海上风电场单桩基础施工技术方案研究

海上风电场单桩基础施工技术方案研究
海上风电场单桩基础施工技术方案研究

海上风电场单桩基础施工技术方案研究

发表时间:2019-09-05T09:58:08.447Z 来源:《中国电业》2019年第08期作者:夏艳慧[导读] 随着国内海上风电的开发,风电场建设各方面技术均日益成熟。风机机组逐步大型化,风机基础随之呈现多样化趋势。

(中国电建集团华东勘测设计研究院有限公司,浙江杭州 311122)

摘要:随着国内海上风电的开发,风电场建设各方面技术均日益成熟。风机机组逐步大型化,风机基础随之呈现多样化趋势。单桩基础为主流基础型式之一,国内针对大体型单桩基础的施工方案随着江苏、福建等海域的海上风电场工程的建设,进行了深入细致的研究,各种施工方案代表了目前国内近海海域单桩基础施工的先进施工思路与水平,船机设备的选择也符合目前国内现有大型工程船只的资源条件。

关键词:海上风电;单桩基础;浮式起重船

近年来,国内海上风电建设飞速发展,风机基础型式多样化,目前已经应用的海上风电基础施工方案有单桩基础、多桩基础、重力式基础等,其中单桩基础因其结构简单、施工方便快捷、造价相对较低等优点,受到施工单位和建设单位的青睐,是目前海上风电基础的主要类型。

单桩基础由大直径钢管桩与附属构件组成,根据目前国内海上风电项目的最新数据获悉,单桩基础的钢管桩直径已达到8m以上,桩重则突破1500t。钢管桩由液压冲击锤沉入海床,海上沉桩系统主要包括打桩船、运桩船、抛锚艇、拖轮与交通艇等船舶组合,其中以打桩船为主要施工设备。施工前,需根据钢管管桩设计参数与海洋环境的特点对沉桩的各环节进行分析,选择合适的设备配置。根据目前各海上风电场工程的实施,单桩基础包括非嵌岩桩和嵌岩桩两种情况,本文主要介绍非嵌岩单桩基础常规采用的浮式起重船施工方案。

1.船只设备的选择

单桩基础常采用起重船配置打桩锤进行吊打施工。大型浮式起重船在单桩基础施工中,主要承担单桩结构的起吊、立桩、进龙口、稳桩、定位等作业,吊打沉桩之前全部的准备工作将由其完成,因此对浮式起重船的性能要求很高。如采用无法单独完成钢管桩空中翻身工作的全回转式起重船,则需配置辅助起重船,采用双船抬吊的方式完成管桩的空中起吊、翻身的工作。

辅助起重船可利用全回转起重船配合完成,主臂架操作灵活,便于与主起重船的协调配合进行空中操作。

2.锤击沉桩系统

目前大型的海上打桩机械主要有筒式柴油打桩锤、液压打桩锤、液压振动锤三种型式,其中以柴油打桩锤应用最为广泛,但考虑到海上风电单桩基础钢管桩属于超长大直径钢管桩,承载力要求高,对锤击能力要求较高,同时采用吊打的沉桩施工方式,使用柴油锤需增加一定的临时设施才可以进行沉桩施工,降低了其使用优越性。根据国内已施工的风机单桩基础相关施工经验,通常选择大型液压冲击锤进行锤击沉桩。

液压冲击锤属于大当量打击能力的打桩锤,根据地质条件、钢管桩的特性选择合适的打桩锤,并可采用GRLWEAP等软件进行沉桩可打性分析。

在国内龙源振华、中交三航局、中铁大桥局、中海油等多家海上施工单位具有S1200、S1800、S2000、S3000等级别大型液压打桩锤可供选择。

3.辅助定位稳桩平台

辅助定位稳桩平台设施是保证单管桩沉桩施工精度控制的主要配套设施,也是整个施工方案的关键工艺。稳桩平台上需设置扶正、导向装置,以调整大直径钢管桩的垂直度,稳桩平台的安装位置决定了钢桩沉桩的桩位,故必须严格控制稳桩平台的测量放样定位的准确度,特别要控制下桩龙口的定位精度。

定位稳桩平台一般由4根工艺桩、平台主体及平台与桩的连接系统组成。可根据工程地质条件进行计算确定钢管桩直径和桩长等参数。平台主体采用整体制作,现场整体安装,根据工期要求可投入多套周转使用,结构示意图如图1所示。

定位平台上下层分别均匀布置数个千斤顶作为单桩沉桩扶正、导向装置,以调整大直径钢管桩的垂直度,导向滚轮为高分子材料,能够有效保护钢管桩防腐涂层。稳桩平台沉桩工艺已经成功应用在江苏如东、响水、东台等多个海上风电场工程中,有效地保证桩身垂直度在3‰以内,并取得了较好工程效果。

4.单桩沉桩

4.1 船位布置

定位稳桩平台搭设完成后,由现场船舶调度指挥船舶进点就位。主起重船顺潮流方向就位,使定位稳桩平台位于主起重船的左舷或右舷,且船头方向与稳桩平台龙口方向一致。辅起重船同样顺潮流方向就位,船头方向与稳桩平台龙口方向相对。起重船就位完成后,运桩驳停靠辅起重船且桩顶方向尽量向主起重船船头方向靠拢,使吊耳位于主起重船主吊钩下方。

各种海上风电地基基础的比较及适用范围

各种海上风电地基基础的适用范围 1 海上风电机组基础结构设计需考虑的因素 海上风电机组基础结构设计中,基础形式选择取决于水深、水位变动幅度、土层条件、 海床坡率与稳定性、水流流速与冲刷、所在海域气候、风电机组运行要求、靠泊与防撞要求、 施工安装设备能力、预加工场地与运输条件、工程造价和项目建设周期要求等。 当前阶段国内外海上风电机组基础常用类型包括单桩基础、重力式基础、桩基承台基础 (潮间带风电机组)、高桩承台基础、三脚架或多脚架基础、导管架基础等。试验阶段的风电 机组基础类型包括悬浮式、吸力桶式、张力腿式、三桩钢架式基础等形式,但仅处于研究或 试验阶段。 基础型式结构特征优缺点造价成本适用范围安装施工 重力式有混凝土重 力式基础和 钢沉降基础结构简单、抗风 浪袭击性能好; 施工周期长,安 装不便 较低浅水到中等水 深(0~10m) 大型起重船等 单桩式靠桩侧土压 力传递风机 荷载安装简便,无需 海床准备;对土 体扰动大,不适 于岩石海床 高浅水到中等水 深(0~30m) 液压打桩锤、钻 孔安装 多桩式上部承台/三 脚架/四脚架/ 导管架适用于各种地质 条件,施工方便; 建造成本高,难 移动 高中等水深到深 水(>20m) 蒸汽打桩锤、液 压打桩锤 浮式直接漂浮在 海中(筒型基 础/鱼雷锚/平 板锚)安装灵活,可移 动、易拆除;基 础不稳定,只适 合风浪小的海域 较高深水(>50m)与深水海洋平 台施工法一致 吸力锚利用锚体内 外压力差贯 入海床 节省材料,施工 快,可重复利用; “土塞”现象,倾 斜校正 低浅水到深水 (0~25m) 负压下沉就位表1 当前常用风电基础形式的比较 2 中国各海域适用风电基础形式的分析 我国渤海水深较浅,辽东湾北部浅海区水深多小于10 m ,海底表层为淤泥、粉质粘土、淤泥质粉砂,粉土底部沉积物以细砂为主,承载力相对较大,可作持力层。和粉砂层,承载力小,易液化,不适宜作持力层;而黄河口海域多为黄河泥沙冲淤海底,因此,渤海的大部分海域为淤泥质软基海底,冲刷现象也较为严重,且冬季有冰荷载的作用,不宜采用重力式基础和负压桶基础,可采用单桩结构。单桩结构在海床活动区域和海底冲刷区域是非常有利的,主要是缘于其对水深变化的灵活性。相比黄河口海域,长江口、杭州湾、珠江口受潮汐影响大,水流速度较快,近场区分布有多个岛屿,造成海底地层的岩面起伏大,且容易受到台风等气象因素影响,宜采用重力式或多桩式结构。

海上风电基础桩及塔桶油漆配套方

海上风电基础桩及塔桶油漆配套方案及涂装施工技术手册 江苏道蓬科技有限公司

目录 一、钢材表面处理 (1) 二、施工环境要求 (7) 三、油漆施工一般要求 (9) 四、涂层完工检验 (12) 五、储罐油漆配套及施工注意事项 (13) 六、HSE............................................................................................... 18

一、钢材表面处理 (一)结构前处理: 打磨锐边:锐边处漆膜变薄,极易受损,一般要求打磨到半径不 小于1 毫米。 焊缝的处理:焊缝表面实际上很粗糙,不利于油漆的附着,因此 必须将焊缝磨光顺,焊接飞溅及焊渣也必须清除干净 (二)除油 钢结构表面的油污会直接影响到表面预处理的质量。采用喷砂除锈,钢材表面的油污会污染磨料,钢材表面也会残留油污,严重影响油漆的附着力。 油和油脂必须用乳化清洁剂清除,小范围的清洁可以用溶剂但这 种方法决不可以用在漆膜表面。同时,要不断地更换抹布和溶剂以确保使用的抹布是干净的。如果冲水后留有明显水滴,那就意味着施工表面还有油/油脂,重复清洁步骤。 1

(三)除盐分 可溶性盐:工件表面的可溶性盐会对油漆的防腐能力造成不利的影响,会导致油漆起泡等缺陷,使油漆过早失效。 稀释剂不能将可溶性盐除掉,有效的办法是用淡水冲洗,或喷砂除锈和打磨也可除去表面的可溶性盐分。 (四)氧化皮、旧涂膜等其他污物的清除 在喷砂除锈前,较松散的氧化皮,老化涂层等需用动力工具除去,以免污染砂子、降低除锈效率。 1、表面清洁-喷砂或抛丸除锈 作业系统由空气压缩机、水冷却的后冷却器、储气罐、输气 管、气鼓、喷砂罐、输砂管、喷嘴组成。生产前应仔细检查各种设备,确保处于完好状态。 清除冷却器、储气罐等附件内的积水及油污。 连接好输气/输砂管道及喷嘴,尽可能缩短喷砂罐与工作位 置的距离,并保证各连接端不漏气。 a.缩短喷砂机到工作位置的距离能更有效地减少压降,为此应 准备几种标准长度的输砂管,视情况选用。 b.无论是风管或砂管在工作中均应尽量保持顺直,过多的转弯 /盘绕将增加压降和砂管的磨损。 c.连接管道时要检查胶管是否完好,接头是否牢固,接头连接 2

海上风电场单桩基础施工技术方案研究

海上风电场单桩基础施工技术方案研究 摘要:随着国内海上风电的开发,风电场建设各方面技术均日益成熟。风机机组逐步大型化,风机基础随之呈现多样化趋势。单桩基础为主流基础型式之一,国内针对大体型单桩基础的施工方案随着江苏、福建等海域的海上风电场工程的建设,进行了深入细致的研究,各种施工方案代表了目前国内近海海域单桩基础施工的先进施工思路与水平,船机设备的选择也符合目前国内现有大型工程船只的资源条件。 关键词:海上风电;单桩基础;浮式起重船 近年来,国内海上风电建设飞速发展,风机基础型式多样化,目前已经应用的海上风电基础施工方案有单桩基础、多桩基础、重力式基础等,其中单桩基础因其结构简单、施工方便快捷、造价相对较低等优点,受到施工单位和建设单位的青睐,是目前海上风电基础的主要类型。 单桩基础由大直径钢管桩与附属构件组成,根据目前国内海上风电项目的最新数据获悉,单桩基础的钢管桩直径已达到8m以上,桩重则突破1500t。钢管桩由液压冲击锤沉入海床,海上沉桩系统主要包括打桩船、运桩船、抛锚艇、拖轮与交通艇等船舶组合,其中以打桩船为主要施工设备。施工前,需根据钢管管桩设计参数与海洋环境的特点对沉桩的各环节进行分析,选择合适的设备配置。根据目前各海上风电场工程的实施,单桩基础包括非嵌岩桩和嵌岩桩两种情况,本文主要介绍非嵌岩单桩基础常规采用的浮式起重船施工方案。 1.船只设备的选择 单桩基础常采用起重船配置打桩锤进行吊打施工。大型浮式起重船在单桩基础施工中,主要承担单桩结构的起吊、立桩、进龙口、稳桩、定位等作业,吊打沉桩之前全部的准备工作将由其完成,因此对浮式起重船的性能要求很高。如采用无法单独完成钢管桩空中翻身工作的全回转式起重船,则需配置辅助起重船,采用双船抬吊的方式完成管桩的空中起吊、翻身的工作。 辅助起重船可利用全回转起重船配合完成,主臂架操作灵活,便于与主起重船的协调配合进行空中操作。 2.锤击沉桩系统 目前大型的海上打桩机械主要有筒式柴油打桩锤、液压打桩锤、液压振动锤三种型式,其中以柴油打桩锤应用最为广泛,但考虑到海上风电单桩基础钢管桩属于超长大直径钢管桩,承载力要求高,对锤击能力要求较高,同时采用吊打的沉桩施工方式,使用柴油锤需增加一定的临时设施才可以进行沉桩施工,降低了其使用优越性。根据国内已施工的风机单桩基础相关施工经验,通常选择大型液压冲击锤进行锤击沉桩。 液压冲击锤属于大当量打击能力的打桩锤,根据地质条件、钢管桩的特性选择合适的打桩锤,并可采用GRLWEAP等软件进行沉桩可打性分析。 在国内龙源振华、中交三航局、中铁大桥局、中海油等多家海上施工单位具有S1200、S1800、S2000、S3000等级别大型液压打桩锤可供选择。 3.辅助定位稳桩平台 辅助定位稳桩平台设施是保证单管桩沉桩施工精度控制的主要配套设施,也是整个施工方案的关键工艺。稳桩平台上需设置扶正、导向装置,以调整大直径钢管桩的垂直度,稳桩平台的安装位置决定了钢桩沉桩的桩位,故必须严格控制稳桩平台的测量放样定位的准确度,特别要控制下桩龙口的定位精度。

海上风电施工简介(经典)

海上风电施工简介 目录 1 海上风电场主要单项工程施工方案 (1) 1.1 风机基础施工方案 (1) 1.2 风机安装施工方案 (13) 1.3 海底电缆施工方案 (19)

1.4海上升压站施工方案 (23) 2 国内主要海上施工企业以及施工能力调研 (35) 2.1 中铁大桥局 (35) 2.2 中交系统下企业 (41) 2.3 中石(海)油工程公司 (46) 2.4 龙源振华工程公司 (48) 3 国内海洋开发建设领域施工业绩 (52) 3.1 跨海大桥工程 (52) 3.2 港口设施工程 (55) 3.3 海洋石油工程 (55) 3.4 海上风电场工程 (58) 4 结语 (59)

1 海上风电场主要单项工程施工方案 1.1 风机基础施工方案 国外海上风电起步较早,上世纪九十年代起就开始研究和建设海上试验风电场,2000年后,随风力发电机组技术的发展,单机容量逐步加大,机组可靠性进一步提高,大型海上风电场开始逐步出现。国外海上风机基础一般有单桩、重力式、导管架、吸力式、漂浮式等基础型式,其中单桩、重力式和导管架基础这三种基础型式已经有了较成熟的应用经验,而吸力式和漂浮式基础尚处于试验阶段。舟山风电发展迅速。 目前国内海上风机基础尚处于探索阶段,已建成的四个海上风电项目,除渤海绥中一台机利用了原石油平台外,上海东海大桥海上风电场和响水近海试验风电场均采用混凝土高桩承台基础,江苏如东潮间带风电场则采用了混凝土低桩承台、导管架及单桩三种基础型式。 图1.1-1 重力式基础型式 图1.1-2 多桩导管架基础型式

图1.1-3 四桩桁架式导管架基础型式图1.1-4单桩基础型式 图1.1-5 高桩混凝土承台基础型式图1.1-6低桩承台基础型式基于国内外海上、滩涂区域风电场的建设经验,结合普陀6号海上风电场2区工程的特点及国内海洋工程、港口工程施工设备、施工能力,可研阶段重点考察桩式基础,并针对5.0MW风电机组拟定五桩导管架基础、高桩混凝土承台基础和四桩桁架式导管架基础作为代表方案进行设计、分析比较。 1.1.1 多桩导管架基础施工 图1.1-7 五桩导管架基础型式图1.1-8 四桩桁架式基础型式

截至2017年8月我国在建海上风电项目概况

截至2017年8月我国在建海上风电项目概况 截止2017年8月31日,我国开工建设的海上风电项共19个,项目总装机容量4799.05MW。项目分布在江苏、福建、浙江、广东、河北、辽宁和天津七个省(市、区)海域,其中江苏8个在建项目共计2305.55MW,福建6个在建项目共计1428.4MW,浙江、广东、河北、辽宁和天津分别有1个在建项目。 在建的19个海上风电项目里,使用(拟使用)上海电气机组总容量为2232MW;使用(拟使用)金风科技机组总容量为964.15MW;使用(拟使用)明阳智慧能源机组总容量为567MW;使用(拟使用)远景能源机组总容量为400.8MW;使用中国海装机组总容量为110MW;使用西门子歌美飒机组总容量为90MW。 一、华能如东八角仙300MW海上风电项目 华能如东八角仙300MW海上风电项目 开发商:华能如东八仙角海上风力发电有限责任公司。 项目概况:项目位于江苏省南通市如东县小洋口北侧八仙角海域,分南区和北区两部分,共安装风电70台,总装机容量302.4MW,配套建设两座110千伏海上升压站和一座220千伏陆上升压站。北区项目面积36平方千米,平均岸距15千米,平均水深0-18米,装机容量156MW,安装14台上海电气SWT-4.0-130机组和20台中国海装5.0MW机组(H171-5MW、H151-5MW两种机型都有安装),北区装机共34台;南区项目面积46平方千米,平均岸距25千米,平均水深0-8

米;装机容量146.4MW,安装远景能源EN-136/4.2机组12台和上海电气SWT-4.0-130机组24台,南区装机共36台。项目造价为约为17000元/kW,总投资约51亿元。 项目进度:2015年1月26日获得江苏省发改委核准,2016年4月份开工建设,2017年9月3日完成全部机组吊装。 二、鲁能江苏东台200MW海上风电场项目 开发商:江苏广恒新能源有限公司。 项目概况:项目位于江苏省东台市东沙沙洲东南部,场区中心离岸距离36km,涉海面积29.8km2,共布置50台上海电气SWT-4.0-130风电机组、一座220kV 海上升压站和一座陆上集控中心,通过35kV海缆将50台机组连接至海上升压站,再通过220kV海缆将海上升压站电能送至陆上集控中心。 项目进度:2015年7月11日东台项目正式启动。2016年4月份开工建设。2016年10月12日正式开始首台机组吊装,2016年12月16日完成首批机组并网发电。首批12台机组与2017年5月28日通过240试运行;2017年7月24日完成全部机组吊装工作。 三、大唐江苏滨海300MW海上风电场 开发商:大唐国信滨海海上风力发电有限公司。 项目概况:项目位于江苏省滨海县废黄河口至扁担港口之间的近海海域,涉海面积150平方公里,平均水深18-22米,平均岸距21千米。项目初期计划安装100台华锐风电3.0MW机组,并于2015年底曾完成海上机组试桩工作。2017年该项目重新进行机组招标,金风科技和明阳风电分别中标150MW。 项目进度:2016年12月19日,该项目220kV海上升压站完成吊装。2017年5月重新进行风电机组招标并于2017年8月公布了机组中标结果,2017年年内完成数台机组的吊装。 四、国华投资江苏分公司东台四期(H2)300MW海上风电场项目 开发商:国华(江苏)风电有限公司。 项目概况:此项目是国华集团第一个获得核准的海上风电项目,位于江苏省东台近海北条子泥海域,风电场中心离岸距离约42公里,平均水深约6米,项目共安装机组75台,总装机容量302.4兆瓦,计划安装63台4.0兆瓦上海电气

海上风电单桩基础局部冲刷研究进展

海上风电单桩基础局部冲刷研究进展 摘要:现如今,我国的经济在快速发展的过程中,我国是新能源快速发展的新 时期,风能作为一种绿色环保的可再生能源具有重要的应用前景,海上风力发电 的研究受到广泛关注。在波浪和潮流荷载作用下,会导致风电桩基周围土体发生 局部冲刷,影响桩基的性能。阐述了海上风电单桩基础局部冲刷的研究进展,综 述了桩基局部冲刷的机理,总结了不同的平衡冲刷深度计算方法,对不同学者的 模型试验、数值计算以及现场观测进行对比分析,探讨其中的不足并提出若干展 望和思考。相关研究成果显示结合现场观测数据和冲刷预测模型的海上风机单桩 基础防冲刷设计是有效的。 关键词:局部冲刷;单桩基础;冲刷深度;耦合作用;海床 引言 近海波浪和水流两种海洋动力对海洋工程影响很大,更是海上风电基础局部 冲刷的主要影响因素。波流共同作用下局部冲刷研究认为,波浪与水流共同作用 和水流单独作用建筑物冲刷形态大致相同,波浪作用非冲刷主要动力,其冲深比 单独水流的冲深值略大。潮流波浪造成风电桩基底床局部冲刷,进而影响风电桩 基结构的稳定。因此,对风电桩基进行冲刷及防护研究具有重要意义。在海洋工 程实践及国内、外研究中,最为常见的海底结构物防冲刷措施有消能减冲和护底 抗冲两种。消能减冲的措施之一是在基础上、下游设置防护桩群,折减流速,将 冲刷坑位置前移,从而减小基础范围内的冲刷深度。护底抗冲措施是利用抛石、 沙枕、沙袋、软体排等结构对桥墩基础及周围进行防护。本次设计防护措施即为 护底抗冲措施。通过正态物理模型对海上风电桩基局部冲刷情况及防护问题进行 研究,在风电桩基局部冲刷的基础上进行防冲方案验证,为风电桩基冲刷防护提 供技术支撑。 1海上风机单桩基础动力环境及冲刷分析 海上的环境比陆地上要恶劣得多,与陆地上的荷载相比,海上的荷载主要是 动力荷载,除地震以外,还有风、波浪、流甚至冰等水平荷载,因此海上风机的 建设较陆上风机需要更为先进的工程技术给予支撑。在过去的10年间,海上风 机的尺寸变得越来越大,为了尽可能地降低成本,海上风机被建成了非常细长的 柔性结构,不恰当的基础设计极有可能造成风机结构在风或波浪等作用下的共振 破坏。如何保障海上风机在风、浪、流及地震等频率迥异的动荷载作用下的安全 稳定仍是目前研究的重点和难点。海上风机桩基础的安全设计中最重要且难度最 大的一个环节便是预测复杂海洋动力条件下的桩基础最大冲刷深度,不足或过于 保守的冲刷设计深度将分别导致建筑物的失稳破坏可能性的增加或施工成本的大 幅上浮。据统计,目前世界范围内已建近海风机基础中75%都使用了大直径单 桩基础,因此欧洲传统的风电强国积累的风机基础设计经验也主要集中在大直径 单桩基础上,涌现出了一大批单桩基础在波流共同作用下的冲刷及防护设计方法。大直径单桩基础是一种极有潜力的新型近海风机基础型式,与一般的桩基础相比,它具有更大的直径,直径一般在3~8m,壁厚一般在30~60mm,长径比 也较传统的桩基小很多,一般在10m左右。 2数值计算与数值模拟 建立的模型包括波浪场、流场、剪应力模型和冲淤形态模型。计算结果与试 验符合较好,最大冲刷深度均在圆柱的侧前方±(45°~90°),与李林普、但计算淤 积范围和高度与实验值有一定差异。基于水气、水土界面捕获,分别选择

海上风电场单桩基础施工技术方案研究

海上风电场单桩基础施工技术方案研究 发表时间:2019-09-05T09:58:08.447Z 来源:《中国电业》2019年第08期作者:夏艳慧[导读] 随着国内海上风电的开发,风电场建设各方面技术均日益成熟。风机机组逐步大型化,风机基础随之呈现多样化趋势。 (中国电建集团华东勘测设计研究院有限公司,浙江杭州 311122) 摘要:随着国内海上风电的开发,风电场建设各方面技术均日益成熟。风机机组逐步大型化,风机基础随之呈现多样化趋势。单桩基础为主流基础型式之一,国内针对大体型单桩基础的施工方案随着江苏、福建等海域的海上风电场工程的建设,进行了深入细致的研究,各种施工方案代表了目前国内近海海域单桩基础施工的先进施工思路与水平,船机设备的选择也符合目前国内现有大型工程船只的资源条件。 关键词:海上风电;单桩基础;浮式起重船 近年来,国内海上风电建设飞速发展,风机基础型式多样化,目前已经应用的海上风电基础施工方案有单桩基础、多桩基础、重力式基础等,其中单桩基础因其结构简单、施工方便快捷、造价相对较低等优点,受到施工单位和建设单位的青睐,是目前海上风电基础的主要类型。 单桩基础由大直径钢管桩与附属构件组成,根据目前国内海上风电项目的最新数据获悉,单桩基础的钢管桩直径已达到8m以上,桩重则突破1500t。钢管桩由液压冲击锤沉入海床,海上沉桩系统主要包括打桩船、运桩船、抛锚艇、拖轮与交通艇等船舶组合,其中以打桩船为主要施工设备。施工前,需根据钢管管桩设计参数与海洋环境的特点对沉桩的各环节进行分析,选择合适的设备配置。根据目前各海上风电场工程的实施,单桩基础包括非嵌岩桩和嵌岩桩两种情况,本文主要介绍非嵌岩单桩基础常规采用的浮式起重船施工方案。 1.船只设备的选择 单桩基础常采用起重船配置打桩锤进行吊打施工。大型浮式起重船在单桩基础施工中,主要承担单桩结构的起吊、立桩、进龙口、稳桩、定位等作业,吊打沉桩之前全部的准备工作将由其完成,因此对浮式起重船的性能要求很高。如采用无法单独完成钢管桩空中翻身工作的全回转式起重船,则需配置辅助起重船,采用双船抬吊的方式完成管桩的空中起吊、翻身的工作。 辅助起重船可利用全回转起重船配合完成,主臂架操作灵活,便于与主起重船的协调配合进行空中操作。 2.锤击沉桩系统 目前大型的海上打桩机械主要有筒式柴油打桩锤、液压打桩锤、液压振动锤三种型式,其中以柴油打桩锤应用最为广泛,但考虑到海上风电单桩基础钢管桩属于超长大直径钢管桩,承载力要求高,对锤击能力要求较高,同时采用吊打的沉桩施工方式,使用柴油锤需增加一定的临时设施才可以进行沉桩施工,降低了其使用优越性。根据国内已施工的风机单桩基础相关施工经验,通常选择大型液压冲击锤进行锤击沉桩。 液压冲击锤属于大当量打击能力的打桩锤,根据地质条件、钢管桩的特性选择合适的打桩锤,并可采用GRLWEAP等软件进行沉桩可打性分析。 在国内龙源振华、中交三航局、中铁大桥局、中海油等多家海上施工单位具有S1200、S1800、S2000、S3000等级别大型液压打桩锤可供选择。 3.辅助定位稳桩平台 辅助定位稳桩平台设施是保证单管桩沉桩施工精度控制的主要配套设施,也是整个施工方案的关键工艺。稳桩平台上需设置扶正、导向装置,以调整大直径钢管桩的垂直度,稳桩平台的安装位置决定了钢桩沉桩的桩位,故必须严格控制稳桩平台的测量放样定位的准确度,特别要控制下桩龙口的定位精度。 定位稳桩平台一般由4根工艺桩、平台主体及平台与桩的连接系统组成。可根据工程地质条件进行计算确定钢管桩直径和桩长等参数。平台主体采用整体制作,现场整体安装,根据工期要求可投入多套周转使用,结构示意图如图1所示。 定位平台上下层分别均匀布置数个千斤顶作为单桩沉桩扶正、导向装置,以调整大直径钢管桩的垂直度,导向滚轮为高分子材料,能够有效保护钢管桩防腐涂层。稳桩平台沉桩工艺已经成功应用在江苏如东、响水、东台等多个海上风电场工程中,有效地保证桩身垂直度在3‰以内,并取得了较好工程效果。 4.单桩沉桩 4.1 船位布置 定位稳桩平台搭设完成后,由现场船舶调度指挥船舶进点就位。主起重船顺潮流方向就位,使定位稳桩平台位于主起重船的左舷或右舷,且船头方向与稳桩平台龙口方向一致。辅起重船同样顺潮流方向就位,船头方向与稳桩平台龙口方向相对。起重船就位完成后,运桩驳停靠辅起重船且桩顶方向尽量向主起重船船头方向靠拢,使吊耳位于主起重船主吊钩下方。

相关文档
最新文档