自由度机械手运动控制

自由度机械手运动控制
自由度机械手运动控制

自由度机械手运动控制公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

西南交通大学

本科毕业设计(论文)

六自由度机械手复杂运动控制

年级:200X级

学号:200XXXX

姓名:XXX

专业: 机械工程系数控技术

指导老师:XXX

0X年 6月

院系机械工程系专业数控技术

年级 200X级姓名 XXX 题目六自由度机械手复杂运动控制

指导教师

评语

指导教师 (签章)

评阅人

评语

评阅人 (签章)

成绩

答辩委员会主任 (签章)

年月

毕业设计(论文)任务书

班级 0X级数控技术(1)班学生姓名 XXX 学号 200XXXXX 发题日期: 0X年 3月 1 日完成日期: 6月18日

题目六自由度机械手复杂运动控制

1、本论文的目的、意义本设计主要以实验室设备(六自由度串联机械手)为基础,运用六自由度串联机械手完成现实工程及实际需要为出发点。通过对

机械手的系统分析建立机器人坐标系的方法,并对其进行正运动分析和逆运

动学分析结合矩阵的变换等研究该机器人系统在平面轨迹方面的设计。并利

用MATLAB对该设计的准确行进行验证。本次设计让我们能有效的利用学校的设备对实际需要进行分析设计,从而使我们能将理论与实际有效结合。并从

中掌握了工程设计的主要方法和了解了现存技术中需要我们进行探索的必

要。

2、学生应完成的任务由于本课题取材于实际生产运用中,不仅从理论方面对设计有分析等要求,更要结合理论做出实际需要的运动控制。下面主要以学

生的设计为主提出其需要完成的任务:(1)完成一万字符的外文翻译;

(2)完成复杂运动控制设计的总体方案;

(3)通过老师指导可以对机械手进行熟悉的操作和运用;

(4)利用现有资料对机械手进行运动学理论分析,并

结合矩阵

工具对其建立的运动学方程进行求解;

(5)利用机械手完成平面文字轨迹的运动控制;

(6)对复杂运动控制的总结,分析其优缺点,并提出其缺点的

解决方案和需要注意的问题;

(7)完成毕业设计论文。

3、论文各部分内容及时间分配:(共 17 周)

第一部分阅读相关文献并收集资料 ( 3周)

第二部分熟悉设备操作并进行相关简单的操作

( 3周)

第三部分轨迹设计过程和相关计算分析

( 4周)

第四部分完成设计部分到实际运行部分

( 3周)

第五部分撰写毕业论文

( 2周)

评阅及答辩准备好答辩的演示文档及进行答辩

( 2周)

备注

指导教师: XXX 0X年 3月日

审批人:年月日

摘要

本文以示教型六自由度串联机械手为试验设备,进行机械手的复杂运动控制,使机械手完成各种复杂轨迹的运动控制等功能,能够在现代工业焊接、喷漆等方面的任务。

本文从运动学分析的基础上着手研究轨迹控制的问题,利用运动学逆解的方式分析复杂轨迹运动的可行性和实用性。目前,六自由度机械手的复杂运动控制已经有了比较好的逆解算法,也有一些针对欠自由度机械手的逆解算法。逆解算法求出的解不是唯一的,它能使机械手达到更多位姿,完成大部分的原计划任务,但其中的一些解并不是最优化的,因此必须讨论其反解的存在性和唯一性。

本文通过建立机械手的笛卡尔坐标系,推导出机械手的正、逆运动学矩阵方程,并研究了正、逆运动学方程的解;在此基础上建立机械手的工作空间,并讨论其工作空间的灵活性和存在可能性。

因此本文的另一种方式对六自由度串联机械手的复杂运动控制问题进行研究,提出以机械手示教手柄引导末端执行器对复杂运动轨迹进行预设计。然后通过记录程序进行复杂轨迹的再实现,再对记录程序进行预修改,最终通过现有的程序进行设计编程完成复杂轨迹设计任务。并利用MATLAB对轨迹进行仿真,对比其实际与计算的正确性。

最后本设计通过六自由度串联机械手实现平面文字轨迹,得出其设计的方式。即首先利用示教手柄实现轨迹预设,记录预设轨迹程序,然后再对比程序初始化坐标进行手动编程。

关键词:六自由度机械手,笛卡尔坐标系,运动学方程,仿真,示教手柄ABSTRACT

In this paper, mechanical hand control the complex movement based on the series of six degrees of freedom manipulator so that the mechanical hand complete the complex trajectory of the movement control functions. In modern industrial welding, painting, and other aspects of the mandate can be used.

This article based on the analysis of kinematics to study the trajectory control problems, use of inverse kinematics of the complex mode of tracking movement of the feasibility and practicality. At present, the six degrees of freedom manipulator complex movement has been relatively good control of the inverse are also some less freedom for the inverse of the manipulator algorithm. Solutions sought by inverse algorithm is not the only solution, it can reach more manipulator Pose, originally planned to complete most of the some of these solutions is not the most optimal, it is necessary to discuss their anti-the existence of solutions and uniqueness.

Through the establishment of the manipulator Cartesian coordinates, derived manipulator is the inverse kinematics matrix equation and the study is the inverse kinematics of the equation solution on the basis of this establishment manipulator working space. And discuss their work space The flexibility and the possibility exists.

So in another way to the six degrees of freedom series manipulator motion control the complex issues of research, to handle the machinery Shoushi guide for the implementation of the end of the complex pre-designed trajectory. Then track record of the complicated procedure to achieve, and then record the pre-amended eventual adoption of the existing procedures designed trajectory design of complex programming tasks. And using MATLAB simulation of the track, compared with its actual calculation is correct.

The final design through six degrees of freedom series manipulator track to achieve flat text, draw their design approach. That is, first of all use of teaching handle achieve trajectory default the track record of default procedures, and then compared to manual procedures initialized coordinate programming.

key words:Six degree-of-freedom manipulators,Cartesian coordinates, Equations of motion, Simulation, Demonstration handle.

目录

绪论 (1)

课题研究背景和意义 (1)

国内外研究状况 (2)

六自由度机械手复杂运动控制的现实意义 (4)

课题的提出 (5)

本课题研究的主要内容 (5)

串联机器人运动学 (7)

机器人运动学方程的表示 (7)

2.1.1 运动姿态和方向角 (8)

2.1.2 运动位置和坐标 (9)

2.1.3 连杆变换矩阵及其乘和 (12)

机械手运动方程的求解 (15)

2.2.1 欧拉变换解 (16)

2.2.2 滚、仰、偏变换解 (20)

2.2.3 球面变换解 (21)

反解的存在性和唯一性 (23)

2.3.1 反解的存在性和工作空间 (23)

2.3.2 反解的唯一性和最优解 (24)

2.3.3 求解方法 (25)

六自由度机械手的平面复杂轨迹设计及运动学分析 (27)

系统描述及机械手运动轨迹设计方式 (27)

3.1.1 机器人技术参数一览表 (27)

3.1.2 机器人控制系统软件的主界面 (27)

3.1.3 机器人各部位和动作轴名称 (28)

3.1.4 机械手运动轨迹设计方式 (29)

平面复杂轨迹设计目的 (33)

3.2.1“西”字的轨迹设计和分析 (33)

3.2.2“南”字的轨迹设计和分析 (34)

3.2.3机械手的起始位姿和末态位姿 (35)

机械手轨迹设计中坐标系的建立 (35)

平面轨迹设计的正运动学分析 (43)

3.4.1平面轨迹设计的正运动学分析原理 (43)

3.4.2 正运动学分析步骤及计算 (44)

平面轨迹设计的逆运动学分析 (45)

3.5.1 平面轨迹设计的逆运动学分析原理 (45)

3.5.2.逆运动学分析步骤及计算 (46)

设计实现过程和MATLAB仿真计算 (50)

设计实现过程 (50)

MATLAB仿真计算 (53)

结论与展望 (57)

结论 (57)

展望 (58)

致谢 (59)

参考文献 (60)

第一章绪论

课题研究背景和意义

在现代制造行业中,先进的制造技术不断的代替传统的加工方法和操作方式。现代工业的高技术要求,更促进了机器人的发展:例如,实行无人化的工作车间,自动生产线等。

特别九十年代以来,工业机器人性能不断提高,向着高速度、高精度、高可靠性的方向发展,同时表现在以下方面:

1.机械结构向模块化、可重构化发展。如关节模块中的伺服电机、减速机、检测系统三位一体化:由关节模块、连杆模块用重组方式构造机器人整机。国外己有模块化装配机器人产品问市。

2.工业机器人控制系统向基于PC机的开放型控制器方向发展,便于标准化、网络化;器件集成速度高,控制距日见小巧,且采用模块化机构;大大提高了系统的可靠性、易操作性和可维修性。

3.机器人中的传感器作用日益重要。除采用传统的位置、速度、加速度等传感器外,装配、焊接机器人还应用了视觉、力觉等传感器:而遥控机器人则采用视觉、声觉、力觉、触觉等多传感器的融合技术来进行环境建模及决策控制;多传感器融合配置技术在产品化系统中己有成熟应用。

4.虚拟现实技术在机器人中的作用已从仿真、预演发展到用于过程控制,如使遥控机器人操作者产生置身于远端作业环境中的感觉来操纵机器人。5.当代遥控机器人系统发展的特点不是追求全自治系统,而是致力于操作者与机器人的人机交互控制,即遥控加局部自主系统来构成完整的监控遥控操作系统,使智能机器人走出实验室进入实用化阶段。美国发射到火星上的“索杰纳”机器人就是这种系统成功应用的最着名实例。

6.机器人机械化开始兴起。从1994年美国开发出“虚拟轴机床”以来,这种新型装置已成为国际研究的热点之一,纷纷探索开拓其实际应用的领域。当今机器人技术的发展趋势主要有两个突出的特点:一个是在横向上,机器人的应用领域在不断扩大,机器人的种类日趋增多;另一个是在纵向上,机器人的性能不断提高,并逐步向智能化方向发展。在21世纪,机器人技术将继续是科学与技术发展的一个热点。机器人技术的进一步发展必将对社会经济和生产力的发展产生更加深远的影响。机器人将成为集机械、电子、计算机、控制、传感器、仿生学和人工智能等多学科理论与技术的机电一体化机器。在未来的100年中科学与技术的发展将会使机器人技术提高到一个更高的水

平。机器人将成为人类多才多艺和聪明伶俐的“伙伴”,更加广泛地参与人类的生产活动和社会生活。

串联式机器人是一种典型的工业机器人,在自动搬运、装配、焊接、喷涂等工业现场中有着广泛的应用,通过该系列教学机器人可使学生能够模拟工业现场的实际运行状况。结构紧凑,工作范围大,具有高度的灵活性,是进行运动规划和编程系统设计的理想对象。

多自由度机械手做为现代机器人的一个重要组成部分,也随着技术的发展不断更新。普通机械手只能完成单工作任务或者较简单的操作,多自由度机械手在很多的工程技术及工程实际中能更为合理的进行一些现实操作。本课题正是在此背景下,研究其六自由度机械手复杂运动控制也更为重要。

1.理论意义六自由度串联机械手是由六个关节组成,机械手安装在工作台上,这种结构使机械手拥有几乎无限大的工作空间和高度的运动冗余性,并同时具有移动和操作功能,这使它优于普通的移动机器人和传统的机械手;另一方面,工作平台和机械手不但具有不同的动力学特性,同时考虑轨迹规划的不同特点,六自由度串联机械手在对固定机械手具有优势的同时,在运用上存在诸多难点,如逆解优化、控制方法、路径规划、解决方案的选用等。因此,六自由度串联机械手复杂运动控制的研究有十分重要的理论意义。

2.应用价值本课题的六自由度串联机器人具有重量轻、运动速度快、空间通过能力强、完成空间范围大等特点,通过在通用控制窗口上不同轴的控制上各个关节角度来实现不同的功能以完成各种示教及工作任务,由于其采用的控制方式为软件编程实现,对于国内工业发展各种机械手运用于现代工业

焊接和汽车企业等的喷漆等方面有重要意义,因此对提高国家工业水平、实现其重要价值也具有十分重要的意义。

国内外研究状况

位置逆解问题是机械手机构学乃至机械手学中的最基础也是最重要的研究问题之一,它直接关系到机械手运动分析、离线编程、轨迹规划和实时控制等工作。因为速度和加速度分析都要在进行位置分析的基础之上才能进行,所以位置逆解问题是机械手运动规划和轨迹规划的基础,只有通过运动学逆解把空间位姿转换为关节变量,才能实现对机械手末端执行器的控制。而从工程应用的角度出发,位置逆解问题的研究成果可以很容易地应用到机械手上面去,往往更引起我们的兴趣,因此就更加促进了对位置逆解问题的研究。对于运动学正解来说,它的解是唯一确定的,即各个关节变量给定之后,机械手的末端抓手和工具的位姿是唯一确定的;而运动学反解往往具有多重解,也可能不存在解。位置逆解的复杂程度往往与机械手的结构有很大关系。由于一般情况下,六个自由度便可满足机械手在工作空间内可达任一位姿,因此六自由度机械手最具有研究价值和实用价值。如果机械手的结构尺寸有些特殊,如轴线平行或相交或轴线长度为零等情况下,逆解运算相对比较简单;而如果结构尺寸一般,且6个关节又都是转动副,则逆解运算较为困难,该问题被喻为是空间机构运动分析中的珠穆朗玛峰。无论是结构特殊还是一般,仅仅用某种方法求得6自由度机械手的位置逆解不是不够的,还要在计算方法,计算精度等各个方面作进一步的研究。

机械手的位置逆解问题一般最终都归结为求解非线性方程组的问题。非线性方程组的求解方法有很多,主要包括数值方法和代数方法。

在位置逆解问题中常用的数值方法主要包括牛顿拉夫森法、优化算法,区间算法,遗传算法和同伦算法等方法。数值方法求解一般是先建立包括若干个未知量的一个方程组,然后提供一组初始值,再利用各种优化法进行迭代,使之逐步收敛于机构的一组解。这一类方法的优点是求解过程比较简单,但是在计算中需要提供适当的初始值,因此涉及到初始值的选取问题。另外,采用数值方法不能根据方程组的情况来确定机械手机构有多少组解,也很难得到全部解。

在位置逆解问题中常用的代数法主要包括析配消元法,聚筛法,Gorbener基法和吴文俊消元法。这些代数方法求解一般是先建立若干个关系式,然后进行消元,最终得到只含有一个变量的一元高次方程,求解该方程得到变量的全部根。然后对应此变量求出一系列的中间变量(被消去的变量)。在该过程中,只要保证各个步骤都是同解变换,就能够保证得出全部的解,而且不产生增根。这一类方法的优点是可以解出全部解,而且不需要初始值,但是求解过程较为复杂,有一定的难度。

对于六自由度机械手的位置逆解问题,有许多学者作了大量的研究工作。毕洁明等采用位置和姿态分别迭代的数值算法进行分析,可以快速求得全部解,但是当机械手末端位置和姿态高度藕合时会造成迭代过程发散,求解失败。Rengier等根据分布式人工智能的概念,提出了一种新的数值方法,采用此迭代和分布式的算法,能够求出6R,SRI,P4RZP和3R3P结构6自由度机械手的位置逆解全部解廖启征将位移封闭方程由三角函数形式转化为复指数形式,通过10个方程求出一般6R机械手没有增根的全部逆解。于艳秋将有理数逼近实数和三角函数的理论引入机械手位置逆解算法中,提高了计算精度以及运算当中处理异常情况的能力。

六自由度机械手复杂运动控制的现实意义

在实际应用中,六自由度机械手的某关节出现故障,系统将该关节锁定在当前角度,这样六自由度机械手就成为五自由度机械手,或称欠自由度机械手。对于欠自由度机械手,如何通过有效的运动控制和轨迹规划使其完成预期的任务至关重要。例如,机械手在航空航天方面的应用中,如果某航天飞行器所载的六自由度机械手的某关节出现故障成为欠自由度机械手,则该机械手不能再投入工作,将使该航天飞行器的一部分任务不能完成。但如果通过控制系统使用一种新的逆解算法代替机械呼.在正常运转情况下的位置逆解算法,使它在欠自由度情况下仍可到达其原工作空间中的大部分位姿,则该机械手仍可投入工作,并可完成原计划的大部分任务,从而提高了整个航天飞行器系统的可容性和可用性。由于是在某关节出现故障的情况下所使用的,所以可以称之为具有容错性能的六自由度机械手位置逆解算法。在其它方面的应用中也是如此。在有些情况下机械手代替人类在恶劣的环境中或人类不易工作的环境中工作。对于机械手来说,虽然一般是按照其工作环境特需的高级材料制成,如耐高温金属等,但是由于其系统结构复杂,作工精密,在这些环境中仍极易出现故障。而一旦某关节出现故障不能正常工作,环境又不允许立时维修的话,将给机械手应用带来严重的影响,甚至造成巨大的损失。这时如果能够使用具有容错性能的机械手位置逆解算法来代替机械手的原位置逆解算法,使机械手在欠自由度情况下仍可到达其原工作空间中的大部分位姿,能够完成原计划的大部分任务,则因关节故障所造成的缺失就可大大减少,该机械手应用系统的可容性和可用性也大大提高。

欠自由度机械手,在其工作空间内,只能达到全部定位和部分定向,对于轨迹规划出来的一系列中间位姿点,可能没有对应的逆解。由于位置全部可

解,姿态部分可解,出现某些姿态不可实现问题,从而导致机械手不能完成预期的特定任务。对于欠自由度机械手的位置逆解,大多采用向量代数、线性变换等方法。但对于这种因关节故障原因形成的欠自由度机械手,如果采用普通的欠自由度机械手的位置逆解算法,一旦某位姿的位置逆解无解,机械手的轨迹规划就不可能实现,则任务就不可能完成。因此,研究具有容错性能的六自由度机械手位置逆解算法具有很高的研究价值和实用价值。

同时,在有些机械手的实际应用中,往往对机械手末端执行器的某个姿态不加限制,采用关节数少于6个的欠自由度机械手。则这种具有容错性能的六自由度机械手位置逆解算法也可以应用在这种普通的欠自由度机械手的位置反解问题中。

课题的提出

基于六自由度串联机械手的复杂运动控制的研究,期望通过一种使用的轨迹设计方法,即利用六自由度串联机械手实现平面复杂运动轨迹的设计,使其能在不同的工业生产下完成预定的轨迹实现的准确性和实用性,则该机械手将在实在加工工业中发挥更重要的作用,并可完成许多人工条件无法完成的任务,从而提高机械手的利用性。

另外,基于六自由度机械手轨迹设计中位置逆解算法的研究,期望通过MATLAB仿真实现六自由度机械手位置逆解的准确性,尤其是在其逆解不唯一的情况下,配合MATLAB仿真数据进行对比,实现轨迹控制的最优化,即满足轨迹设计要求和运动控制的要求。

本课题研究的主要内容

本文研究的主要内容和结构安排如下:

第一章:概括了六自由度机械手的研究背景和研究现状,并且详细介绍了六自由度机械手复杂运动控制问题的研究意义和用MATLAB仿真对比位置逆解算法解的现实意义。在此基础上阐述了课题的提出,最后介绍了本文研究的主要内容。

第二章:阐述了机器人运动方程的表示,通过研究其机器人的运动姿态和方向角,运动位置和坐标等并结合矩阵的计算方法对机器人的运动进行求解。其中通过矩阵的变换研究其各种解的形式特征,最终以反解的存在性和工作空间等确定其机器人的解的唯一性和最优解。

第三章:对六自由度串联机械手的系统进行描述,然后运用D-H方法建立机器手坐标系。不仅详细叙述了六自由度串联机械手的正运动学原理和逆运动学原理,并通过原理对机械手进行正运动学分析和逆运动学分析;列出机械手运动轨迹的设计方式。本章为此课题的主要方面,通过六自由度串联机械手的平面复杂运动轨迹的控制来实现六自由度串联机械手完成平面文字轨迹的规划路径和实现方式。

第四章:主要是利用示教手柄引导末端执行器经过要求的位置由控制系统记录,然后利用记录中的程序对机械手任务进行再编程并结合MATLAB仿真的结果完成设计任务要求。

串联机器人运动学分析

新式的工业机器人都是以关节坐标直接编制程序的。机器人的工作是由控制器指挥的,而关节在每个位置的参数是预先记录好的。当机器人执行工作任务时,控制器给记录好的位置数据,使机器人按照预定的位置序列运动。

开发比较高级的机器人程序设计语言,要求具有按照笛卡儿坐标规定工作任务的能力。物体在工作空间内的位置以及机器人手臂的位置,都是以某个确

定的坐标系来描述的;而工作任务则是以某个中间坐标系(如附于手臂端部

的坐标系)来规定的。

由笛卡儿坐标系来描述工作任务时,必须把上述这些规定变换为一系列能够

由手臂驱动的关节位置。确定手臂位置和姿态的各关节位置的解答,即运动

方程的求解。

要知道工作物体和工具的位置,就要指定手臂逐点运动的速度。雅可比矩阵

是由某个笛卡儿坐标系规定的各单个关节速度对最后一个连杆速度的线性变

换。大多数工业机器人具有六个关节,这意味着雅可比矩阵是个6阶方阵。

机器人运动方程的表示

可以把任何机器人的机械手看作是一系列由关节连接起来的连杆构成的。我

们将为机械手的每一连杆建立一个坐标系,并用齐次变换来描述这些坐标系

间的相对位置和姿态。通常把描述一个连杆与下一个连杆间相对关系的齐次

变换叫做A 矩阵。一个A 矩阵就是一个描述连杆坐标系间相对平移和旋转的

齐次变换。如果A1表示第一个连杆对于基系的位置和姿态,A2表示第二个连

杆相对于第一个连杆的位置和姿态,那么第二个连杆在基系中的位置和姿态

可由下列矩阵的乘积给出:

同理,若A3表示第三个连杆相对于第二个连杆的位置和姿态,则有:

在历史文献上,称这些A 矩阵的乘积为T 矩阵,其前置上标若为0,则可略去

不写。于是对于六连杆机械手,有下列T 矩阵:

6123456T A A A A A A (2-1) 一个六连杆机械手可具有六个自由度,每个连杆含有一个自由度,并能在其

运动范围内任意定位与定向。其中,三个自由度用于规定位置,而另外三个

自由度用来规定姿态。T6表示机械手的位置和姿态。

2.1.1 运动姿态和方向角

1.机械手的运动方向

图2-1表示机器人的一个夹手。把所描述的坐标系的原点置于夹手指尖的中

心,此原点由矢量p 表示。描述夹手方向的三个单位矢量的指向如下:z 向矢

量处于夹手进人物体的方向上,并称之为接近矢量a ;y 向矢量的方向从一个

指尖指向另一个指尖,处于规定夹手方向上,称为方向矢量o ;最后一个矢量

叫做法线矢量n ,它与矢量o 和a 一起构成一个右手矢量集合,并由矢量的交

乘所规定:n o a =?因此,变换T6具有下列元素

六连杆机械手的T 矩阵(T6)可由指定其16个元素的数值来决定。在这16

个元素中,只有12个元素具有实际含义。底行由三个零和一个1组成。左列

矢量n 是第二列矢量o 和第三列矢量a 的交乘。当对p 值不存在任何约束

时,只要机械手能够到达期望位置,那么矢量o 和a 两者都是正交单位矢

量,并且互相垂直.即有:1o o ?=,1a a ?=,0o a ?=。这些对矢量o 和a 的

约束,使得对其分量的指定成为困难,除非是末端执行装置与坐标系处于平

行这种简单情况。

2.用旋转序列表示运动姿态

机械手的运动姿态往往由一个绕轴x ,y 和z 的旋转序列来规定。这种转角的

序列,称为欧拉(Euler )角。欧拉角用绕z 轴旋转φ角,再绕新的y 轴

(y ′)旋转θ角,最后绕新的轴z (z 〃)旋转ψ角来描述任何可能的姿态,

见图2-1。

在任何旋转序列下.旋转次序是十分重要的。这一旋转序列可由基系中相反

的旋转次序来解释:先绕z 轴旋转ψ角,再绕y 轴旋转θ角,最后绕z 轴旋

转φ角。

欧拉变换Euler(φ,θ,ψ)可由连乘三个旋转矩阵来求得,即:

Euler( φ,θ,ψ)=Rot( z, φ)Rot (y, θ)Rot (z,ψ)

00000000010000(,,)0010000010000000010000c s c s c s s c s c Euler s c φφθθψψφφψψφθψθθ--?????? ????? ?????= ?????- ??????????? (2-2)

3.用横滚、俯仰和偏转角表示运动姿态

另一种常用的旋转集合是横滚(roll )、俯仰(pitch )和偏转(yaw )。

如果想象有只船沿着z 轴方向航行,见图2-1a ,那么这时,横滚对应于绕z

轴旋转φ角,俯仰对应于绕y 袖旋转θ角,而偏转则对应于绕x 轴旋转ψ

角。适用于机械手端部执行装置的这些旋转角度,如图2-1(b)所示。

图2-1 用横滚、俯仰和偏转表示机械手运动姿态

对于旋转次序,我们作如下规定

RPY (φ,θ,ψ)=Rot (z ,φ)Rot (y, θ)Rot (x,ψ) (2-3)

式中,RPY 表示横滚、俯仰和偏转三旋转的组合变换。也就是说,先绕x 轴旋

转ψ角,再绕y 轴旋转θ角,最后绕z 轴旋转φ角。此旋转变换计算如下:

(2-4)

2.1.2 运动位置和坐标

一旦机械手的运动姿态由某个姿态变换规定之后,它在基系中的位置就能够

由左乘个对应于矢量p 的平移变换来确定

机械手运动控制系统设计

机械手运动控制系统设计 基于S7200PLC村机械于的运动进行一系列控制,这些运动包括手臂上下、左右直线运动,手腕旋转运动,手爪夹紧动作和机械手整体旋转运动等。所采用的动力机构是步进电机,能够做到精确控制。在多个行程开关传感器的保护下,保证了这些运动万无一失。 工业机械手(以下简称机械手)是近代自动控制领域中出现的一项新技术,并已成为现代制造生产系统中的一个重要组成部分,越来越多地被研究和应用。本设汁的控制系统采用小型可编程控制器S7200PLC,具有编程简单、修改容易、可靠性高等优点。 1机械手的选择根据古典力学的观点,物体在三维空间内的静止位置是由三个坐标或围绕三轴旋转的角度来决定的。因此,物体的位置和方向(即关节的角度)能从理论上求得。在实际生产生活中,机械手的自由度不是盲目模仿人手的动作来确定的,而是根据实际需要的动作,设计出最少自由度的机械手来满足作业要求。所以一般专用机械手(不包括握紧动作)通常只具有2~3个自由度。而通用机械手则一般取4~5个自由度。本设计采用的机械手共有5个自由度。 这五个自由度为机械手能够做出手臂伸缩、手臂上下摆动、手臂左右摆动、手腕回转、手指抓紧,该机械手示意图如图1所示。 工业机械手要求精度非常高,所以本设计采用的是步进电机,步进电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数。当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度,称为步距角,它的旋转是以固定的角度一步一步运行的。可以通过控制脉冲个数宋控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。 不过步进电机需要在驱动器的作用下才能正常工作,所以还要选择驱动器,本设计选择的是价格便宜而又方便使用的中美合资SH系列步进电动机驱动器,主要由电源输入部分、信号输入部分、输出部分等,实物图和接线原理图分别如图2和图3所示。

“慧鱼模型”三自由度机械手

湖北理工学院毕业设计(论文) “慧鱼模型”三自由度机械手 设 计 小 册 学院:机电工程学院 班级:机械设计与制造 指导老师: 姓名:学号:201030120130 湖北理工学院毕业设计(论文) 一、概述 ............................................................ 1 1.1机电一体化技术 ................................................... 1 1.1.1机电一体化技术的定义和内容 (1) 1.1.2机电一体化系统组成 (1) 1.2. 慧鱼机器人 ..................................................... 2 1.2.1慧鱼创意教学组合模型简介 (2) 二、机器人的组成 .....................................................

2.1组成构件 ......................................................... 3 2.2慧鱼机器人分析 ................................................... 6 2.2.1机器人机构组成 (6) 2.2.2主要成分构成及功能 (7) 2.3. 机器人的工作空间形式 ............................................ 9 2.4机器人的机械运动形态和变换控制 .................................. 11 2.5机器人的位移、速度、方向的控制方法 (13) 湖北理工学院毕业设计(论文) 一、概述 1.1机电一体化技术 1.1.1机电一体化技术的定义和内容 机电一体化技术综合应用了机械技术、计算机与信息技术、系统技术、自动控制技术、传感检测技术、伺服传动技术,接口技术及系统总体技术等群体技术,从系统的观点出发,根据系统功能目标和优化组织结构目标,以智能、动力、结构、运动和感知等组成要素为基础,对各组成要素及相互之间的信息处理、接口耦合、运动传递、物质运动、能量变换机理进行研究,使得整个系统有机结合与综合集成,并在系统程序和微电子电路的有序信息流控制下,形成物质和能量的有规则 运动,在高质量、高精度、高可靠性、低能耗意义上实现多种技术功能复合的最佳功能价值的系统工程技术。 1.1.2机电一体化系统组成 1.机械本体机械本体包括机架、机械连接、机械传动等,它是机电一体化的基础,起着支撑系统中其他功能单元、传递运动和动力的作用。 2.检测传感部分检测传感部分包括各种传感器及其信号检测电路,其作用就是检测机电一体化系统工作过程中本身和外界环境有关参量的变化,并将信息传递给电子控制单元,电子控制单元根据检查到的信息向执行器发出相应的控制。 3.电子控制单元电子控制单元是机电一体化系统的核心,负责将来自各传感器的检测信号和外部输入命令进行集中、存储、计算、分析,根据信息处理结果,按照一定的程度和节奏发出相应的指令,控制整个系统有目的地进行。 4.执行器执行器的作用是根据电子控制单元的指令驱动机械部件的运动。执行器是运动部件,通常采用电力驱动、气压驱动和液压驱动等几种方式。 5.动力源动力源是机电一体化产品能量供应部分,是按照系统控制要求向机械系统提供能量和动力使系统正常运行。提供能量的方式包括电能、气能和液压

自由度机械手设计

设计说明书 课题:凸轮轴加工自动线机械手 班级:数控69902 设计:沈晓春 审核: 二00五年九月

目录 一、目录 (2) 二、前言 (3) (一)机械手的用途说明 (3) (二)设计机械手的目的、意义 (3) (三)设计指导思想应达到的技术性能要求 (4) 三、设计方案论证 (5) (一)机械手的原始依据 (5) (二)机械手的运动方案论证 (6) 四、机械手各组成部件设计计算 (8) (一)抓取机械设计 (8) (二)手腕机构 (12) (三)手臂设计 (14) (四)缓冲装置设计 (22) (五)定位机构设计…………………………………………………………………………………

25 (六)机械手驱动系统设计 (25) 五、机械手控制系统设计 (25) 六、设计总结 (26) 七、参考文献 (27) 二、前言 (一)机械手的用途说明 机械手是模仿人手工作的机械设备。实验用机械手的设计,是指机械手臂在一定范围内的摆动,手臂的垂直方向的上下移动及手爪的伸缩运动组成。由启动系统实现各运动的驱动。它的主要作用是将工件按预定的程序自动地搬运到需要的位置,或者保持工具进行工作。机械手是利用PLC控制整个系统实现各种运动的自动化控制,且能用于教学演示。 (二)机械手的目的、意义 机械手是模仿人手的动作,生产中应用机械手可以提高自动化水平和劳动生产率,可以减轻劳动强度,保证产品质量,实现安全生产,尤其在恶劣的劳动条件下,它代替人作业的意义更加重大。因此,在机械加工中得到越来越广泛的应用。

目的是,我们对机械手的设计步骤有一定的平衡了解;也能基本掌握机械设计的方法;综合运用学过的理论知识;全面复习绘图技巧,并较好的运用于毕业设计绘图上。通过这次设计,使我了解到,自动控制的对象主要是单机或某个生产过程,智能控制则包括控制对象及整个工作环境或整个生产过程;自动控制的目标是使在系统控制的某个状态下,尽量消除环境对系统的影响,智能控制关心的使最终状态或现行状态是否合乎要求。因此,要充分考虑环境的影响;自动控制的学习来源重要是对象的状态的反馈,所以智能控制需要一个庞大的数据库;自动控制理论着重描述对象的数学模型,然后,通过各种控制算法进行控制,以达到目的,智能控制着重直接控制经验。(三)设计的指导思想,应达到的技术性能要求 结构简单:设计为三自由度的机械手臂,运动形式简单,可以把手臂设计成为沿导向装置运动,直接选用标准规格的液压缸和内胀式机械手爪,无须另行设计。 外观不要有手臂堵塞外形:设计尽量要求安装方便,各非标准件加工方便。因此,不必设计成套形式,管道也不必安排在手臂内部,可以采用软管直接连接。 本次设计的手臂不要光用于工业生产,因此,对各部件的加工精度及安装要求不高,可以在通用机床上加工完成。

(完整版)基于plc的机械手控制系统设计

前言 随着我国工业生产的飞跃发展,自动化程度的迅速提高,实现工件的装卸、转向、输送或操持焊枪、喷枪、扳手等工具进行加工、装配等作业的自动化,已愈来愈引起人们的重视。 机械手是在机械化、自动化生产过程中发展起来的一种新型装置。近年来,随着电子技术特别是电子计算机的广泛应用,机器人的研制和生产已成为高技术领域内迅速发展起来的一门新兴技术,它更加促进了机械手的发展,使得机械手能更好地实现与机械化和自动化的有机结合。 机械手是模仿着人手的部分动作,按给定程序、轨迹和要求实现自动抓取、搬运或操作的自动机械装置。在工业生产中应用的机械手被称为“工业机械手”。机械手虽然目前还不如人手那样灵活,但它具有能不断重复工作和劳动、不知疲劳、不怕危险、抓举重物的力量比人手大等特点,因此,机械手已受到许多部门的重视,并越来越广泛地得到了应用,生产中应用机械手可以提高生产的自动化水平和劳动生产率;可以减轻劳动强度、保证产品质量、实现安全生产;尤其在高温、高压、低温、低压、粉尘、易爆、有毒气体和放射性等恶劣的环境中,它代替人进行正常的工作,意义更为重大。 本文将通过西门子PLC控制机械手,PLC是可编程控制器(Programmable Logic Controller)的简称,是在继电顺序控制基础上发展起来的以微处理器为核心的通用的工业自动化控制装置。随着电子技术和计算机技术的迅猛发展,PLC的功能也越来越强大,更多地具有计算机的功能。目前PLC已经在智能化、网络化方面取得了很好的发展。该系统利用西门子PLC,在步进电机驱动下,完成对机械手在搬运过程中的下降、夹紧、上升、右旋、下降、放松、上升、左旋等全过程自动化控制,并对非正常情况实行自动报警和自动保护,实现企业的机电一体化,提高企业的生产效率。

3个自由度机械手设计

第一章引言 机械工业是国民的装备部,是为国民经济提供装备和为人民生活提供耐用消费品的产业。不论是传统产业,还是新兴产业,都离不开各种各样的机械装备,机械工业所提供装备的性能、质量和成本,对国民经济各部门技术进步和经济效益有很大的和直接的影响。机械工业的规模和技术水平是衡量国家经济实力和科学技术水平的重要标志。因此,世界各国都把发展机械工业作为发展本国经济的战略重点之一。 工业机械手是近几十年发展起来的一种高科技自动化生产设备。工业机械手的是工业机器人的一个重要分支。它的特点是可通过编程来完成各种预期的作业任务,在构造和性能上兼有人和机器各自的优点,尤其体现了人的智能和适应性。机械手作业的准确性和各种环境中完成作业的能力,在国民经济各领域有着广阔的发展前景。 机械手是在机械化,自动化生产过程中发展起来的一种新型装置。在现代生产过程中,机械手被广泛的运用于自动生产线中,机械人的研制和生产已成为高技术邻域内,迅速发殿起来的一门新兴的技术,它更加促进了机械手的发展,使得机械手能更好地实现与机械化和自动化的有机结合。机械手虽然目前还不如人手那样灵活,但它具有能不断重复工作和劳动,不知疲劳,不怕危险,抓举重物的力量比人手力大的特点,因此,机械手已受到许多部门的重视,并越来越广泛地得到了应用。 机械手技术涉及到力学、机械学、电气液压技术、自动控制技术、传感器技术和计算机技术等科学领域,是一门跨学科综合技术。 机械手是一种能自动化定位控制并可重新编程序以变动的多功能机器,它有多个自由度,可用来搬运物体以完成在各个不同环境中工作。 1.1 机械手的分类 机械手一般分为三类:第一类是不需要人工操作的通用机械手。它是一种独立的不附属于某一主机的装置。它可以根据任务的需要编制程序,以完成各项规定的操作。它的特点是具备普通机械的性能之外,还具备通用机械、记忆智能的三元机械。第二类是需要人工才做的,称为操作机。它起源于原子、军事工业,先是通过操作机来完成特定的作业,后来发展到用无线电讯号操作机来进行探测月球等。工业中采用的锻造操作机也属于这一范畴。第三类是用专用机械手,主要附属于自动机床或自动线上,用以解决机床上下料和工件送。这种机械手在国外称为“Mechanical Hand”,它是为主机服务的,由主机驱动;除少数以外,工作程序一般是固定的,因此是专用的。

机械工程及自动化专业毕业设计论文-多自由度机械手设计

前言 1.1 课题背景及意义 机械手通过运动控制芯片、单片机、可控制编程器等来控制电机、气缸、液压缸的运动,从而模仿人手和臂的某些动作,按固定程序实现物体的抓取。它可代替人的劳动,也可以在有害环境下保护人身安全,因而广泛应用于机械制造、电子、原子能等部门。目前机械手主要用于以下几个方面。 (1).恶劣的工作环境和危险的工作 在核工业中,核产品具有较强的放射性,为了人员的安全,需要机械手来完成相关的清理工作。 (2).自动化生产领域 主要用于生产上实现自动化。如当机械手末端夹持焊枪时,可以对汽车或摩托车的车体进行点焊或弧焊作业。 (3).在特殊作业场合进行极限作业 在一些高危领域经常要用到机器人去探索。目前研制出了螃蟹机器人,用于水下勘测、海洋搜寻及石油天然气的勘测。 (4).农业生产 目前研制出了太阳能农用机器人,他可以找到隐藏在农作物中的杂草,通过机械手隔断杂草,同时还可以利用机械手喷洒除草剂。 (5).军事应用 在军事应用中,军人执勤经常会遇到危险,这就需要机器人帮助完成执勤任务,当今世界机器人竞争很激烈,要在这个激烈的国际竞争中立于不败之地,就需要有我国自己的机器人产业,未来世界高科技的竞争更重要的则是人才的竞争。因此,从现在开始就应该注意培养后备力量。机械手是机器人产业的典型代表,因此可以用来作为教学应用的示例。 机械手为典型的机电产品,包含了驱动元件,控制元件,信息处理元件,执行机构,传动机构,机械本体等组成元素,并且具有控制能力强,改变控制程序灵活方便、可靠性高等特点,为学生提供了良好的学习工具。它将现代工业与教学联系在了一起,通过控制—执行这整个的过程使学生对所学的知识有一个更好的认识,从而激发学生的学习兴趣。随着当今计算机技术的飞速发展,它已突破纯开关量控制的局限,进入模拟量控制等领域。通过该机械手的教学开拓了学生专业视野,为他们迎接就业和深造的挑战打下坚实的基础。

三自由度机械手的结构设计论文

三自由度机械手的结构设计 摘要 本文简要介绍了机械手的概念,机械手的组成和分类,国内外的发展状况及发展前景。 本文对机械手进行总体方案设计,结合生产实际及理论确定了机械手的结构及动作过程,坐标型式和自由度数,并列出了机械手的技术参数。 设计出了机械手的驱动方案、控制方案,在进行控制方案的选取时进行了不同方案的优缺点的对比,最后确定了具体的控制方案。在进行机械手控制器件的选取时,对控制器件选择进行了详细的分析,如对步进电机参数的具体选取。最后介绍了利用可编程序控制器对机械手进行控制,同时叙述了可编程序控制器选取原则及工作过程,并绘制出了可编程序控制器外部接线图。在用可编程序控制器控制时分为手动和自动两种工作方式,并绘制了自动工作方式的顺序功能图。 关键词机械手的概念,机械手控制器件,可编程序控制器(PLC) ThREE DEGREES OF FREEDOM MANIPULATOR DESIGN ABSTRACT

目录 中文摘要 (1) 英文摘要 (2) 一、引言 1.1简要介绍机械手的概念 (4) 1.2机械手的组成和分类 (5) 1.2.1机械手的组成 (5) 1.2.2机械手的分类 (5) 1.3国内外发展状况 (6) 二、三轴自由度机械手的结构及动作过程 (7) 2.1机械手的结构 (7) 2.2机械手的动作过程 (8) 2.3机械手的驱动方案设计 (9) 2.4机械手的控制方案设计 (9) 2.5机械手的座标型式与自由度 (10) 2.6机械手的技术参数列表 (11) 三、控制器件选型 (11) 3.1步进电机及其驱动器选择 (11) 3.2直流电机及其驱动器选择 (12) 3.3旋转编码器的选择 (14) 四、机械手的PLC控制设计 (15) 5.1可编程序控制器的选择 (15) 5.2可编程序控制器的工作过程 (16) 总结 (19) 致谢 (20) 参考文献 (20) 附录 (21)

六自由度机械手复杂运动控制

本文以示教型六自由度串联机械手为试验设备,进行机械手的复杂运动控制,使机械手完成各种复杂轨迹的运动控制等功能,能够在现代工业焊接、喷漆等方面的任务。 本文从运动学分析的基础上着手研究轨迹控制的问题,利用运动学逆解的方式分析复杂轨迹运动的可行性和实用性。目前,六自由度机械手的复杂运动控制已经有了比较好的逆解算法,也有一些针对欠自由度机械手的逆解算法。逆解算法求出的解不是唯一的,它能使机械手达到更多位姿,完成大部分的原计划任务,但其中的一些解并不是最优化的,因此必须讨论其反解的存在性和唯一性。 本文通过建立机械手的笛卡尔坐标系,推导出机械手的正、逆运动学矩阵方程,并研究了正、逆运动学方程的解;在此基础上建立机械手的工作空间,并讨论其工作空间的灵活性和存在可能性。因此本文的另一种方式对六自由度串联机械手的复杂运动控制问题进行研究,提出以机械手示教手柄引导末端执行器对复杂运动轨迹进行预设计。然后通过记录程序进行复杂轨迹的再实现,再对记录程序进行预修改,最终通过现有的程序进行设计编程完成复杂轨迹设计任务。并利用MATLAB对轨迹进行仿真,对比其实际与计算的正确性。 最后本设计通过六自由度串联机械手实现平面文字轨迹,得出其设计的方式。即首先利用示教手柄实现轨迹预设,记录预设轨迹程序,然后再对比程序初始化坐标进行手动编程。 关键词:六自由度机械手,笛卡尔坐标系,运动学方程,仿真,示教手柄ABSTRACT

In this paper, mechanical hand control the complex movement based on the series of six degrees of freedom manipulator so that the mechanical hand complete the complex trajectory of the movement control functions. In modern industrial welding, painting, and other aspects of the mandate can be used. This article based on the analysis of kinematics to study the trajectory control problems, use of inverse kinematics of the complex mode of tracking movement of the feasibility and practicality. At present, the six degrees of freedom manipulator complex movement has been relatively good control of the inverse algorithm.There are also some less freedom for the inverse of the manipulator algorithm. Solutions sought by inverse algorithm is not the only solution, it can reach more manipulator Pose, originally planned to complete most of the task.But some of these solutions is not the most optimal, it is necessary to discuss their anti-the existence of solutions and uniqueness. Through the establishment of the manipulator Cartesian coordinates, derived manipulator is the inverse kinematics matrix equation and the study is the inverse kinematics of the equation solution on the basis of this establishment manipulator working space. And discuss their work space The flexibility and the possibility exists. So in another way to the six degrees of freedom series manipulator motion control the complex issues of research, to handle the machinery Shoushi guide for the implementation of the end of the complex pre-designed trajectory. Then track record of the complicated procedure to achieve, and then record the pre-amended procedures.The eventual adoption of the existing procedures designed trajectory design of complex programming tasks. And using MATLAB simulation of the track, compared with its actual calculation is correct. The final design through six degrees of freedom series manipulator track to achieve flat text, draw their design approach. That is, first of all use of teaching handle achieve trajectory default the track record of default procedures, and then compared to manual procedures initialized coordinate programming. key words:Six degree-of-freedom manipulators,Cartesian coordinates,Equations of motion,Simulation,Demonstration handle.

六自由度机械手设计

机械设计课程设计说明书 六自由度机械手 TOPWORK 上海交通大学机械与动力工程学院专业机械工程与自动化 设计者: 李晶(5030209252) 李然(5030209316) 潘楷 (5030209345) 彭敏勤 (5030209347) 童幸 (5030209349) 指导老师:高雪官 2006616

、八— 刖言 在工资水平较低的中国,制造业尽管仍属于劳动力密集型,机械手的使用已经越来越普及。那些电子和汽车业 的欧美跨国公司很早就在它们设在中国的工厂中引进了自 动化生产。但现在的变化是那些分布在工业密集的华南、 华东沿海地区的中国本土制造厂也开始对机械手表现出越 来越浓厚的兴趣,因为他们要面对工人流失率高,以及交 货周期缩短带来的挑战。 机械手可以确保运转周期的一贯性,提高品质。另 外,让机械手取代普通工人从模具中取出零件不仅稳定, 而且也更加安全。同时,不断发展的模具技术也为机械手 提供了更多的市场机会。 可见随着科技的进步,市场的发展,机械手的广泛应用已渐趋可能,在未来的制造业中,越来越多的机械手将 被应用,越来越好的机械手将被创造,毫不夸张地说,机 械手是人类是走向先进制造的一个标志,是人类走向现代化、高科技进步的一个象征。因此如何设计出一个功能强大,结构稳定的机械手变成了迫在眉睫的问题。

目录 一.设计要求和功能分析 4 - ?- ■基座旋转机构轴的设计及强度校核 5 三.液压泵俯仰机构零件设计和强度校核 8 四.左右摇摆机构零件设计和强度校核 11五.连腕部俯仰机构零件设计和强度校核 14六.旋转和夹紧机构零件设计和强度校核 19七.机构各自由度的连接过程 25八.设计特色 28九.心得体会 28十.参考文献30 一. 任务分工31 十二.附录(零件及装配图)31

文献综述三自由度机械手结构设计

文献综述 我国机械手的研究现状和发展趋势机械手是近几十年发展起来的一种高科技自动化生产设备,它对稳定、提高产品质量,提高生产效率,改善劳动条件和产品的快速更新换代起着十分重要的作用。本文参阅了大量的国内外期刊杂志,论述了机械手的组成和分类,同时对国内外机械手的研究现状和发展趋势做了一定的了解。对应用机械手的工业机器人市场四大家族竞争分析。另外,本文还对机械手的常见驱动方式做了一番分析,并预测了机械手的发展趋势。 1.机械手的研究现状 1.1. 概述及现状 机械手是一种模拟人手操作的自动机械。它可按固定程序抓取、搬运物件或操持工具完成某些特定操作。应用机械手可以代替人从事单调、重复或繁重的体力劳动,实现生产的机械化和自动化,代替人在有害环境下的手工操作,改善劳动条件,保证人身安全,因而广泛应用于机械制造、冶金、电子、轻工和原子能等部门。20世纪40年代后期,美国在原子能实验中,首先采用机械手搬运放射性材料,人在安全间操纵机械手进行各种操作和实验。50年代以后,机械手逐步推广到工业生产部门,用于在高温、污染严重的地方取放工件和装卸材料,也作为机床的辅助装置在自动机床、自动生产线和加工中心中应用,完成上下料或从刀库中取放刀具并按固定程序更换刀具等操作。机械手主要由手部和运动机构组

成。手部是用来抓持工件(或工具)的部件,根据被抓持物件的形状、尺寸、重量、材料和作业要求而有多种结构形式,如夹持型、托持型和吸附型等。运动机构,使手部完成各种转动(摆动)、移动或复合运动来实现规定的动作,改变被抓持物件的位置和姿势。运动机构的升降、伸缩、旋转等独立运动方式,称为机械手的自由度。为了抓取空间中任意位置和方位的物体,需有6个自由度。由度是机械手设计的关键参数。由度自自越多,机械手的灵活性越大,通用性越广,其结构也越复杂。一般专用机械手有2~3个自由度。机械手的种类,按驱动方式可分为液压式、气动式、电动式、机械式机械手;按适用范围可分为专用机械手和通用机械手两种;按运动轨迹控制方式可分为点位控制和连续轨迹控制机械手等。机械手通常用作机床或其他机器的附加装置,如在自动机床或自动生产线上装卸和传递工件,在加工中心中更换刀具等,一般没有独立的控制装置。有些操作装置需要由人直接操纵,如用于原子能部门操持危险物品的主从式操作手也常称为机械手。 1.2 机械手技术发展现象概述 机械手是在机械化,自动化生产过程中发展起来的一种新型装置。它是机器人的一个重要分支。它的特点是可通过编程来完成各种预期的作业任务,在构造和性能上兼有人和机器各自的优点,尤其体现了人的智能和适应性(王希敏,1992)。在现代生产过程中,机械手被广泛的运用于自动生产线中,机械手虽然目前还不如人手那样灵活,但它具有能不断重复工作和劳动,不知疲劳,不怕危险,抓举重物的力量比人手力大的特点,因此,机械手已受到许多部门的重视,并越来越广泛地得到了应用。(王承义,1995)机械手首先是从美国开始研制的。1958年美国联合控制公司研制出第一台机械手。它的结构是:机体上安装一个回

基于PLC的三自由度的机械手控制系统与设计要点

基于PLC的三自由度机械手控制系统设计与实现 摘要:为了提高机械手在工业生产中定位的精度,介绍一种基于PL C的三自由度机械手控制系统的设计方案。方案中提出了步进电机在机械手定位应用中的一种新思路详细论述三自由度机械手控制系统的硬件结构及软件实现方法并建立MCGS组态环境界面对系统 的运行进行监控。测试结果表明该系统运行稳定,定位精确,具有较高的应用价值。 关键词: PL C 三自由度机械手步进电机MC GS 组态环境 0 引言 机械手是一种能模拟人的手臂动作,按照设定程序、轨迹和要求,代替人手进行抓取、搬运工件或操持工具的机电一体化自动装置。三自由度机械手又称3D机械人,能够实现三个自由度方向(水平、垂直和旋转)的抓取或放置物品,具有操作范围大,灵活性好,应用广泛的特点。 可编程控制器(PLC)是一种专门为工业应用而设计的进行数字运算操作的电子控制装置。由于其具有可靠性高,功能强,编程简单,人机交互界面友好等特性而广泛用于工业控制系统。 步进电机是将电脉冲信号转变为角位移或线位移的开环执行元件。在非超载情况下,电机的转速、停止位置只取决于脉冲信号的频率和脉冲数目。这一线性关系的存在,加上步进电机只有周期性误差而无累计误差的特点,使其在速度、定位等控制领域应用得非常广泛。 机械手按驱动方式可分为液压式、气动式、电动式和机械式机械手。本文设计的三自由度机械手属于混合式机械手,它综合了电动式和气动式机械手的优点,既节省了行程开关和PLC的I/O端口,又达到了简便操作和精确定位的目的。 1 三自由度机械手的系统结构与运动方式 三自由度机械手为圆柱坐标型。图1为机械手结构示意图,机械手手臂的左右运动(水平方向)由伸缩步进电机控制,上下运动(垂直方向)由升降步进电机控制,逆时针和顺时针旋

3个自由度机械手设计

毕业设计(论文) 说明书 第一章引言 机械工业是国民的装备部,是为国民经济提供装备和为人民生活提供耐用消费品的产业。不论是传统产业,还是新兴产业,都离不开各种各样的机械装备,机械工业所提供装备的性能、质量和成本,对国民经济各部门技术进步和经济效益有很大的和直接的影响。机械工业的规模和技术水平是衡量国家经济实力和科学技术水平的重要标志。因此,世界各国都把发展机械工业作为发展本国经济的战略重点之一。 工业机械手是近几十年发展起来的一种高科技自动化生产设备。工业机械手的是工业机器人的一个重要分支。它的特点是可通过编程来完成各种预期的作业任务,在构造和性能上兼有人和机器各自的优点,尤其体现了人的智能和适应性。机械手作业的准确性和各种环境中完成作业的能力,在国民经济各领域有着广阔的发展前景。 机械手是在机械化,自动化生产过程中发展起来的一种新型装置。在现代生产过程中,机械手被广泛的运用于自动生产线中,机械人的研制和生产已成为高技术邻域内,迅速发殿起来的一门新兴的技术,它更加促进了机械手的发展,使得机械手能更好地实现与机械化和自动化的有机结合。机械手虽然目前还不如人手那样灵活,但它具有能不断重复工作和劳动,不知疲劳,不怕危险,抓举重物的力量比人手力大的特点,因此,机械手已受到许多部门的重视,并越来越广泛地得到了应用。 机械手技术涉及到力学、机械学、电气液压技术、自动控制技术、传感器技术和计算机技术等科学领域,是一门跨学科综合技术。 机械手是一种能自动化定位控制并可重新编程序以变动的多功能机器,它有多个自由度,可用来搬运物体以完成在各个不同环境中工作。 1.1 机械手的分类 机械手一般分为三类:第一类是不需要人工操作的通用机械手。它是一种独立的不附属于某一主机的装置。它可以根据任务的需要编制程序,以完成各项规定的操作。它的特点是具备普通机械的性能之外,还具备通用机械、记忆智能的三元机械。第二类是需要人工才做的,称为操作机。它起源于原子、军事工业,先是通过操作机来完成特定的作业,后来发展到用无线电讯号操作机来进行探测月球等。工业中采用的锻造操作机也属于这一范畴。第三类是用专用机械手,主要附属于自动机床或自动线上,

四自由度机械手控制系统设计

前言 可编程控制器是20世纪70年代以来,在集成电路,计算机技术基础上发展起来的一种新型工业控制设备。由于具有功能强、可靠性高、配置灵活、使用方便以及体积小、重量轻等优点,国外已广泛应用于自动化控制的各个领域,并已成为现实工业生产自动化的支柱产品。近年来,国内在PLC技术与产品开发应用方面发展很快,除有许多从国外引进的设备,自动化生产线外,国内的机床设备已越来越多采用PLC控制系统采用控制系统取代传统的继电—接触器控制系统小;价格上能与继电—接触器控制系统竞争;易于在现场变更程序;便于使用、维护、维修;能直接推动电磁阀,接触器与之相当的执行机构;能向中央执行机构;能向中央数据处理系统直接传播数据等。 本课题是基于PLC控制四自由度机械手运行。 工业机械手是一种模仿人体上肢部分功能,按照预定要求输送工件或握持工具进行操作的自动化技术设备,它可以代替手的繁重劳动,改善劳动条件,提高劳动生产率和自动化水平。有着广阔的发展前途。本课题通PLC自动控制对机械手实现机械手规定动作并实现回原点、手动方式和自动方式三种工作方式的选择,并对系统进行运行效率分析。

摘要 随着工业机械手的进一步发展,其发展将更趋向于人性化、智能化并将在更加广泛的领域得到应用。机械手是一种模仿人体上肢运动的机器,它能按照预定要求输送工种或握持工具进行操作的自动化技术设备,对实现工业生产自动化,推动工业生产的进一步发展起着重要作用。因而具有强大的生命力,受到人们的广泛重视和欢迎。工业机械手可以代替人手的繁重劳动,显著减轻工人的劳动强度,提高劳动生产率和自动化水平。通过对机械制造与自动化大学专科三年的所学知识进行整合,对工业机械手各部分机械结构和功能的论述和分析,确定机械手的工作原理和运动机理。设计了一种四自由度机械手,采用可编程序控制器(PLC)设计其控制系统,以提高其工作的稳定性能。 关键词:机械手梯形图 PLC 电磁阀 Abstract With the further development of industrial robots, and its development tends to be more humane, intelligent and in a wider range of applications. Manipulator is a kind of imitation of the upper body movement machine, it can be scheduled according to request type or holds the automation tool operation of technical equipment, industrial automation, promote the production of industrial production of the further development plays an important role .Manipulator noted extensively and welcome by people for it has powerful vitality. Industrial robots can replace the hands of heavy labor, significantly reduce labor intensity, and improve labor productivity and automation level.Mechanical manufacturing and automation through the junior college for three years to integrate the knowledge of industrial manipulator mechanical structure and function of various parts of exposition and analysis to determine the robot motion principle and mechanism.Design a four-DOF manipulator to enhance the stability of their work for using the programmable logic controller to control system. Keywords: Manipulator Ladder diagram PLC Solenoid valve

机械手控制系统设计(完整版).doc

机械手控制系统设计 摘要 在工业生产和其他领域内,由于工作的需要,人们经常受到高温、腐蚀及有毒气体等因素的危害,增加了工人的劳动强度,甚至于危及生命。自从机械手问世以来,相应的各种难题迎刃而解。 本次设计根据课题的控制要求,确定了搬运机械手的控制方案,设计控制系统的电气原理图,对控制系统进行硬件和软件选型,完成PLC(可编程控制器)用户程序的设计。设计中使用了德国西门子公司生产的S7-200系列的CPU 226。该系列PLC具有功能强大,编程方便,故障率低,性价比高等多种优点。机械手的开关量信号直接输入PLC,使用CPU 226来完成全部的控制功能,包括:手动/自动控制切换,循环次数设定,状态指示,手动完全操控等功能。机械手完成下降、伸出、加紧工件、上升、右旋、再下降、放松工件、缩回、放松、左旋十个动作。通过模拟调试,有序的控制物料从生产流水线上安全搬离,提高搬运工作的准确性、安全性,实现一套完整的柔性生产线,使制造过程变的更有效率。 通过本次毕业设计,对PLC控制系统的设计建立基本的思想:能提出自己的应用心得;可巩固、深化前续所学的大部分基础理论和专业知识,进一步培养和训练分析问题和解决问题的能力,进一步提高自己的设计、绘图、查阅手册、应用软件以及实际操作的能力,从而最终得到相关岗位和岗位群中关键能力和基本能力的训练。 关键词:机械手;PLC(可编程控制器);CPU;梯形图

II The Design of Manipulator Control System ABSTRACT In industrial manufacturing and other fields, due to the demand of work, many workers are compelled to expose in harmful circumstance like high temperature, corrosion, toxic gases harm and so on, that increased labor intensity, even imperial their lives. However, since the manipulator came out, many knotty problems are smoothly solved. The design requirements under the control of the subject to determine the handling robot control program, designed control system electrical schematic diagram, the control system hardware and software selection, complete the design of the user program in the PLC (programmable controller). Design used in the German company Siemens S7-200 series CPU 226. The series PLC with powerful, easy programming and low failure rate, and cost advantages. Robot switch signal input to the PLC, the CPU 226 to complete all the control functions, including: manual / automatic control switch, set the number of cycles, status indicator, manual complete control and other functions. the production line on the safe move out, so that the manufacturing process becomes more efficient. The graduation project, the design of PLC control system to establish the basic idea: to make their own application experience; can strengthen and deepen the most of the former continued the basic theory and professional knowledge, further training and training to analyze and solve problems the ability to further improve their design, drafting, inspection manuals, application software, as well as the actual ability to operate, and ultimately related jobs and job base in key skills and basic skills training. Key Words: Manipulator;PLC;CPU;Ladder-diagram

3个自由度机械手

优秀设计 引言 机械工业是国民的装备部,是为国民经济提供装备和为人民生活提供耐用消费品的产业。不论是传统产业,还是新兴产业,都离不开各种各样的机械装备,机械工业所提供装备的性能、质量和成本,对国民经济各部门技术进步和经济效益有很大的和直接的影响。机械工业的规模和技术水平是衡量国家经济实力和科学技术水平的重要标志。因此,世界各国都把发展机械工业作为发展本国经济的战略重点之一。 工业机械手是近几十年发展起来的一种高科技自动化生产设备。工业机械手的是工业机器人的一个重要分支。它的特点是可通过编程来完成各种预期的作业任务,在构造和性能上兼有人和机器各自的优点,尤其体现了人的智能和适应性。机械手作业的准确性和各种环境中完成作业的能力,在国民经济各领域有着广阔的发展前景。 机械手是在机械化,自动化生产过程中发展起来的一种新型装置。在现代生产过程中,机械手被广泛的运用于自动生产线中,机械人的研制和生产已成为高技术邻域内,迅速发殿起来的一门新兴的技术,它更加促进了机械手的发展,使得机械手能更好地实现与机械化和自动化的有机结合。机械手虽然目前还不如人手那样灵活,但它具有能不断重复工作和劳动,不知疲劳,不怕危险,抓举重物的力量比人手力大的特点,因此,机械手已受到许多部门的重视,并越来越广泛地得到了应用。 机械手技术涉及到力学、机械学、电气液压技术、自动控制技术、传感器技术和计算机技术等科学领域,是一门跨学科综合技术。 机械手是一种能自动化定位控制并可重新编程序以变动的多功能机器,它有多个自由度,可用来搬运物体以完成在各个不同环境中工作。

1.1 机械手的分类 机械手一般分为三类:第一类是不需要人工操作的通用机械手。它是一种独立的不附属于某一主机的装置。它可以根据任务的需要编制程序,以完成各项规定的操作。它的特点是具备普通机械的性能之外,还具备通用机械、记忆智能的三元机械。第二类是需要人工才做的,称为操作机。它起源于原子、军事工业,先是通过操作机来完成特定的作业,后来发展到用无线电讯号操作机来进行探测月球等。工业中采用的锻造操作机也属于这一范畴。第三类是用专用机械手,主要附属于自动机床或自动线上,用以解决机床上下料和工件送。这种机械手在国外称为“Mechanical Hand”,它是为主机服务的,由主机驱动;除少数以外,工作程序一般是固定的,因此是专用的。 在国外,目前主要是搞第一类通用机械手,国外称为机器人。本课题所做的机械手是属于第三类机械手。 1、简史 机械手首先是从美国开始研制的。1958年美国联合控制公司研制出第一台机械手。它的结构是:机体上安装一个回转长臂,顶部装有电磁块的工件抓放机构,控制系统是示教形的。 1962年,美国联合控制公司在上述方案的基础上又试制成一台数控示教再现型机械手。商名为Unimate(即万能自动)。运动系统仿照坦克炮塔,臂可以回转、俯仰、伸缩、用液压驱动;控制系统用磁鼓作为存储装置。不少球坐标通用机械手就是在这个基础上发展起来的。同年该公司和普鲁曼公司合并成立万能自动公司,专门生产工业机械手。 1962年美国机械制造公司也实验成功一种叫Vewrsatran机械手。该机械手的中央立柱可以回转、升降采用液压驱动控制系统也是示教再现型。虽然这两种机械手出现在六十年代初,但都是国外工业机械手发展的基础。 1978年美国Unimate公司和斯坦福大学,麻省理工学院联合研制一种Unimate-Vicarm型工业机械手,装有小型电子计算机进行控制,用于装配作业,定位误差小于±1毫米。联邦德国机械制造业是从1970年开始应用机械手,主要用于起重运输、焊接和设备的上下料等作业。 联邦德国KnKa公司还生产一种点焊机械手,采用关节式结构和程序控制。 日本是工业机械手发展最快、应用最多的国家。自1969年从美国引进两种机械手后大力从事机械手的研究。 前苏联自六十年代开始发展应用机械手,至1977年底,其中一半是国产,一半是进口。

相关文档
最新文档