八种通项公式求解方法

八种通项公式求解方法
八种通项公式求解方法

求数列通项公式的八种方法

总述:

一.利用递推关系式求数列通项的8种方法:

累加法、

累乘法、

待定系数法、

阶差法(逐差法)、

对数变换法、

倒数变换法、

换元法(目的是去递推关系式中出现的根号)、

数学归纳法、

二.等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。

三.求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等差数列或等比数列。

四.求数列通项的基本方法是:累加法和累乘法。

五.数列的本质是一个函数,其定义域是自然数集的一个函数。

一、累加法

1.适用于:----------这是广义的等差数列累加法是最基本的

二个方法之一。

2.若,

两边分别相加得

例1已知数列满足,求数列的通项公式。

解:由得则

所以数列的通项公式为。

例2已知数列满足,求数列的通项公式。

解法一:由得则

所以

解法二:两边除以,得,

则,故

因此,

评注:已知,,其中f(n)可以是关于n的一次函数、二次函数、指数函数、分式函数,求通项.

若f(n)是关于n的一次函数,累加后可转化为等差数列求和;

若f(n)是关于n的二次函数,累加后可分组求和;

若f(n)是关于n的指数函数,累加后可转化为等比数列求和;

若f(n)是关于n的分式函数,累加后可裂项求和。

例3.已知数列中,且,求数列的通项公式.

解:由已知得,

化简有,由类型(1)有,

又得,所以,又,,

二、累乘法

1.适用于:----------这是广义的等比数列累乘法是最基本的二个方法

之二。2.若

,则

两边分别相乘得,∏=+=n

k n k f a a 1

11

)(例4已知数列满足

,求数列的通项公式。

解:因为

,所以

,则

,故

所以数列的通项公式为

例5.设是首项为1的正项数列,且

=1,

2,3,…),则它的通项公式是=________.

解:已知等式可化为:

()

(n+1)

,即

时,

==.

评注:本题是关于和的二次齐次式,可以通过因式分解(一般情况时用求根公式)得到与的更为明显的关系式,从而求出.

三、待定系数法适用于

基本思路是转化为等差数列或等比数列,而数列的本质是一个函数,其定义域是自然数集的一个函数。

1.形如,其中)型

(1)若c=1时,数列{}为等差数列;

(2)若d=0时,数列{}为等比数列;

(3)若时,数列{}为线性递推数列,其通项可通过待定系数法

构造辅助数列来求.

待定系数法:设,

得,与题设比较系数得

,所以所以有:

因此数列构成以为首项,以c为公比的等比数列,

所以即:.

规律:将递推关系化为,构造成公比为c的

等比数列从而求得通项公式

逐项相减法(阶差法):有时我们从递推关系中把n换成n-1有,两式相减有从而化为公比为c的等比数列

,进而求得通项公式.,再利用类型(1)即可求得通项公式.我们看到此方法比较复杂.

例6已知数列中,,求数列的通项公式。

解法一:

又是首项为2,公比为2的等比数列

,即

解法二:

两式相减得,故数列是首项为2,公比为2的等比数列,再用累加法的……

2.形如:(其中q是常数,且n0,1)

若p=1时,即:,累加即可.

若时,即:,

求通项方法有以下三种方向:.两边同除以.目的是把所求数列构造成等差数列

即:,令,则,然后类型1,累加

求通项.

.两边同除以.目的是把所求数列构造成等差数列。

即:,

令,则可化为.然后转化为类型5来解,

.待定系数法:目的是把所求数列构造成等差数列

设.通过比较系数,求出,转化为等比数列求通项.注意:应用待定系数法时,要求p q,否则待定系数法会失效。

例7已知数列满足,求数列的通项公式。

解法一(待定系数法):设,比较系数得

则数列是首项为,公比为2的等比数列,

所以,即

解法二(两边同除以):两边同时除以得:,下面

解法略

解法三(两边同除以):两边同时除以得:,下面解法略

3.形如(其中k,b是常数,且)

方法1:逐项相减法(阶差法)

方法2:待定系数法

通过凑配可转化为;

解题基本步骤:

1、确定=kn+b

2、设等比数列,公比为p

3、列出关系式,即

4、比较系数求x,y

5、解得数列的通项公式

6、解得数列的通项公式

例8在数列中,求通项.(逐项相减法)

解:,

时,,

两式相减得.令,则

利用类型5的方法知即

再由累加法可得.亦可联立解出.

例9.在数列中,,求通项.(待定系数法)

解:原递推式可化为

比较系数可得:x=-6,y=9,上式即为

所以是一个等比数列,首项,公比为.

即:

故.

4.形如(其中a,b,c是常数,且)

基本思路是转化为等比数列,而数列的本质是一个函数,其定义域是自然数集的一个函数。

例10已知数列满足,求数列的通项公

式。

解:设

比较系数得,

所以

由,得

则,故数列为以

为首项,以2为公比的等比数列,因此

,则。

5.形如时将作为求解

分析:原递推式可化为的形式,比较系数可求得

,数列为等比数列。

例11已知数列满足,求数列的通项公

式。

解:设

比较系数得或,不妨取,(取-3结果形式可能不同,但本质相同)

则,则是首项为4,公比为3的等比数列

,所以

四、对数变换法适用于(其中p,r为常数)型p>0,

例12.设正项数列满足,(n≥2).求数列的通项公式.

解:两边取对数得:,,设

,则是以2为公比的等比数列,

,,,∴

例13已知数列满足,,求数列的通项公式。

解:因为,所以。

两边取常用对数得

设(同类型四)

比较系数得,

由,得

所以数列是以为首项,以5为公比的等比数列,则,因此

则。

五、倒数变换法适用于分式关系的递推公式,分子只有一项

例14已知数列满足,求数列的通项公式。

解:求倒数得为等差数列,首项,

公差为,

六、换元法适用于含根式的递推关系

例15已知数列满足,求数列的通项公式。

解:令,则

代入得

因为,

则,即,

可化为,

所以是以为首项,以为公比的等比数列,因此,则,即

,得

七、数学归纳法通过首项和递推关系式求出数列的前n项,猜出数列的通项公式,再用数学归纳法加以证明。

例16已知数列满足,求数列的通项公式。

解:由及,得

由此可猜测,下面用数学归纳法证明这个结论。

(1)当时,,所以等式成立。

(2)假设当时等式成立,即,则当时,

由此可知,当时等式也成立。

根据(1),(2)可知,等式对任何都成立。

八、阶差法(逐项相减法)

1、递推公式中既有,又有

分析:把已知关系通过转化为数列或的递推关系,然后采用相应的方法求解。

例17已知数列的各项均为正数,且前n项和满足,

且成等比数列,求数列的通项公式。

解:∵对任意有

∴当n=1时,,解得或

当n≥2时,⑵

(1)-(2)整理得:

∵各项均为正数,∴

当时,,此时成立

当时,,此时不成立,故舍去

所以

2、对无穷递推数列

例18已知数列满足,求

的通项公式。

解:因为①

所以②

用②式-①式得

则故

所以③由,,则

,又知,则,代入③得。

所以,的通项公式为

总结:四种基本数列

1.形如型等差数列的广义形式,见累加法。

2.形如型等比数列的广义形式,见累乘法。

3.形如型

(1)若(d为常数),则数列{}为“等和数列”,它是一个周期数列,周期为2,其通项分奇数项和偶数项来讨论;

(2)若f(n)为n的函数(非常数)时,可通过构造转化为型,通过累加来求出通项;或用逐差法(两式相减)得,,分奇偶项来分求通项.

例19.数列{}满足,,求数列{a n}的通项公式.

分析1:构造转化为型

解法1:令

则.

时,各式相加:

当n为偶数时,.此时当n为奇数时,

此时,所以.故解法2:

时,,两式相减得:.

构成以,为首项,以2为公差的等差数列;

构成以,为首项,以2为公差的等差数列

.

评注:结果要还原成n的表达式.

4.形如型

(1)若(p为常数),则数列{}为“等积数列”,它是一个周期数

列,周期为2,其通项分奇数项和偶数项来讨论;

(2)若f(n)为n的函数(非常数)时,可通过逐差法得,两式相除后,分奇偶项来分求通项.

(完整版)已知数列递推公式求通项公式的几种方法

求数列通项公式的方法 一、公式法 例1 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 解:1232n n n a a +=+?两边除以12n +,得 113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2 n n a 是以1222 a 1 1==为首项,以23 为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222 n n a n =-。 评注:本题解题的关键是把递推关系式1232n n n a a +=+?转化为 11 3 222 n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22 n n a n =+-,进而求出数列{}n a 的通项公式。 二、累加法 例2 已知数列{}n a 满足1121 1n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 11232211 2 ()()()()[2(1)1][2(2)1](221)(211)1 2[(1)(2)21](1)1 (1)2(1)1 2 (1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++?++?++=-+-++++-+-=+-+=-++=L L L 所以数列{}n a 的通项公式为2 n a n =。 评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-++-+-+L ,即得数列{}n a 的通项公式。

求数列通项公式的常用方法(有答案)

求数列通项公式的常用方法 一、累加法 1.适用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最基本的二个方法之 一。 2.解题步骤:若1()n n a a f n +-=(2)n ≥, 则 21321(1) (2) () n n a a f a a f a a f n +-=-=-= 两边分别相加得 111 ()n n k a a f n +=-= ∑ 例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 11232211 2 ()()()()[2(1)1][2(2)1](221)(211)1 2[(1)(2)21](1)1(1)2(1)1 2 (1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-++ +?++?++=-+-++++-+-=+-+=-++= 所以数列{}n a 的通项公式为2 n a n =。 练习. 已知数列 } {n a 满足31=a , ) 2()1(1 1≥-+ =-n n n a a n n ,求此数列的通项公式. 答案:裂项求和 n a n 1 2- = 评注:已知a a =1,) (1n f a a n n =-+,其中f(n)可以是关于n 的一次函数、二次函

数、指数函数、分式函数,求通项 n a . ①若f(n)是关于n 的一次函数,累加后可转化为等差数列求和; ②若f(n)是关于n 的二次函数,累加后可分组求和; ③若f(n)是关于n 的指数函数,累加后可转化为等比数列求和; ④若f(n)是关于n 的分式函数,累加后可裂项求和。 二、累乘法 1. 适用于: 1()n n a f n a += ----------这是广义的等比数列,累乘法是最基本的二个方法之 二。 2.解题步骤:若 1()n n a f n a +=,则31212(1)(2)()n n a a a f f f n a a a +===,,, 两边分别相乘得,1 11 1()n n k a a f k a +==?∏ 例2 已知数列{}n a 满足112(1)53n n n a n a a +=+?=,,求数列{}n a 的通项公式。 解:因为112(1)53n n n a n a a +=+?=,,所以0n a ≠,则 1 2(1)5n n n a n a +=+,故1 32 112 21 12211(1)(2)21 (1)1 2 [2(11)5][2(21)5][2(21)5][2(11)5]32[(1)32]53 32 5 ! n n n n n n n n n n n n n a a a a a a a a a a n n n n n -------+-+++--= ??? ??=-+-+??+?+??=-?????=??? 所以数列{}n a 的通项公式为(1)1 2 325 !.n n n n a n --=??? 练习. 已知 1 ,111->-+=+a n na a n n ,求数列{an}的通项公式 答案: =n a ) 1()!1(1+?-a n -1.

由递推公式求通项公式的方法

由递推公式求通项公式的方法 已知数列的递推公式,求取其通项公式是数列中一类常见的题型,这类题型如果单纯的看某一个具体的题目,它的求解方法灵活是灵活多变的,构造的技巧性也很强,但是此类题目也有很强的规律性,存在着解决问题的通法,本文就高中数学中常见的几类题型从解决通法上做一总结,方便于学生学习和老师的教学,不涉及具体某一题目的独特解法与技巧。 一、1()n n a a f n +=+型数列,(其中()f n 不是常值函数) 此类数列解决的办法是累加法,具体做法是将通项变形为1()n n a a f n +-=,从而就有 21321(1),(2),,(1).n n a a f a a f a a f n --=-=-=- 将上述1n -个式子累加,变成1(1)(2)(1)n a a f f f n -=+++- ,进而求解。 例1. 在数列{}n a 中,112,21,.n n n a a a n a +==+-求 解:依题意有 213211,3,,23n n a a a a a a n --=-=-=- 逐项累加有221(123)(1)1323(1)212n n n a a n n n n +---=+++-= =-=-+ ,从而223n a n n =-+。 注:在运用累加法时,要特别注意项数,计算时项数容易出错. 变式练习:已知{}n a 满足11=a ,) 1(11+=-+n n a a n n ,求}{n a 的通项公式。 二、)(1n f a a n n ?=+型数列,(其中()f n 不是常值函数) 此类数列解决的办法是累积法,具体做法是将通项变形为1()n n a f n a +=,从而就有 32121 (1),(2),,(1)n n a a a f f f n a a a -===- 将上述1n -个式子累乘,变成1 (1)(2)(1)n a f f f n a =???- ,进而求解。 例2. 已知数列{}n a 中11123,(2)321 n n n a a a n n --==?≥+,求数列{}n a 的通项公式。

(完整版)常见递推数列通项公式的求法典型例题及习题

常见递推数列通项公式的求法典型例题及习题 【典型例题】 [例1] b ka a n n +=+1型。 (1)1=k 时,}{1n n n a b a a ?=-+是等差数列,)(1b a n b a n -+?= (2)1≠k 时,设)(1m a k m a n n +=++ ∴ m km ka a n n -+=+1 比较系数:b m km =- ∴ 1-= k b m ∴ }1{-+ k b a n 是等比数列,公比为k ,首项为11-+k b a ∴ 11)1(1-?-+=-+ n n k k b a k b a ∴ 1)1(11--?-+=-k b k k b a a n n [例2] )(1n f ka a n n +=+型。 (1)1=k 时,)(1n f a a n n =-+,若)(n f 可求和,则可用累加消项的方法。 例:已知}{n a 满足11=a ,)1(1 1+= -+n n a a n n 求}{n a 的通项公式。 解: ∵ 11 1)1(11+- =+= -+n n n n a a n n ∴ n n a a n n 1111--= -- 112121---=---n n a a n n 21 3132-- -=---n n a a n n …… 312123-= -a a 21112-=-a a 对这(1-n )个式子求和得: n a a n 111- =- ∴ n a n 1 2- =

(2)1≠k 时,当b an n f +=)(则可设)()1(1B An a k B n A a n n ++=++++ ∴ A B k An k ka a n n --+-+=+)1()1(1 ∴ ???=--=-b A B k a A k )1()1( 解得:1-=k a A ,2 )1(1-+-=k a k b B ∴ }{B An a n ++是以B A a ++1为首项,k 为公比的等比数列 ∴ 1 1)(-?++=++n n k B A a B An a ∴ B An k B A a a n n --?++=-11)( 将A 、B 代入即可 (3)n q n f =)((≠q 0,1) 等式两边同时除以1 +n q 得q q a q k q a n n n n 1 11+?=++ 令 n n n q a C = 则q C q k C n n 1 1+ =+ ∴ }{n C 可归为b ka a n n +=+1型 [例3] n n a n f a ?=+)(1型。 (1)若)(n f 是常数时,可归为等比数列。 (2)若)(n f 可求积,可用累积约项的方法化简求通项。 例:已知: 311= a ,1121 2-+-=n n a n n a (2≥n )求数列}{n a 的通项。 解:123537532521232121212233 2211+= ?--?--?+-=???-----n n n n n n n a a a a a a a a a a n n n n n n ΛΛ ∴ 1211231+= +? =n n a a n [例4] 11 --+?? =n n n a m a m k a 型。

数列的通项公式与求和的常见方法

数列的通项公式与求和 的常见方法 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

常见数列通项公式的求法 类型一:公式法1(或定义法) 例1. 已知数列{}n a 满足11a =, 12n n a a +-=*()n N ∈,求数列{}n a 的通项公式。 例2.已知数列{}n a 满足12a =,13n n a a += *()n N ∈,求数列{}n a 的通项公式。 变式练习: 1.已知数列{}n a 满足12a =, 110n n a a +-+=*()n N ∈,求数列{}n a 的通项公式。 2.已知数列{}n a 满足16a =-, 13n n a a +=+*()n N ∈,求数列{}n a 的通项公式。 3. 已知数列{}n a 满足11a =,2 1 2=a , 11112n n n a a a -++=(2)n ≥,求数列{}n a 的通项公式。 4.已知数列{}n a 满足11a =,13n n a a +=*()n N ∈,求数列{}n a 的通项公式。 类型二:(累加法))(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解 例:已知数列{}n a 满足121n n a a n +=++*()n N ∈, 11a =,求数列{}n a 的通项公式。 变式练习: 1.已知数列{}n a 满足21 1=a ,n a a n n 21+=+, * ()n N ∈求数列{}n a 的通项公式。 2.已知数列{}n a 满足11a =,11 (1) n n a a n n -=+-, (2)n ≥,求数列{}n a 的通项公式。 3.已知数列{}n a 满足1231n n n a a +=+?+, * ()n N ∈,13a =,求数列{}n a 的通项公式。 4.已知数列{}n a 中,12a =,11 ln(1)n n a a n +=++, 求数列{}n a 的通项公式。 类型三:(叠乘法)n n a n f a )(1=+ 解法:把原递推公式转化为)(1 n f a a n n =+,利用累乘法(逐商相乘法)求解 例:在数列{}n a 中,已知11a =,1(1)n n na n a -=+, (2)n ≥,求数列{}n a 的通项公式。 变式练习: 1.已知数列{}n a 满足321= a ,n n a n n a 1 1+=+,* ()n N ∈,求数列{}n a 的通项公式。 2.已知31=a ,n n a n n a 2 3131 +-=+ )1(≥n ,求数列{}n a 的通项公式。 3.已知数列 {}n a 满足125n n n a a +=?* ()n N ∈, 13a =,求数列{}n a 的通项公式。 类型四:递推公式为n S 与n a 的关系式()n n S f a = 解法:这种类型一般利用 与)()(11---=-=n n n n n a f a f S S a 消去n S )2(≥n 或与)(1--=n n n S S f S )2(≥n 消去n a 进行求解。 例. 已知数列{}n a 的前n 项和为n S ,12a =且 12n n S a +=(2)n ≥.求数列{}n a 的通项公式。 1. 已知数列{}n a 的前n 项和为n S ,42n n S a =+, 求数列{}n a 的通项公式。 2.已知数列{}n a 的前n 项和为n S ,251n S n n =+- 求数列{}n a 的通项公式。 3.已知数列{}n a 的前n 项和为n S ,23n n S =+, 求数列{}n a 的通项公式。 类型五:待定系数法 q pa a n n +=+1(其中p ,q 均为常数, )0)1((≠-p pq ) 解法:构造新数列{}n b ; p a a n n =+++λ λ 1解出λ,可 得数列λ+=n n a b 为等比数列 例:已知数列{}n a 中,11=a ,121+=+n n a a ,求数列{}n a 的通项公式。 变式练习: 1. 已知数列{}n a 满足13a =,121n n a a +=- *()n N ∈,求数列{}n a 的通项公式。 2.已知数列{}n a 中,11=a ,6431+=+n n a a ,求数列{}n a 的通项公式。 3.已知数列{}n a 的前n 项和为n S ,且 232n n S a n =-*()n N ∈.求数列{}n a 的通项公式。 类型六:交叉项问题 解法:一般采用求倒数或除以交叉项得到一个新 的等差数列。 例:已知数列{}n a 满足11a =, 122 n n n a a a +=+*()n N ∈,求数列{}n a 的通项公式。 变式练习: 1.已知数列{}n a 满足11a =, 1(1)n n na n a +=++(1)n n +, *()n N ∈,求数列{} n a 的通项公式。 2. 已知首项都为1的两个数列{}n a 、{}n b (0n b ≠*n N ∈),满足 11120n n n n n n a b a b b b +++-+=,令n n n a c b = 求数列{}n c 的通项公式。 类型七:(公式法2) (n n n p pa a ?+=+λ1)p>0; 解法:将其变形为p p a p a n n n n λ =-++11,即数列?? ????n n p a 为以 p λ 为公差的等差数列; 例. 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 变式练习: 1.已知数列{}n a 满足1155+++=n n n a a ,11=a ,求数列{}n a 的通项公式 2.已知数列{}n a 满足n n n a a 3431?+=+,11=a ,求数列{}n a 的通项公式。 数列求和的常用方法 类型一:公式法 例 .已知3 log 1log 23=x ,求32x x x ++???++???+n x 的前n 项和. 变式练习 1.数列}{n a 中,12+=n a n ,求n S . 2.等比数列}{n a 的前n 项和12-=n n S ,求 2 232221n a a a a ++++ . 类型二:分组求和法 例. 求数列的前n 项和: 2321 ,,721,421,1112-+???+++-n n ,… 变式练习 1.已知数列}{n a 中,n n n a 32+=,求n S . 2.已知数列}{n a 中,n n n a 21 )12(++=,求n S . 类型三:倒序相加法 例.求 88sin 3sin 2sin 1sin 2 222+???+++ 89sin 2 +的值. 1.已知x x f += 11 )(,求)3()2()1(f f f ++ 类型四:错位相减法: 例.数列}{n a 中,12)12(-?-n n n a ,求n S . 变式练习 1.求数列 ??????,2 2,,26,24,2232n n 前n 项的和. 2.数列}{n a 的前n 项和为2 2n S n =,}{n b 为等比数列, 且.)(,112211b a a b b a =-= (1)求数列}{n a 和}{n b 的通项公式;

九类常见递推数列求通项公式方法

递推数列通项求解方法 类型一:1n n a pa q += +(1p ≠) 思路1(递推法):()123()n n n n a pa q p pa q q p p pa q q q ---??=+=++=+++=?? ......121(1n p a q p p -=++++ (2) 1 1)11n n q q p a p p p --??+=+?+ ? --?? 。 思路2(构造法):设()1n n a p a μμ++=+,即()1p q μ-=得1 q p μ= -,数列 {}n a μ+是以1a μ+为首项、p 为公比的等比数列,则1 111n n q q a a p p p -??+ =+ ?--??,即1111n n q q a a p p p -??=++ ? --?? 。 例1 已知数列{}n a 满足123n n a a -=+且11a =,求数列{}n a 的通项公式。 解:方法1(递推法): ()123232(23)3222333n n n n a a a a ---??=+=++=+++=?? (1) 22 3(122n -=++++ (2) 11 332 )12232112n n n --+??+=+?+=- ? --? ?。 方法2(构造法):设()12n n a a μμ++=+,即3μ=,∴数列{}3n a +是以134 a +=为首项、2为公比的等比数列,则113422n n n a -++=?=,即1 23n n a +=-。

1n n +思路1(递推法): 123(1)(2)(1)(3)(2)(1)n n n n a a f n a f n f n a f n f n f n ---=+-=+-+-=+-+-+-= …1 11 ()n i a f n -==+∑。 思路2(叠加法):1(1)n n a a f n --=-,依次类推有:12(2)n n a a f n ---=-、 23(3)n n a a f n ---=-、…、21(1)a a f -=,将各式叠加并整理得1 11 ()n n i a a f n -=-= ∑ ,即 1 11 ()n n i a a f n -==+ ∑ 。 例2 已知11a =,1n n a a n -=+,求n a 。 解:方法1(递推法):123(1)(2)(1)n n n n a a n a n n a n n n ---=+=+-+=+-+-+= ......1[23a =+++ (1) (1)(2)(1)]2 n i n n n n n n =++-+-+= = ∑ 。 方法2(叠加法):1n n a a n --=,依次类推有:121n n a a n ---=-、232n n a a n ---=-、…、 212a a -=,将各式叠加并整理得12 n n i a a n =-= ∑ ,12 1 (1)2 n n n i i n n a a n n ==+=+ = = ∑ ∑ 。

数列通项公式的求法(较全)

常见数列通项公式的求法 公式: 1、 定义法 若数列是等差数列或等比数列,求通公式项时,只需求出1a 与d 或1a 与q ,再代入公式()d n a a n 11-+=或 11-=n n q a a 中即可. 例1、成等差数列的三个正数的和等于15,并且这三个数分别加上2,5,13后成为等比数列{}n b 的345,,b b b ,求数列{}n b 的的通项公式. 练习:数列{}n a 是等差数列,数列{}n b 是等比数列,数列{}n c 中对于任何* n N ∈都有 1234127 ,0,,,,6954 n n n c a b c c c c =-====分别求出此三个数列的通项公式.

2、 累加法 形如()n f a a n n =-+1()1a 已知型的的递推公式均可用累加法求通项公式. (1) 当()f n d =为常数时,{}n a 为等差数列,则()11n a a n d =+-; (2) 当()f n 为n 的函数时,用累加法. 方法如下:由()n f a a n n =-+1得 当2n ≥时,() 11n n a a f n --=-, () 122n n a a f n ---=-, ()322a a f -=, () 211a a f -=, 以上()1n -个等式累加得 ()()()()11+221n a a f n f n f f -=--+ ++ 1n a a ∴=+()()()()1+221f n f n f f --+ ++ (3)已知1a ,()n f a a n n =-+1,其中()f n 可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项. ①若()f n 可以是关于n 的一次函数,累加后可转化为等差数列求和; ②若()f n 可以是关于n 的二次函数,累加后可分组求和; ③若()f n 可以是关于n 的指数函数,累加后可转化为等比数列求和; ④若()f n 可以是关于n 的分式函数,累加后可裂项求和求和. 例2、数列{}n a 中已知111,23n n a a a n +=-=-, 求{}n a 的通项公式.

史上最全的数列通项公式的求法13种

最全的数列通项公式的求法 数列是高考中的重点内容之一,每年的高考题都会考察到,小题一般较易,大题一般较难。而作为给出数列的一种形式——通项公式,在求数列问题中尤其重要。本文给出了求数列通项公式的常用方法。 一、直接法 根据数列的特征,使用作差法等直接写出通项公式。 二、公式法 ①利用等差数列或等比数列的定义求通项 ②若已知数列的前n 项和n S 与n a 的关系,求数列{}n a 的通项n a 可用公式 ?? ?≥???????-=????????????????=-2 1 11n S S n S a n n n 求解. (注意:求完后一定要考虑合并通项) 例2.①已知数列{}n a 的前n 项和n S 满足1,)1(2≥-+=n a S n n n .求数列{}n a 的通项公式. ②已知数列{}n a 的前n 项和n S 满足2 1n S n n =+-,求数列{}n a 的通项公式. ③ 已知等比数列{}n a 的首项11=a ,公比10<

求数列通项公式常用的七种方法

创作编号:GB8878185555334563BT9125XW 创作者: 凤呜大王* 求数列通项公式常用的七种方法 一、公式法:已知或根据题目的条件能够推出数列{}n a 为等差或等比数列,根据通项公式 ()d n a a n 11-+=或1 1-=n n q a a 进行求解. 例1:已知{}n a 是一个等差数列,且5,152-==a a ,求{}n a 的通项公式. 分析:设数列{}n a 的公差为d ,则?? ?-=+=+5411 1d a d a 解得???-==23 1d a ∴ ()5211+-=-+=n d n a a n 二、前n 项和法:已知数列{}n a 的前n 项和n s 的解析式,求n a . 例2:已知数列{}n a 的前n 项和12-=n n s ,求通项n a . 分析:当2≥n 时,1--=n n n s s a =( )( ) 32 321 ----n n =1 2 -n 而111-==s a 不适合上式,() () ???≥=-=∴-22111n n a n n 三、n s 与n a 的关系式法:已知数列{}n a 的前n 项和n s 与通项n a 的关系式,求n a . 例3:已知数列{}n a 的前n 项和n s 满足n n s a 3 1 1= +,其中11=a ,求n a . 分析: 13+=n n a s ① ∴ n n a s 31=- ()2≥n ② ①-② 得 n n n a a a 331-=+ ∴ 134+=n n a a 即 341=+n n a a ()2≥n 又1123 1 31a s a ==不适合上式 ∴ 数列{}n a 从第2项起是以 3 4 为公比的等比数列 ∴ 2 2 2343134--?? ? ??=? ? ? ??=n n n a a ()2≥n ∴()()??? ??≥?? ? ??==-23431112n n a n n 注:解决这类问题的方法,用具俗话说就是“比着葫芦画瓢”,由n s 与n a 的关系式,类比出1-n a 与 的关系式,然后两式作差,最后别忘了检验1a 是否适合用上面的方法求出的通项. 四、累加法:当数列{}n a 中有()n f a a n n =--1,即第n 项与第1-n 项的差是个有“规律”的数时, 可以用这种方法. 例4: ()12,011-+==+n a a a n n ,求通项n a 分析: 121-=-+n a a n n ∴ 112=-a a 323=-a a 534=-a a ┅ 321-=--n a a n n ()2≥n 以上各式相加得()()2 11327531-=-+++++=-n n a a n ()2≥n 又01=a ,所以()2 1-=n a n ()2≥n ,而01=a 也适合上式, ∴ ()2 1-=n a n ( ∈N n 五、累乘法:它与累加法类似 ,当数列{}n a 中有 ()1 n n a f n a -=,即第n 项与第1-n 项的商是个有“律”的数时,就可以用这种方法. 例5:111,1 n n n a a a n -==- ()2,n n N *≥∈ 求通项n a 分析: 11 n n n a a n -= - ∴11n n a n a n -=- ()2,n n N * ≥∈

递推公式到通项公式

已知数列的递推公式求通项公式的方法 1.累加法:递推关系式为采用累加法。“累加法”实为等差数列通项公式的推导方法。 2.累乘法:递推关系式为采用累乘法。“累乘法”实为等比数列通项公式的推导方法 3.构造法:递推关系式为(1),(2),都可以通过恒等变形,构造出等差或等比数列,利用等差或等比数列的定义进行解题,其中的构造方法可通过待定系数法来进行。 4. 和化项法:递推关系式为或一般利用进行转化。 一. 累加法: 递推关系式必须符合的特征:1()n n a a f n +-=, 当()f n 为常数时,{}n a 即为等差数列. 例1.已知12a = , 1n a +=2132n n a -+?求数列{}n a 的通项公式. 变式训练:已知数列{}n a 满足1111,((1) n n a a a n n n -==+≥2)-.求数列{}n a 的通项公式. 变式训练:已知???-+==+)12(11 1n a a a n n ,求数列{}n a 的通项公式. 变式训练:数列{}n a 中,6112000,n n a a a n +==+,求1.a 变式训练:数列{}n a 满足12a =,12,(1)n n n a a n n +=+-≥,求{}n a 的通项公式。 二.累乘法:递推关系式必须符合的特征: 1()n n a f n a +=,当()f n 为常数时,{}n a 即为等比数列 例2.已知11,a = 11 n n n a a n +=?+,求数列{}n a 的通项公式 变式训练:已知数列{}n a ,112,2n n a a a +==,求数列{}n a 的通项公式. 变式训练:已知?????+==+n n a a a n n 1211,求数列{}n a 的通项公式. 三.构造法1: 递推关系式为特征为:1n n a pa q +=+,由此式构造出1()n n a x p a x ++=+的形式.则{}n a x +是等比数列 例3.已知11,a =123n n a a +=+,求数列{}n a 的通项公式 变式训练:已知???+==+5431 1n n a a a ,求数列{}n a 的通项公式 变式训练:已知???≥+-==-) 2(43211n a a a n n 求数列{}n a 的通项公式 四.构造法2: 取倒数法 例.(倒数法)已知数列{a n }中,a 1=5 3,a n +1=12+n n a a ,求{a n }的通项公式.

求数列通项公式方法经典总结

求数列通项公式方法 (1).公式法(定义法) 根据等差数列、等比数列的定义求通项 1..数列{}n a 满足1a =8,022124=+-=++n n n a a a a ,且 (*∈N n ),求数列{}n a 的通项公式; 2.设数列}{n a 满足01=a 且 111 111=---+n n a a ,求}{n a 的通项公式 3. 已知数列{}n a 满足112,12 n n n a a a a += =+,求数列{}n a 的通项公式。 4.已知数列}{n a 满足2 122142++=?==n n n a a a a a 且, (*∈N n ),求数列{}n a 的通项公式; 5.已知数列}{n a 满足,21=a 且1 152(5)n n n n a a ++-=-(*∈N n ),求数列{}n a 的通项 公式; — 6. 已知数列}{n a 满足,21=a 且1 15223(522)n n n n a a +++?+=+?+(*∈N n ),求 数列{}n a 的通项公式; 7.数列已知数列{}n a 满足111 ,41(1).2 n n a a a n -= =+>则数列{}n a 的通项公式= (2)累加法 累加法 适用于:1()n n a a f n +=+ 若1()n n a a f n +-=,则 21321(1) (2) () n n a a f a a f a a f n +-=-=-= 两边分别相加得 111 ()n n k a a f n +=-=∑ 例:1.已知数列{}n a 满足1 41,2 1211-+ == +n a a a n n ,求数列{}n a 的通项公式。 2. 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

求前n项和公式的常用方法

求数列前N项和的常用方法 核心提示:求数列的前n项和要借助于通项公式,即先有通项公式,再在分析数列通项公式的基础上,或分解为基本数列求和,或转化为基本数列求和。当遇到具体问题时,要注意观察数列的特点和规律,找到适合的方法解题。 一.用倒序相加法求数列的前n项和 如果一个数列{a n},与首末项等距的两项之和等于首末两项之和,可采用把正着写与倒着写的两个和式相加,就得到一个常数列的和,这一求和方法称为倒序相加法。我们在学知识时,不但要知其果,更要索其因,知识的得出过程是知识的源头,也是研究同一类知识的工具,例如:等差数列前n项和公式的推导,用的就是“倒序相加法”。 例题1:设等差数列{a n},公差为d,求证:{a n}的前n项和S n=n(a1+a n)/2 解:S n=a1+a2+a3+...+a n① 倒序得:S n=a n+a n-1+a n-2+…+a1② ①+②得:2S n=(a1+a n)+(a2+a n-1)+(a3+a n-2)+…+(a n+a1) 又∵a1+a n=a2+a n-1=a3+a n-2=…=a n+a1 ∴2S n=n(a2+a n) S n=n(a1+a n)/2 点拨:由推导过程可看出,倒序相加法得以应用的原因是借助a1+a n=a2+a n-1=a3+a n-2=…=a n+a1即与首末项等距的两项之和等于首末两项之和的这一等差数列的重要性质来实现的。 二.用公式法求数列的前n项和 对等差数列、等比数列,求前n项和S n可直接用等差、等比数列的前n项和公式进行求解。运用公式求解的注意事项:首先要注意公式的应用范围,确定公式适用于这个数列之后,再计算。 例题2:求数列的前n项和S n 解: 点拨:这道题只要经过简单整理,就可以很明显的看出:这个数列可以分解成两个数列,一个等差数列,一个等比数列,再分别运用公式求和,最后把两个数列的和再求和。 三.用裂项相消法求数列的前n项和 裂项相消法是将数列的一项拆成两项或多项,使得前后项相抵消,留下有限项,从而求出数列的前n项和。 例题3:求数列(n∈N*)的和

如何由递推公式求通项公式

浅谈由递推公式求数列通项公式 数列部分知识是高考必考部分,有许多学生感觉自己等差,等比数 列还学的可以但许多时候数列部分题不会求数列通项公式式。而已知 数列递推关系求通项公式是高考的热点之一,是一类考查思维能力的 题型,要求考生进行严格的逻辑推理。想找到数列的通项公式,重点 是递推的思想:从一般到特殊从特殊到一般;化归转换思想,通过适 当的变形,转化成等差数列或等比数列,将复杂的转为简单,达到化 陌生为熟悉的。那么下面我就已知递推关系求数列通项的基本类型作 一简单归纳。 分析:我们可用“累加”或“累积”的方法即 十 a n a n —1 或 a n = a n -1 a n -2 例1.(1)已知数列{a n }满足a1 = 1,an ^=a n + 2 1 ,求数列 2 n +n 式。 1 1 1 1 an — an = ------- = ----------- =—一 --- n 2 +n n(n +1) n n +1 /. a n =(a n -a n j) +(a n 丄一a n j) + ..... +(a 2- a i ) +a i 1111 1 1 1 =(―——)+(— -—)+ ……+ (:-1 )*1 -?_丄 n T n n -2 n T 1 2 2 一 2 n (2) 2s n = (n +1)a n /. 2s n -1 = na n -i (n > 2) 两式相减得: 2a n =(n+1)a n-na n-i (n >2) 类型一:a n +1 - a n = f (n)或 a"1 ⑵已知数列3满足心”管 ,求数列{屛的通项公式。 a 2 ...—a 1 a 1 {an }的通项 a n = (a n -a n -1) +(a n -1 —an -2)+ ....... +(a 2-ai)+ a i 解:(1)由题知:

求数列通项公式常用的八种方法

求数列通项公式常用八种方法 一、 公式法: 已知或根据题目的条件能够推出数列{}n a 为等差或等比数列,根据通项公式()d n a a n 11-+= 或11-=n n q a a 进行求解. 二、前n 项和法: 已知数列{}n a 的前n 项和n s 的解析式,求n a .(分3步) 三、n s 与n a 的关系式法: 已知数列{}n a 的前n 项和n s 与通项n a 的关系式,求n a .(分3步) 四、累加法: 当数列{}n a 中有()n f a a n n =--1,即第n 项与第1-n 项的差是个有“规律”的数时, 就可以用这种方法. 五、累乘法:它与累加法类似 ,当数列{}n a 中有()1 n n a f n a -=,即第n 项与第1-n 项的商是个有“规律”的数时,就可以用这种方法. 六、构造法: ㈠、一次函数法:在数列{}n a 中有1n n a ka b -=+(,k b 均为常数且0k ≠),从表面 形式上来看n a 是关于1n a -的“一次函数”的形式,这时用下面的 方法:------+常数P

㈡、取倒数法:这种方法适用于1 1c --=+n n n Aa a Ba ()2,n n N * ≥∈(,,k m p 均为常数 0m ≠) ,两边取倒数后得到一个新的特殊(等差或等比)数列或类似于 1n n a ka b -=+的式子. ㈢、取对数法:一般情况下适用于1k l n n a a -=(,k l 为非零常数) 例8:已知()2113,2n n a a a n -==≥ 求通项n a 分析:由()2113,2n n a a a n -==≥知0n a > ∴在21n n a a -=的两边同取常用对数得 211lg lg 2lg n n n a a a --== 即1 lg 2lg n n a a -= ∴数列{}lg n a 是以lg 3为首项,以2为公比的等比数列 故1 12lg 2lg3lg3n n n a --== ∴123n n a -= 七、“1p ()n n a a f n +=+(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项n a . 可以先在等式两边 同除以f(n)后再用累加法。 八、形如21a n n n pa qa ++=+型,可化为211a ()()n n n n q xa p x a a p x ++++=+++ ,令x=q p x + ,求x 的值来解决。 除了以上八种方法外,还有嵌套法(迭代法)、归纳猜想法等,但这8种方法是经常用的,将其总结到一块,以便于学生记忆和掌握。

求通项公式的几种方法与总结

睿博教育学科教师讲义讲义编号: LH-rbjy0002 副校长/组长签字:签字日期:

问题转化为求数列{c n }的前2010项和的平均数. 所以12010∑=+20101 i i i )b (a =12010×2010×?3+4021? 2=2012. ? 探究点四 数列的特殊求和方法 数列的特殊求和方法中以错位相减法较为难掌握,其中通项公式{a n b n }的特征为{a n }是等差数列,{b n }是等比数列. 例4 在各项均为正数的等比数列{a n }中,已知a 2=2a 1+3,且3a 2,a 4,5a 3成等差数列. (1)求数列{a n }的通项公式; (2)设b n =log 3a n ,求数列{a n b n }的前n 项和S n . 【解答】 (1)设{a n }公比为q ,由题意得q >0, 且?? ? a 2=2a 1+3,3a 2+5a 3=2a 4, 即??? a 1?q -2?=3,2q 2 -5q -3=0, 解得?? ? a 1=3,q =3 或? ?? ?? a 1 =-6 5,q =-12(舍去), 所以数列{a n }的通项公式为a n =3·3n -1=3n ,n ∈N *. (2)由(1)可得b n =log 3a n =n ,所以a n b n =n ·3n . 所以S n =1·3+2·32+3·33+…+n ·3n ,① 3S n =1·32+2·33+3·34+…+n ·3n +1.② ②-①得,2S n =-3-(32+33+…+3n )+n ·3n +1 =-(3+32+33+…+3n )+n ·3n +1, =-3?1-3n ?1-3+n ·3n +1=32 (1-3n )+n ·3n +1 =32+? ? ???n -123n +1. 所以数列{a n b n }的前n 项和为S n =34+2n -14 3n +1 .

一、求数列通项公式的三种常用方法

一、求数列通项公式的三种常用方法 2; 3.n n S a ?? ??? 1、利用与的关系;、累加(乘)法、构造法(或配凑法、待定系数法) 1、利用n n S a 与的关系求通项公式: 1-11-1=1; =-.-n n n n n S a S S S S S ?? ≥? , 当n 时利用 ,当n 2时注意:当也适合时,则无需分段(合二为一)。 例1、设数列}{n a 的前n 项和为S n =2n 2,}{n b 为等比数列,11a b =且2211().b a a b -= (Ⅰ)求数列}{n a 和}{n b 的通项公式; 解:(1),24)1(22,22 21-=--=-=≥-n n n S S a n n n n 时当 当;2,111===S a n 时也满足上式。 故{a n }的通项公式为42,n a n =- 设{b n }的公比为q , 111 , 4, .4 b qd b d q ==∴=则 故1 111 122,44n n n n b b q ---==? = 12 {}.4 n n n b b -=即的通项公式为 例2、数列}{n a 的前n 项和为S n ,且111,3, 1,2,3,n n a S a n +===,求: (1)2a 的值。(2)数列}{n a 的通项公式; 解:(1)由得,,3,2,1,31,111 == =+n S a a n n .3 1 3131112===a S a

1112342222 11 ()(2), 33 44 ,(2),...33114,()(2). 333 1, 1,,{}14(), 2.33 n n n n n n n n n n n n a a S S a n a a n a a a a q a a n n a a n +-+---=-=≥=≥===≥=?? =?≥??(2)由得即,,,是以为首项,为公比的等比数列 又所以所以数列的通项公式为 例3 已知函数 f (x ) = a x 2 + bx -23 的图象关于直线x =-3 2 对称, 且过定点(1,0);对于正数 列{a n },若其前n 项和S n 满足S n = f (a n ) (n ∈ N *) (Ⅰ)求a , b 的值; (Ⅱ)求数列{a n } 的通项公式; (Ⅰ)∵函数 f (x ) 的图象关于关于直线x =-3 2 对称, ∴a ≠0,-b 2a =-3 2 , ∴ b =3a ① ∵其图象过点(1,0),则a +b -2 3 =0 ② 由①②得a = 16 , b = 1 2 . 4分 (Ⅱ)由(Ⅰ)得2112()623f x x x =+- ,∴()n n S f a ==2112 623n n a a +- 当n ≥2时,1n S -=211112 623n n a a --+- . 两式相减得 2211111 ()622 n n n n n a a a a a --=-+- ∴221111 ()()062 n n n n a a a a ----+= ,∴11()(3)0n n n n a a a a --+--= 0,n a >∴13n n a a --=,∴{}n a 是公差为3的等差数列,且 22111111112 340623 a s a a a a ==+-∴--= ∴a 1 = 4 (a 1 =-1舍去)∴a n =3n+1 9分 2、累加(乘)法: 11-111 12-1. 2 3+2. 3 2-1.1 4 . (n+1) n n n n n n n n n a a n a a n a a a a n ++++=+=+=+=+例如:、 、、、

相关文档
最新文档