布拉格反射镜制作及其在光电子领域的应用

布拉格反射镜制作及其在光电子领域的应用
布拉格反射镜制作及其在光电子领域的应用

介质材料生长布拉格反射镜一般是多晶或非品形态,不需要品格匹配。介质布拉格反射镜膜层材料中展常见的是Si02和si、si3N4、Ti02等的组合17。8J。然尔。si虽然有较高的折射率,但是在长波长(>900ran)有较大的吸收,所以有时用Ti02来代替它。其它还有A120J.Mfgo,SiC,BeO。CaF2,ZnSeandMgF2等介质材料i9.…。

3.布拉格反射镜的应用

3.1VCSEL

布拉格反射镜首先被应用在VCSEL上.VCSEL有上布拉格反射镜、下布拉格反射镜和有源区三部分组成,与一般的边发射半导体激光器相比,具有成本低,光束质量好,易于耦合等优点,在光通讯和光互联方面被认为有很光明的前景.近年来出现了波长可调谐VCSEL,有希望取代现在光通讯上占据主要地位的分布反馈布拉格光栅(DFB)激光器.利用CmAs/AIzGalos布拉格反射镜可以实现600rim--1000m的VCSEL,采用lnGaNAs材料作有源区也可以实现1300iral的VCSEL。采用InP/InGaAsP布拉格反射镜可以实现1300nm--1600ILrfl波长的VCSEL,但是,InP与InGaAsP折射率差小,生长布拉格反射镜需要几十甚至上百对,工艺要求很高。于是产生了用kP/空气制作的布拉格反射镜。图四为InP/空气作为上布拉格反射镜的可调谐光泵VCSEL.

3.2VECSEL

VECSEL[”J是上世纪90年代末才出现的一种新型光电子器件,是一种特殊的VCSEL。与一般的VCSEL不同的是,它没有上布拉格反射镜,依靠下布拉格反射镜和外腔镜实现激光振荡。VECSEL采用成熟的大功率半导体激光器泵浦,它的输出功率可以达到瓦级,而一般电泵的VCSEL输出功率仅为毫瓦量级.VECSEL更大的优点在于,它可以在外腔中加入非线性元件,实现频率变换;加入半导体可饱和吸收镜(SESAM)以实现脉冲宽度为皮秒、重复率为GHz以上的锁模脉冲。图5为用于实现镁模脉冲输出的VECSEL,它的增益结构中含有布拉格反射镜。

高反,ROC-18nan

图4InP/空气为上布拉格反射镜图5VECSEL用SESAM被动锁模光路的可调谐光泵VCSEL

3.3SESAM

半导体可饱和吸收镜131(SESAM)是上世纪90年代初出现的一种用于固体激光器被动锁模的半导体可饱和吸收体。现在它已经用在光纤激光器、VECSEL等多种激光器上,即可以被动锬模,也可以被动调Q,既可以通过直接作为被动锁模可饱和吸收体获得皮秒量级的超短脉冲,又可以作为飞秒量级的孤子锁模和克尔镜镇模等的自启动装置.解决前者锁模中出现的锁模不稳定的现象。SESAM的发明和不断改进是上世纪90年代以来超短脉冲领域最具影响的进步,它将对有吏大意义的超快激光应用领域起重大作用。图6是用SESAM实现Nd:YAG激光器被动锁摸获得皮秒级激光脉冲的常见折叠腔光路装置,图7是以半导体材料AIAs/GaAs多层膜为反射镜的1060nmSESAM结构生长图..

464

布拉格反射镜制作及其在光电子领域的应用

作者:王勇刚, 马骁宇, 张志刚, 宋宴蓉

作者单位:王勇刚(中国科学院半导体研究所,北京,100083;天津大学精密仪器与光电子工程学院超快激光实验室,天津,300072;北京工业大学数理学院,北京,100022), 马骁宇(中国科学院半导体

研究所,北京,100083), 张志刚(天津大学精密仪器与光电子工程学院超快激光实验室,天津

,300072), 宋宴蓉(北京工业大学数理学院,北京,100022)

本文读者也读过(3条)

1.张健25厘米反射镜制作小记[期刊论文]-飞碟探索2001(2)

2.姬小利.江若琏.李亮.谢自力.周建军.刘斌.韩平.张荣.郑有炓.龚海梅.JI Xiao-li.JIANG Ruo-lian.LI Liang. XIE Zi-li.ZHOU Jian-jun.LIU Bin.HAN Ping.ZHANG Rong.ZHENG You-dou.GONG Hai-mei AlGaN/GaN分布布拉格反射镜的设计与表征[期刊论文]-激光与红外2005,35(11)

3.张舸.赵文兴.ZHANG Ge.ZHAO Wen-xing轻型反射镜镜体结构参数的分析[期刊论文]-光学精密工程2006,14(1)本文链接:https://www.360docs.net/doc/bb3044431.html,/Conference_6215665.aspx

光电子技术的应用和发展前景

光电子技术的应用和发展前景 姓名:曾倬 学号:14021050128 专业:电子信息科学与技术 指导老师:黄晓莉

摘要:光电子技术确切称为信息光电子技术,本文论述了一些新型光电子器件及其发展方向 20世纪60年代激光问世以来,最初应用于激光测距等少数应用,光电子技术是继微电子技术之后近30年来迅猛发展的综合性高新技术。1962年半导体激光器的诞生是近代科学技术史上一个重大事件。经历十多年的初期探索,到70年代,由于有了室温下连续工作的半导体激光器和传输 损耗很低的光纤,光电子技术才迅速发展起来。现在全世界敷设的通信光纤总长超过1000万公里,主要用于建设宽带综合业务数字通信网。以光盘为代表的信息存储和激光打印机、复印机和发光二极管大屏幕现实为代表的信息显示技术称为市场最大的电子 产品。人们对光电神经网络计算机技术抱有很大希望,希望获得功耗的、响应带宽很大,噪音低的光电子技术。

目录 (一)光电子与光电子产业概况 (二)光电子的地位与作用 (三)二十一世纪信息光电子产业将成为支柱产业 (四)国际光电子领域的发展趋势 (五)光电子的应用

(一),光电子及光电子产业概况 光电子技术是一个比较庞大的体系,它包括信息传输,如光纤通信、空间和海底光通信等;信息处理,如计算机光互连、光计算、光交换等;信息获取,如光学传感和遥感、光纤传感等;信息存储,如光盘、全息存储技术等;信息显示,如大屏幕平板显示、激光打印和印刷等。其中信息光电子技术是光电子学领域中最为活跃的分支。在信息技术发展过程中,电子作为信息的载体作出了巨大的贡献。但它也在速率、容量和空间相容性等方面受到严峻的挑战。 采用光子作为信息的载体,其响应速度可达到飞秒量级、比电子快三个数量级以上,加之光子的高度并行处理能力,不存在电磁串扰和路径延迟等缺点,使其具有超出电子的信息容量与处理速度的潜力。充分地综合利用电子和光子两大微观信息载体各自的优点,必将大大改善电子通信设备、电子计算机和电子仪器的性能。 今天,光电子已不再局限传统意义上的用于光发射、光调制、光传输、光传感等的电子学的一

光电子器件与技术

《光电子器件与技术》课程教学大纲 Photoelectron Apparatus and Techniques 课程代码:26105420 课程性质:专业方向理论课(选修) 适用专业:电子信息科学与技术 开课学期:6 总学时数:32 总学分数:2.0 修订年月:2006年6月 执 笔:张学习 一、课程的性质和目的 本课程为电子信息科学与技术专业的专业方向选修课,是以应用为主的工程技术基础类课程。其任务是掌握光电子器件的基本原理以及一些典型的光电子器件的工作方式,使学生系统地掌握光电子器件与技术的基本原理和基础知识,培养学生使用和分析光电子器件的能力。 二、课程教学内容及学时分配 (一)光控器件的基础 1、光电器件的物理基础; 2、激光信号调制的理论基础; 3、波导器件的理论基础和波导器件传光的基本理论。 (二)电、磁光控器件 1、空间光调制器; 2、电光调制器; 3、磁光调制器和调制器件。 (三)典型的声光控制器件 1、声光器件的控制作用; 2、声光控制器件的类型与参数; 3、声光器件的应用。 (四)无源光波导控制器件 1、波导开关器件; 2、几何光学波导器件; 3、无源光波导调制器。 (五)半导体激光器件 1、半导体激光器的特性与分类; 2、典型的半导体激光器和半导体激光器目前的发展方向与途径。 (六) 固体激光器 1、固体激光器的基本结构、关键技术; 2、新型固体激光器的应用。 本章知识点为:固体激光器的基本结构,DPSSL的特性与关键技术。 (七) 高能激光器 1、高能激光器的特性; 2、高能化学激光器和自由电子激光器。 (八) 高速光电探测器件 1、光电二极管、分离探测器的应用; 2、多元探测器及其应用和发展。 (九) 电荷耦合固体成像器件 1、CCD电荷耦合器件的工作基本原理; 2、CCD器件的特性与应用。 总学时:32,其中:理论学时32。具体分配参见下表: 序号 课 程 内 容 理论学时

最新《光电子材料与器件》复习提纲

《光电子材料与器件》复习提纲 Sciprince 一、1、激光的原理、特点、本质P4 2、受激辐射三能级、四能级系统(为什么四能级系统效率高) 3、固体激光器如何锁模P36 4、光谱线的宽度线性函数P5 5、均匀加宽(碰撞加宽、自然加宽)线性函数P5 6、增益饱和的物质实质 二、1、红宝石激光器P18 2、Nd3+:YAG激光器P18 3、自由电子激光器P22 三、1、横模选择技术P40 2、纵模选择技术P43 3、稳频技术P46 4、兰姆凹陷稳频P48 5、Q调制原理P25 6、锁模的基本原理P33 四、1、电光调制概念P53 2、怎么调制(怎么调,计算栅极调制和正负调制) 3、光电振幅调制原理P53 4、电光效应P55 五、1、声光衍射现象P63 2、耦合波理论和耦合波方程P64 3、磁光调制P68 4、Ramman-Nath衍射图P63 5、Bragg衍射图P64 六、1、光纤衰减P75 2、光纤弧子P76 七、1、光伏探测器 2、光电池P85 八、1、光电子学研究对象F1 2、 3、爱因斯坦受激辐射理论P2 4、几种激光器工作物质和原理P15 5、声光调制概念P65 5、两种调制的区别 6、光纤衰减有哪些(09诺贝尔)P75 7、光电转换器概念P84 8、哪几种物理效应P83 9、CCD工作原理,反型层,转移,P型n型,外加电压正负,栅极电压P88

附件: 由光学和电子学结合形成的技术学科。电磁波范围包括X射线、紫外光、可见光和红外线。光电子学涉及将这些辐射的光图像、信号或能量转换成电信号或电能,并进行处理或传送;有时则将电信号再转换成光信号或光图像。 以光波代替无线电波作为信息载体,实现光发射、控制、测量和显示等。通常有关无线电频率的几乎所有的传统电子学概念、理论和技术,如放大、振荡、倍频、分频、调制、信息处理、通信、雷达、计算机等,原则上都可延伸到光波段。在激光领域中,激光器提供光频的相干电磁振荡源,光电子学是指光频电子学。光电子学有时也狭义地指光-电转换器件及其应用的领域。光电子学还包括光电子能谱学,它利用光电子发射带出的信息研究固体内部和表面的成分和电子结构。光电子学及其系统的发展,依赖于光-电和电-光转换、光学传输、加工处理和存储等技术的发展,其关键是光电子器件。光电子器件主要有作为信息载体的光源(半导体发光二极管、半导体激光器等)、辐射探测器(各种光-电和光-光转换器)、控制与处理用的元器件(各种反射镜、透镜、棱镜、光束分离器,滤光片、光栅、偏振片、斩光器、电光晶体和液晶等)、光学纤维(一维信息传输光纤波导、二维图像传输光纤束、光能传输光纤束、光纤传感器等)以及各种显示显像器件(低压荧光管、电子束管、白炽灯泡、发光二极管、场致发光屏、等离子体和液晶显示器件等)。将各类元器件按各种可能方式组合起来可构成各种具有重大应用价值的光电子学系统,如光通信系统、电视系统、微光夜视系统等。 由光学和电子学相结合而形成的新技术学科。电磁波范围包括 X射线、紫外线、可见光和红外线。它涉及将这些辐射的光图像、信号或能量转换成电信号或电能,并进行处理或传送;有时则将电信号再转换成光信号或光图像。它以光波代替无线电波作为信息载体,实现光发射、控制、测量和显示等。通常有关无线电频率的几乎所有的传统电子学概念、理论和技术,如放大、振荡、倍频、分频、调制、信息处理、通信、雷达、计算机等,原则上都可以延伸到光波段。在激光领域中,激光器提供光频的相干电磁振荡源,光电子学是指光频电子学。光电子学有时也狭义地专指光- 电转换器件及其应用的领域。光电子学还包括光电子能谱学。它是利用光电子发射带出的信息来研究固体内部和表面的成分和电子结构,如X射线光电子能谱学和紫外光电子能谱学。 光电子学的应用非常广泛。已制成和正在研制的光电子器件品种繁多。从能源角度来看,可将光能转换成电能,或将电能转换成光能。前者有晶态和非晶态太阳能电池,小者可用于电子表和电子计算器,大者可制成太阳能电站;后者有以电驱动的发光光源,如放电灯、霓虹灯、荧光灯、场致或阴极射线发光屏、发光二极管等。从信息角度来看,可利用光发射、放大、调制、加工处理、存储、测量、显示等技术和元件,构成具有特定功能的光电子学系统。例如,利用光纤通信可以实现迅速和大容量信息传送的目的。它使原来类似的技术水平得到大幅度的提高。 人所接受的信息,大约80%是由光通过眼睛输入的。然而,人眼的局限性大大地限制了人类获得光信息的能力,因而需要扩展人眼的功能。第一,要扩展人眼在低照度下的视觉能力,提供各种夜视装备以便能在低照度下进行科研和生产活动,或在夜间进行侦察和战斗。第二,要扩展人眼对电磁波波段的敏感范围。已制成将红外线、紫外线和 X射线的光图像转换成可见光图像的直视式或电视式光电子学装置。利用这些原理还可以扩展到观察中子和其他带电粒子所形成的图像。第三,要扩展人眼对光学过程的时间分辨本领,例如已经做到在几十飞秒(10-15秒)内就可观察到信息的变化。

光电材料与器件实验指导书

《光电材料与器件》实验指导书 何宁编 桂林电子科技大学信息与通信学院 2008年12月

实验一光电池及LED光源特性测试 一.实验目的 1 理解光电池的光电转换机理及主要特性参数。 2 理解LED光源的电光转换机理、驱动方式及主要特性参数。 3 掌握两种器件的应用及参数的测试方法。 二.实验内容 1 测量光电池的开路电压、短路电流和伏安特性。 2 测量LED光源的驱动特性及电光转换效率。 三.实验原理 光电池是由一个面积较大的PN结构成,它是一种直接将光能转换成电能的光电器件,这种器件是利用光生伏特效应,当光线照射到P-N结上时,就会在P-N结两端出现电动势(P区为正;N区为负),若负载接入PN结两端,光电池就有功率输出。光电池对不同的波长的光反映的灵敏度是不同的,按制作材料不同可分为硅光电池和硒光电池,光谱特性如图1所示。 图1 光谱特性图2 光电特性 图1中硅光电池的光谱响应范围是波长4000?——12000?,在波长为8000?时达到峰值,而硒光电池的峰值出现在5000 ?左右,波长的范围是3800——7500?,1埃=0.1nm。 图2中硅光电池的开路电压与光照是一种非线性关系,当光照强度在200勒克斯时就趋向饱和。而短路电流在很大的范围内与光照成线型关系,因此使用光电池作为测量元件使用时,应该把它当成电流源的形式来研究,因为短路电流与光强是线性的,处理起来比较方便,而不要当成电压源使用。需要说明的是这里说的短路电流与开路电压与平时意义上不同,它是指外负载电阻相对与内阻非常小时候的电流值,以及外负载很大时的端电压。实验时外负载电阻<15Ω时,就认为是短路电流,而>5.0K时,就认为是开路电压。经实验证明外负载越小线性度越好。 不同颜色的光有不同的波长,因此光电池的光照频率也不同,光电池的频率特性是指输出电流随调制光的频率变化的关系,图3分别表示硅光电池与硒光电池的频率响应曲线,可见硅光电池有较好的频率特性,而硒光电池则较差。太阳能辐射能量主要集中在1.3-32um的波长范围,表面温度近6000K的太阳能辐射出的能量95%以上的部分分布在波长小于2um的光谱范围。而对于温度为几百K的物体其辐

胆甾相液晶可见光布拉格反射实验

胆甾相液晶可见光布拉格反射实验 阮 亮 丁慎训 杨秀珍 (清华大学现代应用物理系,北京 100084) 摘 要 胆甾相液晶可见光反射行为,在某种意义上与晶体粉末样品X光衍射相似,本文主要提供一个巧妙而又直观的布拉格反射实验方法,并测量胆甾相结构周期——螺距与温度的关系,进而揭示胆甾相液晶热色效应的机理. 关键词 胆甾相液晶;布拉格反射 分类号 O 734.2 研究布拉格反射规律通常是使用X射线或微波,本文则提供了一个更直观的实验来达到这一目的.实验用胆甾相的多畴螺旋结构代替晶体粉末样品,由胆甾相螺旋结构的周期——半螺距P/2代替晶体的晶格常数a,用可见光来代替X射线或微波,既可用肉眼观察,又可用实验装置定量的测量. 为了进一步阐明实验原理,有必要对物质中介态——液晶态作一简单介绍.某些具有各向异性的分子(如棒状、板状、盘状)组成的有机化合物可以为液晶,它是一个介于固相和液相之间的中介相,加热过程中液晶有一个固相到液晶相转变的温度T m(熔点),继而有一个液晶相到各向同性液相的转变温度T c(清亮点——由混浊的液晶相变为清彻透明的液相而得名),因此,仅在T m~T c温度范围内为液晶相.它具有晶体的各向异性,又具有液体的流动性,此类液晶属热致液

晶,其结构可分为三大类:近晶型、向列型、胆甾型,分别如图1的(a)、(b)、(c).向列相中长棒状分子的位置是无序的, 图1 液晶的分子排列 但分子取向是有序的,沿某一从优方向取向,此从优方向用一单位矢量n(称为指向矢)来描述,液晶相中n和-n是不可区别的.胆甾相可以认为是螺旋向列相,指向矢n在空间不是恒定的,沿螺旋轴(光轴)螺旋状旋转.胆甾相结构沿光轴呈周期变化,由于n和-n的等价性,所以其重复周期为半螺距P/2.由于其结构的特征,胆甾相光学性质是独特的,指向矢n旋转上千圈/mm;又由于半螺距的典型值约为 3 000,它远大于分子的线度,与可见光波长相当,所以这种周期结构可以产生可见光的布拉格反射.当然,胆甾相螺距由材料本身的组分确定,并随外界温度(电场、磁场等因素)而变化,产生色彩鲜明的布拉格反射谱,形成有趣而实用的胆甾相热色(温度)效应(电光、磁光效应),较固定晶格常数的晶体具有更丰富、更奇妙的性质.

常用光电子器件介绍

主要光电子器件介绍 【内容摘要】 光自身固有的优点注定了它在人类历史上充当不可忽略的角色,本文从几种常见的光电子器件的介绍来展示光纤通信技术的发展。 【关键词】 光纤通信光电子器件 【正文】 光自身固有的优点注定了它在人类历史上充当不可忽略的角色,随着人类技术的发展,其应用越来越广泛,优点也越来越突出。 将优点突出的光纤通信真正应用到人类生活中去,和很多技术一样,都需要一个发展的过程。从宏观上来看,光纤通信主要包括光纤光缆、光电子器件及光通信系统设备等三个部分,本文主要介绍几种常见的光电子器件。 1、光有源器件 1)光检测器 常见的光检测器包括:PN光电二极管、PIN光电二极管和雪崩光电二极管(APD)。目前的光检测器基本能满足了光纤传输的要求,在实际的光接收机中,光纤传来的信号及其微弱,有时只有1mW左右。为了得到较大的信号电流,人们希望灵敏度尽可能的高。 光电检测器工作时,电信号完全不延迟是不可能的,但是必须限制在一个范围之内,否则光电检测器将不能工作。随着光纤通信系统的传输速率不断提高,超高速的传输对光电检测器的响应速度的要求越来越高,对其制造技术提出了更高的要求。 由于光电检测器是在极其微弱的信号条件下工作的,而且它又处于光接收机的最前端,如果在光电变换过程中引入的噪声过大,则会使信噪比降低,影响重现原来的信号。因此,光电检测器的噪声要求很小。 另外,要求检测器的主要性能尽可能不受或者少受外界温度变化和环境变化的影响。 2)光放大器 光放大器的出现使得我们可以省去传统的长途光纤传输系统中不可缺少的光-电-光的转换过程,使得电路变得比较简单,可靠性也变高。 早在1960年激光器发明不久,人们就开始了对光放大器的研究,但是真正开始实用化的研究是在1980年以后。随着半导体激光器特性的改善,首先出现了法布里-泊罗型半导体激光放大器,接着开始了对行波式半导体激光放大器的研究。另一方面,随着光纤技术的发展,出现了光纤拉曼放大器。80年代后期,掺稀土元素的光纤放大器脱颖而出,并很快达到实用水平,应用于越洋的长途光通信系统中。 目前能用于光纤通信的光放大器主要是半导体激光放大器和掺稀土金属光纤放大器,特别是掺饵光纤放大器(EDFA)倍受青睐。1985年英国南安普顿大学首次研制成掺饵光纤,1989年以后掺饵光纤放大器的研究工作不断取得重大

石墨烯在光电子器件中的应用

石墨烯在光电子器件中的应用 摘要:石墨烯是目前发现的唯一存在的二维自由态原子晶体,有着优异的机械性能、超高的热导率和载流子迁移率、超宽带的光学响应谱,以及极强的非线性光学特性。且因其卓越的光学与电学性能及其与硅基半导体工艺的兼容性,石墨烯受到了各领域学科的高度关注。本文重点综述了石墨烯在超快脉冲激光器、光调制器、光探测器、表面等离子体等光电子器件领域的应用研究进展,并对其未来发展趋势进行了进一步的分析。 关键字:石墨烯;光调制器;光探测器;超快脉冲激光器;表面等离子体; 1、前言 石墨烯是由单层碳原子紧密堆积成二维蜂窝状晶格结构的一种碳质新材料,具有独特的零带隙能带结构,是一种半金属薄膜材料。石墨烯不仅有特殊的二维平面结构,还有着优良的力学、热学、电学、光学性质。其机械强度很大,断裂强度比优质的钢材还要高,同时又具备良好的弹性、高效的导热性以及超强的导电性。石墨烯又是一种禁带宽度几乎为零的特殊材料,其电子迁移速率达到了1/300光速。由于石墨烯几乎是透明的,因此光的透过率可高97.7%。此外,石墨烯的加工制备可与现有的半导体CMOS(Complementary metal-oxide-semiconductor transistor)工艺兼容,器件的构筑、加工、集成简单易行,在新型光电器件的应用方面具有得天独厚的优势。 目前,人们已利用石墨烯开发出一系列新型光电器件,并显示出优异的性能和良好的应用前景。 2、石墨烯的基本性质 石墨烯具有独特的二维结构,并且能分解为零维富勒烯,也可以卷曲成一维碳纳米管,或堆积成为三维石墨。石墨烯力学性质高度稳定,碳原子连接比较柔韧,当施加外力时,碳原子面就会发生弯曲形变。 在理想的自由状态下,单层石墨烯并非完美的平面结构,表面不完全平整,在薄膜边缘处出现明显的波纹状褶皱,而在薄膜内部褶皱并不显,多层石墨烯边缘处的起伏幅度要比单层石墨烯稍小。这也说明了石墨烯在受到拉伸、弯曲等外力作用时仍能保持高效的力学稳定性。 在一定能量范围内,石墨烯中的电子能量与动量呈线性关系,所以电子可视为无质量的相对论粒子即狄拉克费米子。通过化学掺杂或电学调控的手段,可以有效地调节石墨烯的化学势,使得石墨烯的光学透过性由“介质态”向“金属态”转变。 石墨烯的功函数与铝的功函数相近,约为4.3eV,因此在有机光电器件中有望取代铝来做透明电极。近年来所观测到的显著的量子霍尔效应和分数量子霍尔效应,证实了石墨烯是未来纳米光电器件领域极有前景的材料。 3、基于石墨烯的光调制器 3.1 直波导结构石墨烯光调制器 光学调制是改变光的一个或多个特征参数,并通过外界各种能量形式实现编码光学信号的过程。对光学调制器件的评价有调制带宽、调制深度、插入损耗、比特能耗以及器件尺寸等性能指标。大多数情况下,光在

光电子材料与器件课后习题答案

3.在未加偏置电压的条件下,由于截流子的扩散运动,p 区和n 区之间的pn 结附近会形成没有电子和空穴分布的耗尽区。在pn 结附近,由于没有电子和空穴,无法通过电子-空穴对的复合产生光辐射。加上正向偏置电压,驱动电流通过器件时,p 区空穴向n 区扩散,在pn 结附近形成电子和空穴同时存在的区域。电子和空穴在该区通过辐射复合,并辐射能量约为Eg 的光子,复合掉的电子和空穴由外电路产生的电流补充。 5要满足以下条件a 满足粒子数反转条件,即半导体材料的导带与价带的准费米能级之差不小于禁带宽度即B.满足阈值条件,半导体由于粒子数产生的增益需要能够补偿工作物质的吸收、散射造成的损耗,以及谐振腔两个反射面上的透射、衍射等原因产生的损耗。即 第二章课后习题 1、工作物质、谐振腔、泵浦源 2、粒子数反转分布 5a.激光介质选择b.泵浦方式选择c 、冷却方式选择d 、腔结构的选择e 、模式的选择f 、整体结构的选择 第三章课后习题 10.要求:对正向入射光的插入损耗值越小越好,对反向反射光的隔离度值越大越好。原理:这种光隔离器是由起偏器与检偏器以及旋转在它们之间的法拉第旋转器组成。起偏器将输入光起偏在一定方向,当偏振光通过法拉第旋转器后其偏振方向将被旋转45度。检偏器偏振方向正好与起偏器成45度,因而由法拉第旋转器出射的光很容易通过它。当反射光回到隔离器时,首先经过起偏器的光是偏振方向与之一至的部分,随后这些这些光的偏振方向又被法拉第旋转器旋转45度,而且与入射光偏振方向的旋转在同一方向上,因而经过法拉第旋转器后的光其偏振方向与起偏器成90度,这样,反射光就被起偏器所隔离,而不能返回到入射光一端。 15.优点:A 、采用光纤耦合方向,其耦合效率高;纤芯走私小,使其易于达到高功率密度,这使得激光器具有低的阈值和高的转换效率。B 、可采用单模工作方式,输出光束质量高、线宽窄。C 、可具有高的比表面,因而散热好,只需简单风冷即可连续工作。D 、具有较多的可调参数,从而可获得宽的调谐范围和多种波长的选择。E 、光纤柔性好,从而使光辉器使用方便、灵巧。 由作为光增益介质的掺杂光纤、光学谐振腔、抽运光源及将抽运光耦合输入的光纤耦合器等组成。 原理:当泵浦激光束通过光纤中的稀土离子时,稀土离子吸收泵浦光,使稀土原子的电子激励到较高激发态能级,从而实现粒子数反转。反转后的粒子以辐射跃迁形式从高能级转移到基态。 g v c E F F 211ln 21R R L g g i th

《光电子技术》狄红卫版..

光电子技术又是一个非常宽泛的概念,它围绕着光信号的产生、传输、处理和接收,涵盖了新材料(新型发光感光材料,非线性光学材料,衬底材料、传输材料和人工材料的微结构等)、微加工和微机电、器件和系统集成等一系列从基础到应用的各个领域。光电子技术科学是光电信息产业的支柱与基础,涉及光电子学、光学、电子学、计算机技术等前沿学科理论,是多学科相互渗透、相互交叉而形成的高新技术学科。 光子学也可称光电子学,它是研究以光子作为信息载体和能量载体的科学,主要研究光子是如何产生及其运动和转化的规律。所谓光子技术,主要是研究光子的产生、传输、控制和探测的科学技术。现在光子学和光子技术在信息、能源、材料、航空航天、生命科学和环境科学技术中的广泛应用,必将促进光子产业的迅猛发展。光电子学是指光波波段,即红外线、可见光、紫外线和软X射线(频率范围3×1011Hz~3×1016Hz或波长范围1mm~10nm)波段的电子学。光电子技术在经过80年代与其相关技术相互交叉渗透之后,90年代,其技术和应用取得了飞速发展,在社会信息化中起着越来越重要的作用。光电子技术研究热点是在光通信领域,这对全球的信息高速公路的建设以及国家经济和科技持续发展起着举足轻重的推动作用。国内外正掀起一股光子学和光子产业的热潮。 1.1可见光的波长、频率和光子的能量范围分别是多少? 波长:380~780nm 400~760nm 频率:385T~790THz 400T~750THz 能量:1.6~3.2eV 1.2辐射度量与光度量的根本区别是什么?为什么量子流速率的计算公式中不能出现光度量? 为了定量分析光与物质相互作用所产生的光电效应,分析光电敏感器件的光电特性,以及用光电敏感器件进行光谱、光度的定量计算,常需要对光辐射给出相应的计量参数和量纲。辐射度量与光度量是光辐射的两种不同的度量方法。根本区别在于:前者是物理(或客观)的计量方法,称为辐射度量学计量方法或辐射度参数,它适用于整个电磁辐射谱区,对辐射量进行物理的计量;后者是生理(或主观)的计量方法,是以人眼所能看见的光对大脑的刺激程度来对光进行计算,称为光度参数。因为光度参数只适用于0.38~0.78um的可见光谱区域,是对光强度的主观评价,超过这个谱区,光度参数没有任何意义。而量子流是在整个电磁辐射,所以量子流速率的计算公式中不能出现光度量.光源在给定波长λ处,将λ~λ+d λ范围内发射的辐射通量dΦe,除以该波长λ的光子能量hν,就得到光源在λ处每秒发射的光子数,称为光谱量子流速率。 1.3一只白炽灯,假设各向发光均匀,悬挂在离地面1.5m的高处,用照度计测得正下方地面的照度为30lx,求出该灯的光通量。 Φ=L*4πR^2=30*4*3.14*1.5^2=848.23lx 1.4一支氦-氖激光器(波长为63 2.8nm)发出激光的功率为2mW。该激光束的平面发散角为1mrad,激光器的放电毛细管为1mm。 求出该激光束的光通量、发光强度、光亮度、光出射度。 若激光束投射在10m远的白色漫反射屏上,该漫反射屏的发射比为0.85,求该屏上的光亮度。

光电子材料与器件题库

《光电子材料与器件》题库 选择题: 1. 如下图所示的两个原子轨道沿z轴方向接近时,形成的分子轨道类型为( A ) (A) *σ(B) σ(C) π(D) *π 2. 基于分子的对称性考虑,属于下列点群的分子中不可能具有偶极矩的为(C)(A)C n(B)C n v(C)C2h(D)C s 3. 随着温度的升高,光敏电阻的光谱特性曲线的变化规律为(B)。 (A)光谱响应的峰值将向长波方向移动 (B)光谱响应的峰值将向短波方向移动 (C)光生电流减弱 (D)光生电流增强 4. 利用某一CCD来读取图像信息时,图像积分后每个CCD像元积聚的信号在同一时刻先转移到遮光的并行读出CCD中,而后再转移输出。则该CCD的类型为(B ) (A)帧转移型CCD (B)线阵CCD (C)全帧转移型CCD (D)行间转移CCD 5. 对于白光LED器件,当LED基片发射蓝光时,其对应的荧光粉的发光颜色应该为(D) (A)绿光(B)紫光(C)红光(D)黄光 6. 在制造高效率太阳能电池所采取的技术和工艺中,下列不属于光学设计的为(C) (A)在电池表面铺上减反射膜; (B)表面制绒; (C)把金属电极镀到激光形成槽内; (D)增加电池的厚度以提高吸收 7. 电子在原子能级之间跃迁需满足光谱选择定则,下列有关跃迁允许的表述中,不正确的是(B ): (A)总角量子数之差为1 (B)主量子数必须相同 (C)总自旋量子数不变

(D)内量子数之差不大于2 8. 物质吸收一定波长的光达到激发态之后,又跃迁回基态或低能态,发射出的荧光波长小于激发光波长,称为(B)。 (A)斯托克斯荧光(B)反斯托克斯荧光(C)共振荧光(D)热助线荧光9. 根据H2+分子轨道理论,决定H原子能否形成分子的主要因素为H原子轨道的(A ) (A)交换积分(B)库仑积分(C)重叠积分(D)置换积分 10. 下列轨道中,属于分子轨道的是(C) (A)非键轨道(B)s轨道(C)反键轨道(D)p 轨道 11. N2的化学性质非常稳定,其原因是由于分子中存在(D ) (A)强σ 键(B)两个π键(C)离域的π键(D)N N≡三键12. 测试得到某分子的光谱处于远红外范围,则该光谱反映的是分子的(B )能级特性。 (A)振动(B)转动(C)电子运动(D)电声子耦合 13.下列的对称元素中,所对应的对称操作属于虚动作的是(C ) (A)C3 (B)E(C)σh(D)C6 14. 某晶体的特征对称元素为两个相互垂直的镜面,则其所处的晶系为(C)(A)四方晶系(B)立方晶系(C)正交晶系(D)单斜晶系 15. 砷化镓是III-V族化合物半导体,它的晶体结构是(D)。 (A)NaCl 结构(B)纤锌矿结构(C)钙钛矿结构(D)闪锌矿结构16. 原子轨道经杂化形成分子轨道时,会发生等性杂化或非等性杂化。下列物质中化学键属于不等性杂化的是(B)。 (A)CH4(B)H2O (C)石墨烯(D)金刚石 17. 关于金属的特性,特鲁德模型不能成功解释的是(A ) (A)比热(B)欧姆定律(C)电子的弛豫时间(D)电子的平均自由程18. 下列有关半导体与绝缘体在能带上的说法中,正确的是(B )。 (A)在绝缘体中,电子填满了所有的能带 (B)在0 K下,半导体中能带的填充情况与绝缘体是相同的 (C)半导体中禁带宽度比较大 (D)绝缘体的禁带宽度比较小 19. 在非本征半导体中,载流子(电子和空穴)的激发方式为(B)? (A)电(B)热(C)磁(D)掺杂 20.在P型半导体材料中,杂质能级被称之为(C)。 (A)施主能级(B)深陷阱能级(C)受主能级(D)浅陷阱能级

光电子与微电子器件及集成重点专项2019年度项目申报指南

附件4 “光电子与微电子器件及集成”重点专项 2019年度项目申报指南 为落实《国家中长期科学和技术发展规划纲要(2006—2020年)》《2006—2020年国家信息化发展战略》提出的任务,国家重点研发计划启动实施“光电子与微电子器件及集成”重点专项(以下简称“本重点专项”)。根据本重点专项实施方案的部署,现提出2019年度项目申报指南。 本重点专项的总体目标是:发展信息传输、处理与感知的光电子与微电子集成芯片、器件与模块技术,构建全链条光电子与微电子器件研发体系,推动信息领域中的核心芯片与器件研发取得重大突破,支撑通信网络、高性能计算、物联网等应用领域的快速发展,满足国家发展战略需求。 本重点专项按照硅基光子集成技术、混合光子集成技术、微波光子集成技术、集成电路与系统芯片、集成电路设计方法学和器件工艺技术6个创新链(技术方向),共部署49个重点研究任务。专项实施周期为5年(2018—2022年)。 2019年度项目申报指南在核心光电子芯片、光电子芯片共性支撑技术、集成电路与系统芯片、集成电路设计方法学和器件工 —1—

艺技术5个技术方向启动19个研究任务,拟安排国拨总经费概算6.75亿元。凡企业牵头的项目须自筹配套经费,配套经费总额与专项经费总额比例不低于1:1。 各研究任务要求以项目为单元整体组织申报,项目须覆盖所申报指南方向二级标题(例如:1.1)下的所有研究内容并实现对应的研究目标。除特殊说明外,拟支持项目数均为1~2项。指南任务方向“1.核心光电子芯片”和“2.光电子芯片共性支撑技术”所属任务的项目实施周期不超过3年;指南任务方向“3.集成电路与系统芯片”、“4.集成电路设计方法学”和“5.器件与工艺技术”所属任务的项目实施周期为4年。基础研究类项目,下设课题数不超过4个,参研单位总数不超过6个;共性关键技术类和应用示范类项目,下设课题数不超过5个,参与单位总数不超过10个。项目设1名项目负责人,项目中每个课题设1名课题负责人。 指南中“拟支持项目数为1~2项”是指:在同一研究方向下,当出现申报项目评审结果前两位评分评价相近、技术路线明显不同的情况时,可同时支持这2个项目。2个项目将采取分两个阶段支持的方式。建立动态调整机制,第一阶段完成后将对2个项目执行情况进行评估,根据评估结果确定后续支持方式。 1.核心光电子芯片 1.1多层交叉结构的光子集成芯片(基础研究类) 研究内容:聚焦基于硅基多维度交叉结构的光子集成芯片,—2—

光电子技术题库

选择题 1.光通量的单位是( B ). A.坎德拉 B.流明 C.熙提 D.勒克斯 2. 辐射通量φe的单位是( B ) A 焦耳 (J) B 瓦特 (W) C每球面度 (W/Sr) D坎德拉(cd) 3.发光强度的单位是( A ). A.坎德拉 B.流明 C.熙提 D.勒克斯 4.光照度的单位是( D ). A.坎德拉 B.流明 C.熙提 D.勒克斯 5.激光器的构成一般由( A )组成 A.激励能源、谐振腔和工作物质 B.固体激光器、液体激光器和气体激光器 C.半导体材料、金属半导体材料和PN结材料 D. 电子、载流子和光子 6. 硅光二极管在适当偏置时,其光电流与入射辐射通量有良好的线性关系,且 动态范围较大。适当偏置是(D) A 恒流 B 自偏置 C 零伏偏置 D 反向偏置 7.2009年10月6日授予华人高锟诺贝尔物理学奖,提到光纤以SiO2为材料的主要是由于( A ) A.传输损耗低 B.可实现任何光传输 C.不出现瑞利散射 D.空间相干性好

8.下列哪个不属于激光调制器的是( D ) A.电光调制器 B.声光调制器 C.磁光调制器 D.压光调制器 9.电光晶体的非线性电光效应主要与( C )有关 A.内加电场 B.激光波长 C.晶体性质 D.晶体折射率变化量 10.激光调制按其调制的性质有( C ) A.连续调制 B.脉冲调制 C.相位调制 D.光伏调制 11.不属于光电探测器的是( D ) A.光电导探测器 B.光伏探测器 C.光磁电探测器 D.热电探测元件 https://www.360docs.net/doc/bb3044431.html,D 摄像器件的信息是靠( B )存储 A.载流子 B.电荷 C.电子 D.声子 13.LCD显示器,可以分为( ABCD ) A. TN型 B. STN型 C. TFT型 D. DSTN型 14.掺杂型探测器是由( D )之间的电子-空穴对符合产生的,激励过程是使半导体中的载流子从平衡状态激发到非平衡状态的激发态。 A.禁带 B.分子 C.粒子 D.能带

异质结在光电子器件中的应用

异质结在光电子器件中的应用 在实际的光电子器件中,往往包含一个或多个异质结。这是因为异质结是由具有不同的电学性质和光学性质的半导体组成的,还可以通过适当的晶体生长技术控制异质结势垒的性状,因此异质结在扩大光电子器件的使用范围,提高光电子器件性能,控制某些特殊用途的器件等方面起到了突出的作用。在光纤通信、光信息处理等方面的具体应用如下: 1异质结光电二极管 光电二极管是利用光生伏打效应工作的器件,工作时要加上反向偏压,光照使结的空间电荷区和扩散区内产生大量的非平和载流子,这些非平衡载流子被内建电场和反向偏压电场漂移,就会形成很大的光电流。其工作特性曲线如下图所示: 图2.1 光电二极管的工作特性曲线 光电二极管往往作为光电探测器使用,此时希望它有宽的光谱响应范围和高的光电转化率。在包含有异质结的光电二极管中,宽带隙半导体成为窄带隙半导体的入射窗口,利用此窗口效应,可以使光电二极管的光谱响应范围加宽。图2.2(a)画的是由宽带隙E g1和窄带隙E g2两种半导体组成的异质结,在入射光子能量满足E g1>hv> E g2的条件下,入射光就能透过半导体1而被半导体2吸收。显然,透过谱与吸收谱的曲线重叠部分是该光电探测器的工作波段范围。图2.2(b)是同质结光电探测器响应的情况,

显然同质结的工作波段范围是很窄的。 光子能量/ev 12 E =E 入射光光子能量/ev 12E >E 入射光 (a )(b ) 图2.2 异质结光带二极管和同质结光电二极管的光谱特性 2异质结光电晶体管 图2.3分别是InP/InGaAs 异质结光电晶体管的典型结构图和能带图。发射区由宽禁带的n 型InP 材料做成,基区和收集区由窄禁带的InGaAs 材料做成。光电晶体管工作时一般采用基区浮置的方式,以减少引线分布电容。在集电极和发射极之间加电压,使发射极对基区正向偏置,而集电极对基区反向偏置。入射光子流照在宽带发射区上,当光的波长合适时发射区基本是透明的,光在窄带区中靠近宽带一侧被吸收而产生电子-空穴对。电子被发射结的自建电场所吸引从基区向发射区漂移,而空穴将流向基区。如果光在宽带区中也部分吸收的话,电子和空穴的流动方向也是这样的。因为基区是浮置的,电子和空穴这样的流动将促使发射极的电位更负,而基区的电位更正。这相当于发射结的p-n 正向偏置更加强。也就是说,光的吸收和光生载流子的流动等效于在光电晶体管的发射结上加了一个正向的信号。从而是发射区向基区注入更多的电子。这些电子以扩散的方式通过基区到达基区和集电区的边界,被方向偏置的集电极收集成为集电极电流,从而完成放大的目的。所以,光电晶体管不但能用于检测光信号,还能将光信号转换成的电信号放大。

《光电子材料与器件》考试重点复习

1、能带形成的原理孤立原子的电子占据一定的原子轨道,形成一系列分立的能级。如果一定数量的原子相互结合形成分子,则原子轨道发生分裂,形成的分子轨道数正比于组成分子的原子数。在包括半导体在内的固体中,大量原子紧密结合在一起,轨道数变得非常巨大,轨道能量之差变得非常小,与孤立原子中的分立能级相比,这些原子轨道可视为能量是近似连续分布的。这种能级近似连续分布的能量范围,即为能带。 2、半导体发光机理 半导体材料中的电子由高能态向低能态跃迁的同时,会以光子的形式释放多余的能量,这称为辐射跃迁,辐射跃迁的过程也就是半导体材料的发光过程。 电子由高能态向低能态跃迁的同时,产生相应能量间隔的光子。电子的跃迁,要求价带有价带电子,同时导带有相应的空穴,即在导带、价带中存在电子空穴对,通过电子空穴的复合,半导体可以发射光子。 3、光电探测原理将光辐射的作用,视为所含光子与物质内部电子的直接作用,也就是物质内部电子在光子的作用下,产生激发而使物质的电学特性发生变化。 4、pn 结形成空间耗电区的原理 形成PN结后,由于n区和p区载流子浓度的差异,n区的多数载流子电子、p 区的多数载流子空穴分别向对方区域扩散并与其多数载流子复合。这就造成PN 结n 区一侧附近电子浓度降低,留下不能移动的施主离子,产生局部的正电荷区域。PN结p区一侧的附近空穴浓度降低,留下不能移动的受主离子,产生局部的负电荷区域。由于局部正负电荷的存在,PN 结附近会产生一个由n 区指向p 区的内建电场。电场阻碍n区的电子继续向p区扩散,同时使n区的少数载流子空穴向p 区漂移,同样,电场阻碍p 区的空穴继续向n 区扩散,同时使p 区的少数载流子电子向n区漂移。随着扩散的减弱,飘移的增强,最终实现载流子的动态平衡。PN 结附近载流子被耗尽的区域称为空间电荷区,或者耗尽区。 5、直接带隙半导体和间接带隙半导体的区别 直接带隙:导带的最低位置位于价带最高位置的正上方;电子空隙复合伴随光子的发射。III-V 族元素的合金,典型的如GaAs 等。 间接带隙:导带的最低位置不位于价带最高位置的正上方;电子空隙复合需要声子的参与,声子振动导致热能,降低了发光量子效率。 6、半导体发光材料特性 砷化傢(GaAs):直接跃迁型闪锌矿结构发射的光子能量1.42eV左右,相应 波长873nm 附近,红外波段 磷化傢(GaP):间接跃迁型闪锌矿结构间接带隙宽度2.26eV,离子性为0.374, 氮化傢(GaN):直接跃迁型纤锌矿结构带隙宽度3.39eV 7、什么是发光二极管发光二极管是由数层很薄的搀杂半导体材料制成,一层带过量的电子,另一层因缺乏电子而形成带正电的“空穴” ,当有电流通过时,电子和空穴相互结合并释放出能量,从而辐射出光芒。

谈光电子器件在光纤通信中的应用

龙源期刊网 https://www.360docs.net/doc/bb3044431.html, 谈光电子器件在光纤通信中的应用 作者:邹跃 来源:《科学与信息化》2018年第17期 摘要光纤通信的快速发展推动着光电子器件的微型化和精密化,基于此,本文通过调研,更深层次地了解光电子器件在光纤通信中的具体用途和及实现机理,进一步拓展各新型光电子器件的发展和应用。 关键词光电子器件;光通信;激光器 引言 从1966年高琨博士提出光纤通信概念至今短短51年,光纤通信发展迅猛,应用广泛,已涉及生活各个领域。尤其自李克强总理在2015年政府工作报告中提到发展智慧城市,制定“互联网+”行动计划,全面推进“三网”融合,加快建设光纤网络以来,我国的光纤通信更是达到了蓬勃发展的高度。 1 光纤通信简介 光纤通信是以光波作为信息载体,以光纤作为传输媒介的一种通信方式,我们可以想象在这样一个以电-光-电转换的系统中,尤其是传输过程中面临能量损耗以及噪声干扰的影响,整个系统对光电子器件的精度、灵敏度和抗干扰能力的高要求。所以无论是从发射端、传输端还是到接收端,要很好地实现这样一个传输过程,光电子器件都将发挥举足轻重的作用。 2 光发射机 光发射机是实现电/光转换的光端机,是将电机端的电信号对光源发射的光信号进行调制,成为已调光波,然后将其再耦合到光纤中进行传输的组件。其中涉及的光电子器件主要有光源、光调制器。更高档的光发射机是采用双模块放大器的“AGC”型光发射机和“调制度恒定型光发射机”。 2.1 光源的选择 在选择与光纤耦合的光源时,应该充分地考虑到诸如光纤的尺寸、失真、衰减等各种客观因素的影响,所以我们在选择光源时应尽量满足光源峰值波长处于低损耗范围。目前有三个低损耗窗口:分别是850nm、1310nm、1550nm,基于这些要求,目前常用的光源有两类,一类是半导体激光器,另一类是发光二极管,它们适合于远距离传输,其输出功率可通过注入的电流来控制,已成为光纤通信光源的首选。由于半导体激光器的调制效率更高,适合长距离通信,目前发展比较快、应用相对广泛的有法布里-珀罗激光器、垂直腔面发射激光器、分布反馈半导体激光器等[1]。

《光电子材料与器件》-题库

《光电子材料与器件》题库

填空题 1. 金刚石与石墨烯均是由碳构成的共价化合物,但由于二者的电子杂化类型分 别为____sp3_____和___sp2_____ 杂化,因而表现出截然不同的性质。2. 离子晶体中阴阳离子的极化能力差别较大,其中_____阴离子_____易于被极 化而主极化能力较低,____阳离子_____ 主极化能力较强而被极化程度较低。 3. 光电二极管需在反向偏压下工作,其原理是增加_耗尽区禁带___的宽度,以提高光敏二极管的灵敏度。 4. 激光器的激活物质通过受激发射产生激光,就物质的形态而言,其可以是____气体_____、___固体____ 和____液体_____。 5. 在光辐照下,不均匀半导体或半导体与金属组合的不同部位之间会产生电位差,其产生的机制为____侧向光电效应_____ 、____光电磁效应______和_______势垒效应___________。 6. 某一半导体材料的禁带宽度为 2.2 电子伏特,则该本征吸收的长波极限为 _564.7_____ 纳米。 7. 原子轨道构成有效的分子轨道须满足三个条件,即___能级高低相近______、 ___轨道最大重叠______和_____对称性匹配______。 8. 高效率太阳能电池的设计必须要对顶端电极进行优化,其目的是为了使__载流子_______造成的损耗降到最低。 9. 光谱学中经常用光谱项来表示原子所处状态。当两激发态的光谱项分别写为32D5/2和3 2P3/2时,其对应的四个量子数n, L, S, J分别为__3 2 1/2 5/2______ 和___3 1 1/2 3/2_______。 10. 即便在没有外界影响的情况下,原子的吸收谱线也会发生宽化,这种谱线的宽化称为___自然加宽____,其原因是由于_____处于同一状态的原子,所具有的能量有小的差别,谱线有一定的宽度________________。 11. 分子轨道理论模型的建立假定了三个近似,它们分别是____单原子近似___、_____波思近似______和____非相对论近似___________ 12. 分子轨道中,能量高于原子轨道的是___反键_____轨道,能量等于原子轨道是__非键____轨道。 13. 同核双原子分子F2的分子轨道顺序为__a1s

布拉格衍射解读

微波实验和布拉格衍射 实验摘要 微波是种特定波段的电磁波,其波长范围大约为1mm?1m。与普通电磁波一样,微波也存在反射、折 射、干涉、衍射和偏振等现象。但因为其波长、频率和能量具有特殊的量值,微波表现出一系列即不同于普通无线电波,又不同于光波的特点。 微波的波长比普通的电磁波要短得多,加此,其发生、辐射、传播与接收器件都有自己的特殊性。它的波长又比X射线和光波长得多,如果用微波来仿真“晶格”衍射,发生明显衍射效应的“晶格”可以放大到宏观的尺度。 二、实验原理 1.了解微波的特点,学习微波器件的使用 2.了解布拉格衍射的原理,利用微波在模拟晶体上的衍射验证布拉格公式并测定微波波长 3.通过微波的单缝衍射和迈克尔逊干涉实验,加深对波动理论的解释 三、实验原理 1.晶体结构 晶体中原子按一定规律形成高度规则的空间排列,称为晶格。最简单的晶格可以是 所谓的简单立方晶格,它由沿三个方向x, y, z等距排列 的格点所组成。间距a称为晶格常数。晶格在几何上的这种对称性也可用晶面来描述。一 个格点可以沿不同方向组成晶面,晶面取向不同,则 晶面间距不同。 2.布拉格衍射 晶体对电磁波的衍射是三维的衍射,处理三维 衍射的办法是将其分解成两步走:第一步是处理一 个晶面中多个格点之间的干涉(称为点间干涉) ; 第二步是处理不同晶面间的干涉(称为面间干涉)< 研究衍射问 题最关心的是衍射强度分布的极值位置。在三维的晶格衍射 中,这个任务是这样分解的:先找到晶面上点间干涉的0级 主极大位置,再讨论 各不同晶面的0级衍射线发生干涉极大的条件。 (1)点间干涉 A1, A2…;B1,庄…发出的子波间相干叠加,这个二电磁波入射到图示晶面上,考虑由多个晶格点 维点阵衍射的0级主极强方向,应该符合沿此方向所有的衍射线间无程差。无程差的条件应该是:入 射线与衍射线所在的平面与晶面A1他……垂直,且衍射角等于 入射角;换言之,二维点阵的0级主极强方向是以晶面为镜面的反 射线方向。 (2 )面间干涉 如图示,从间距为d的相邻两个晶面反射的两束波的程差为 2dsin 0, 0为入射波与晶面的折射角,显然,只有满足下列条件的0,即2dsin 0 = k , k =1 , 2, 3…才能形成干涉极大,上式称为晶体衍射的布拉格条件。

相关文档
最新文档