铁素体马氏体双相钢表面纳米化及性能研究

铁素体马氏体双相钢表面纳米化及性能研究
铁素体马氏体双相钢表面纳米化及性能研究

铁素体/马氏体双相钢表面纳米化及性能研究

梯度纳米结构(Gradient Nanostructure)指材料的结构单元(如晶粒尺寸或层片厚度)在空间上呈梯度变化,从纳米尺度连续增加到宏观尺度。梯度纳米结构可以使具有不同特征尺寸的结构相互协调,使材料的整体性能(强度、硬度、耐磨性、疲劳性能等)得到优化和提高。

铁素体/马氏体双相钢具有良好的力学性能和成形性,探究双相钢微观变形行为,研究两相的变形协调性对制备梯度纳米结构的影响,理解其微观晶粒细化行为,有助于双相钢表面梯度纳米结构的制备设计。通过采用临界区退火(Intercritical Annealing,IA)、中间淬火(Intermediate Quenching,IQ)和分级淬火(Step Quenching,SQ)对低碳钢进行双相区热处理,得到不同马氏体形貌和不同马氏体体积分数的双相钢;首先,对不同马氏体形貌和体积分数的双相钢

表面进行超音微粒轰击(Supersonic Fine Particles Bombardment,SFPB)处理制备梯度纳米结构层;随后,对其力学性能和抗腐蚀性能进行测试分析;最终,基于微观应力模型下模拟试样受力下微观组织应力应变分布情况。

结果表明:(1)相同超音微粒轰击工艺下,三种马氏体组织形貌试样均产生了一定的梯度纳米变形层,其中,岛状马氏体(IA处理)形成较小颗粒分散于变形层中,纤维状马氏体(IQ处理)变为细小颗粒状并均匀的分散亚晶层区域,块状马氏体(SQ处理)组织经过表面塑性变形后形成片状组织。IA工艺下,不同马氏体体积分数试样的变形层形貌基本相似,随着马氏体体积分数增大,变形层厚度也随之增大,但表面晶粒细化幅度总体呈减小趋势;(2)通过纳米梯度层制备后,试样强度都得到明显增大,而塑性有所降低。

其中,纤维状马氏体双相钢强度增幅最大且塑性降低最小,而块状马氏体双

相钢塑性损失最大;岛状马氏体形貌双相钢中,随着马氏体体积分数增大,强度增幅总体呈现增大趋势,然而塑性减少的趋势为先增后减趋势。梯度纳米化后,试样表面都存在硬度梯度分布,其中块状马氏体形貌双相钢表层硬度最大且梯度幅度

最大;对岛状马氏体形貌而言,随着马氏体体积分数的增加,表面最大硬度逐渐减小且硬度梯度变化逐渐缓慢;(3)电化学腐蚀结果表明,岛状与纤维状马氏体形貌双相钢表面梯度纳米化后试样的自腐蚀速率升高,抗腐蚀性能下降,其中岛状马氏体形貌双相钢纳米梯度化后自腐蚀速率升高幅度最大。

然而,块状马氏体形貌双相钢处理后的试样自腐蚀腐蚀速率减小。岛状马氏

体形貌双相钢中,随着马氏体体积分数增大,自腐蚀速率增幅降低;(4)微观流变应力模型较准确的表现马氏体铁素体各相的微观力学性能,模拟结果准确的符合材料真实应力应变情况,其中淬火温度为740oC和800oC时的表面应变较小,马氏体体积分数在40%附近时,微观应变差较大,晶粒细化效果较好。

DP钢

1.DP钢(简称双相钢) 是低碳钢或低合金钢经临界区热处理或经控制轧制而得到的高强度钢,其组织有铁素体基体和约20%在铁素体晶界上的岛状马氏体构成,也称马氏体双相钢。双相钢的基本成分为C和Mn,有时为了提高淬透性还添加一定量的Cr和Mo。 双相钢是20世纪70年代中期发展起来的一种新材料,其具有低屈强比,高伸长率及初始硬化速率快的特性。DP钢主要应用在汽车的边梁,侧面构件,横梁,支柱,底盘加强件,油箱支架及车体的结构件,加强件和防撞件。 其生产工艺为: 1.热轧双相钢工艺板坯加热到1200℃左右,然后经粗轧和精轧,将钢材的终轧温度控制在两相区的某一范围,缓冷后快速冷却,通过控制最终形变温度及冷却速度而获得铁素体(F)和马氏体(M)组织。其工艺过程如 图1所示。 图1中加热段是将钢坯温度加热到1150℃~1300℃后进行轧制,终轧温度控制在800℃~850℃;然后进行缓冷,缓冷约15s后进行快速冷却,使钢带快冷至370℃以下,最后进行空冷。 2.冷轧后热处理工艺 冷轧后热处理工艺将冷轧后的钢材重新加热至两相区的某一范围,并保温一定时间,然后以一定速度缓冷和快速冷却后,从而获得所需要的F+M的组织。其工艺如图2所示:

图2冷轧后热处理生产工艺过程 预热段将钢带预热到200℃左右,然后进行加热,加热至780℃一830℃进行保温,40s后进行缓冷,缓冷至680℃~720℃,然后进行快速冷却,快冷终止温度320℃左右,进入过时效段,过时效段出口温度250℃左右,后进行终冷,终冷温度至170℃然后进行水淬至40℃。 3.TRIP钢即相变诱导塑性钢。其组织是有铁素体,贝氏体和残余奥氏体三相组 成。其具有高的强度和韧性,良好的成形性和可焊性及可镀性。TRIP钢与其他同级别的高强度钢相比,最大特点是兼具高强度和高延伸性能,可冲制较复杂的零件;还具有高碰撞吸收性能,一旦遭遇碰撞,会通过自身形变来吸收能量,而不向外传递,常用作汽车的保险杠、汽车底盘等防撞部位。这种钢还因其优良的高速力学性能和疲劳性能,受到现代汽车制造上的青睐,主要用于汽车结构件及其加强件。其最佳的应用前景是TRIP 钢最佳的应用前景是汽车车门防护杆、保险杠和底盘结构件等。 生产工艺:有热轧和冷轧两种生产工艺生产TRIP 钢材( 板) , TRIP钢的生产工艺 图2 (a)为热轧工艺示意图, 即热轧TRIP钢通过形变热处理来获得, 在形变热处理的过程中, 热轧后的钢板组织随冷却发生快速的相变,可以获得包含铁

低碳马氏体

低碳马氏体 显微组织性能及处理工艺 锻轧后空冷:贝氏体+马氏体+铁素体 性能:σ=828MPa;σ=1049MPa -室温冲击功96J制造汽车时的轮托架 锻轧后直接淬火并回火:低碳回火马氏体σ=935MPa;σ=1197MPa室温冲击功50J,-40℃的冲击功32J,制造汽车操作杆 具有高强度,高韧性和高的疲劳强度,适用于工程机械运动的部件和低温下适用部件 2,低碳马氏体的合金化 低碳加入Mo Nb V B等与合理的Mn、Cr配合 提高淬透性,Nb还细化晶粒 BHS系列:Mn-Mo-Nb 成分:c:0.1%,Mn1.8%,Mo0.45%,Nb0.05% Mn-Si-Mo-V-Nb系列 铁素体-马氏体双相钢 特征:显微组织:铁素体+岛状马氏体+少量残奥 性能特点:1,低的屈服强度一般不超过350Mpa 2, ε曲线是光滑的,没有屈服平台,更没有锯齿形屈服现象 3,高的均匀加延伸率和总延伸率,在24%上 4,高的加工硬化指数,你>0.24 5,高的塑性变化 双相组织或得方法 1热处理双相处理 刚在Ac1与Ac3双相区加热,组织为α﹢γ,随加热温度升高,钢种---相增加,在冷却过程中,保证转变产物α﹢M而不是α﹢P 双相钢的力学性能与组织有密切的关系,钢的化学成分,亚临界区加热温度,最终冷却速度,将起决定性作用 热轧双相钢 热轧后从A状态冷却时,先形成70—80%的多边形铁素体,使未转变的A有足够稳定性,避免发生珠光体和贝氏体相变,在以后冷却转变变成M 工艺要求:合理设计合金成分和实现控轧与控冷 双相钢优异性能的原因 屈服强度和高应变硬化率的原因存在三种可能 首先在马氏体区域存在残余应力,这些应力来源于快速冷却时马氏体相变的体积和形状变化其次,由于这些体积和形状变化效应,使周围铁素体经受塑性变形,导致铁素体中存在高密度的可动位错。再次,伴随着马氏体的残余奥氏体,在成形操作时,发生应变诱发马氏体相变。双相钢的典型成分和用途 化学成分:W(c)0.04-0.1.% W﹙Mn﹚0.8-1.8% W﹙Si﹚0.9-1.5% W﹙Mo﹚0.3-0.4% W﹙Cr﹚0.4-0.6% 用途:强度成形性的综合性能好,满足汽车冲压成形件的要求。 调制刚 结构钢在淬火+高温回火具有良好的综合机械性能,有较高的强度、良好的塑性和韧性适用于这种热处理钢种称为调制刚。 化学成分特点:中碳,碳含量在0.3%~0.5%。碳含量过低时淬硬性不够;C 含量过高的韧性下降。 合金元素:主加:Cr Mn Si Ni。辅加:Mo W V Ti Al B

汽车用高强钢有新进展

? ? 分类:国际新闻 创建于2013年7月11日星期四10:14 最后更新于2013年7月11日星期四10:14 作者:Super User 点击数:9 浦项制铁技术研究实验室 Young Sool Jin 郭金宇译 在现在和未来的汽车上,汽车的减重成为减少CO2排放和降低燃油消耗的关键手段。同时,复合动力车和电动车更加要求车身减重。包括有色金属在内的轻量化材料中,从技术和经济性的观点来看,先进高强钢是最有应用前景的汽车用材料。根据调查,先进高强钢在汽车用钢的比例将从2009年的7%增加到2020年的28%~36%,特别是在亚洲国家,比例将更高。此外,在未来的白车身和覆盖件上,铝合金的用量也将大幅度增加。考虑到未来的应用前景,钢铁行业应加快先进高强钢和相关应用技术的研究与发展。 多种高强钢物尽其用 为了满足汽车工业在提高安全性、燃油经济性、耐用性和舒适性等方面的要求,钢铁企业开发了多种钢材并应用在车身结构上,更加先进的新型汽车用钢也正在加紧研发中。强塑积小于25000MPa%的汽车用钢已经广泛应用在汽车行业,如IF钢、HSLA(高强低合金)钢、传统的先进高强钢(AHSS)如DP(双相)钢、TRIP(相变诱导塑性)

钢、CP(复相)钢、马氏体钢和HF(热冲压成形)钢。另外两组钢,分别称为超高强度先进高强钢(X-AHSS)和超高强度先进高强钢 (U–AHSS),具有优越的强度和塑性平衡,强塑积大于25000MPa%,被称为下一代汽车用钢。而这些先进高强钢的微观组织包括铁素体、贝氏体、马氏体和残余奥氏体等组织。那么,传统先进高强钢有何最新发展,下一代先进高强钢的研发进展如何?附表总结了浦项制铁先进高强钢的研发情况。 热轧先进高强钢。为了得到性能优异的热轧双相钢、铁素体-贝氏体钢和TRIP钢,在工艺过程中需要优化钢种的成分、轧制工艺和冷却速率。总的说来,热轧终轧温度大于Ar3点,冷却过程采用2步法进行控制。中间的冷却温度和空冷时间会对铁素体转变行为产生影响,如铁素体的体积、形态,以及未转变奥氏体的富碳情况。热轧卷最终的卷曲温度会对产品的微观组织产生影响。 采用低C-Mn-Si的成分体系,590MPa级和780MPa级DP钢的卷曲温度设定在马氏体转变温度以下,冷却后直接得到铁素体和马氏体组织。980MPa级DP钢采用低C-Mn-Si-Cr的成分体系,卷曲温度在马氏体转变温度以上。通过添加Cr提高钢卷的淬透性,残余奥氏体在卷曲后转变为马氏体。双相钢主要用在要求良好强度和塑性平衡以及低屈服强度的车轮和汽车悬挂件等零部件上。 为了得到扩孔性能优良的FB钢(铁素体-贝氏体双相钢),减小基体和第二相之间的碳含量和硬度的差别是至关重要的。低C-Mn系590MPa级、低C-Mn-Si系的780MPa级和980MPa级FB钢的卷曲

奥氏体、马氏体、铁素体、双相不锈钢的区别简介

奥氏体、马氏体、铁素体、双相不锈钢的区别简介

不锈钢通俗地说,不锈钢就是不容易生锈的钢,实际上一部分不锈钢,既有不锈性,又有耐酸性(耐蚀性)。不锈钢的不锈性和耐蚀性是由于其表面上富铬氧化膜(钝化膜)的形成。这种不锈性和耐蚀性是相对的。试验表明,钢在大气、水等弱介质中和硝酸等氧化性介质中,其耐蚀性随钢中铬含水量的增加而提高,当铬含量达到一定的百分比时,钢的耐蚀性发生突变,即从易生锈到不易生锈,从不耐蚀到耐腐蚀。不锈钢的分类方法很多。按室温下的组织结构分类,有马氏体型、奥氏体型、铁素体和双相不锈钢;按主要化学成分分类,基本上可分为铬不锈钢和铬镍不锈钢两大系统;按用途分则有耐硝酸不锈钢、耐硫酸不锈钢、耐海水不锈钢等等,按耐蚀类型分可分为耐点蚀不锈钢、耐应力腐蚀不锈钢、耐晶间腐蚀不锈钢等;按功能特点分类又可分为无磁不锈钢、易切削不锈钢、低温不锈钢、高强度不锈钢等等。由于不锈钢材具有优异的耐蚀性、成型性、相容性以及在很宽温度范围内的强韧性等系列特点,所以在重工业、轻工业、生活用品行业以及建筑装饰等行业中获取得广泛的应用。

200 系列—铬-镍-锰奥氏体不锈钢 300 系列—铬-镍奥氏体不锈钢 型号301—延展性好,用于成型产品。也可通过机械加工使其迅速硬化。焊接性好。抗磨性和疲劳强度优于304不锈钢。 型号302—耐腐蚀性同304,由于含碳相对要高因而强度更好。 型号303—通过添加少量的硫、磷使其较304更易切削加工。 型号304—通用型号;即18/8不锈钢。GB牌号为0Cr18Ni9。 型号309—较之304有更好的耐温性。 型号316—继304之後,第二个得到最广泛应用的钢种,主要用于食品工业和外科手术器材,添加钼元素使其获得一种抗腐蚀的特殊结构。由于较之304其具有更好的抗氯化物腐蚀能力因而也作“船用钢”来使用。SS316则通常用于核燃料回收装置。18/10级不锈钢通常也符合这个应用级别。[1] 型号321—除了因为添加了钛元素降低了材

钢铁家族中各种组织形貌生长特点及性能

钢铁家族中各种组织形貌生长特点及性能 现代材料可以分为四大类--金属、高分子、陶瓷和复合材料。尽管目前高分子材料飞速发展,但金属材料中的钢铁仍是目前工程技术中使用最广泛、最重要的材料,那么到底是什么因素决定了钢铁材料的霸主地位呢。下面就为大家详细介绍吧。 钢铁由铁矿石提炼而成,来源丰富,价格低廉。钢铁又称为铁碳合金,是铁(Fe)与碳(C)、硅(Si)、锰(Mn)、磷(P)、硫(S)以及其他少量元素(Cr、V等)所组成的合金。通过调节钢铁中各种元素的含量和热处理工艺(四把火:淬火、退火、回火、正火),可以获得各种各样的金相组织,从而使钢铁具有不同的物理性能。将钢材取样,经过打磨、抛光,最后用特定的腐蚀剂腐蚀显示后,在金相显微镜下观察到的组织称为钢铁的金相组织。钢铁材料的秘密便隐藏在这些组织结构中。 在Fe-Fe3C系中,可配制多种成分不同的铁碳合金,他们在不同温度下的平衡组织各不相同,但由几个基本相(铁素体F、奥氏体A和渗碳体Fe3C)组成。这些基本相以机械混合物的形式结合,形成了钢铁中丰富多彩的金相组织结构。常见的金相组织有下列八种: 一、铁素体 碳溶于α-Fe晶格间隙中形成的间隙固溶体称为铁素体,属bcc结构,呈等轴多边形晶粒分布,用符号F表示。其组织和性能与纯铁相似,具有良好的塑性和韧性,而强度与硬度较低(30-100 HB)。在合金钢中,则是碳和合金元素在α-Fe中的固溶体。碳在α-Fe中的溶解量很低,在AC1温度,碳的最大溶解量为0.0218%,但随温度下降的溶解度则降至0.0084%,因而在缓冷条件下铁素体晶界处会出现三次渗碳体。随钢铁中碳含量增加,铁素体量相对减少,珠光体量增加,此时铁素体则是网络状和月牙状。 二、奥氏体 碳溶于γ-Fe晶格间隙中形成的间隙固溶体称为奥氏体,具有面心立方结构,为高温相,用符号A表示。奥氏体在1148℃有最大溶解度2.11%C,727℃时可固溶0.77%C;强度和硬度比铁素体高,塑性和韧性良好,并且无磁性,具体力学性能与含碳量和晶粒大小有关,一般为170~220 HBS、=40~50%。TRIP钢(变塑钢)即是基于奥氏体塑性、柔韧性良好的基础开发的钢材,利用残余奥氏体的应变诱发相变及相变诱发塑性提高了钢板的塑性,并改善了钢板的成形性能。碳

奥氏体马氏体铁素体双相不锈钢的区别简介

不锈钢简介: 不锈钢通俗地说,不锈钢就是不容易生锈的钢,实际上一部分不锈钢,既有不锈性,又有耐酸性(耐蚀性)。不锈钢的不锈性和耐蚀性是由于其表面上富铬氧化膜(钝化膜)的形成。这种不锈性和耐蚀性是相对的。试验表明,钢在大气、水等弱介质中和硝酸等氧化性介质中,其耐蚀性随钢中铬含水量的增加而提高,当铬含量达到一定的百分比时,钢的耐蚀性发生突变,即从易生锈到不易生锈,从不耐蚀到耐腐蚀。不锈钢的分类方法很多。按室温下的组织结构分类,有马氏体型、奥氏体型、铁素体和双相不锈钢;按主要化学成分分类,基本上可分为铬不锈钢和铬镍不锈钢两大系统;按用途分则有耐硝酸不锈钢、耐硫酸不锈钢、耐海水不锈钢等等,按耐蚀类型分可分为耐点蚀不锈钢、耐应力腐蚀不锈钢、耐晶间腐蚀不锈钢等;按功能特点分类又可分为无磁不锈钢、易切削不锈钢、低温不锈钢、高强度不锈钢等等。由于不锈钢材具有优异的耐蚀性、成型性、相容性以及在很宽温度范围内的强韧性等系列特点,所以在重工业、轻工业、生活用品行业以及建筑装饰等行业中获取得广泛的应用。 不锈钢牌号分组 200 系列—铬-镍-锰奥氏体不锈钢 300 系列—铬-镍奥氏体不锈钢 型号301—延展性好,用于成型产品。也可通过机械加工使其迅速硬化。焊接性好。抗磨性和疲劳强度优于304不锈钢。 型号302—耐腐蚀性同304,由于含碳相对要高因而强度更好。 型号303—通过添加少量的硫、磷使其较304更易切削加工。 型号304—通用型号;即18/8不锈钢。GB牌号为0Cr18Ni9。 型号309—较之304有更好的耐温性。 型号316—继304之後,第二个得到最广泛应用的钢种,主要用于食品工业和外科手术器材,添加钼元素使其获得一种抗腐蚀的特殊结构。由于较之304其具有更好的抗氯化物腐蚀能力因而也作“船用钢”来使用。SS316则通常用于核燃料回收装置。18/10级不锈钢通常也符合这个应用级别。[1] 型号321—除了因为添加了钛元素降低了材料焊缝锈蚀的风险之外其他性能类似304。 400 系列—铁素体和马氏体不锈钢 型号408—耐热性好,弱抗腐蚀性,11%的Cr,8%的Ni。 型号409—最廉价的型号(英美),通常用作汽车排气管,属铁素体不锈钢(铬钢)。 型号410—马氏体(高强度铬钢),耐磨性好,抗腐蚀性较差。 型号416—添加了硫改善了材料的加工性能。 型号420—“刃具级”马氏体钢,类似布氏高铬钢这种最早的不锈钢。也用于外科手术刀具,可以做的非常光亮。 型号430—铁素体不锈钢,装饰用,例如用于汽车饰品。良好的成型性,但耐温性和抗腐蚀性要差。

马氏体的形态及成因

马氏体的形态及成因 马氏体的形态及成因: 一、三维形貌及结构: 1.板条位错型。一般呈束(排)分布,内部存在高密度位错。 2.片状孪晶型。一般呈交叉针状分布,其中含碳量≥1.4%即惯态面为{259}r者有中脊,呈“之”字状,即有爆发性发展的特征。 3.钢中含碳量对马氏体三维形貌及亚结构的影响:马氏体含碳量≤0.6%为板条位错型,马氏体含碳量≥1.4%为片状孪晶型,两者之间为混合型。这是理论上的马氏体形态,与实际的情况有区别。 二、二维形貌及结构: 1.板条马氏体在光学显微镜下成一排,具有黑白差。所以在光学显微镜有时呈现黑白交替排列的现象。 ⑴成束分布的现象十分明显,长度几乎可惯穿母相晶粒,且排的宽度宽(包含的板条多)。 ⑵板条一小束平行相连,形成以束为单位的平行相连的黑白差(3%的硝酸酒精溶液正确浸蚀下)。 ⑶黑白差相对较大。深色的马氏体是先形成的马氏体,是受到严重的自回火的马氏体,所以呈深色。在金相上评定淬火马氏体的级别以最深的马氏体为准。由于含碳量低,切变造成惯态面破坏情况轻微,所以马氏体连在一起成为平行相连。 2.中碳马氏体的特征: ⑴成束分布的现象在正常淬火后不十分明显,高温淬火后才几乎可贯穿母相晶粒,且排的宽度窄(即包含的板条少)。 ⑵板条一小束平行相间,形成以束为单位的平行相间的黑白差。 ⑶黑白差相对较小。 3.高碳马氏体的特征(高碳钢中的马氏体不等于高碳马氏体): ⑴马氏体呈明显的针叶状。 ⑵次生马氏体从先生成马氏体针叶间开始生长,并与之呈60°的夹角。 ⑶后生成的马氏体小于先生成的马氏体,且不能穿越奥氏体晶界。 ⑷马氏体针叶上有微观裂纹,若金相磨面正好剖过马氏体针叶,精细观察可见裂纹。 四、马氏体黑白差的原因: 1.由于成份来不及扩散均匀所形成的区域性黑白差。原铁素体区域碳浓度低,得到较多的板条马氏体(黑色);原珠光体区域碳浓度高,得到片状马氏体(白色)。 2.由于在Ms以下等温分级淬火所致。 3.由于高碳合金钢中球、粒状碳化物分布不均匀所致。 4.由于钢中成份不均匀所致。如铬在钢中的分配系数为1:28,即1份溶入基体,28份形成碳化物。所以,铬钢加热时存在较多碳化物,其周围贫碳区域淬火时形成低碳马氏体,颜色较深。因此,像40Cr这类钢一般就不应该进行退火处理(退火时基体中的铬向碳化物聚集形成碳化物,其周围基体贫碳,退火缓冷有利于铬的聚集,所以一般不能退火)。

高扩孔钢变形奥氏体的连续冷却转变

收稿日期:2007 12 24 基金项目:国家自然科学基金资助项目(50527402) 作者简介:蔡明晖(1979-),男,河南周口人,东北大学博士研究生;丁 桦(1958-),女,安徽合肥人,东北大学教授,博士生导师 第29卷第11期2008年11月东北大学学报(自然科学版)Journal of Northeastern U niversity(Natural Science)Vol 29,No.11Nov. 2008 高扩孔钢变形奥氏体的连续冷却转变 蔡明晖,丁 桦,李晓滨,唐正友 (东北大学材料与冶金学院,辽宁沈阳 110004) 摘 要:研究了三种硅 锰系低碳钢变形奥氏体的连续冷却转变,分析了w (Si),w (M n)对相变温度A r3、转变组织及力学性能的影响 实验结果表明:w (Si)由0.50%增加到1.35%时,A r 3升高15~25!,而w (M n)由0.97%增加到1.43%时,A r3降低30~50!,锰对A r3的影响效果强于硅;硅促进了高温等轴铁素体析出,抑制了贝氏体相变,而锰不仅细化了相变组织,还促进了贝氏体形成;w (Si),w (M n)分别为0 56%和1.43%的钢在850!变形后以30!/s 冷却,获得均匀、微细化的铁素体/贝氏体双相组织,抗拉强度可达到654M P a 关 键 词:铁素体/贝氏体双相钢;变形奥氏体;硅含质量分数;锰质量分数;相变温度中图分类号:T G 142.1 文献标识码:A 文章编号:1005 3026(2008)11 1576 05 Continuous Cooling Transformation of Deformed Austenite in Highly Hole Expandable Steels CAI Ming hui,DING H ua,L I X iao bin ,TAN G Zheng y ou (School of M ater ials &M etallurgy ,Northeastern U niversity,Shenyang 110004,China.Correspondent:CAI M ing hui,E mail:cmhing @126.co m) Abstract:The effects of Si and M n contents on transformation tem perature A r3,transformed microstructure and mechanical properties of three kinds of low carbon steels during continuous cooling w ere investig ated.A r3rises by 15~25!w hen increasing Si content from 0.50%to 1 35%,and it drops by 30~50!when increasing M n content from 0.97%to 1.43%.The effect of Mn on A r3is more significant than Si.Si stimulates the precipitation of the hig h temperature equiaxed ferrite to suppress the bainite transformation,but Mn not only provides the g rain refining of transformed m icrostructure but also stimulates the forming of bainite.The homogeneous and g rain refining diphase ferrite/bainite steel (w (Si)=0.56,w (Mn)=1.43)can be obtained after deformed at 850!and cooled at the rate 30!/s,of w hich the tensile strength is up to 654MPa. Key w ords:ferrite bainite diphase steel;deformed austenite;Si mass ratio;M n m ass ratio;transformation tem perature 为了汽车轻量化、降低油耗和改善整车的安全性等目的,近年来已开发出多种具有高强度和良好成形性,且能满足汽车工业发展要求的高强度钢板 其中,日本新开发的具有高扩孔性能的热轧高强度钢,其强度级别为440~780M Pa,被广泛应用于汽车的底盘部件 目前,国内开发的汽车底盘用冷连轧钢板的抗拉强度仅为370~430M Pa,热轧钢板的强度级别也仅为400MPa,限制 了其使用范围[1-2] 因此,开发新型的汽车底盘等部件用热轧高扩孔钢在我国具有十分重要的意义 铁素体/贝氏体双相钢(FB 钢)具有非常好的成形性能,特别是延伸凸缘性,在强度相同时FB 钢的扩孔率为双相钢(DP 钢)的2倍左右,更适合于冲压像汽车底盘等要求较厚且成形性尤其是翻边性良好的部件[3] FB 钢的化学成分(质量分

和 L L和 双相钢之区别

304 18Cr-8Ni 作为一种用途广泛的钢,具有良好的耐蚀性、耐热性,低温强度和机械特性;冲压、弯曲等热加工性好,无热处理硬化现象(无磁性,便用温茺-196℃~800℃)。 家庭用品(1、2类餐具、橱柜、室内管线、热水器、锅炉、浴缸),汽车配件(风挡雨刷、消声器、模制品),医疗器具,建材,化学,食品工业,农业,船舶部件。 304L 18Cr-8Ni-低碳 作为低C的304钢,在一般状态下,其耐蚀性与304刚相似,但在焊接后或者消除应力后,其抗晶界腐蚀能力优秀;在未进行热处理的情况下,亦能保持良好的耐蚀性,使用温度 -196℃~800℃。 应用于抗晶界腐蚀性要求高的化学、煤炭、石油产业的野外露天机器,建材耐热零件及热处理有困难的零件。 316 因添加Mo,故其耐蚀性、耐大气腐蚀性和高温强度特别好,可在苛酷的条件下使用;加工硬化性优(无磁性)。 海水里用设备、化学、染料、造纸、草酸、肥料等生产设备;照像、食品工业、沿海地区设施、绳索、CD杆、螺栓、螺母。 316L 低碳

作为316钢种的低C系列,除与316钢有相同的特性外,其抗晶界腐蚀性优。 316钢的用途中,对抗晶界腐蚀性有特别要求的产品。 双相钢(dual-phase,简称DP钢),又称复相钢。 由马氏体、奥氏体或贝氏体与铁素体基体两相组织构成的钢。一般将铁素体与奥氏体相组织组成的钢称为双相不锈钢,将铁素体与马氏体相组织组成的钢称为双相钢。双相钢是低碳钢或经临界区热处理或控制轧制后而获得。典型的双相钢σs为310MPa,σb为655MPa。双相钢用于制造冷冲、深拉成型的复杂构件,也可用作管线钢、链条、冷拔钢丝、预应力钢筋等。所谓是在其固溶组织中铁素体相与奥氏体相约各占一半,一般量少相的含量也需要达到30%。在含C较低的情况下,Cr含量在18%~28%,Ni含量在3%~10%。有些钢还含有Mo、Cu、Nb、Ti,N等合金元素。该类钢兼有奥氏体和的特点,与铁素体相比,塑性、韧性更高,无室温脆性,耐晶间腐蚀性能和焊接性能均显着提高,同时还保持有的475℃脆性以及导热系数高,具有超塑性等特点。与相比,强度高且耐晶间腐蚀和耐氯化物应力腐蚀有明显提高。具有优良的耐孔蚀性能,也是一种节镍不锈钢。

铁素体马氏体双相钢表面纳米化及性能研究

铁素体/马氏体双相钢表面纳米化及性能研究 梯度纳米结构(Gradient Nanostructure)指材料的结构单元(如晶粒尺寸或层片厚度)在空间上呈梯度变化,从纳米尺度连续增加到宏观尺度。梯度纳米结构可以使具有不同特征尺寸的结构相互协调,使材料的整体性能(强度、硬度、耐磨性、疲劳性能等)得到优化和提高。 铁素体/马氏体双相钢具有良好的力学性能和成形性,探究双相钢微观变形行为,研究两相的变形协调性对制备梯度纳米结构的影响,理解其微观晶粒细化行为,有助于双相钢表面梯度纳米结构的制备设计。通过采用临界区退火(Intercritical Annealing,IA)、中间淬火(Intermediate Quenching,IQ)和分级淬火(Step Quenching,SQ)对低碳钢进行双相区热处理,得到不同马氏体形貌和不同马氏体体积分数的双相钢;首先,对不同马氏体形貌和体积分数的双相钢 表面进行超音微粒轰击(Supersonic Fine Particles Bombardment,SFPB)处理制备梯度纳米结构层;随后,对其力学性能和抗腐蚀性能进行测试分析;最终,基于微观应力模型下模拟试样受力下微观组织应力应变分布情况。 结果表明:(1)相同超音微粒轰击工艺下,三种马氏体组织形貌试样均产生了一定的梯度纳米变形层,其中,岛状马氏体(IA处理)形成较小颗粒分散于变形层中,纤维状马氏体(IQ处理)变为细小颗粒状并均匀的分散亚晶层区域,块状马氏体(SQ处理)组织经过表面塑性变形后形成片状组织。IA工艺下,不同马氏体体积分数试样的变形层形貌基本相似,随着马氏体体积分数增大,变形层厚度也随之增大,但表面晶粒细化幅度总体呈减小趋势;(2)通过纳米梯度层制备后,试样强度都得到明显增大,而塑性有所降低。 其中,纤维状马氏体双相钢强度增幅最大且塑性降低最小,而块状马氏体双

双相钢和相变诱导塑性(TRIP)钢

双相钢和相变诱导塑性(TRIP)钢 引言 节省燃料和保证安全的要求是高强度钢在汽车工业中的应用稳步增长的驱动力。与其它材料,如轻金属铝、镁,或是塑料和复合材料相比,高强度钢除了减轻重量外,还有另外的优点,即其加工工艺类似于传统的低碳钢。因此,高强度钢在减轻重量的同时其总的制造成本也下降。其它竞争材料在这方面的情况则截然相反(1)。 根据强度和成形性的不同要求,采用不同的高强度带钢和薄板钢。以无间隙原子钢为基础的高强度钢具有优异的冷成形性能(2)。当深冲作为主要加工方法,而抗拉强度要求约400N/mm2时,低碳含磷钢和烘烤硬化钢得到大量应用。如果对深冲性的要求不很严格, Lankford值r 1.0左右足够时,可以使用更高强度级别的钢种。和微合金带钢和薄板钢应用的同时,具有双相显微组织的钢种(3)的应用也相当普遍。这种类型钢在同等抗拉强度时具有较高的均匀延伸率和总延伸率,如图1所示(4)。但如果从同等的屈服强度来考虑,这种优势消失。 特性及工艺路线 双相显微组织指在铁素体基体上分布着一定量的第二相。该组织具有网状、弥散和两相组织的特征,如图2(5)。第二相通常是马氏体,其典型的体积分数约为20%。 这样的显微组织构成影响应力一应变曲线。屈服强度由软相即铁素体的塑性流变的起动所决定。在此阶段,硬相还处于弹性区。根据两相组组织的混合规律,当施加的应力较高时,材料显示较高的加工硬化行为。两相中应变的分布是不一样的,以致于软相中的应变和硬相中的应力高于复合体平均值。即使在变形的稍后阶段硬相变成塑性时,这种现象仍然存在。这样复杂的情况的示意图如图3所示。应用有限元的方法,可以计算出最终力学性能(6)。 显微组织的详细分析表明,双相钢也包含有一定量的残余奥氏体。由于铁素体组分内

双相钢简介

双相钢又称复相钢。由马氏体或奥氏体与铁素体基体两相组织构成的钢。一般将铁素体与奥氏体相组织组成的钢称为双相不锈钢,将铁素体与马氏体相组织组成的钢称为双相钢。双相钢是低碳钢或低合金高强度钢经临界区热处理或控制轧制后而获得。典型的双相钢屈服强度σs为310MPa,拉伸强度σb为655MPa。双相钢用于制造冷冲、深拉成型的复杂构件,也可用作管线钢、链条、冷拔钢丝、预应力钢筋等。 性质:指主要由铁素体相和马氏体相组成的钢。可由低碳钢或低合金钢经临界区处理或控制轧制而得到。这类钢具有高强度和高延性的良好配合,已成为一种强度高、成形性好的新型冲压用钢,成功的用于汽车产业等。 双相钢 - 性能特点 由于两相组织的特点,通过正确控制化学成分和热处理工艺,使双相不锈钢兼有铁素体不锈钢和奥氏体不锈钢的优点,它将奥氏体不锈钢所具有的优良韧性和焊接性与铁素体不锈钢所具有的较高强度和耐氯化物应力腐蚀性能结合在一起,正是这些优越的性能使双相不锈钢作为可焊接的结构材料发展迅速,80年代以来已成为和马氏体型、奥氏体型和铁素体型不锈钢并列的一个钢类。双相不锈钢有以下性能特点: (1)含钼双相不锈钢在低应力下有良好的耐氯化物应力腐蚀性能。一般18-8型奥氏体不锈钢在60°C以上中性氯化物溶液中容易发生应力腐蚀断裂,在微量氯化物及硫化氢工业介质中用这类不锈钢制造的热交换器、蒸发器等设备都存在着产生应力腐蚀断裂的倾向,而双相不锈钢却有良好的抵抗能力。 (2)含钼双相不锈钢有良好的耐孔蚀性能。在具有相同的孔蚀抗力当量值 (PRE=Cr%+3.3Mo%+16N%)时,双相不锈钢与奥氏体不锈钢的临界孔蚀电位相仿。双相不锈钢与奥氏体不锈钢耐孔蚀性能与AISI 316L相当。含25%Cr的,尤其是含氮的高铬双相不锈钢的耐孔蚀和缝隙腐蚀性能超过了AISI 316L。 (3)具有良好的耐腐蚀疲劳和磨损腐蚀性能。在某些腐蚀介质的条件下,适用于制作泵、阀等动力设备。 (4)综合力学性能好。有较高的强度和疲劳强度,屈服强度是18-8型奥氏体不锈钢的2倍。固溶态的延伸率达到25%,韧性值AK(V型槽口)在100J以上。 (5)可焊性良好,热裂倾向小,一般焊前不需预热,焊后不需热处理,可与18-8型奥氏体不锈钢或碳钢等异种焊接。(6)含低铬(18%Cr)的双相不锈钢热加工温度范围比18-8型奥氏体不锈钢宽,抗力小,可不经过锻造,直接轧制开坯生产钢板。含高铬(25%Cr)的双相不锈钢热加工比奥氏体不锈钢略显困难,可以生产板、管和丝等产品。 (7)冷加工时比18-8型奥氏体不锈钢加工硬化效应大,在管、板承受变形初期,需施加较大应力才能变形。 (8)与奥氏体不锈钢相比,导热系数大,线膨胀系数小,适合用作设备的衬里和生产

双相钢介绍

双相不锈钢是指不锈钢中同时具有奥氏体和铁素体两种金相组织结构的不锈钢。双相钢又称复相钢。一般将铁素体与奥氏体相组织组成的钢称为双相不锈钢,将铁素体与马氏体相组织组成的钢称为双相钢。 双相钢是低碳钢或低合金高强度钢经临界区热处理或控制轧制后而获得。典型的双相钢屈服强度σs为310MPa,拉伸强度σb为655MPa。双相钢用于制造冷冲、深拉成型的复杂构件,也可用作管线钢、链条、冷拔钢丝、预应力钢筋等。 这类钢具有高强度和高延性的良好配合,已成为一种强度高、成形性好的新型冲压用钢,成功的用于汽车工业等。 一般双相钢是指马氏体(贝氏体)加上铁素体基体的组织。马氏体呈岛状分布在铁素体晶粒之间即:10%~20%马氏体加铁素体组织。这种钢具有屈服强度低、延伸率高及形变硬化率高等特性有利于冷拔成型可以通过冷加工硬化提高强度同时还具有良好的塑性和韧性。 不锈钢一般是不锈钢和耐酸钢的总称。不锈钢是指耐大气、蒸汽和水等弱介质腐蚀的钢,而耐酸钢则是指耐酸、碱、盐等化学浸蚀性介质腐蚀的钢。不锈钢自本世纪初问世,到现在已有90多年的历史。不锈钢的发明是世界冶金史上的重大成就,不锈钢的发展为现代工业的发展和科技进步奠定了重要的物质技术基础。 不锈钢钢种很多,性能各异,它在发展过程中逐步形成了几大类。 按组织结构分,分为马氏不锈钢(包括沉淀硬化不锈钢)、铁素体不锈钢、奥氏体不锈钢和奥氏体加铁素体双相不锈钢等四大类; 按钢中的主要化学成分或钢中的一些特征元素来分类,分为铬不锈钢、铬镍不锈钢、铬镍钼不锈钢以及低碳不锈钢、高钼不锈钢、高纯不锈钢等; 按钢的性能特点和用途分类,分为耐硝酸不锈钢、耐硫酸不锈钢、耐点蚀不锈钢、耐应力腐蚀不锈钢、高强不锈钢等; 按钢的功能特点分类,分为低温不锈钢、无磁不锈钢、易切削不锈钢、超塑性不锈钢等。目前常用的分类方法是按钢的组织结构特点和钢的化学成分特点以及两者相结合的方法分类。一般分为马氏体不锈钢、铁素体不锈钢、奥氏体不锈钢、双相不锈钢和沉淀硬化型不锈钢等,或分为铬不锈钢和镍不锈钢两大类。 奥氏体加铁素体双相不锈钢是指不锈钢中既有奥氏体又有铁素体组织结构的钢种,而且此二相组织要独立存在,含量都较大,一般认为最少相的含量应大于15%。而实际工程中应用的奥氏体+铁素双相不锈钢(习惯称α+γ双相不锈钢或双相不锈钢)多以奥氏体为基并含有不小于30%的铁素体,最常见的是两相各约占50%的双相不锈钢。双相不锈钢英文简写是DSS(Duplex Stainless Steel)。 由于具有α+γ双相组织结构,双相不锈钢兼有奥氏体不锈钢和铁素体不锈钢的特点。与铁素体不锈钢相比,α+γ双相不锈钢的韧性高,脆性转变温度低。耐晶间腐蚀性能和焊接性能均显著提高;同时又保留了铁素体不锈钢的一些特点,如475℃脆性、导热系数高、线膨

马氏体的组织形态

第三节马氏体的组织形态 (本节建议时间:15分钟) 一马氏体的形态 1. 板条马氏体 出现于低、中碳钢中,其形貌可见图3-3-1,其中的板条束为惯习面相同的平行板条组成,板条间有一层A膜;板条的立体形态可以是扁条状,也可以是薄片状;一个奥氏体晶粒有几个束,一个束内存在位向差时,也会形成几个块。板条M的亚结构为位错,密度高达(0.3~0.9)×1012/cm2,故称位错M。 3-3-1板条马氏体显微组织特征示意图 2. 透镜片状马氏体(简称片状M) 出现于中、高碳钢中,其形貌可见图3-3-2。立体外形呈双凸透镜状,断面为针状或竹叶状。马氏体相变时,第一片分割奥氏体晶粒,以后的马氏体片愈来愈小。 M形成温度高时,惯习面为{225}A,符合K-S关系;形成温度低时,惯习面为{259} A,符合西山关系.片状M的亚结构为{112}M的孪晶。 M还有其它形态如蝶状、薄片状与薄板状等。

3-3-2透镜片状马氏体 二影响M形态及其内部亚结构的因素 1. 化学成分 奥氏体中碳含量的影响最为重要,在碳钢中,当C含量: C<0.3%时,生成板条M,亚结构为位错; C>1.0%时,生成片状M,亚结构为孪晶@c000000255; C为0.3~1.0%时,生成混合型组织(片状+板条)。 2. 形成温度 M S点高的A,冷却后形成板条M,亚结构为位错; M S点低的A,冷却后形成片状M,亚结构为孪晶; M S点不高不低的A,冷却后形成混合型组织(片状+板条M),亚结构为位错+孪晶。 9.5 马氏体转变 钢经奥氏体化后快速冷却,抑制其扩散分解,在较低温度下发生无扩散性相变-马氏体相变,这一过程通常称为淬火。 9.5.1 钢中马氏体的晶体结构

马氏体形态

马氏体形态分析 上世纪60年代以来,人们在马氏体形态方面进行了大量研究,发现了马氏体的许多不同形态,并找出了马氏体及其精细结构与性能之间的关系,对马氏体的晶体结构也有了比较深刻的认识。 马氏体形态虽然多种多样,但从其形态特征上基本可归纳为条状马氏体和片状马氏体两大类,其精细结构可划分为位错和孪晶。同时发现马氏体与母相保持严格的晶体学位向关系。 1.条状马氏体 主要形成于含碳量较低的钢中,又称低碳马氏体。因其形成于200℃以上的较高温度,故又称高温马氏体;因其精细(亚)结构为高密度(一般为0.3~0.9×1012cm/cm2)位错,故又称位错马氏体。 在光学显微镜下观察,条状马氏体的主要形态特征为:呈束状排列。近于平行而长度几乎相等的条状马氏体组成一束,或称为马氏体“领域”(即板条群)。板条群的尺寸约为20~35μm,由若干个尺寸大致相同的板条在空间位向大致平行排列所作组成,在原奥氏体的一颗晶粒内,可以发现几团马氏体束(即几个板条群,常为3~5个,每一个板条为一个马氏体单晶体,其尺寸约为0.5μm× 5.0μm ×20μm),马氏体板条具有平直界面,界面近似平行于奥氏体的{111}γ,即惯习面,相同惯习面的马氏体板条平行排列构成马氏体板条群。现已确定,这些稠密的马氏体板条多被连续的高度变形的残余奥氏体薄膜(约为20μm)所隔开,且板条间残余奥氏体薄膜的碳含量较高,在室温下很稳定,对钢的机械性能会产生显著影响。马氏体束与束之间以大角度相界面分开,一般为60°或120°角,马氏体束不超越原奥氏体晶界。同束中的马氏体条间以小角度晶界面分开。每束内还会有黑白色调反差,同一色调区的板条具有相同位向,称之为同向板条区。 条状马氏体的空间形态是一种截面呈椭园状的长柱体,长约几微米,宽在0.025~2.25μm 之间(多为0.10~0.20μm),其长、宽、厚之比约为30:7:1。先形成的板条较宽,后形成的则较窄。 条状马氏体形成之后,碳原子仍有一定扩散能力在位错线上偏聚,析出碳化物粒子,这种现象称为条状马氏体的自回火现象; 条状马氏体的惯习面多为{111}A,也有的是{557} A。条状马氏体与母相奥氏体的晶体学位向关系是K-S(Kurdjumov-Sachs)关系,即{110}M//{111}A,<111> M//<110> A 2.片状马氏体 片状马氏体主要形成于含碳量较高的钢中,又称为高碳马氏体;因其形成于200℃以下的低温,故又称低温马氏体;因其精细(亚)结构为大量孪晶,故又称其为孪晶马氏体。这种孪晶在靠近马氏体片的边界处消失,不会穿过马氏体边界,而边界上的亚结构则为复杂的位错网络,现已查明:马氏体片的中脊仍是密度更高的极细孪晶。 片状的马氏体的空间形态为双凸透镜状。在光学显微镜下观察的乃是截面形状,因试样磨面对每一马氏体片的切割角度不同,故有针状、竹叶状,所以又称针(竹叶)状马氏体,马氏体片之间不平行,相交成一定角度(如60°、120°)。 在原奥氏体晶粒中,首先形成的马氏体片是贯穿整个晶粒的,但一般不穿过晶界,只将奥氏体晶粒分割,以后陆续形成的马氏体由于受到限制而越来越小。所以片状马氏体的最大尺寸取决于原奥氏晶粒大小,原奥氏体晶粒越粗大,马氏体片越大,反之则越细。当最大尺寸的马氏体片小到光学显微镜无法分辨时,便称为隐晶(或称为隐针)马氏体。 片状马氏体的基本特征是在一个奥氏体晶粒内形成的第一片马氏体针较粗大,往往横贯整个奥氏体晶粒,将奥氏体晶粒加以分割,使以后形成的马氏体针大小受到限制,因此针状马氏体的大小不一,但其分布有一定规律,基本上马氏体按近似60°角分布。且在马氏体针叶中有一中脊面,含碳量愈高,愈明显,并在马氏周围有残留奥氏体伴随。由于针状马氏体

马氏体钢

谁给解释一下珠光体,马氏体,贝氏体,索氏体,莱氏体等,其形成条件及形状,以及其力学性能 莱氏体:是液态铁碳合金发生共晶转变形成的奥氏体和渗碳体所组成的共晶体,其含碳量为ωc=4.3%。当温度高于727℃时,莱氏体由奥氏体和渗碳体组成,用符号Ld表示。在低于727℃时,莱氏体是由珠光体和渗碳体组成,用符号Ld’表示。因莱氏体的基体是硬而脆的渗碳体,所以硬度高,塑性很差。 https://www.360docs.net/doc/ba15032788.html,/view/530917.html?wtp=tt (莱氏体中文名称:莱氏体英文名称:ledeburite 定义:高碳的铁基合金在凝固过程中发生共晶转变所形成的奥氏体和碳化物(或渗碳体)所组成的共晶体。 机械工程(一级学科);机械工程(2)_热处理(二级学科);机械工程(2)一般热处理名词(三级学科) 莱氏体(ledeburite)莱氏体是液态铁碳合金发生共晶转变形成的奥氏体和渗碳体所组成的共晶体,其含碳量为ωc=4.3%。当温度高于727℃时,莱氏体由奥氏体和渗碳体组成,用符号Ld表示。在低于727℃时,莱氏体是由珠光体和渗碳体组成,用符号Ld’表示,称为变态莱氏体。因莱氏体的基体是硬而脆的渗碳体,所以硬度高,塑性很差,分为高温莱氏体和低温莱氏体两种。奥氏体和渗碳体组成的机械混合物称高温莱氏体,用符号Ld或(A+Fe3C)表示。由于其中的奥氏体属高温组织,因此高温莱氏体仅存于727℃以上。高温莱氏体冷却到727℃以下时,将转变为珠光体和渗碳体机械混合物(P+Fe3C),称低温莱氏体,用Ld'表示。莱氏体含碳量为4.3%。由于莱氏体中含有的渗碳体较多,故性能与渗碳体相近,即极为硬脆。 莱氏体的命名得自Adolf Ledebur (1837-1916)。关于他,我们只知道他是Bergakademie Freiberg的第一个"Eisenhüttenkunde"教授,并因在1882年发现了铁碳"Mischkristalle" 而闻名。) 珠光体:是奥氏体(奥氏体是碳溶解在γ-Fe中的间隙固溶体)发生共析转变所形成的铁素体与渗碳体的共析体。其形态为铁素体薄层和渗碳体薄层交替重叠的层状复相物,也称片状珠光体。用符号P表示,含碳量为ωc=0.77%。在珠光体中铁素体占88%,渗碳体占

相关文档
最新文档