Ф 500X8800 柴油、蒸汽Q245R 汽提塔 三、加热炉类 1 减压塔进400X104 煤焦油1Cr5Mo 料加热炉kcal/h 2 精制加热200X104 精制进料油、 H 2 TP347H 炉kcal/h 3 裂化加热200X104 裂化进料油、 H 2 TP347H 炉kcal/h 精制分馏200X104 1Cr5Mo/ 4 精制尾油 15CrMo 塔再沸炉kcal/h 5 裂化分馏200X104 裂化尾油 1Cr5Mo 塔再沸炉kcal/h 四、换热类原料油 /减壳程 减压循 Q345R 环油 1 压循环油25-4I 20+Q345R 换热器管程原料油 减顶油水 / 壳程减塔中 Q345R 段油 2 减压循环25-4I 减顶油、 油换热器管程20+Q345R 水147/385 1 126/271 1 ▲120/368 1 212/206 1 72/263 1 ▲122/365 1 198/185 1 395 1 ▲315 1 ▲405 1 ▲388 1 ▲385 1 ▲217/178 75/147 1 ▲ 228/217 1 ▲87/150

煤焦油加氢工艺流程说明

工艺流程说明 原料预处理 75~85℃原料煤焦油由缺罐区进料泵P-201A/B送入离心机S-1101进行三相分离。脱除的氨水时入氨水罐,经氨水泵P-1107送出装置。脱除固体颗粒后的煤焦没进入进料缓冲罐V-1101。缓冲罐V-1101液位与流量调节(FIC-1015)串级控制。V-1101中原料油通过装置进料泵P-1101A/B,经过换热器E-1101与减压塔中段循环油换热至147℃,再经过进料过滤器S-101A/B过滤掉固体杂质后,经流量调节(FIC-1017)与精制产物E-1303、E-1301,(E-1301设温度记录调节旁路TRC-3008),(E-1301、E-1303设温度记录调节旁路TRC-3003)。E-1301与E-1303前设过热蒸汽吹扫,(过热蒸汽由流量记录调节FRC-3002控制)换热升温至340℃。再经减压塔进料加热炉F-1101升温至395℃后进入减压塔T-1101。T-1101塔顶气体经空冷器A-1101A~D和水冷器E-1103冷凝冷却至45℃,入回流罐V-1102。减压塔真空由真空泵PK-1101A/B(经压力指示调节PIC-1012)提供。V-1102中液体由减压塔顶油泵P-1102A/B加压。一部分(经流量调节FIC-1010)作为回流,返回减压塔顶。另一部分与热沉降罐V-1103底部污水E-1105A/B、减压塔中段循环油E-1102换热升温至150℃后,送入热沉降罐V-1103沉降脱水后送入加氢精制进料缓冲罐V-1201。(减压塔顶回流罐液位与流量调节FIC-1012串级控制)。塔顶回流罐V-1102水包内污水经减压塔水泵P-1105A/B 加压后与塔顶油混合后进入热沉降罐V-1103。(V-1102水包界位由LDIC-1011控制)。减压塔中段油由减压塔中部集油箱抽出,经减压中段油泵P-1103A/B加压,一部分通过E-1102(设温控旁路TIC-1021)、(E-1102进口和E-1101出口设温控旁路TIC-1011)换热降温至178℃,作为中段循环油打入减压塔第二段填料上方(FIC-1007控制流量)和集油箱下方(FIC-1008控制流量),洗涤煤焦油中的粉渣和胶质;另一部分直接送入加氢精制原料缓冲罐V-1201。(中段油液位与流量调节FIC-1005串级控制)。T-1101塔底重油含有大量的粉渣和胶质,不能送去加氢,由减压塔底重油泵P-1104A/B加压,经E-1104产汽(E-1104液位由LIC-1012控制,蒸汽流量通过压力控制PIC-1016调节)降温后,送至装置外沥青造粒设施造粒。(塔底液位由LICA-1009控制。)P-1104A/B设有返塔旁路,提高T-1101)塔釜的防结垢能力。

煤焦油加氢技术现状和发展趋势

煤焦油加氢技术现状和发展趋势 摘要:本文首先对煤焦油加氢技术进行了简要介绍,分析指出该技术目前存在的一些问题,并针对操作和装置上的问题提出了具体的改造办法。 关键词:煤焦油加氢操作装置问题 煤焦油组成中硫、氮、氧含量高,多环芳烃含量较高,具有碳氢比大,粘度和密度大,机械杂质含量高,易缩合生焦,较难进行加工等特点。鉴于国内煤变油的大环境和煤焦油加氢制汽柴油的优点,煤焦油加氢这一技术已经产业化,形成一定规模,替代传统的煤焦油加工工艺,以缓解我国能源压力。但在技术操作的过程中发现了一些问题,针对这些问题进行有效地技术改造,才能让煤焦油加氢技术越走越远,带来经济效益、社会效益和环保效益。 一、煤焦油加氢技术简介 煤焦油加氢生产技术首先将煤焦油全馏分原料采用电脱盐、脱水技术将煤焦油原料脱水至含水量小于0.05%,然后再经过减压蒸馏切割掉含机械杂质的重尾馏分,使机械杂质含量小于0.03%,得到净化的煤焦油原料经换热或加热炉加热到所需的反应温度后进入加氢精制(缓和裂化段)进行脱硫、脱氮、脱氧、烯烃和芳烃饱和、脱胶质和大分子裂化反应等,之后经过进入产品分馏塔,切割分馏出汽油馏分、柴油馏分和未转化油馏分;未转化油馏分经过换热或加热炉加热到反应所需的温度后进入加氢裂化段,进行深度脱硫、脱氮、芳烃饱和大分子加氢裂化反应等,同样进入产品分馏塔,切割分馏出反应产生的汽油馏分、柴油馏分和未转化油馏分。 煤焦油加氢操作存在的问题有:(1)预处理系统减压塔底重油出装置温度过高(300℃左右),造成重油罐温度高,在装车时会出现大量沥青烟,会对操作人员身体构成伤害和污染环境;而重油罐顶呼吸阀也会溢出沥青烟,遇空气冷凝变成轻质焦油污染油罐和环境卫生。(2)采用一段加氢工艺,给其同样的裂解程度,势必造成目的产物的质量差或产率低等问题。从工业氢的供应来看,如果采用一次加氢,则需要一次供给相当多的氢气,使油中溶有足够的氢量,才能保证催化剂表面上有很高的活化氢的浓度,这样大量的过剩氢气在工业上是无法一次满足的。(3)在反应高压分离系统操作中,精制热高分和精制冷高分出现压差增大,最高值为2.0MPa以上,影响反应系统正常运行。其主要因为在反应过程中脱除焦油中的氮、硫、氧等杂质,其中脱氮时将其转化为氨,再与物料中金属反应形成铵盐,由于反应流出产物温度高,铵盐以液态或气态形式存在,当经热高分分离进入混氢换热器降温后,便析出结晶形成固体铵盐堵塞换热器列管或封头,使其管线不畅通,造成前后压力不一致。(4)加氢反应器在制造过程中,焊缝的纵缝出现的氢致延迟裂纹的焊接缺陷问题。材料的性能通常随着板厚的增加而减弱;对于相同厚度的板材,虽然化学成分都符合相应标准,但P、S 的含量较低的施焊性较好,其焊接缺陷也越少。另外钢板的焊接工艺性能较差,焊接工艺规范较窄,操作难度较大,存在焊缝。(5)在生产运行期间反应消耗硫

[精彩]煤焦油加氢工艺说明

[精彩]煤焦油加氢工艺说明 煤焦油加氢的工艺 目录 第一章综 述 ..................................................................... ..................., 1.1 煤焦油加工的现状与前 景 ................................................, 1.1.1 世界能源现状..........................................................., 1.1.2 煤焦油加工的发展现状............................................., 1.1.3 世界煤焦油加工业...................................................., 1.2 煤焦油深加工的发展现状 ................................................, 1.2.1 煤焦油加氢技 术 ......................................................., 1.2.2 几种典型技术对比分析............................................., 1.2.3 几种工艺路线对比...................................................., 1.3 选题的目的和研究内容 ............................................... ,, 1.3.1 选题目的.............................................................. ,,

【精品】煤焦油加氢工艺说明

煤焦油加氢的工艺

目录 第一章综述 ........................................... 错误!未指定书签。 1.1煤焦油加工的现状与前景..................... 错误!未指定书签。 1。1.1 世界能源现状............................ 错误!未指定书签。 1。1.2 煤焦油加工的发展现状.................... 错误!未指定书签。 1。1.3 世界煤焦油加工业........................ 错误!未指定书签。 1.2煤焦油深加工的发展现状..................... 错误!未指定书签。 1.2.1 煤焦油加氢技术.......................... 错误!未指定书签。 1。2.2 几种典型技术对比分析.................... 错误!未指定书签。 1.2.3 几种工艺路线对比........................ 错误!未指定书签。 1。3选题的目的和研究内容....................... 错误!未指定书签。 1.3。1 选题目的................................ 错误!未指定书签。 1。3.2 选题内容................................ 错误!未指定书签。

第二章煤焦油加氢工艺条件 ............................. 错误!未指定书签。 2。1煤焦油固定床加氢处理的化学反应............. 错误!未指定书签。 2。1.1 煤焦油的加氢脱硫反应.................... 错误!未指定书签。 2.1。2 煤焦油的加氢脱氮反应.................... 错误!未指定书签。 2.1。3 煤焦油的加氢脱金属反应.................. 错误!未指定书签。 2。1。4煤焦油的芳烃加氢饱和反应错误!未指定书签。 2.1.5 加氢脱氧反应(HDO)...................... 错误!未指定书签。 2。2工艺条件对煤焦油加氢处理的影响............. 错误!未指定书签。 2.2。1 反应温度对煤焦油加氢处理过程的影响...... 错误!未指定书签。 2.2。2 反应压力对煤焦油加氢过程的影响.......... 错误!未指定书签。 2。2.3 体积空速对煤焦油加氢过程的影响.......... 错误!未指定书签。 2.2。4 循环气油比对煤焦油加氢过程的影响........ 错误!未指定书签。

高温煤焦油加氢技术

高温煤焦油加氢技术 高温煤焦油与中低温煤焦油都是煤在干馏过程中产生的,但由于其加热终温不同(高温煤焦油为900~1100℃,中温煤焦油为700~900℃,低温煤焦油为 500~600℃)而表现出性质上也有很大差异,高温煤焦油相对密度大于1.0,含大量沥青,几乎完全是由芳香族化合物组成的一种复杂混合物,估计组分总数在1万种左右,从中分离并已认定的单种化合物约500种,其量约占焦油总量的55%。高温焦油中质量分数≥1.0% 的化合物只有10余种,分别是萘(10.0%)、菲(5.0%)、荧蒽(3.3%)、芘(2.1%)、苊烯(2.0%)、芴(2.0%)、蒽(1.5%)、2-甲基萘(1.5%)、咔唑(1.5%)、茚(1.0%)和氧芴(1.0%)等。 高温煤焦油加氢是指在高温、高压和H2存在的条件下,在催化剂床层上对高温煤焦油进行加氢反应,改变其分子结构,并脱除O,N,S 等杂原子,从而获得汽油、柴油、煤油等燃料油品。在目前中国燃料油紧缺的背景下,高温煤焦油加氢具有良好的发展前景。国内对这方面的学术研究越来越多,取得了许多有重要价值的学术成果。 煤炭科学研究总院北京煤化工研究分院的张晓静等开发了一种非均相催化剂的煤焦油悬浮床加氢工艺,采用自主开发的复合型煤焦油加氢催化剂,加氢反应产物分出轻质油后的含有催化剂的尾油大部分直接循环至悬浮床反应器,进一步轻质化,重油全部或最大量循环,实现了煤焦油“吃干榨净”,大大提高了原料和催化剂的利用效率。燕京等采用多种催化剂组成的级配方式对全馏分高温煤焦油进行加氢改质试验研究,在最佳反应条件下,汽油馏分和柴油馏分能达到产物总量的80%。陈松等对脱除沥青后的200~540℃馏分的高温煤焦油在使用专用催化剂的条件下进行加氢裂化,实现了 100% 转化,石脑油馏分收率为13%和柴油馏分收率 80%。田小藏以高温煤焦油为原料,选择加氢保护剂、脱金属剂及加氢精制催化剂,在适宜的工艺条件下,对其进行加氢处理,最后得到了高质量的汽油、柴油产品。常娜等对高温煤焦油在超临界二甲苯中加氢裂解的反应动力学进行了研究,建立起三集总宏观反应动力学模型; 并且研究了沸石催化剂制备条件对超临界汽油中高温煤焦油加氢裂化轻质油收率的影响,优化了催化剂制备条件。

相关文档
最新文档