专题三 第2讲 数列求和及其综合应用

专题三 第2讲 数列求和及其综合应用
专题三 第2讲 数列求和及其综合应用

第2讲 数列求和及其综合应用

[考情分析] 数列求和常与数列的综合应用一起考查,常以解答题的形式出现,有时与函数、不等式综合在一起考查,难度中等偏上. 考点一 数列求和 核心提炼

1.裂项相消法就是把数列的每一项分解,使得相加后项与项之间能够相互抵消,但在抵消的过程中,有的是依次项抵消,有的是间隔项抵消.常见的裂项方式有:

1n (n +1)=1n -1n +1;1n (n +k )=1k ? ????1n -1n +k ;1n 2-1=12? ????1n -1-1n +1;14n 2-1=12? ????

12n -1-12n +1. 2.如果数列{a n }是等差数列,{b n }是等比数列,那么求数列{a n ·b n }的前n 项和S n 时,可采用错位相减法.用错位相减法求和时,应注意:(1)等比数列的公比为负数的情形;(2)在写出“S n ”和“qS n ”的表达式时应特别注意将两式“错项对齐”,以便准确写出“S n -qS n ”的表达式.

考向1 分组转化法求和

例1 已知在等比数列{a n }中,a 1=2,且a 1,a 2,a 3-2成等差数列. (1)求数列{a n }的通项公式;

(2)若数列{b n }满足b n =1

a n

+2log 2a n -1,求数列{b n }的前n 项和S n .

解 (1)设等比数列{a n }的公比为q ,由a 1,a 2,a 3-2成等差数列,得2a 2=a 1+a 3-2, 即4q =2+2q 2-2,解得q =2(q =0舍去), 则a n =a 1q n -1=2n ,n ∈N *.

(2)b n =1a n +2log 2a n -1=12n +2log 22n -1=1

2n +2n -1,

则数列{b n }的前n 项和

S n =????12+14+…+1

2n +(1+3+…+2n -1) =12??

??1-12n 1-12+12n (1+2n -1)=1-12n +n 2.

考向2 裂项相消法求和

例2 (2020·北京昌平区模拟)已知等差数列{a n }满足a 1+a 3=8,a 4-a 2=4. (1)求数列{a n }的通项公式及前n 项和S n ;

(2)记数列????

??1S n 的前n 项和为T n ,若T n >99

100,求n 的最小值.

解 (1)设等差数列{a n }的公差为d ,

依题意有?????

2a 1+2d =8,

a 1+3d -a 1-d =4,

解得?

????

a 1=2,

d =2.

所以a n =2n ,S n =n 2+n ,n ∈N *. (2)因为1S n =1n 2+n =1n -1n +1

所以T n =1S 1+1S 2+…+1S n =????1-12+????12-13+…+? ????1n -1n +1=1-1

n +1. 因为T n >99100,即1-1n +1>99

100,

所以n >99,所以n 的最小值为100. 考向3 错位相减法求和

例3 已知数列{a n }的前n 项和为S n ,a 1=2,a n >0,且a 2n +1-2a n +1a n -3a 2

n =0.

(1)求数列{a n }的通项公式;

(2)设b n =log 3(1+S n ),求数列{a n b n }的前n 项和T n .

解 (1)由a 2n +1-2a n +1a n -3a 2n =0及a n >0,

得? ??

??a n +1a n 2-2×a n +1a n -3=0, 解得a n +1a n =3或a n +1

a n =-1(舍),

所以{a n }是等比数列,且公比q =3, 又a 1=2,所以a n =2·3n -1,n ∈N *. (2)因为S n =2(1-3n )1-3

=3n -1,

所以b n =log 3(1+S n )=n ,则a n b n =2n ·3n -1,

所以T n =2×30+4×31+6×32+…+(2n -2)·3n -2+2n ·3n -1,① 所以3T n =2×31+4×32+6×33+…+(2n -2)·3n -1+2n ·3n ,② ①-②,得(1-3)T n =2+2×31+2×32+2×33+…+2·3n -1-2n ·3n =2(1-3n )1-3

-2n ·3n =(1-

2n )·3n -1,

所以T n =????n -12·3n +1

2.

规律方法 (1)分组转化法求和的关键是将数列通项转化为若干个可求和的数列通项的和差. (2)裂项相消法的基本思路是将通项拆分,可以产生相互抵消的项.

(3)错位相减法求和,主要用于求{a n b n }的前n 项和,其中{a n },{b n }分别为等差数列和等比数列. 跟踪演练1 (1)(2020·武汉江夏一中、汉阳一中联考)若首项为2

3

的数列{a n }满足2(2n +1)a n a n

+1

+a n +1=a n ,则a 1+a 2+a 3+…+a 2 020等于( )

A.8 0804 041

B.4 0784 040

C.4 0404 041

D.4 039

4 040 答案 C

解析 依题意得a n ≠0,由2(2n +1)a n a n +1=a n -a n +1, 等式两边同时除以a n a n +1可得1a n +1-1a n

=4n +2,

则当n ≥2时,1a n -1a n -1=4n -2,1a n -1-1a n -2=4n -6,…,1a 2-1

a 1=6,

以上式子左右两边分别相加可得 1a n -1a 1=(6+4n -2)(n -1)

2, 即1a n =2n 2-12=(2n -1)(2n +1)2

, 所以a n =2(2n -1)(2n +1)=12n -1-12n +1,

当n =1时,a 1=2

3

满足上式.

故a 1+a 2+a 3+…+a 2 020=1-13+13-15+…+14 039-14 041=1-14 041=4 040

4 041

.

(2)已知数列{a n }和{b n }满足a 1=2,b 1=1,a n +1=2a n (n ∈N *),b 1+12b 2+13b 3+…+1

n b n =b n +1

-1(n ∈N *).

①求数列{a n }与{b n }的通项公式; ②记数列{a n b n }的前n 项和为T n ,求T n . 解 ①由a 1=2,a n +1=2a n ,得a n =2n (n ∈N *). 由题意知:

当n =1时,b 1=b 2-1,故b 2=2. 当n ≥2时,1

n b n =b n +1-b n .

整理得b n +1n +1=b n

n

又b 22=b 1

1,所以b n =n (n ∈N *). ②由①知a n b n =n ·2n ,

因此T n =2+2·22+3·23+…+n ·2n , 2T n =22+2·23+3·24+…+n ·2n +1, 所以T n -2T n =2+22+23+…+2n -n ·2n +1. 故T n =(n -1)2n +1+2(n ∈N *). 考点二 数列的综合问题 核心提炼

数列与函数、不等式的综合问题是高考命题的一个方向,此类问题突破的关键在于通过函数关系寻找数列的递推关系,通过放缩进行等式的证明.

例4 (1)(2020·日照模拟)如图,在直角坐标系xOy 中,一个质点从A (a 1,a 2)出发沿图中路线依次经过B (a 3,a 4),C (a 5,a 6),D (a 7,a 8),…,按此规律一直运动下去,则a 2 017+a 2 018+a 2

019+a 2 020等于(

)

A .2 017

B .2 018

C .2 019

D .2 020 答案 C

解析 由直角坐标系可知,A (1,1),B (-1,2),C (2,3),D (-2,4),E (3,5),F (-3,6),即a 1=1,a 2=1,a 3=-1,a 4=2,a 5=2,a 6=3,a 7=-2,a 8=4,…,

由此可知,数列中偶数项是从1开始逐渐递增的,且都等于其项数除以2;每四个数中有一个负数,且为每组的第三个数,每组的第一个数为其组数,每组的第一个数和第三个数是互为相反数,

因为2 020÷4=505,所以a 2 017=505,a 2 018=1 009,a 2 019=-505,a 2 020=1 010, a 2 017+a 2 018+a 2 019+a 2 020=2 019.

(2)(2020·洛阳第一高级中学月考)已知数列{a n }满足a 1+12a 2+…+1n a n =n 2+n (n ∈N *),设数列

{b n }满足b n =2n +1a n a n +1,数列{b n }的前n 项和为T n ,若T n

n +1λ(n ∈N *)恒成立,则λ的取值范

围是( ) A.????1

4,+∞ B.????1

4,+∞ C.????3

8,+∞ D.???

?3

8,+∞ 答案 D

解析 因为a 1+12a 2+…+1

n

a n =n 2+n (n ∈N *),

所以 a 1+12a 2+…+1

n -1a n -1=(n -1)2+(n -1)(n ∈N *,n ≥2),

故1

n a n =2n ,即a n =2n 2(n ≥2). 当n =1时,a 1=12+1=2,满足上式, 故a n =2n 2(n ∈N *).

b n =2n +14n 2×(n +1)

2=14??????1n 2-1(n +1)2, 故T n =14????

??????112-122+????122-132+…+1n 2-1(n +1)2 =14??????1-1(n +1)2=n 2

+2n 4(n +1)2

故T n

)恒成立等价于n 2+2n 4(n +1)2

因为14+14(n +1)≤14+18=38,故λ>3

8

.

易错提醒 (1)公式a n =S n -S n -1适用于所有数列,但易忽略n ≥2这个前提.

(2)数列和不等式的综合问题,要注意条件n ∈N *,求最值要注意等号成立的条件,放缩不等式要适度.

跟踪演练2 (1)(2020·中国人民大学附属中学模拟)在数列{a n }中,已知a n =n 2+λn ,n ∈N *,则“a 1

答案 C

解析 若在数列{a n }中,已知a n =n 2+λn ,n ∈N *,a 1-3,若数列{a n }是单调递增数列,则对任意的n ∈N *都满足a n +1-a n =(n +1)2+λ(n +1)-n 2-λn =2n +1+λ>0,

∴λ>-1-2n ,即λ>(-1-2n )max =-3,

因此,“a 1

(2)设等差数列{a n }的前n 项和为S n ,已知a 1=9,a 2为整数,且S n ≤S 5,则数列????

??

1a n a n +1的前

n 项和的最大值为( ) A.49 B .1 C.4181 D.151315 答案 A

解析 由a 1=9,a 2为整数, 可知等差数列{a n }的公差d 为整数. ∵S n ≤S 5,∴a 5≥0,a 6≤0,

则9+4d ≥0,9+5d ≤0,解得-94≤d ≤-95,

∴d =-2,∴a n =9-2(n -1)=11-2n . ∴

1a n a n +1=1(11-2n )(9-2n )=12?

????1

9-2n -111-2n ,

∴数列?

??

??????

?1a n a n +1的前n 项和为 12??????????17-19+????15-17+…+? ????19-2n -111-2n =12? ????19-2n -19. 令b n =19-2n

易知0

9

. 专题强化练

一、选择题

1.(2020·聊城模拟)数列1,6,15,28,45,…中的每一项都可用如图所示的六边形表示出来,故称它们为六边形数,那么第10个六边形数为( )

A .153

B .190

C .231

D .276 答案 B

解析 由题意知,数列{a n }的各项为1,6,15,28,45,…,

所以a 1=1=1×1,a 2=6=2×3,a 3=15=3×5,a 4=28=4×7,a 5=45=5×9,…,a n =n (2n -1),

所以a 10=10×19=190.

2.(2020·威海模拟)等差数列{a n }的前n 项和记为S n ,若a 1>0,S 10=S 20,则下列结论错误的是( ) A .d <0 B .a 16<0

C .S n ≤S 15

D .当且仅当S n <0时,n ≥32

答案 D

解析 因为等差数列{a n }中,S 10=S 20,

所以a 11+a 12+…+a 19+a 20=5(a 15+a 16)=0, 又a 1>0,所以a 15>0,a 16<0, 所以d <0,S n ≤S 15,故ABC 正确;

因为S 31=31(a 1+a 31)

2

=31a 16<0,故D 错误.

3.已知数列{a n }满足a n +1=a n -a n -1(n ≥2,n ∈N *),a 1=1,a 2=2,S n 为数列{a n }的前n 项和,则S 2 020等于( ) A .3 B .2 C .1 D .0 答案 A

解析 ∵a n +1=a n -a n -1(n ≥2,n ∈N *),a 1=1,a 2=2,∴a 3=1,a 4=-1,a 5=-2,a 6=-1,a 7=1,a 8=2,……,故数列{a n }是周期为6的周期数列,且每连续6项的和为0,故S 2 020=336×0+a 2 017+a 2 018+a 2 019+a 2 020=a 1+a 2+a 3+a 4=3.故选A.

4.(2020·浙江)已知等差数列{a n }的前n 项和为S n ,公差d ≠0,a 1

d ≤1.记b 1=S 2,b n +1=S 2n +2

-S 2n ,n ∈N *,下列等式不可能成立的是( ) A .2a 4=a 2+a 6 B .2b 4=b 2+b 6 C .a 24=a 2a 8 D .b 24=b 2b 8

答案 D

解析 方法一 由题意,知b 1=S 2=a 1+a 2, b n +1=S 2n +2-S 2n =a 2n +1+a 2n +2, 可得b n =a 2n -1+a 2n (n >1,n ∈N *). 由{a n }为等差数列,可知{b n }为等差数列.

选项A 中,由a 4为a 2,a 6的等差中项,得2a 4=a 2+a 6,成立. 选项B 中,由b 4为b 2,b 6的等差中项,得2b 4=b 2+b 6,成立. 选项C 中,a 2=a 1+d ,a 4=a 1+3d ,a 8=a 1+7d .

由a 24=a 2a 8,可得(a 1+3d )2=(a 1+d )(a 1+7d ),

化简得a 1d =d 2,

又由d ≠0,可得a 1=d ,符合a 1

d ≤1,成立.

由A ,B ,C 均符合题意要求,可知选D.

方法二 由题意,知b 1=S 2=a 1+a 2, b n +1=S 2n +2-S 2n =a 2n +1+a 2n +2, 可得b n =a 2n -1+a 2n (n >1,n ∈N *),

则b 2=a 3+a 4=2a 1+5d ,b 4=a 7+a 8=2a 1+13d , b 8=a 15+a 16=2a 1+29d .

由b 24=b 2b 8,知(2a 1+13d )2=(2a 1+5d )(2a 1+29d ),

化简得2a 1d =3d 2, 又由d ≠0,可得a 1d =3

2

.

这与已知条件a 1

d

≤1矛盾.故选D.

5.数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为( ) A .3 690 B .3 660 C .1 845 D .1 830 答案 D

解析 不妨令a 1=1,则a 2=2,a 3=a 5=a 7=…=a 2n -1=1,a 4=6,a 6=10,…,所以当n 为奇数时,a n =1;当n 为偶数时,构成以a 2=2为首项,4为公差的等差数列,所以{a n }的前60项和为30+2×30+30×(30-1)

2

×4=1 830.

6.已知数列{a n }和{b n }的首项均为1,且a n -1≥a n (n ≥2),a n +1≥a n ,数列{b n }的前n 项和为S n ,且满足2S n S n +1+a n b n +1=0,则S 2 021等于( ) A .2 021 B.12 021 C .4 041 D.1

4 041

答案 D

解析 由a n -1≥a n (n ≥2),a n +1≥a n 可得a n +1=a n , 即数列{a n }是常数列,

又数列{a n }的首项为1,所以a n =1,

所以当S n S n +1≠0时,2S n S n +1+a n b n +1=0可化为2S n S n +1+b n +1=0, 因为S n 为数列{b n }的前n 项和,

所以2S n S n +1+b n +1=2S n S n +1+(S n +1-S n )=0,

所以1S n +1-1S n

=2,又1S 1=1b 1=1,

因此数列????

??

1S n 是以1为首项,2为公差的等差数列,

所以1

S n =1+2(n -1)=2n -1,

故S n =1

2n -1,即S n S n +1≠0.

所以S 2 021=1

4 041

.

7.已知数列{a n }的前n 项和为S n ,点(n ,S n +3)(n ∈N *)在函数y =3×2x 的图象上,等比数列{b n }满足b n +b n +1=a n (n ∈N *),其前n 项和为T n ,则下列结论正确的是( ) A .S n =2T n B .T n =2b n +1 C .T n >a n D .T n

答案 D

解析 由题意可得S n +3=3×2n ,S n =3×2n -3,a n =S n -S n -1=3×2n -1(n ≥2),当n =1时,a 1=S 1=3×21-3=3,满足上式,所以数列{a n }的通项公式为a n =3×2n -1(n ∈N *).设等比数列{b n }的公比为q ,则b 1q n -1+b 1q n =3×2n -1,解得b 1=1,q =2,数列{b n }的通项公式为b n =2n -1(n ∈N *),由等比数列的求和公式有T n =2n -1.则有S n =3T n ,T n =2b n -1,T n

+1.故选

D.

8.定义在[0,+∞)上的函数f (x )满足:当0≤x <2时,f (x )=2x -x 2;当x ≥2时,f (x )=3f (x -2).记函数f (x )的极大值点从小到大依次为a 1,a 2,…,a n ,…,并记相应的极大值依次为b 1,b 2,…,b n ,…,则S 20=a 1b 1+a 2b 2+…+a 20b 20的值为( ) A .19×320+1 B .19×319+1 C .20×319+1 D .20×320+1

答案 A

解析 当0≤x <2时,f (x )=2x -x 2=1-(x -1)2,可得a 1=1,b 1=1;当2≤x <4时,有0≤x -2<2,可得f (x )=3f (x -2)=3[1-(x -3)2],可得a 2=3,b 2=3;当4≤x <6时,有0≤x -4<2,可得f (x )=9f (x -4)=9[1-(x -5)2],可得a 3=5,b 3=9;…;a 20=39,b 20=319;….故S 20=a 1b 1+a 2b 2+…+a 20b 20=1×1+3×3+5×9+…+39×319,3S 20=1×3+3×9+5×27+…+39×320,两式相减可得-2S 20=1+2(3+9+27+…+319)-39×320=1+2×

3×(1-319)1-3

39×320,化简可得S 20=1+19×320.故选A. 二、填空题

9.数列{a n }的通项公式为a n =1n +n +1

,若该数列的前k 项之和等于9,则k =________.

答案 99 解析 a n =

1n +

n +1

n +1-n ,故前n 项和S n =(2-1)+(3-2)+…+(

n +1

-n )=n +1-1,令S k =

k +1-1=9,解得k =99.

10.设数列{a n }满足a 1=1,且a n +1a n =n +2

n +1

(n ∈N *),则数列{a n }的通项公式a n =________,数

列????

??

1a n a n +1的前10项和为________. 答案

n +12 5

3

解析 因为a n +1a n =n +2

n +1

所以a 2a 1=32,a 3a 2=43,a 4a 3=54,…,a n a n -1=n +1n (n ≥2),

把它们左右两边分别相乘,得a n =n +12(n ≥2),

当n =1时,a 1=1也符合上式, 所以a n =n +1

2

(n ∈N *).

所以1a n a n +1=4(n +1)(n +2)=4? ??

??1n +1-1n +2,

所以数列?

????????

?1a n a n +1的前10项和为

4×????12-13+13-14+…+111-112=4×????12-112=53

. 11.(2020·潍坊模拟)定义函数f (x )=[x [x ]],其中[x ]表示不超过x 的最大整数,例如:[1.3]=1,[-1.5]=-2,[2]=2,当x ∈[0,n )(n ∈N *)时,f (x )的值域为A n .记集合A n 中元素的个数为a n ,则∑i =2

2 020

1

a i -1的值为________.

答案

2 019

1 010

解析 ∵[x ]表示不超过x 的最大整数,

∴当x ∈[0,n )(n ∈N *

)时,[x ]=?????

0,x ∈[0,1),

1,x ∈[1,2),

…,

n -1,x ∈[n -1,n ),

∴x [x ]=?????

0,x ∈[0,1),

x ,x ∈[1,2),

…,

(n -1)x ,x ∈[n -1,n ),

∴[x [x ]]在各区间内的元素个数为1,1,2,3,…,n -1.

∴a n =1+1+2+3+…+(n -1)=1+(1+n -1)(n -1)2=1+n (n -1)

2,

∴1a n -1=2n (n -1)=2? ??

??

1n -1-1n , ∴∑i =22 020

1a i -1=2∑i =2

2 020 ? ????1i -1-1i =2????1-12 020=2 0191 010.

12.已知数列{a n }满足a 1=1,a n +1=a n a n +2(n ∈N *),b n +1=(n -2λ)·????1a n +1(n ∈N *),b 1=-λ,且数列{b n }是单调递增数列,则实数λ的取值范围是________. 答案 ????-∞,23 解析 由a n +1=

a n a n +2,取倒数可得1a n +1=2a n +1,即1a n +1

+1=2????1a n +1,所以数列??????

1a n +1是首项为1a 1+1=2,公比为2的等比数列,所以1a n +1=2n ,所以b n +1=(n -2λ)·????1a n +1=(n -2λ)·2n ,则b n =(n -1-2λ)·2n -1(n ≥2).当n =1时,b 1=-λ不符合上式,所以b n =

???

??

-λ,n =1,

(n -1-2λ)·

2n -1

,n ≥2,因为数列{b n }是单调递增数列,所以当n ≥2时,b n +1>b n ,即(n

-2λ)·2n >(n -1-2λ)·2n -1,解得n >2λ-1,所以2>2λ-1,λ<3

2;当n =1时,b 2>b 1,即(1-2λ)·2>

-λ,解得λ<23.综上,λ<2

3.

三、解答题

13.(2020·桂林期末)已知数列{a n }中,a 1=1,其前n 项和记为S n ,a n +1=2S n +1(n ∈N *). (1)求数列{a n }的通项公式;

(2)设b n =log 3a n +1,求数列{a n +b n }的前n 项和T n . 解 (1)由题意,得a n +1=2S n +1,a n =2S n -1+1(n ≥2), 两式相减,得a n +1-a n =2(S n -S n -1)=2a n (n ≥2), a n +1=3a n ,

又∵a 2=2S 1+1=2a 1+1=3,a 2

a 1=3,

∴a n +1a n

=3(n ∈N *), ∴{a n }是首项为1,公比为3的等比数列, ∴a n =3n -1.

(2)由(1)可知a n =3n -1,则a n +1=3n , ∴b n =log 3a n +1=log 33n =n ,

∴a n +b n =3n -1+n 为等比数列与等差数列的和. 利用分组转化法求和可得

T n =(30+1)+(31+2)+(32+3)+…+(3n -1+n ) =(30+31+32+…+3n -1)+(1+2+3+…+n ) =1-3n 1-3

+n (1+n )2=3n +n 2+n -12.

14.已知数列{a n }的前n 项和为S n ,满足S n =2a n -1(n ∈N *),数列{b n }满足nb n +1-(n +1)b n =n (n +1)(n ∈N *),且b 1=1.

(1)证明数列????

??

b n n 为等差数列,并求数列{a n }和{b n }的通项公式;

(2)若c n =(-1)n -

1·4(n +1)(3+2log 2a n )(3+2log 2a n +1)

,求数列{c n }的前2n 项和T 2n ;

解 (1)由nb n +1-(n +1)b n =n (n +1),两边同除以n (n +1),得b n +1

n +1-b n

n

=1,

从而数列????

??b n n 为首项b 1

1=1,公差d =1的等差数列,

所以b n

n

=n (n ∈N *),

数列{b n }的通项公式为b n =n 2(n ∈N *). 当n =1时,S 1=2a 1-1=a 1,所以a 1=1. 当n ≥2时,S n =2a n -1,S n -1=2a n -1-1, 两式相减得a n =2a n -1, 又a 1=1≠0,所以a n

a n -1

=2,

从而数列{a n }为首项a 1=1,公比q =2的等比数列, 从而数列{a n }的通项公式为a n =2n -1(n ∈N *). (2)c n

=(-1)n -1·

????

??4(n +1)(2n +1)(2n +3) =(-1)

n -1

? ??

??12n +1+12n +3, T 2n =c 1+c 2+c 3+…+c 2n -1+c 2n =13+15-15-17+…-14n +1-1

4n +3 =13-14n +3

(n ∈N *).

数列求和的教学反思

数列求和的教学反思 数列求和的教学反思 由于数列的求和在求解的方法中比较多,学生难以一次性熟练掌握全部的方法并灵活运用,所以在《数列求和》的专题课的教学重点放在了数列求和的前三种重要方法: 1、公式法求和(即直接利用等差数列和等比数列的求和公式进行求和); 2、利用叠加法、叠乘法将已知数列转化为等差数列或等比数列再行求和; 3、对于数列的通项是由等差乘以等比数列构成的,用乘公比错位相减求和法。 从实际教学效果看教学内容安排得符合学生实际,由浅入深,比较合理,基本达到了这节课预期的教学目标及要求。结合自我感觉、工作室评课、学生反馈,这节课比较突出的有以下几个优点。 1、注重“三基”的训练与落实 数列部分中两种最基本最重要的数列就是等差数列和等比数列,很多数列问题包括数列求和都是围绕这两种特殊数列展开的,即使不能直接利用等差数列和等比数列公式求和,也可根据所给数列的

不同特点,合理恰当地选择不同方法转化为等差数列或等比数列再行求和。因此上课伊始做为本节课的知识必备,就要求学生强化等差数列和等比数列求和公式的记忆。其次本节课充分渗透了转化的数学思想方法,并且通过典型例题使学生体会并掌握根据所给求和数列的不同特点,分别采用叠加法或叠乘法将所给数列转化为等差数列或等比数列再行求和的基本技能。 2、例、习题的选配典型,有层次 一方面精选近年典型的高考试题、模拟题做为例、习题,使学生通过体会和掌握,达到举一反三的目的;另一方面结合学生实际,自行编纂或改编了一些题目,或在原题基础上降低了难度,设计出了层次,或在学生易错的地方设置了陷阱,提醒学生留意。同时所配的课堂练习也充分注意了题目的难易梯度,把握了层次性,由具体数字运算到字母运算,由直接给出数列各项到用分段函数形式抽象表述数列,由单一方法适用到能够一题多解等等。 3、对学生可能出现的问题有预见性,并能有针对性地对症下药进行设计 对于直接利用公式求和的等差数列或等比数列求和问题,预见到学生的关键问题应该出在搞不清

(完整版)数列求和常见的7种方法

数列求和的基本方法和技巧 一、总论:数列求和7种方法: 利用等差、等比数列求和公式 错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和 分段求和法(合并法求和) 利用数列通项法求和 二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法, 三、逆序相加法、错位相减法是数列求和的二个基本方法。 数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧. 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= 2、等比数列求和公式:?????≠--=--==) 1(11)1()1(111 q q q a a q q a q na S n n n 3、 )1(211+==∑=n n k S n k n 4、)12)(1(611 2 ++==∑=n n n k S n k n 5、 21 3)]1(21[+== ∑=n n k S n k n [例1] 已知3 log 1log 23-= x ,求???++???+++n x x x x 32的前n 项和. 解:由2 1 2log log 3log 1log 3323=?-=?-= x x x

由等比数列求和公式得 n n x x x x S +???+++=32 (利用常用公式) =x x x n --1)1(= 2 11)211(21--n =1-n 21 [例2] 设S n =1+2+3+…+n ,n ∈N *,求1 )32()(++= n n S n S n f 的最大值. 解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(2 1 ++=n n S n (利用常用公式) ∴ 1)32()(++= n n S n S n f =64 342++n n n = n n 64341+ += 50 )8(12+- n n 50 1≤ ∴ 当 8 8- n ,即n =8时,501)(max =n f 二、错位相减法求和 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. [例3] 求和:1 32)12(7531--+???++++=n n x n x x x S ………………………① 解:由题可知,{1 )12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1 -n x }的通项之积 设n n x n x x x x xS )12(7531432-+???++++=………………………. ② (设制错位) ①-②得 n n n x n x x x x x S x )12(222221)1(1432--+???+++++=-- (错位相减) 再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1 ----? +=-- ∴ 2 1)1() 1()12()12(x x x n x n S n n n -+++--=+ [例4] 求数列 ??????,2 2,,26,24,2232n n 前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 2 1 }的通项之积

数列求和、数列的综合应用

数列求和、数列的综合应用 挖命题 【考情探究】 考点:1.数列求和; 2.数列的综合应用。 内容解读:①掌握非等差、等比数列求和的几种常见方法. ②能在具体的问题情境中识别数列的等差关系或等比关系,抽象出数列的模型,并能用有关知识解决相应的问题 分析解读 1.会用公式法、倒序相加法、错位相减法、裂项相消法、分组转化法求解不同类型数列的和. 2.能综合利用等差、等比数列的基本知识解决相关综合问题. 3.数列递推关系、非等差、等比数列的求和是高考热点,特别是错位相减法和裂项相消法求和.分值约为12分,难度中等. 破考点 【考点集训】 考点一数列求和 1.(2017湖南郴州第一次教学质量监测,6)在等差数列{a n}中,a4=5,a7=11.设b n=(-1)n·a n,则数列{b n}的前100项之和S100=( ) A.-200 B.-100 C.200 D.100 答案 D 2.(2018湖北东南省级示范高中联考,15)已知S n为{a n}的前n项和,若a n(4+cos nπ)=n(2-cos nπ),则S88等于. 答案2332 3.(2018江西吉安一中、九江一中等八所重点中学4月联考,13)若{a n},{b n}满足 a n b n=1,a n=n2+3n+2,则{b n}的前2018项和为. 答案 1 009 2 020 考点二数列的综合应用

1.(2018福建漳州期末调研测试,5)等差数列{a n}和等比数列{b n}的首项均为1,公差与公比 均为3,则a b 1+a b 2 +a b 3 =( ) A.64 B.32 C.38 D.33 答案 D 2.(2017陕西西安铁一中第五次模拟,9)已知数列{a n}满足a n=log(n+1)(n+2)(n∈N*),我们把使乘积a1·a2·a3·…·a n为整数的数n叫做“优数”,则在区间(1,2004)内的所有“优数”的和为( ) A.1024 B.2003 C.2026 D.2048 答案 C 3.已知a n=3n(n∈N*),记数列{a n}的前n项和为T n,若对任意的n∈N*,(T n+3 2 )k≥3n-6恒成立,则实数k的取值范围是. 答案k≥2 27 炼技法 【方法集训】 方法1 错位相减法求和 1.(2018福建闽侯第八中学期末,16)已知数列{na n}的前n项和为S n,且a n=2n,则使得S n-na n+1+50<0的最小正整数n的值为. 答案5 2.(2018河南安阳第二次模拟,17)设等差数列{a n}的前n项和为S n,点(n,S n)在函数f(x)=x2+Bx+C-1(B,C∈R)的图象上,且a1=C. (1)求数列{a n}的通项公式; (2)记b n=a n(a2n-1+1),求数列{b n}的前n项和T n. 解析(1)设数列{a n}的公差为d, 则S n=na1+n(n-1) 2d=d 2 n2+(a1-d 2 )n, 又S n=n2+Bn+C-1,两式对照得{d 2 =1, C-1=0, 解得{ d=2, C=1, 所以a1=1, 所以数列{a n}的通项公式为a n=2n-1(n∈N*). (2)由(1)知b n=(2n-1)(2·2n-1-1+1)=(2n-1)2n,

四年级奥数思维训练专题-巧妙求和

四年级奥数思维训练专题-巧妙求和(一) 专题简析:若干个数排成一列称为数列.数列中的每一个数称为一项.其中第一项称为首项,最后一项称为末项,数列中项的个数称为项数. 相邻两项的差都相等的数列称为等差数列,后项与前项的差称为公差. 通项公式:第n项=首项+(项数-1)×公差 项数公式:项数=(末项-首项)÷公差+1 例1:有一个数列:4,10,16,22,…,52,这个数列共有多少项?分析:容易看出这是一个等差数列,公差为6,首项是4,末项是52,要求项数,可直接带入项数公式进行计算. 项数=(52-4)÷6+1=9 答:这个数列共有9项. 试一试1:有一个等差数列:2,5,8,11,…,101,这个等差数列共有多少项? 例2:有一等差数列:3,7,11,15,……,这个等差数列的第100项是多少? 分析:这个等差数列的首项是3,公差是4,项数是100.要求第100项,可根据“末项=首项+公差×(项数-1)”进行计算. 第100项=3+4×(100-1)=399

试一试2:求1,4,7,10……这个等差数列的第30项. 例3:有这样一个数列:1,2,3,4,…,99,100.请求出这个数列所有项的和. 分析:等差数列总和=(首项+末项)×项数÷2 1+2+3+…+99+100=(1+100)×100÷2=5050 试一试3:6+7+8+…+74+75 例4:求等差数列2,4,6,…,48,50的和. 分析:项数=(末项-首项)÷公差+1 =(50-2)÷2+1=25 首项=2,末项=50,项数=25 等差数列的和=(2+50)×25÷2=650 试一试4:9+18+27+36+…+261+270 巧妙求和(二) 专题简析:

常见的数列求和及应用

常见的数列求和及应用 常见的数列求和及应用 一、自主探究 1、等差数列的前n项和公式:。 2、等比数列的前n项和公式: ①当时,; ②当时, = 。 3、常见求和公式有: ①1+2+3+4+…+②1+3+5+…+(2n-1)= ※③※④ 二、典例剖析 (一)、分组求和法:某些数列,通过适当分组,可得出两个或几个等差数列或等比数列,进而利用公式分别求和,从而得出原数列的和。 例1 已知,求数列{}的前n项和。 变式练习:已知,求数列{}的前n项和。 (二)、裂项求和法:如果数列的通项公式可转化为形式,常采用裂项求和的方法。特别地,当数列形如,其中是等差数列,可采用此法 例2 求和:() 变式练习:已知数列的通项公式,求数列{}的前n

项和。 (三)、奇偶并项法:当数列通项中出现时,常常需要对n取值的奇偶性进行分类讨论。 例3 求和: (四)、倒序相加法:此法主要适用数列前后具有“对称性”,即“首末两项之和相等”的形式。 例4 求在区间内分母是3的所有不可约分数之和。 变式练习:已知且 .求 (五)错位相减法:一般地,如果数列时等差数列,是等比数列,求数列的前项和时,可采用此法,在等式的两边乘以或,再错一位相减。 例5 求和: 变式练习:求和: 三、提炼总结:数列的求和是数列的一个重要内容,它往往是数列知识的综合体现,求和题在试题中更是常见,它常用来考察我们的基础知识,分析问题和解决问题的能力。任何一个数列的前n项和都是从第1项一直加到第n项。数列的求和主要有以下几种方法。⑴公式法;⑵分组求和法;⑶裂项求和法;拆项成差求和经常用到下列拆项公式,请补充完整:① = ;

数列求和常见的7种方法

数列求与得基本方法与技巧 一、总论:数列求与7种方法: 利用等差、等比数列求与公式 错位相减法求与 反序相加法求与 分组相加法求与 裂项消去法求与 分段求与法(合并法求与) 利用数列通项法求与 二、等差数列求与得方法就是逆序相加法,等比数列得求与方法就是错位相减法, 三、逆序相加法、错位相减法就是数列求与得二个基本方法。 数列就是高中代数得重要内容,又就是学习高等数学得基础。在高考与各种数学竞赛中都占有重要得地位、数列求与就是数列得重要内容之一,除了等差数列与等比数列有求与公式外,大部分数列得求与都需 要一定得技巧、下面,就几个历届高考数学与数学竞赛试题来谈谈数列求与得基本方法与技巧、 一、利用常用求与公式求与 利用下列常用求与公式求与就是数列求与得最基本最重要得方法。 1、等差数列求与公式: 2、等比数列求与公式: 3、4、 5、 [例1]已知,求得前n项与。 解:由 由等比数列求与公式得(利用常用公式) ===1- [例2]设S n=1+2+3+…+n,n∈N*,求得最大值、 解:由等差数列求与公式得, (利用常用公式) ∴= == ∴当,即n=8时, 二、错位相减法求与 这种方法就是在推导等比数列得前n项与公式时所用得方法,这种方法主要用于求数列{an·bn} 得前n项与,其中{a n}、{bn}分别就是等差数列与等比数列。 [例3]求与:………………………① 解:由题可知,{}得通项就是等差数列{2n—1}得通项与等比数列{}得通项之积 设………………………。②(设制错位)

①-②得 n n n x n x x x x x S x )12(222221)1(1432--+???+++++=-- (错位相减) 再利用等比数列得求与公式得: ∴ [例4] 求数列前n 项得与、 解:由题可知,{}得通项就是等差数列{2n}得通项与等比数列{}得通项之积 设…………………………………① ………………………………② (设制错位) ①—②得 (错位相减) ∴ 三、反序相加法求与 这就是推导等差数列得前n项与公式时所用得方法,就就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个。 [例5] 求证: 证明: 设…………………………、。 ① 把①式右边倒转过来得 (反序) 又由可得 ………….。……、. ② ①+②得 (反序相加) ∴ [例6] 求得值 解:设…………、 ① 将①式右边反序得 ………….。② (反序) 又因为 ① +②得 (反序相加) )89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++???++++=S =89 ∴ S=44、5 题1 已知函数 (1)证明:; (2)求得值。 解:(1)先利用指数得相关性质对函数化简,后证明左边=右边 (2)利用第(1)小题已经证明得结论可知, 两式相加得: 所以、 练习、求值:

数列求和专项训练题(学生)

数列求和的常用方法 第一类:公式法求和 利用下列常用求和公式求和是数列求和的最基本最重要的. 1、等差数列前n 和公式:()() 11122 n n n a a n n S na d +-= =+ 2、等比数列前n 和公式:1 11(1)(1)(1) 11n n n na q S a a q a q q q q =?? =--?=≠?--? 自然数方幂和公式: 3、11(1)2n n k S k n n ===+∑ 4、211 (1)(21) 6n n k S k n n n ===++∑ 5、32 1 1[(1)]2 n n k S k n n ===+∑ 【例】已知数列{}n a 满足*111,4,n n a a a n N +==+∈,求数列{}n a 的前n 项和 n S . 【练习】已知321 log log 3 x -= ,求23n x x x x +++???++???的前n 项和.

第二类:分组法求和 有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. 若数列{}n c 的通项公式为n n n c a b =+,其中数列{}n a ,{}n b 分别是等差数列和等比数列,求和时一般用分组结合法。 【例】数列111111,2,3,4 ,,,24816 2n n 求数列的前n 项和. 【练习】数列{}n a 的通项公式221n n a n =+- 第三类:裂项法求和 这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 常用的通项分解(裂项)如:

考点25 数列求和及综合应用

考点25 数列求和及综合应用 一、选择题 1. (2013·新课标Ⅰ高考理科·T12)设△A n B n C n 的三边长分别为a n ,b n ,c n ,△A n B n C n 的面积为S n ,n =1,2,3,…若b 1>c 1,b 1+c 1=2a 1,a n +1=a n ,b n +1=c n +a n 2,c n +1=b n +a n 2,则( ) A 、{S n }为递减数列 B 、{S n }为递增数列错误!未找到引用源。 C 、{S 2n -1}为递增数列,{S 2n }为递减数列 D 、{S 2n -1}为递减数列,{S 2n }为递增数列 【解析】选B.因为n n a a =+1,21n n n a c b += +,2 1n n n a b c +=+,所以1a a n =,++1n b = +1n c 2n n a c +2 n n a b ++ 1)(21 )(21a c b a c b n n n n n ++=++= ++1n b )2(2 1 2111a c b a c n n n -+= -+,注意到1112a c b =+,所以12a c b n n =+. 于是n n n C B A ?中,边长1a C B n n =为定值,另两边的长度之和为12a c b n n =+为定值. 因为-+1n b = +1n c 2n n a c +2n n a b +- )(21 n n c b --=, 所以)()2 1 (111c b c b n n n --=--,当+∞→n 时,有0→-n n c b ,即n n c b →,于是n n n C B A ?的边n n C B 的高n h 随n 增大而增大,于是其面积n n n n n h a h C B S 12 1||21==为递增数列. 二、填空题 2.(2013·新课标Ⅰ高考理科·T14)若数列}{n a 的前n 项和3 132+=n n a S ,则 }{n a 的通项公式是=n a _________

(完整word版)数列求和方法(带例题和练习题)

数列的求和 数列求和主要思路: 1.求数列的和注意方法的选取:关键是看数列的通项公式; 2.求和过程中注意分类讨论思想的运用; 3.转化思想的运用; 数列求和的常用方法 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= 2、等比数列求和公式:?????≠--=--==) 1(11)1()1(111 q q q a a q q a q na S n n n 3、 11123(1) 2 n n k S k n n n == =+++++=+∑L … 4、 222221 1 123(1)(21)6n n k S k n n n n ===++++=++∑L 5、 2 3 3 3 3 3 1 (1)1232n n k n n S k n =+?? ===++++=????∑L 公式法求和注意事项 (1)弄准求和项数n 的值; (2)等比数列公比q 未知时,运用前n 项和公式要分类。 例1.求和2 2 1-++++n x x x Λ(0,2≠≥x n ) 二、错位相减法求和 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. 例2.求和:1 32)12(7531--+???++++=n n x n x x x S 例3.求数列 ??????,2 2,,26,24,2232n n 前n 项的和. 三、倒序相加法 如果一个数列与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列前n 项和即可用倒序相加发,如等差数列的前n 项和就是此法推导的 例4.求ο ο ο ο ο 89sin 88sin 3sin 2sin 1sin 2 2 2 2 2++???+++的值 例4变式训练1:求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值. 例4变式训练2: 数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002. 例4变式训练3:在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +???++=求的值.

专题04 数列求和及综合应用(原卷版)

专题04 数列求和及综合应用 【要点提炼】 1.常用公式:12+22+32+42+…+n 2=n (n +1)(2n +1) 6. 2.(1)数列通项a n 与前n 项和S n 的关系为a n =???S 1 (n =1), S n -S n -1 (n ≥2). (2)应用a n 与S n 的关系式f (a n ,S n )=0时,应特别注意n =1时的情况,防止产生错误. 3.数列求和 (1)分组转化法:一个数列既不是等差数列,也不是等比数列,若将这个数列适当拆开,重新组合,就会变成几个可以求和的部分,分别求和,然后再合并. (2)错位相减法:主要用于求数列{a n ·b n }的前n 项和,其中{a n },{b n }分别是等差数列和等比数列. (3)裂项相消法:即将数列的通项分成两个式子的代数差的形式,然后通过累加 抵消中间若干项的方法,裂项相消法适用于形如? ???????? ?c a n a n +1(其中{a n }是各项均不为 零的等差数列,c 为常数)的数列. 温馨提醒 裂项求和时,易把系数写成它的倒数或忘记系数导致错误. 4.数列与函数、不等式的交汇 数列与函数的综合问题一般是利用函数作为背景,给出数列所满足的条件,通常利用点在曲线上给出S n 的表达式,还有以曲线上的切点为背景的问题,解决这类问题的关键在于利用数列与函数的对应关系,将条件进行准确的转化.数列与不等式的综合问题一般以数列为载体,考查不等关系或恒成立问题. 考点一 数列求和及综合应用 考向一 a n 与S n 的关系问题 【典例1】 设数列{a n }的前n 项和为S n ,对任意的正整数n ,都有a n =5S n +1成立,b n =-1-log 2|a n |,数列{b n }的前n 项和为T n ,c n =b n +1 T n T n +1 . (1)求数列{a n }的通项公式; (2)求数列{c n }的前n 项和A n ,并求出A n 的最值.

2013届高三数学二轮复习 专题三 第2讲 数列求和及数列的综合应用教案

第2讲 数列求和及数列的综合应用 自主学习导引 真题感悟 1.(2012·大纲全国卷)已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列??? ? ? ? 1a n a n +1的前100项和为 A. 100101 B.99101 C.99100 D.101 100 解析 利用裂项相消法求和. 设等差数列{a n }的首项为a 1,公差为d . ∵a 5=5,S 5=15, ∴? ???? a 1+4d =5,5a 1+5×5-1 2d =15,, ∴???? ? a 1=1d =1, ∴a n =a 1+(n -1)d =n . ∴ 1 a n a n +1= 1n n +1=1n -1 n +1 , ∴数列{1 a n a n +1}的前100项和为1-12+12-13+…1100-1101=1-1101=100101 . 答案 A 2.(2012·浙江)已知数列{a n }的前n 项和为S n ,且S n =2n 2+n ,n ∈N +,数列{b n }满足a n =4log 2b n +3,n ∈N +. (1)求a n ,b n ; (2)求数列{a n ·b n }的前n 项和T n . 解析 (1)由S n =2n 2+n ,得 当n =1时,a 1=S 1=3; 当n ≥2时,a n =S n -S n -1=4n -1. 所以a n =4n -1,n ∈N +. 由4n -1=a n =4log 2b n +3,得b n =2n -1,n ∈N +. (2)由(1)知a n b n =(4n -1)·2n -1,n ∈N +,

数列求和专题训练 方法归纳

数列求和专题 方法归纳 方法1:分组转化法求和 1.已知{a n }的前n 项是3+2-1,6+4-1,9+8-1,12+16-1,…,3n +2n -1,则S n = ________. 2.等差数列{a n }中,a 2=4,a 4+a 7=15.(1)求数列{a n }的通项公式;(2)设b n =2an -2+n ,求 b 1+b 2+b 3+…+b 10的值. 方法2裂项相消法求和 3.设数列{}a n 满足a 1=1,且a n +1-a n =n +1(n ∈N * ),则数列? ???????? ?1a n 前 10项的和为______. 4. S n 为数列{a n }的前n 项和.已知a n >0,a 2n +2a n =4S n +3. ①求{a n }的通项公式; ②设b n = 1 a n a n +1 ,求数列{b n }的前n 项和. 5.若已知数列的前四项是 112 +2,122+4,132+6,1 42+8 ,则数列的前n 项和为________. 6.等差数列{a n }的前n 项和为S n ,已知a 1=10,a 2为整数,且S n ≤S 4. (1)求{a n }的通项 公式; (2)设b n =1 a n a n +1 ,求数列{b n }的前n 项和T n . 7.已知数列{a n }各项均为正数,且a 1=1,a n +1a n +a n +1-a n =0(n ∈N *). (1)设 b n =1 a n ,求证:数列{ b n }是等差数列;(2)求数列?????? ??? ?a n n +1的前n 项和S n . 方法3:错位相减法求和 8.已知{a n }是等差数列,其前n 项和为S n ,{b n }是等比数列(b n >0),且a 1=b 1=2,a 3+b 3=16,S 4+b 3=34.(1)求数列{a n }与{b n }的通项公式;(2)记T n 为数列{a n b n }的前n 项和,求 T n . 9.设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x 的图象上(n ∈N *).

考点25 数列求和及综合应用

温馨提示: 此题库为Word 版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,关闭Word 文档返回原板块。 考点25 数列求和及综合应用 一、选择题 1. (2013·新课标Ⅰ高考理科·T12)设△A n B n C n 的三边长分别为a n ,b n ,c n ,△A n B n C n 的面积为S n ,n =1,2,3,…若b 1>c 1,b 1+c 1=2a 1,a n +1=a n ,b n +1=c n +a n 2,c n +1=b n +a n 2,则( ) A 、{S n }为递减数列 B 、{S n }为递增数列 C 、{S 2n -1}为递增数列,{S 2n }为递减数列 D 、{S 2n -1}为递减数列,{S 2n }为递增数列 【解析】选B.因为n n a a =+1,21n n n a c b += +,2 1n n n a b c +=+,所以1a a n =,++1n b = +1n c 2n n a c +2 n n a b ++ 1)(21 )(21a c b a c b n n n n n ++=++= ++1n b )2(2 1 2111a c b a c n n n -+= -+,注意到1112a c b =+,所以12a c b n n =+. 于是n n n C B A ?中,边长1a C B n n =为定值,另两边的长度之和为12a c b n n =+为定值. 因为-+1n b = +1n c 2n n a c +2n n a b +- )(21 n n c b --=, 所以)()2 1 (111c b c b n n n --=--,当+∞→n 时,有0→-n n c b ,即n n c b →,于是n n n C B A ?的边n n C B 的高n h 随n 增大而增大,于是其面积n n n n n h a h C B S 12 1||21==为递增数列. 二、填空题

三种常用的数列求和方法-高考文科数学分类专题突破训练

考查角度2三种常用的数列求和方法 分组转化法求和 已知等差数列{a n}满足a2=2,a1+a4=5. {a n}的通项公式; (2)若数列{b n}满足b1=3,b2=6,{b n-a n}为等比数列,求数列{b n}的前n T n. 利用已知条件求出等差数列{a n}的通项公式;(2)因为{b n n,所以数列{b n}的前n项和T n可以看成数列{b n-a n} {a n}的前n项和的总和. 设等差数列{a n}的公差为d, {a n}满足a2=2,a1+a4=5, ∴解得a1=d=1, ∴a n=1+(n-1)×1=n. (2)设等比数列{b n-a n}的公比为q,∵b1=3,b2=6, ∴b1-a1=3-1=2,b2-a2=6-2=4, ∴q=2. ∴b n-a n=2×2n-1=2n, ∴b n=n+2n, ∴数列{b n}的前n项和 T n=(1+2+3+…+n)+(2+22+…+2n)=+- -=+2n+1-2. 从求和数列的通项入手,将其转化为等差数列与等比 ,再利用等差数列与等比数列的求和公式进行分组求和. 错位相减法求和 已知{a n}的前n项和S n=4n-n2+4. {a n}的通项公式; (2)求数列-的前n项和T n. 由{a n}的前n项和求出数列{a n}的通项公式;(2)利用错 (当n=1时要单独考虑). 当n≥2时,a n=S n-S n-1=4n-n2-[4(n-1)-(n-1)2]=5-2n; 1时,a1=S1=7. ∴a n= - (2)令b n=-,

当n=1时,T1=b1=-=0; 当n≥2时,b n=-= - , ∴T n=0++++…+ -+ - , T n=+++…+ - +, 两式相减得T n=1+++…+ --= - - -=2-, ∴T n=4- - (n≥2 . 当n=1时,满足上式. 综上所述,T n=4- - . 用错位相减法求和时,应注意: ,特别是等比数列的公比为负数的情形; (2)在写出“S n”与“qS n”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n-qS n”的表达式; (3)在应用错位相减法求和时,若等比数列的公比未知,应分公比等于1和不等于1两种情况求解. 分类透析三a n=型的裂项相消法求和 已知数列{a n}为单调递增数列,S n为其前n项和,2S n=+n. (1)求{a n}的通项公式. (2)若b n=,T n为数列{b n}的前n项和,证明:T n<. 由递推公式2S n=+n求出{a n}的通项公式;(2)先用裂项相消法求和,再进行适当放缩证明. 当n=1时,2S1=2a1=+1,即(a1-1)2=0,解得a1=1. 又{a n}为单调递增数列,所以a n≥1. 由2S n=+n得2S n+1=+n+1, 所以2S n+1-2S n=-+1, 整理得2a n+1=-+1,所以=(a n+1-1)2. 所以a n=a n+1-1,即a n+1-a n=1, 所以{a n}是以1为首项,1为公差的等差数列,所以a n=n.

41总复习:数列求和及其综合应用(基础)知识梳理

数列求和与综合应用 【考纲要求】 1.熟练掌握等差数列和等比数列的求和公式; 2. 掌握数列的通项a n 与前n 项和S n 之间的关系式 3.注意观察数列的特点和规律,在分析通项的基础上分解为基本数列求和或转化为基本数列求和,熟练掌握求数列的前n 项和的几种常用方法; 4.能解决简单的实际问题. 【知识网络】 【考点梳理】 纵观近几年的高考,在解答题中,有关数列的试题出现的频率较高,不仅可与函数、方程、不等式、复数相联系,而且还与三角、立体几何密切相关;数列作为特殊的函数,在实际问题中有着广泛的应用,如增长率、银行信贷、浓度匹配、养老保险、圆钢堆垒等问题.这就要求同学们除熟练运用有关概念式外,还要善于观察题设的特征,联想有关数学知识和方法,迅速确定解题的方向,以提高解数列题的速度. 与计算有关的问题主要有:求数列的某项,确定数列的通项公式,求有穷数列或无穷数列之和,计算数列的极限,将数列与方程,与不等式,与某些几何问题等联系起来,从而解决有关问题. 有关定性问题的论证问题主要有:考察或论证数列的单调性,将数列分类定性,考察数列的图像特征,考察数列的极限存在与否等等. 有关实际应用问题:某些与非零自然数有关的实际应用题,可用数列的各项与之对应,然后利用数列有关知识解答此类应用题. 数列的函数属性:因数列是函数的特例,故解答有关问题时,常与函数知识联系起来考虑. 【典型例题】 类型一:数列与函数的综合应用 例1.(2015 菏泽一模)已知数列{}n a 的前n 项和为n S ,且()( )* 1n S n n n N =+∈. 综合应用 与函数、方程、不等式等 与几何、实际问题等 数列前n 项和 公式法 错位相减 倒序相加 裂项相消 分组求和

专题训练-常见数列的求和

专题训练-常见数列的求和 德阳二中 谢超强 在前面,我们学习了如何求等差数列和等比数列的前n 项和。下面介绍既非等差数列又 非等比数列的某些数列前n 项和的求法。 一、分组求和法 某些数列,通过适当的分组,可得出两个或几个等差数列或等比数列,从而可利用等差数列或等比数列的求和公式分别求和,得出原数列的和。 例1:求数列3 11,912 ,2713,…,)3 1n n +(,…的前n 项和。 解:n S =311+912+271 3+…+)3 1n n +( =(1+2+3+…+n )+)3 1 2719131(n ++++ = 3 11) 311(312 )1(--++n n n =)3 1 1(21)1(21n n n -++ 二、聚合法 有的数列表示形式较复杂,每一项是若干个数的和,这时常采用聚合法,先对其第n 项求和,然后将通项化简,从而改变原数列的形式,再采用分组求和。 例2:求数列 ,2 221,,221,21,11 2 2 -+++++++n 的前n 项和。 解:∵122 1212 22112 -=--=++++=-n n n n a ∴n n a a a a S ++++= 321 =)12()12()12()12(3 2 1 -++-+-+-n =n n -++++)2222(3 2 1 = 222 1) 21(21--=---+n n n n 三、裂项相消法 这种方法是先把数列的第n 项n a 分裂为几项的代数和,从而改变数列的形式,以便可以进行消项处理,进而达到解决问题的目的。 例3.求数列 ,) 1(6,,436,326,216+????n n 的前n 项和。

2020版高三数学二轮复习(全国理)讲义:专题四 第二讲 数列求和及综合应用

第二讲数列求和及综合应用 高考考点 考点解读 求数列的通项公式1.已知数列的递推关系式以及某些项,求数列的通项公式;已知等差(比)的某些项或前几项的和,求其通项公式 2.考查等差(比)数列的概念以及通项公式、前n项和公式等 求数列的前n项和1.以等差(比)数列为命题背景,考查等差(比)的前n项和公式、分组求和 2.以递推数列、等差(比)数列为命题背景,考查错位相减、裂项相消、倒序相加等求和方法 与数列的和有关的综合应用1.等差(比)数列的求和、分组求和、错位相减求和及裂项相消求和 2.常与不等式、函数、解析几何相结合考查数列求和函数、不等式的性质等 本部分内容在备考时应注意以下几个方面: (1)加强对递推数列概念及解析式的理解,掌握递推数列给出数列的方法. (2)掌握等差(比)数列求和公式及方法. (3)掌握数列分组求和、裂项相消求和、错位相减求和的方法. (4)掌握与数列求和有关的综合问题的求解方法及解题策略. 预测2020年命题热点为: (1)已知等差(比)数列的某些项的值或其前几项的和,求该数列的通项公式. (2)已知某数列的递推式或某项的值,求该数列的和. (3)已知某个不等式成立,求某参数的值.证明某个不等式成立. Z 知识整合 hi shi zheng he 1.分组求和法:分组求和法是解决通项公式可以写成c n=a n+b n形式的数列求和问题的方法,其中{a n}与{b n}是等差(比)数列或一些可以直接求和的数列. 2.裂项相消法:将数列的通项分成两个代数式子的差,即a n=f(n+1)-f(n)的形式,然 后通过累加抵消中间若干项的求和方法.形如{c a n a n+1 }(其中{a n}是公差d≠0且各项均不为0

高考数学一轮复习专题:数列求和(教案及同步练习)

1.等差数列的前n 项和公式 S n =n (a 1+a n )2=na 1+n (n -1)2d . 2.等比数列的前n 项和公式 S n =???? ? na 1,q =1,a 1-a n q 1-q =a 1(1-q n )1-q ,q ≠1. 3.一些常见数列的前n 项和公式 (1)1+2+3+4+…+n =n (n +1) 2. (2)1+3+5+7+…+2n -1=n 2. (3)2+4+6+8+…+2n =n (n +1). (4)12+22+…+n 2=n (n +1)(2n +1) 6. 【知识拓展】 数列求和的常用方法 (1)公式法 等差、等比数列或可化为等差、等比数列的可直接使用公式求和. (2)分组转化法 把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. (3)裂项相消法 把数列的通项拆成两项之差求和,正负相消剩下首尾若干项. 常见的裂项公式 ① 1n (n +1)=1n -1 n +1 ;

②1(2n -1)(2n +1)=12????1 2n -1-12n +1; ③ 1 n +n +1 =n +1-n . (4)倒序相加法 把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广. (5)错位相减法 主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广. (6)并项求和法 一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解. 例如,S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050. 【思考辨析】 判断下列结论是否正确(请在括号中打“√”或“×”) (1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +1 1-q .( √ ) (2)当n ≥2时,1n 2-1=12(1n -1-1 n +1 ).( √ ) (3)求S n =a +2a 2+3a 3+…+na n 之和时,只要把上式等号两边同时乘以a 即可根据错位相减法求得.( × ) (4)数列{12n +2n -1}的前n 项和为n 2+1 2 n .( × ) (5)推导等差数列求和公式的方法叫做倒序求和法,利用此法可求得sin 21°+sin 22°+sin 23°+…+sin 288°+sin 289°=44.5.( √ ) 1.(2017·潍坊调研)设{a n }是公差不为0的等差数列,a 1=2,且a 1,a 3,a 6成等比数列,则{a n }的前n 项和S n 等于( ) A.n 2+7n 4 B.n 2+5n 3 C.2n 2+3n 4 D .n 2+n 答案 A 解析 设等差数列的公差为d ,则a 1=2, a 3=2+2d ,a 6=2+5d . 又∵a 1,a 3,a 6成等比数列,∴a 23=a 1·a 6.

高考数学专题-数列求和及综合应用

高考数学专题-数列求和及综合应用 高考定位 1.高考对数列求和的考查主要以解答题的形式出现,通过分组转化、错位相减、裂项相消等方法求数列的和,难度中档偏下;2.在考查数列运算的同时,将数列与不等式、函数交汇渗透. 真 题 感 悟 1.(·全国Ⅲ卷)设数列{a n }满足a 1+3a 2+…+(2n -1)a n =2n . (1)求{a n }的通项公式; (2)求数列???? ?? ????a n 2n +1的前n 项和. 解 (1)因为a 1+3a 2+…+(2n -1)a n =2n ,① 故当n ≥2时,a 1+3a 2+…+(2n -3)a n -1=2(n -1),② ①-②得(2n -1)a n =2,所以a n =2 2n -1, 又n =1时,a 1=2适合上式, 从而{a n }的通项公式为a n =2 2n -1 . (2)记?????? ??? ?a n 2n +1的前n 项和为S n , 由(1)知a n 2n +1=2(2n -1)(2n +1)=12n -1-1 2n +1 , 则S n =? ? ???1-13+? ????13-15+…+? ????12n -1-12n +1 =1-12n +1=2n 2n +1 . 2.(·山东卷)已知{a n }是各项均为正数的等比数列,且a 1+a 2=6,a 1a 2=a 3. (1)求数列{a n }的通项公式; (2){b n }为各项非零的等差数列,其前n 项和为S n ,已知S 2n +1=b n b n +1,求数列???? ? ?b n a n 的前n 项和T n . 解 (1)设{a n }的公比为q , 由题意知???a 1(1+q )=6,a 21q =a 1q 2 ,

相关文档
最新文档