电动机的机械特性教案

电动机的机械特性教案
电动机的机械特性教案

电动机的机械特性教案 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

第一章电力拖动系统的动力学基础

【引入】用电动机作原动机的拖动方式,称为电力拖动。现代化矿井使用着大量的生产机械,几乎全部是采用电力拖动的。

第一节机械特性

一、电力拖动装置的组成

通常,一套电力拖动装置由工作机构(生产机械)、电动机、传动机构和控制设备四部分组成。如图1.1.1所示。

图 1.1.1电力拖动系统示意图

1、工作机构

工作机构是生产机械执行工作的机械部分,如提升机的卷筒、钢丝绳及提升容器,采煤机的滚筒与截齿等。电力拖动过程中,负荷的变化往往来自工作机构。

2、电动机

电动机是电力拖动装置的原动机,它的作用是把电源提供的电能转变为机械能用以拖动生产机械运转。

电动机分交流电动机和直流电动机两大类。

3、传动机构

大多数情况下,电动机与工作机构并不直接连接,而是中间还有一套传动机构用来变速或改变运行方式,如联轴器、皮带、链条及减速器等。

4、控制设备

控制设备是控制电动机运转的设备,由各种控制电器和控制电机组成,用以控制电动机的起动、调速、制动和反转等。

除了上述四部分外,还有电源装置,如各种开关柜,上面配有继电保护装置和指示仪表,用以向电动机和控制设备供电。

二、拖动系统的类型

单轴系统:电动机的转轴直接与工作机构的转轴相连接的拖动系统;

多轴系统:电动机和工作机构之间通过若干传动机构相连接的拖动系统。

1、电动运行状态(第一三象限)

其特点是电动机转矩M的方

向与旋转方向(转速n的方向)相

同,M为拖动转矩。电动机从电

网取得电能并变为机械能带动负载

运转。

2、制动运转状态(第二四象限)

电动机的转矩M与转速的方向相反,M为制动转矩。此时生产机械带动电动机旋转,电动机吸收机械能并变成电能送回电网或消耗在电阻上。关于制动运转状态的分析将在后面有关章节中讨论。

三、机械特性

1、生产机械的负载特性

生产机械在运转中受到阻转矩的作用。此转矩叫负载转矩M L反映到电动机轴上即为M L。生产机械的负载特性指其转速n L与负载转矩M L'的关系反映到电动机轴上便是

n=(M L)

大多数生产机械的负载特性可归纳为以下三种类型:

1) 恒转矩特性

恒转矩特性的特点是负载转矩与转速无关,如图1.1.3所示。矿井提升机、带式输送机等机械具有这种特性。

图1.1.3 恒转矩负载特性

a一位能负载特性;b一反作用负载特性

恒转矩负载又分两类:位能负载和反作用负载。

2) 通风机类负载特性

此类负载转矩的大小与转速平方成正比,如图1.1.4所示。在低速下转矩很小,随着转速的升高,负载逐渐加大,加大的速率逐渐减小。通风机、水泵具有这种特性。这类负载低速阻转矩很小,故起动容易。

图1.1.4 通风机类负载特性图恒功率负载特性

3) 恒功率负载特性

恒功率负载,转矩与转速成反比,即

P L一定时,M L与n成反比。

恒功率负载特性如图1.1.5所示。

2、电动机的机械特性

电动机的机械特性指电动机的转速n与其电磁转矩的关系

n=(M)

如图1.1.6所示。图中1、2、3、4分别为同步电动机、异步电动机、他励式直流电动机和串励式直流电动机的机械特性。

所谓“硬度”系指电动机转矩的改变引起

转速变化的程度,通常用硬度系数α表示。

特性曲线上任一点的硬度系数定义为该点转

矩变化的百分数与转速变化的百分数之比,

不同类型的电动机,在相同的△M下△n不同因此α也不同。根据硬度系数α的大小,电动机的机械特性可分为三种类型:

1、绝对硬特性

当转矩变化时电动机的转速恒定不变,△n=0,硬度系数α=∞。同步电动机具有这种机械特性。

2、硬特性

当转矩变化时,电动机的转速变化不大,△n较小,硬度系数较大,α=-(40—10)。异步电动机特性曲线的稳定工作部分和他励式直流电动机具有此类特性。

3、软特性

当转矩变化时,电动机转速变化很大,△n很大,硬度系数小,α为- (5—1) 左右直流串励电动机具有这种机械特性。

课后小结:1、电力拖动系统的组成;

2、电力拖动系统各物理量的方向;

3、电力拖动系统的机械特性。

课后作业:习题一

第二节拖动系统的运动学方程式

【复习】生产机械的机械特性及其特点。

【引入】电力拖动系统是一个整体,电动机通过传动装置带动生产机械运转。电动机的电磁转矩一方面要克服生产机械的负载转矩和系统的摩擦阻转矩,另一方面还要平衡系统变速所需要的惯性转矩。

一、运动方程式

根据动力学的原理,电力拖动系统的运动方程式可写为

式中 M——电动机的电磁转矩,即拖动转矩;

M L——系统的静阻转矩,包括生产机械的负载转矩和系统的摩擦转矩;

GD2——系统的飞轮惯量,它反映了一个旋转体的转动惯性,

与旋转体的重量、形状和轴的位置有关;

dn/dt——电动机转速的变化率。

从上式看出

(1) 匀速转动时,dn/dt=0,M=M L,电动机的拖动转矩只用来平衡系统的静阻转矩、电力拖动系统处于稳定运行状态。

(2) 加速运动时,dn/dt>0,M>M L,电动机的拖动转速大于静阻转矩,多余部分用于系统加速。

(3) 减速运行时, dn/dt <0,M

了一部分静阻转矩。

二、多轴系统的折算

由于中间传动装置的变速作用,实际拖动系统各部分的转速往往是不同的,转矩也不同。下面以图1.1.2的提升绞车为例加以讨论。

图 1.1.2 提升绞车传动系统示意图

1、功率的传递

电力拖动中,电动机把电网提供的电能变成机械能,通过传动机构再把机械能传给生产机械。若忽略传动中的损失,那么

式中 P M——电动机的电磁功率;

P1L——工作机械的机械功率。

实际上,在传动中由于齿轮间、轴与轴承间的摩擦等阻力的作用传动机构要损失一部分功率,变成了热能。假设损失的这部分功率为P0,则

ηt叫传动装置的传动效率,它的值小于1。考虑到传动损失,在

电动机拖动生产机械运转时,电动机的拖动功率略大于生产机械的机械功率。

2、力和转矩的传递

一对齿轮啮合时,在轮齿接触处,主动轮给从动轮的作用力等于从动轮给主动轮的反作用力。由于齿轮的直径不同,传动的转矩便不相等。对于减速传动,小齿轮带动大齿轮,转速变低,转矩变大。

如图1.1.2所示,Z2与Z3固定在同一轴上,这两个齿轮上的转矩相等。Z3

与Z4啮合,使大轴上的转矩又大于中间轴上的转矩。

根据功率传递关系得出

式中 M L——负载反映到电动机轴上的转矩;

M L——工作机械的静阻转矩;

j——电动机轴与工作机械轴的传动比;

ηt——传动效率。

对于减速传动,由于j大于1,生产机械反映到电动机轴上的转矩小于生产机械轴上的转矩。在一个传动系统中,转矩与各轴的转速成反比,转速越低的轴,工作转矩越大,因此轴的直径也越大。

课后小结:1、电力拖动系统的运动学方程式;

2、多轴系统的折算;

课后作业:习题一

第三节拖动系统的静态工作点

【复习】运用运动学方程式进行多轴系统的计算方法。

【引入】电动机拖动生产机械运行时,负载转矩通过传动机构作用于电动机轴上,所以在系统运行中电动机的机械特性与生产机械的负载特性是同时存在的。要使电动机稳定运行,须具有下述条件:

一、必要条件

从运动学方程式可知,当拖动转矩M和负载转矩M L大小相等、方向相反互相平衡时,转速为某一稳定值,系统处于稳定状态,所以两条特性曲线有交点是稳定运行的必要条件。交点对应的转速即为系统的稳定运转速度。如图1.1.7所示,图中A点为直流他励电动机带恒转矩负载的一个稳定工作点。如果

负载转矩由M L1增加到M L2,则工作点从A移到B,电动机的转矩也相应地增加,转速从n A降到n B,又稳定运行于B点。

二、充分条件

如果拖动系统原来在交点处运行,由于某种原因(如电源电压波动、负载冲击等)使转速稍有变化,离开了原工作点,当干扰消除后,拖动系统有能力恢复到原工作点,则系统运行就是稳定的。现以异步电动机拖动恒转矩负载为例进行分析。

图1.1.7

课后小结:3、拖动系统的静态工作点;

4、拖动系统的稳定性。

课后作业:习题一

他励直流电动机的机械特性曲线的分析

浅析:他励直流电动机的机械特性 在电源电压U 和励磁电路的电阻R f 为常数的条件下,表示电动机的转矩n 和转矩之间的关系n=f (T )曲线,称为机械特性曲线。利用机械特性和负载转矩特性可以确定拖动系统的稳定转速,在一定条件下还可以利用机械特性和运动方程式分析拖动系统的动态运动情况,如转速、转矩及电流随时间的变化规律。可见,电动机的机械特性对分析电力拖动系统的启动、调速、制动等运行性能是十分重要的。 下图是他励直流电动机的电路原理图,他励直流电动机的机械特性方程式,可由他励直 流电动机的基本方程式导出。由公式 , 和 导出机械特性方程式 ( 1-1 ) 他励直流电动机电路原理图 当电源电压U =常数,电枢回路总电阻R =常数,励磁磁通Φ=常数时,电动机的机械特性如下图所示,是一条向下倾斜的直线,这说明加大电动机的负载,会使转速下降。特性 曲线与纵轴的交点为n 0时的转速,称为理想空载转速。 他励直流电动机的机械特性 a a a R I E U + =n E a Φe C =φa T em I C T =em T R U n 2T e e C C C ΦΦ-=Φ e 0C U n =

实际上,当电动机旋转时,不论有无负载,总存在有一定的空载损耗和相应的空载转矩, 而电动机的实际空载转速 将低于n 0。由此可见式(1-1)的右边第二项即表示电动机带负载后的转速降,用 表示,则 ( 1-2 ) 式中 β——机械特性曲线的斜率。 β越大, 越大,机械特性就越“软”,通常称β大的机械特性为软特性。一般他励电动机在电枢没有外接电阻时,机械特性都比较“硬”。 机械特性的硬度也可用额定转速调整率△n N %来说明,转速调整率小,则机械特性硬度就高。 电动机的机械特性分为固有机械特性和人为机械特性 。 固有机械特性是当电动机的电枢工作电压和励磁磁通均为额定值,电枢电路中没有串入附 加电阻时的机械特性,其方程式为 固有机械特性如下图中的 曲线 所示,由于 较小,故他励直流电动机固有机械特性较“硬”。 他励直流电动机串电阻时的机械特性 人为机械特性是人为地改变电动机电路参数或电枢电压而得到的机械特性,即改变公 式(1-1)中的参数所获得的机械特性,一般只改变电压、磁通、附加电阻中的一个,他励电动机有下列三种人为机械特性。 (1) 枢串电阻时的人为机械特性 此时 ,人为机械特性的方程式 与固有特性相比,理想空载转速n 0不变,但是,转速降△n 增大 。R pa 越大,△n 0 n 'n ?em em T T R n βΦ==?2T e C C n ?em N a N N T R U n 2T e e C C C ΦΦ-=a R R =a R pa a N N R R R U U +===,,ΦΦem N pa a N N T R R U n 2T e e C C C ΦΦ+-=

三相异步电机的转矩特性与机械特性(精)

三相异步电机的转矩特性与机械特性 1.电磁转矩(简称转矩) 异步电动机的转矩T 是由旋转磁场的每极磁通Φ与转子电流I 2相互作用而产生的。电磁转矩的大小与转子绕组中的电流I 及旋转磁场的强弱有关。 经理论证明,它们的关系是: 22cos T T K I ?=Φ (5-4) 其中 T 为电磁转矩 K T 为与电机结构有关的常数 Φ为旋转磁场每个极的磁通量 I 2为转子绕组电流的有效值 ?2为转子电流滞后于转子电势的相位角 若考虑电源电压及电机的一些参数与电磁转矩的关系,(5-4)修正为: 22122220()T sR U T K R sX '=+ (5-5) 其中 T K '为常数 U 1为定子绕组的相电压 S 为转差率 R 2为转子每相绕组的电阻 X 20为转子静止时每相绕组的感抗 由上式可知,转矩T 还与定子每相电压U 1的平方成比例,所以当电源电压有所变动时,对转矩的影响很大。此外,转矩T 还受转子电阻R 2的影响。图4-15为异步电动机的转矩特性曲线。 2.机械特性曲线 图 5-5 三相异步电动机的机械特性曲线 在一定的电源电压U 1和转子电阻R 2下,电动机的转矩T 与转差率n 之间的n n m (a) T =f (s )曲线

关系曲线T=f(s)或转速与转矩的关系曲线n=f(T),称为电动机的机械特性曲线,它可根据式(5-4)得出,如图5-5所示。 在机械特性曲线上我们要讨论三个转矩: 1).额定转矩T N 额定转矩T N 是异步电动机带额定负载时,转轴上的输出转矩。 29550N P T n = (5-6) 式中P 2是电动机轴上输出的机械功率,其单位是瓦特,n 的单位是转/分,T N 的单位是牛·米。 当忽略电动机本身机械摩擦转矩T 0时,阻转矩近似为负载转矩T L ,电动机作等速旋转时,电磁转矩T 必与阻转矩T L 相等,即T = T L 。额定负载时,则有T N = T L 。 2).最大转矩T m T m 又称为临界转矩,是电动机可能产生的最大电磁转矩。它反映了电动机的过载能力。 最大转矩的转差率为S m ,此时的S m 叫做临界转差率,见图5-5(a ) 最大转矩Tm 与额定转矩T N 之比称为电动机的过载系数λ,即 λ= Tm / T N 一般三相异步的过载系数在1.8~2.2之间。 在选用电动机时,必须考虑可能出现的最大负载转矩,而后根据所选电动机的过载系数算出电动机的最大转矩,它必须大于最大负载转矩。否则,就是重选电动机。 3).起动转矩T st , T st 为电动机起动初始瞬间的转矩,即n=0,s =1时的转矩。 为确保电动机能够带额定负载起动,必须满足:T st >T N ,一般的三相异步电动机有T st /T N =1~2.2。 3.电动机的负载能力自适应分析 电动机在工作时,它所产生的电磁转矩T 的大小能够在一定的范围内自动调整以适应负载的变化,这种特性称为自适应负载能力。 2 L T n S I T ↑?↓?↑?↑?↑直至新的平衡。此过程中,2I ↑时,1 I ↑? 电源提供的功率自动增加。

电机特性曲线

? ? ? ? ? ? 电气控制与PLC网络教学资源当前位置: 电气控制与PLC网络教学资源> 学习情境> 项目一货物升降机的继电-接触器控制> 正 文 1.1.3三相异步电动机的工作特性 作者: Admin | 来源:| 点击: 517 | 发布时间: 2007-10-07 异步电动机的转矩特性动画演示 一、三相异步电动机的转矩特性 异步电动机的电磁转矩T是由载流导体在磁场中受电磁力的作用而产生的,它使电动机旋转。 式中U1——定子绕组相电压有效值,单位是伏特(V); f1——定子电源频率,单位是赫兹(Hz); s——电动机的转差率;

R2——转子绕组一相电阻,单位是欧姆(Ω); X20——转子不动时一相感抗,单位是欧姆(Ω); C——与电机结构有关的比例常数。 为了分析方便,将异步电动机的电磁转矩T代替电动机的输出转矩T2 由于电动机的转子参数R2及X20是一定的,电源频率f1也是一定的,故当电源电压U1一定时,上式即表明异步电动机的电磁转矩T只与转差率s有关,因此可用函数式T=f(s)表示,称为异步电动机的转矩特性,画出其图象则称为转矩特性曲线,如图1-13所示。 图1-13异步电动机的转矩特性曲线

二、异步电动机的机械特性 1.电动机的额定转矩的实用计算式 旋转机械的机械功率等于转矩和转动角速度的乘积,对于电动机而言,就有 P2=T2Ω(1-4) 当电动机的输出转矩T2用牛·米(N·m)作单位,旋转角速度Ω用弧度/秒(rad/s)作单位时,输出功率P2的单位是瓦特。 在电动机中计算转矩时输出功率P2的单位是千瓦(kW),转速n的单位是转/分(r/min),所以可以将计算公式简化,如在额定状态下转矩公式为 式中T N——电动机的额定转矩,单位是牛·米(N·m); P N——电动机的额定功率,单位是千瓦(kW); n N——电动机的额定转速,单位是转/分(r/min).

三相异步电动机的机械特性

三相异步电动机的机械特性 (一)机械特性方程 1)物理表达式:T=CTФmI2’ cosф2 (T是电磁作用的结果) 2)参数表达式: 3) 工程表达式: ——外施电源电压; ——电源频率; ——电机定子绕组参数; ——电机转子绕组参数。 (二)固有机械特性曲线 1.形状(根据工程表达式来说明) AB段(s较大):为双曲线,T与S成反比。 BO段(s很小):为直线,T与S 成正比。

2.起动点A,n=0,S=1, 起动转矩倍数KT=TS/TN 一般取0.8~1.8 3.临界点B 临界转差率只与转子电阻有关. 取0.1~0.2 最大转矩与电源电压UI2有关。 过载能力λ=Tm/TN 取1.6~2.2 4.同步点O n=n1 T=0 (理想的空载转速,旋转磁场的转速 ) 5.额定点C 0< SN

2、转子串电阻的人为机械特性——“变软” 当转子回路串电阻时,同步点不变,Sm与转子电阻成正比,转速随电阻增加而减小,最大转矩Tm保持不变,在一定范围内起动转矩有所增加,其特性曲线(红色)所示 3、降低定子电压频率的人为机械特性——“变小” 降低定子电压频率时,同步转速随之下降,从而使得电机转速下降,但特性的硬度基本保持不变。 电动机在工作时要求主磁通保持不变,因此在降低频率的同时,定子电压也要随之降低。

三相异步电动机的机械特性习题

10.3 节 一、填空题 1、异步电动机的电磁转矩是由和共同作用产生的。 2、三相异步电动机最大电磁转矩的大小与转子电阻r2 值关,起动转矩的大小与转子电阻r2 关。 (填有无关系) 3、一台线式异步电动机带恒转矩负载运行,若电源电压下降,则电动机的旋转磁场转速,转差率,转速,最大电磁转矩,过载能力,电磁转矩。 4、若三相异步电动机的电源电压降为额定电压的0.8 倍,则该电动机的起动转矩T st =?T stN 。 5、一台频率为f1= 60Hz 的三相异步电动机,接在频率为50Hz 的电源上(电压不变),电动机的最大转矩为原来的,起动转矩变为原来的。 6、若异步电动机的漏抗增大,则其起动转矩,其最大转矩。 7、绕线式异步电动机转子串入适当的电阻,会使起动电流,起动转矩。 二、选择题 1、设计在f1= 50Hz 电源上运行的三相异步电动机现改为在电压相同频率为60Hz 的电网上,其电动机的()。 (A)T st 减小,T max 减小,I st 增大(B)T st 减小,T max 增大,I st 减小 (C)T st 减小,T max 减小,I st 减小(D)T st 增大,T max 增大,I st 增大 2、适当增加三相绕线式异步电动机转子电阻r2时,电动机的()。 (A)I st 减少, T st 增加, T max 不变, s m 增加(B)I st 增加, T st 增加, T max 不变, s m 增加 (C)I st 减少, T st 增加, T max 增大, s m 增加(D)I st 增加, T st 减少, T max 不变, s m 增加 3、一台运行于额定负载的三相异步电动机,当电源电压下降10%,稳定运行后,电机的电磁转矩()。(A)T em =T N (B)T em = 0.8T N (C)T em = 0.9T N (D)T em >T N 4、一台绕线式异步电动机,在恒定负载下,以转差率s 运行,当转子边串入电阻r = 2r2',测得转差率将为 ()(r 已折算到定子边)。 (A)等于原先的转差率s (B)三倍于原先的转差率s (C)两倍于原先的转差率s (D)无法确定 5、异步电动机的电磁转矩与( )。 (A)定子线电压的平方成正比;(B)定子线电压成正比; (C)定子相电压平方成反比;(D)定子相电压平方成正比。 6、一般电动机的最大转矩与额定转矩的比值叫过载系数,一般此值应( )。 (A)等于1 (B)小于1 (C)大于1 (D)等于0 三、问答题

异步电动机启动过程分析

交流调速专题报告二 学号082911xx 姓名张XX 班级电气08xx

异步电动机启动过程分析 张XX (北京交通大学电气工程学院,北京100044) 摘要:随着异步电动机作为重要的动力设备在社会各行各业的广泛应用,研究三相鼠笼式异步电动机在各种起动方式下的起动性能就显得尤为重要。为获得较好的起动效果,在对笼型异步电机进行深入分析的基础上,利用Matlab中的Simulink仿真工具对异步电动机的直接起动、降压起动、V/f比控制起动方式进行动态仿真。通过对起动过程中电机的定子电流、起动转矩和转子转速进行检测,得出各种起动方式下电流—时间、转矩—时间、转速—时间和转矩—转速的特性曲线,从而比较不同起动方式的起动性能优劣。异步电动机变频起动后,使起动电流大大减小,起动时对电网的冲击效应较小,并且使异步电动机起动转矩尽可能大,缩短了起动时间,从而克服了传统起动的弊端。 关键字:直接起动;降压启动;V/f比控制起动;笼型异步电机 Abstract: With the induction motor as an important power equipment widely used in all walks of life, research phase squirrel cage induction motor start-up mode in a variety of starting performance is particularly important. In order to obtain good starting results, in the cage induction motor in-depth analysis, based on the use of Matlab Simulink simulation tools for asynchronous motor direct starting, reduced voltage starting, V / f ratio control method for starting the dynamic simulation. Through the process of starting the motor stator current, starting torque and rotor speed testing, come under a variety of ways starting current - time, torque - time, speed - the time and torque - speed characteristic curves to compare the different starting way of starting performance of the pros and cons. After induction motor variable frequency start, so that greatly reduce the starting current, starting at a

三相异步电动机的优缺点以及启动方式

三相异步电动机的优缺点 1、三相异步电动机的优点 三相异步电动机转子的转速低于旋转磁场的转速,转子绕组因与磁场间存在着相对运动而产生感生电动势和电流,并与磁场相互作用产生电磁转矩,实现能量变换。与单相异步电动机相比,三相异步电动机运行性能好,并可节省各种材料。按转子结构的不同,三相异步电动机可分为笼式和绕线式两种。笼式转子的异步电动机结构简单、运行可靠、重量轻、价格便宜,得到了广泛的应用,其主要缺点是调速困难。绕线式三 相异步电动机的转子和定子一样也设置了三相绕组并通过滑环、电刷与外部变阻器连 接。调节变阻器电阻可以改善电动机的起动性能和调节电动机的转速。 2、异步电动机存在的缺点 2.1笼型感应电动机存在下列三个主要缺点。 (1)起动转矩不大,难以满足带负载起动的需要。当前社会上解决该问题的多数办法是提高电动机的功率容量(即增容)来提高其起动转矩,这就造成严重的“大马拉小车”,既增加购买设备的投资,又在长期的应用中因处于低负荷运行而浪费大量电量,很不经济。第二种办法是增购液力偶合器,先让电动机空载起动,在由液力偶合器驱动负载。这种办法同样要增加添购设备的投资,并因液力偶合器的效率低于97%,因此至少浪费3%的电能,因而整个驱动装置的效率很低,同样浪费电量,更何况添加液力偶合器之后,机组的运行可靠性大大下降,显著增加维护困难,因此不是一个好办法。 (2)大转矩不大,用于驱动经常出现短时过负荷的负载,如矿山所用破碎机等时,往往停转而烧坏电动机。以致只能在轻载状况下运行,既降低了产量又浪费电能。 (3)起动电流很大,增加了所需供电变压器的容量,从而增加大量投资。另一办法是采用降压起动来降低起动电流,同样要增加添购降压装置的投资,并且使本来就不好的起动特性进一步恶化。 2.2 绕线型感应电动机 绕线性感应电动机正常运行时,三相绕组通过集电环短路。起动时,为减小起动电流,转子中可以串入起动电阻,转子串入适当的电阻,不仅可以减小起动电流,而且由于转子功率因数和转子电流有功分量增大,起动转矩也可增大。这种电动机还可通过改 变外串电阻调速。绕线型电动机虽起动特性和运行特性兼优,但仍存在下列缺点:)由于转子上有集电环和电刷,不仅增加制造成本,并且降低了起动和运行的可

三相异步电动机的机械特性分解

三相异步电动机的运行特性 摘要:本章介绍了三相异步电动机的机械特性的三个表达式。固有机械特性和人为机械特性,阐述了三相异步电动机的起动、调速和制动的各种方法、特点和应用 5.1三相异步电动机的运行特性 三相异步电动机的运行特性就是三相异步电动机的运行工作时的机械特性。和直流电动机一样,三相异步电动机的机械特性也是指电磁转矩 与转子转速之间的关系。由于转子转速与同步转速、转 差率存在下列关系,即 (5.1)

则三相异步电动机的机械特性用曲线表示时,习惯上纵坐标同时表示转速 和转差率,横坐标表示电磁转矩。 三相异步电动机的机械特性有三种表达式,现介绍如下: 5.1.1机械特性的物理表达式 由上一章三相异步电动机的转矩关系知,三相异步电动机转矩的一般表达式为 (5.2)式中为三相异步电动机的转矩系数,是一常数; 为三相异步电动机的气隙每极磁通量; 为转子电流的折算值; 为转子电路的功率因数; 式(5.2)表明了电磁转矩与磁通量和转子电流的有功分量的乘积成正比,它是电磁力定律在三相异步电动机的应用,它从物理特性上描述了三相异步电动机的运行特性,因此这一表达式又称为三相异步电动机的物理表达式。 仅从式(5.2)不能明显地看出电磁转矩 与转差率之间的变化规 律。要从分析气隙每极磁通量,转子相电流,以及为转子功率

因数与转差率之间的关系,间接地找出其变化规律。现分析如表5.1所示。 根据表5.1中的分析,可作出曲线、和 分别如图5.2、5.3、5.4所示,据此可得出图5.1所示的机械特性曲 线。曲线分为两段:当较小时(),变化不大,, 与转子相电流成正比关系,表现为AB段近似为直线, 电磁转矩 较大时 (),如,减少近一 称为直线部分;当 半,很小,尽管转子相电流增大,有功电 不大,使电磁转矩反而减小了,此时表现为段, 流 段为曲线段,称为曲线部分。由此分析知,三相异步电动机的机械特下,产生最大转矩,即点称为最大转矩点,相应的 性在某转差率 转矩为 称为最大转矩,对应的转差率称为临界转差率。 5.1.2机械特性的参数表达式 1.参数表达式的推导:

三相异步电动机的部分习题及答案

5.1 有一台四极三相异步电动机,电源电压的频率为50H Z,满载时电动机的转差率为0.02求电动机的同步转速、转子转速和转子电流频率。 n0=60f/p S=(n0-n)/ n0 =60*50/2 0.02=(1500-n)/1500 =1500r/min n=1470r/min 电动机的同步转速1500r/min.转子转速1470 r/min, 转子电流频率.f2=Sf1=0.02*50=1 H Z 5.2将三相异步电动机接三相电源的三根引线中的两根对调,此电动机是否会反转?为什么? 如果将定子绕组接至电源的三相导线中的任意两根线对调,例如将B,C两根线对调,即使B相遇C相绕组中电流的相位对调,此时A相绕组内的电流导前于C相绕组的电流2π/3因此旋转方向也将变为A-C-B向逆时针方向旋转,与未对调的旋转方向相反. 5.3 有一台三相异步电动机,其n N=1470r/min,电源频率为50H Z。设在额定负载下运行,试求: ①定子旋转磁场对定子的转速; 1500 r/min ②定子旋转磁场对转子的转速; 30 r/min ③转子旋转磁场对转子的转速; 30 r/min ④转子旋转磁场对定子的转速; 1500 r/min ⑤转子旋转磁场对定子旋转磁场的转速。 0 r/min 5.4当三相异步电动机的负载增加时,为什么定子电流会随转子电流的增加而增加?

因为负载增加n减小,转子与旋转磁场间的相对转速( n0-n)增加,转子导体被磁感线切割的速度提高,于是转子的感应电动势增加,转子电流特增加,.定子的感应电动使因为转子的电流增加而变大,所以定子的电流也随之提高. 5.5 三相异步电动机带动一定的负载运行时,若电源电压降低了,此时电动机的转矩、电流及转速有无变化?如何变化? 若电源电压降低, 电动机的转矩减小, 电流也减小. 转速不变. 5.6 有一台三相异步电动机,其技术数据如下表所示。 试求:①线电压为380V时,三相定子绕组应如何接法? ②求n0,p,S N,T N,T st,T max和I st; ③额定负载时电动机的输入功率是多少? ①线电压为380V时,三相定子绕组应为Y型接法. ②T N=9.55P N/n N=9.55*3000/960=29.8Nm Tst/ T N=2 Tst=2*29.8=59.6 Nm T max/ T N=2.0 T max=59.6 Nm I st/I N=6.5 I st=46.8A 一般n N=(0.94-0.98)n0n0=n N/0.96=1000 r/min SN= (n0-n N)/ n0=(1000-960)/1000=0.04 P=60f/ n0=60*50/1000=3 ③η=P N/P输入 P输入=3/0.83=3.61 5.7三相异步电动机正在运行时,转子突然被卡住,这时电动机的电流会如何变化?对电动机有何影响? 电动机的电流会迅速增加,如果时间稍长电机有可能会烧毁.

三相异步电动机启动方法

三相异步电动机启动方法 降压启动就可以降低启动电流,减少线路压降。除直接启动外,降压启动一般有星-三角降压启动,自藕变压降压启动,变频启动、软启动等。 三相异步电动机接线图 三相异步电机接线图:三相电动机的三相定子绕组每相绕组都有两个引出线头。一头叫做首端,另一头叫末端。规定第一相绕组首端用D 1表示,末端用D 4表示;第二相绕组首端用D2表示,末端用D5表示;第三相绕组首末端分别用D3和D6来表示。这六个引出线头引入接线盒的接线柱上,接线柱相应地标出D1~D6的标记,见图(1)。三相定子绕组的六根端头可将三相定子绕组接成星形或三角形,星形接法是将三相绕组的末端并联起来,即将D4、D5、D6三个接线柱用铜片连结在一起,而将三相绕组首端分别接入三相交流电源,即将D1、D2、D3分别接入A、B、C相电源,如图(2)所示。而三角形接法则是将第一相绕组的首端D 1与第三相绕组的末端D6相连接,再接入一相电源;第二相绕组的首端D2与第一相绕组的末端D4相连接,再接入第二相电源;第三相绕组的首端D3与第二相绕组的末端D5相连接,再接入第三相电源。即在接线板上将接线柱D1和D6、D2和D4、D3和D5分别用铜片连接起来,再分别接入三相电源,如图(3)所示。一台电动机是接成星形还是接成三角形,应视厂家规定而进行,可以从电动机铭牌上查到。三相定子绕组的首末端是生产厂家事先设定好的,绝不可任意颠倒,但可将三相绕组的首末端一起颠倒,例如将三相绕组的末端D4、D5、D6倒过来作为首端,而将D1、D2、D3作为末端,但绝不可单独将一相绕组的首末端颠倒,否则将产生接线错误。如果接线盒中发生接线错误,或者绕组首末端弄错,轻则电动机不能正常起动,长时间通电造成启动电流过大,电动机发热严重,影响寿命,重则烧毁电动机绕组,或造成电源短路。 1、三相电源绕组有几种接线方式?三相负载的连接方式有几种? 答:三相发电机或三相变压器的二次侧都具有三相绕组,它们都是用星Y形或三角△形的方式连接起来的。 三相负载的连接与发电机三相绕组的连接相似,也可接成形或三角形△。 2、什么叫三相三线制电路?什么叫三相四线制电路? 答:将负载与发电机用三根火线连接起来。就是三相三线制电路。 用三根火线和一根中线把电源和负载起来,就是三相四线制电路。 3、什么叫三相电源和负载的星型连接?什么叫相、线电压和相、线电流?他们之间的关系如何? 答:将三相绕级的末端连接在一起,从首端分别引出导线,这就是星形连接。通常三相绕组的始端用A、B、C表示,末端用X、Y、Z表示。绕组始端的引出线称为火线。三个绕组末端连接在一起的公共点“O”称为中性点,从中性点引出的一根导线称为零线(也称中线)。如果中性点接地,则零线也称做地线。 每相组两端间的电压(即每相绕组首端与中线之间的电压)uA、uB、uC叫做相电压。 两根火线之间(即两相之间)的电压uAB、uBC、uCA叫做线电压。 流过电源每相绕组或负载的电流,叫做相电流。火线中的电流iA、iB、iC,叫做线电流。在星形连接中,线电压的有效值是相电压有效值的倍,即U线=U相。线电流等于相电流。 即I线=I相。 4、三相四线制供电系统中,中性线(零线)的作用是什么?为什么零线不允许断路?答:中性线是三相电路的公共回线。中性线能保证三相负载成为三个互不影响的独立回路;

三相异步电动机的机械特性

三相异步电动机的机械特 性 The Standardization Office was revised on the afternoon of December 13, 2020

三相异步电动机的运行特性 摘要:本章介绍了三相异步电动机的机械特性的三个表达式。 固有机械特性和人为机械特性,阐述了三相异步电动机的起动、调速和制动的各种方法、特点和应用 三相异步电动机的运行特性 三相异步电动机的运行特性就是三相异步电动机的运行工作时的机械特性。和直流电动机一样,三相异步电动机的机械特性也是指电磁转矩与转子转速之间的关系。由于转子转速与同步转速 、转差率存在下列关系,即 ()

则三相异步电动机的机械特性用曲线表示时,习惯上纵坐标同时表示转速和转差率,横坐标表示电磁转矩。 三相异步电动机的机械特性有三种表达式,现介绍如下: 机械特性的物理表达式 由上一章三相异步电动机的转矩关系知,三相异步电动机转矩的一般表达式为 () 式中为三相异步电动机的转矩系数,是一常数; 为三相异步电动机的气隙每极磁通量; 为转子电流的折算值; 为转子电路的功率因数; 式()表明了电磁转矩与磁通量和转子电流的有功分量的乘积成正比,它是电磁力定律在三相异步电动机的应用,它从物理特性上描述了三相异步电动机的运行特性,因此这一表达式又称为三相异步电动机的物理表达式。 仅从式()不能明显地看出电磁转矩与转差率之间的变化规律。要从分析气隙每极磁通量,转子相电流,以及为转子功

率因数与转差率之间的关系,间接地找出其变化规律。现分析如表所示。 根据表中的分析,可作出曲线、和分别如图、、所示,据此可得出图所示的机械特性曲线。曲线分为两段:当较小时(),变化不大,,电磁转矩 与转子相电流成正比关系,表现为AB段近似为直线,称为直线部分;当较大时 (),如,减少近一 半,很小,尽管转子相电流增大,有功电流不大,使电磁转矩反而减小了,此时表现为段,段为曲线段,称为曲线部分。由此分析知,三相异步电动机的机械特性在某转差率下,产生最大转矩,即点称为最大转矩点,相应的转矩为称为最大转矩,对应的转差率称为临界转差率。 机械特性的参数表达式 1.参数表达式的推导:

电动机的机械特性教案

第一章电力拖动系统的动力学基础 【引入】用电动机作原动机的拖动方式,称为电力拖动。现代化矿井使用着大量的生产机械,几乎全部是采用电力拖动的。 第一节机械特性 一、电力拖动装置的组成 通常,一套电力拖动装置由工作机构(生产机械)、电动机、传动机构和控制设备四部分组成。如图1.1.1所示。 图 1.1.1电力拖动系统示意图 1、工作机构 工作机构是生产机械执行工作的机械部分,如提升机的卷筒、钢丝绳及提升容器,采煤机的滚筒与截齿等。电力拖动过程中,负荷的变化往往来自工作机构。 2、电动机 电动机是电力拖动装置的原动机,它的作用是把电源提供的电能转变为机械能用以拖动生产机械运转。 电动机分交流电动机和直流电动机两大类。 3、传动机构 大多数情况下,电动机与工作机构并不直接连接,而是中间还有一套传动机构用来变速或改变运行方式,如联轴器、皮带、链条及减速器等。 4、控制设备 控制设备是控制电动机运转的设备,由各种控制电器和控制电机组成,用以控制电动机的起动、调速、制动和反转等。

除了上述四部分外,还有电源装置,如各种开关柜,上面配有继电保护装置和指示仪表,用以向电动机和控制设备供电。 二、拖动系统的类型 单轴系统:电动机的转轴直接与工作机构的转轴相连接的拖动系统; 多轴系统:电动机和工作机构之间通过若干传动机构相连接的拖动系统。 1、电动运行状态(第一三象限) 其特点是电动机转矩M的方向与 旋转方向(转速n的方向)相同,M为拖 动转矩。电动机从电网取得电能并变为 机械能带动负载运转。 2、制动运转状态(第二四象限) 电动机的转矩M与转速的方向相反,M为制动转矩。此时生产机械带动电动机旋转,电动机吸收机械能并变成电能送回电网或消耗在电阻上。关于制动运转状态的分析将在后面有关章节中讨论。 三、机械特性 1、生产机械的负载特性 生产机械在运转中受到阻转矩的作用。此转矩叫负载转矩M?L反映到电动机轴上即为M L。生产机械的负载特性指其转速n L与负载转矩M L'的关系反映到电动机轴上便是 n=?(M L) 大多数生产机械的负载特性可归纳为以下三种类型: 1) 恒转矩特性 恒转矩特性的特点是负载转矩与转速无关,如图1.1.3所示。矿井提升机、带式输送机等机械具有这种特性。

三相异步电动机的机械特性

三相异步电动机的机械特性 三相异步电动机的运行特性 摘要:本章介绍了三相异步电动机的机械特性的三个表达式。固有机械特性和人为机 械特性,阐述了三相异步电动机的起动、调速和制动的各种方法、特点和应用 5.1三相异步电动机的运行特性(返回顶部) 三相异步电动机的运行特性就是三相异步电动机的运行工作时的机械特性。和直流电 动机一样,三相异步电动机的机械特性也是指电磁转矩 与转子转速之间的关系。由于转子转速与同步转速 、转差率存在下列关系,即 (5.1) 则三相异步电动机的机械特性用曲线表示时,习惯上纵坐标同时表示转速和转差率,横坐标表示电磁转矩 。 三相异步电动机的机械特性有三种表达式,现介绍如下: 5.1.1机械特性的物理表达式(返回顶部) 由上一章三相异步电动机的转矩关系知,三相异步电动机转矩的一般表达式为 (5.2) 式中 为三相异步电动机的转矩系数,是一常数; 为三相异步电动机的气隙每极磁通量; 为转子电流的折算值; 为转子电路的功率因数; 式(5.2)表明了电磁转矩与磁通量和转子电流的有功分量的乘积成正比,它是电磁 力定律在三相异步电动机的应用,它从物理特性上描述了三相异步电动机的运行特性,因 此这一表达式又称为三相异步电动机的物理表达式。 仅从式(5.2)不能明显地看出电磁转矩 与转差率之间的变化规律。要从分析气隙每极磁通量

因数 ,转子相电流 ,以及为转子功率 与转差率之间的关系,间接地找出其变化规律。现分析 如表5.1所示。 根据表5.1中的分析,可作出曲线 、和 分别如图5.2、5.3、5.4所示,据此可得出图5.1所示的机械特性曲线。曲线分为两段:当较小时( 电磁转矩 与转子相电流 ), 变化不大, , 成正比关系,表现为AB 段近似为直线, ) ,如 , 减少近一 称为直线部分;当较大时 ( 半, 很小,尽管转子相电流 增大,有功电流 段, 段为曲线 不大,使电磁转矩

三相异步电动机的启动方式的设计(DOC)

包头钢铁职业技术学院毕业实践任务书 题目:三相异步电动机的启动方式的设计 班级: 06五年制机电D 姓名:刘伟 指导老师:徐桂岩 完成日期: 2011.3.20 包头钢铁职业技术学院制 2011年3月

包头钢铁职业技术学院毕业实践任务书成绩及评语表

摘要 三相异步电动机的起动电流高达额定电流的5~8倍,对电网造成较大干扰,尤其在工业领域中的重载起动,有时可能对设备安全构成严重威胁。传统的降压起动方式,如星三角起动、自耦变压器起动等,要么起动电流和机械冲击过大,要么体积庞大笨重、损耗大,要么起动力矩小、维修率高等等,都不尽人意。软启动技术不仅实现在整个起动过程中无冲击而平滑地起动电动机,而且可根据电动机负载的特性来调节起动过程中的参数如限流值、起停时间等,以达到最佳的起停状态。 关键词异步电动机;软启动;设计

目录 `1前言 (1) 1.1 软启动的定义 (1) 1.2 软启动器的简单介绍 (1) 1.2.1 软启动器的保护功能 (1) 1.2.2 它与变频器有的区别 (1) 1.2.3 软启动的作用 (2) 1.3 电动机起动方式的选择 (2) 1.4 与传统启动的比较 (2) 1.4.1 软启动器的应用范围 (2) 1.4.2 软启动与传统减压起动方式的不同之处 (2) 2 软启动的基本原理 (4) 2.1 软启动器的优点 (4) 2.2 软启动器的控制接线 (5) 3 软启动电路 (6) 3.1 软启动器的控制原理图 (6) 3.2 硬件设计 (6) 3.3 电压同步信号检测电路 (7) 3.4 触发脉冲形成电路 (8) 4 总结 (10) 致谢 (11) 参考文献 (12)

三相异步电动机启动图(精)

1、三相异步电动机的点动控制 点动正转控制线路是用按钮、接触器来控制电动机运转的最简单的正转控制线路。所谓点动控制是指:按下按钮,电动机就得电运转;松开按钮,电动机就失电停转。 典型的三相异步电动机的点动控制电气原理图如图3-1(a所示。点动正转控制线路是由转换开关QS 、熔断器FU 、启动按钮SB 、接触器KM 及电动机M 组成。其中以转换开关QS 作电源隔离开关,熔断器FU 作短路保护,按钮SB 控制接触器KM 的线圈得电、失电,接触器KM 的主触头控制电动机M 的启动与停止。 点动控制原理:当电动机需要点动时,先合上转换开关QS ,此时电动机M 尚未接通电源。按下启动按钮SB ,接触器KM 的线圈得电,带动接触器KM 的三对主触头闭合,电动机M 便接通电源启动运转。当电动机需要停转时,只要松开启动按钮SB ,使接触器KM 的线圈失电,带动接触器KM 的三对主触头恢复断

开,电动机M 失电停转。在生产实际应用中,电动机的点动控制电路使用非常广泛,把启动按钮SB 换成压力接点、限位节点、水位接点等,就可以实现各种各样的自动控制电路,控制小型电动机的自动运行。 2. 三相异步电动机的自锁控制 三相异步电动机的自锁控制线路如图3-2所示,和点动控制的主电路大致相同,但在控制电路中又串接了一个停止按钮SB1,在启动按钮SB2的两端并接了接触器KM 的一对常开辅助触头。接触器自锁正转控制线路不但能使电动机连续运转,而且还有一个重要的特点,就是具有欠压和失压保护作用。它主要由按钮开关SB (起停电动机使用)、交流接触器KM (用做接通和切断电动机的电源以及失压和欠压保护等)、热继电器(用做电动机的过载保护)等组成。 欠压保护:“欠压”是指线路电压低于电动机应加的额定电压。“欠压保护”是指当线路电压下降到某一数值时,电动机能自动脱离电源电压停转,避免电动机在欠压下运行的一种保护。因为当线路电压下降时,电动机的转矩随之减小,电动机的转速也随之降低,从而使电动机的工作电流增大,影响电动机的正常运行,电压下降严重时还会引起“堵转”(即 电动机接通电源但不转动)的现象,以致损坏电动机。采用接触器自锁正转控制线路就可避免电动机欠压运行,这是因为当线路电压下降到一定值(一般指低于额定电压85%以下)时,接触器线圈两端的电压也同样下降到一定值,从而使接触器线圈磁通减弱,产生的电磁吸力减小。当电磁吸力减小到小于反作用弹簧的拉力时,动铁心被迫释放,带动主触头、自锁触头同时断开,自动切断主电路和控制电路,电动机失电停转,达到欠压保护的目的。

他励直流电动机的机械特性曲线的分析

浅析:他励直流电动机的机械特性 在电源电压U 和励磁电路的电阻R f 为常数的条件下,表示电动机的转矩n 和转矩之间的关系n=f (T )曲线,称为机械特性曲线。利用机械特性和负载转矩特性可以确定拖动系统的稳定转速,在一定条件下还可以利用机械特性和运动方程式分析拖动系统的动态运动情况,如转速、转矩及电流随时间的变化规律。可见,电动机的机械特性对分析电力拖动系统的启动、调速、制动等运行性能是十分重要的。 下图是他励直流电动机的电路原理图,他励直流电动机的机械特性方程式,可由他励直 流电动机的基本方程式导出。由公式 , 和 导出机械特性方程式 ( 1-1 ) 他励直流电动机电路原理图 当电源电压U =常数,电枢回路总电阻R =常数,励磁磁通Φ=常数时,电动机的机械特性如下图所示,是一条向下倾斜的直线,这说明加大电动机的负载,会使转速下降。特性 曲线与纵轴的交点为n 0时的转速,称为理想空载转速。 他励直流电动机的机械特性 实际上,当电动机旋转时,不论有无负载,总存在有一定的空载损耗和相应的空载转矩, 而电动机的实际空载转速 将低于n 0。由此可见式(1-1)的右边第二项即表示电动机带负载后的转速降,用 表示,则 ( 1-2 ) 式中 β——机械特性曲线的斜率。 β越大, 越大,机械特性就越“软”,通常称β大的机械特性为软特性。一般他励电动机在电枢没有外接电阻时,机械特性都比较“硬”。 机械特性的硬度也可用额定转速调整率△n N %来说明,转速调整率小,则机械特性硬度就高。 电动机的机械特性分为固有机械特性和人为机械特性 。 固有机械特性是当电动机的电枢工作电压和励磁磁通均为额定值,电枢电路中没有串入附加电阻时的机械特性,其方程式为 固有机械特性如下图中的 曲线 所示,由于 较小,故他励直流电动机固有机械特性较“硬”。 他励直流电动机串电阻时的机械特性 人为机械特性是人为地改变电动机电路参数或电枢电压而得到的机械特性,即改变公式(1-1)中的参数所获得的机械特性,一般只改变电压、磁通、附加电阻中的一个,他励电动机有下列三种人为机械特性。 (1) 枢串电阻时的人为机械特性 此时 ,人为机械特性的方程式 与固有特性相比,理想空载转速n 0不变,但是,转速降△n 增大 。R pa 越大,△n 也越大,特性变“软”,这类人为机械特性是一组通过 n 0 ,但具有不同斜率的直线。 如下图所示 (2) 改变电枢电压时的人为机械特性 a a a R I E U + =n E a Φe C =φa T em I C T =em T R U n 2T e e C C C ΦΦ-=Φ e 0C U n =0 n 'n ?em em T T R n βΦ==?2T e C C n ?em N a N N T R U n 2T e e C C C ΦΦ-=pa a N N R R R U U +===,,ΦΦem N pa a N N T R R U n 2T e e C C C ΦΦ+-=0=pa R N ΦΦ=

三相异步电动机的启动_New

三相异步电动机的启动

————————————————————————————————作者:————————————————————————————————日期:

三相异步电动机的启动 异步电动机启动时的要求: 1、电动机有足够大的启动转矩。 2、一定大小启动转矩前提下,启动电流越小越好。 3、启动所需设备简单,操作方便。 4、启动过程中功率损耗越小越好。 一、鼠笼式异步电动机的启动 1、直接启动 即启动时加在电动机定子绕组上的电压为额定电压。三相异步电动机直接启动的条件(满足一条即可)

1、容量在7.5KW以下的电动机均可采用。 2、电动机在启动瞬间造成的电网电压降不大于电源电压正常值的10%,对于不常启动的电动机可放宽到15%。 3、可用经验公式粗估电动机是否可直接启动 优点:所需启动设备简单,启动时间短,启动方式简单、可靠,所需成本低。 缺点:对电动机及电网有一定冲击 2、降压启动 在电动机启动时降低定子绕组上的电压,启动结束时加额定电压的启动方式。降压启动能起到降低电动机启动电流目的,但由于转矩与电压的平方成正比,因此降压启动时电动机的转矩减小较多,故只适用于空载或轻载启动。 A、自耦变压器(亦称补偿器)降压启动

(1)接线:自耦变压器的高压边投入电网,低压边接至电动机,有几个不同电压比的分接头供选择。 (2)特点:设自耦变压器的变比为K,原边电压为U1,副边电压U2= U1/K,副边电流I2(即通过电动机定子绕组的线电流)也按正比减小,又因为I1= I2/K,则电源供给电动机的启动电流为直接启动时1/K2倍。因电压降低了1/K倍,转矩降为1/K2倍。 自耦变压器副边有2~3组抽头,如二次电压分别为原边电压的80 %、60%、40%。 优点:可按允许的启动电流和所需的启动转矩来选择自耦变压器的不同抽头实现降压启动,定子绕组采用Y或Δ。 缺点:设备体积大,投资较贵。 B、星—三角(Y—Δ )降压启动 (1)接线:启动时先将定子接成星形,启动完再接成Δ。 (2)特点:启动电流、电源电流和启动转矩只有直接启动时1/3。

步电动机常采用异步启动法

同步电机和感应电机一样是一种常用的交流电机。特点是:稳态运行时,转子的转速和电网频率之间有不变的关系n=ns=60f/p,ns称为同步转速。若电网的频率不变,则稳态时同步电机的转速恒为常数而与负载的大小无关。 同步电机分为同步发电机和同步电动机。现代发电厂中的交流机以同步电机为主。 工作原理 ◆主磁场的建立:励磁绕组通以直流励磁电流,建立极性相间的励磁磁场,即建立起主磁场。 ◆载流导体:三相对称的电枢绕组充当功率绕组,成为感应电势或者感应电流的载体。 ◆切割运动:原动机拖动转子旋转(给电机输入机械能),极性相间的励磁磁场随轴一起旋转并顺次切割定子各相绕组(相当于绕组的导体反向切割励磁磁场)。 ◆交变电势的产生:由于电枢绕组与主磁场之间的相对切割运动,电枢绕组中将会感应出大小和方向按周期性变化的三相对称交变电势。通过引出线,即可提供交流电源。 ◆交变性与对称性:由于旋转磁场极性相间,使得感应电势的极性交变;由于电枢绕组的对称性,保证了感应电势的三相对称性。 运行方式 ◆同步电机的主要运行方式有三种,即作为发电机、电动机和补偿机运行。作为发电机运行是同步电机最主要的运行方式,作为电动机运行是同步电机的另一种重要的运行方式。同步电动机的功率因数可以调节,在不要求调速的场合,应用大型同步电动机可以提高运行效率。近年来,小型同步电动机在变频调速系统中开始得到较多地应用。同步电机还可以接于电网作为同步补偿机。这时电机不带任何机械负载,靠调节转子中的励磁电流向电网发出所需的感性或者容性无功功率,以达到改善电网功率因数或者调节电网电压的目的。

tóng bù diàn dòng jī 转子转速与定子旋转磁场的转速相同的交流电动机。其转子转速n与磁极对数p、电源频率f之间满足n=f/p。转速n决定于电源频率f,故电源频率一定时,转速不变,且与负载无关。具有运行稳定性高和过载能力大等特点。常用于多机同步传动系统、精密调速稳速系统和大型设备(如轧钢机)等。 是属于交流电机,定子绕组与异步电动机相同。它的转子旋转速度与定子绕组所产生的旋转磁场的速度是一样的,所以称为同步电动机。正由于这样,同步电动机的电流在相位上是超前于电压的,即同步电动机是一个容性负载。为此,在很多时候,同步电动机是用以改进供电系统的功率因数的。 同步电动机在结构上大致有两种: 1、转子用直流电进行励磁。它的转子做成显极式的,安装在磁极铁芯上面的磁场线圈是相互串联的,接成具有交替相反的极性,并有两根引线连接到装在轴上的两只滑环上面。磁场线圈是由一只小型直流发电机或蓄电池来激励,在大多数同步电动机中,直流发电机是装在电动机轴上的,用以供应转子磁极线圈的励磁电流。 由于这种同步电动机不能自动启动,所以在转子上还装有鼠笼式绕组而作为电动机启动之用。鼠笼绕组放在转子的周围,结构与异步电动机相似。 当在定子绕组通上三相交流电源时,电动机内就产生了一个旋转磁场,鼠笼绕组切割磁力线而产生感应电流,从而使电动机旋转起来。电动机旋转之后,其速度慢慢增高到稍低于旋转磁场的转速,此时转子磁场线圈经由直流电来激励,使转子上面形成一定的磁极,这些磁极就企图跟踪定子上的旋转磁极,这样就增加电动机转子的速率直至与旋转磁场同步旋转为止。 2、转子不需要励磁的同步电机 转子不励磁的同步电动机能够运用于单相电源上,也能运用于多相电源上。这种电动机中,有一种的定子绕组与分相电动机或多相电动机的定子相似,同时有一个鼠笼转子,而转子的表面切成平面。所以是属于显极转子,转子磁极是由一种磁化钢做成的,而且能够经常保持磁性。鼠笼绕组是用来产生启动转矩的,而当电动机旋转到一定的转速时,转子显极就跟住定子线圈的电流频率而达到同步。显极的极性是由定子感应出来的,因此它的数目应和定子上极数相等,当电动机转到它应有的速度时,鼠笼绕组就失去了作用,维持旋转是靠着转子与磁极跟住定子磁极,使之同步 异步电机 电机的转速(转子转速)小于旋转磁场的转速,从而叫为异步电机。它和感应电机基本上是相同的。s=(ns-n)/ns。s为转差率, ns为磁场转速,n为转子转速。 基本原理:(1)当三相异步电机接入三相交流电源时,三相定子绕组流过三相对称电流产生的三相磁动势(定子旋转磁动势)并产生旋转磁场。 (2)该旋转磁场与转子导体有相对切割运动,根据电磁感应原理,转子导体产生感应电动势并产生感应电流。

相关文档
最新文档