高中数学奥赛辅导专题-数列

高中数学奥赛辅导专题-数列
高中数学奥赛辅导专题-数列

高中数学奥赛辅导专题——数列

一 准备知识

所谓数列,简单地说就是有规律的(有限或无限多个)数构成的一列数,常记作{a n },a

n n n n n -1有些数列不是用通项公式给出,而是用a n 与其前一项或前几项的关系来给出的,例如:a n +1=2a n +3,这样的公式称为数列的递推公式.由数列的递推公式我们可以求出其通项公式.

数列问题中一个很重要的思想是把数列的通项公式或递推公式变形,然后将它看成新数列(通常是等差或等比数列)的通项公式或递推公式,最后用新数列的性质解决问题. 二 例题精讲

例1.(裂项求和)求S n =

2

22222)12()12(853283118+?-?+

+??+??n n n

K . 解:因为a n =

22)12()12(8+?-?n n n =2

2)

12(1

)12(1+--n n 所以S n =??????+--++???

??-+???

??-2

22

222

)12(1)

12(1513

1

3111n n Λ=1-2)12(1+n 例2.(倒数法)已知数列{a n }中,a 1=

5

3

,a n +1=12+n n a a ,求{a n }的通项公式.

解:

21

1211

+=+=

+n

n n n a a a a ∴??????n a 1是以35为首项,公差为2的等差数列,即351=n

a +2(n -1)=31

6-n

∴a n =1

63

-n

练习1.已知数列{a n }中,a 1=1,S n =

1

211

+--n n S S ,求{a n }的通项公式.

解:

211211

11+=+=---n n n n S S S S ∴?

??

???n

S 1是以1为首项,公差为2的等差数列. ∴

n S 1=1+2(n -1)=2n -1,即S n =1

21-n . ∴a n =S n -S n -1=

3

21

121--

-n n =)32)(12(2---n n ∴a n =?????---3

21

1211n n )2()1(≥=n n

例3.(求和法,利用公式a n =S n -S n -1,n ≥2)已知正数数列{a n }的前n 项和S n =

???? ?

?+n n a a 121,求{a n }的通项公式. 解:S 1=a 1=???

?

??+11121a a ,所以a 1=1. ∵a n =S n -S n -1 ∴2S n =S n -S n -1+

1

1

--n n S S

∴S n +S n -1=

1

1

--n n S S ,即S n 2-S n -12=1

∴{}2

n

S 是以1为首项,公差为1的等差数列.

∴S n 2=n ,即S n =n

∴a n =S n -S n -1=n -1-n (n ≥2) ∴a n =n -1-n .

例4.(叠加法)已知数列{a n }的前n 项和S n 满足S n -S n -2=3×(-

2

1)n -1

(n ≥3),且

S 1=1,S 2=-

2

3

,求{a n }的通项公式. 解:先考虑偶数项有:

S 2n -S 2n -2=-3·1

221-?

?

?

??n

S 2n -2-S 2n -4=-3·3

221-?

?

?

??n

……

S 4-S 2=-3·3

21??

?

??

将以上各式叠加得S 2n -S 2=-3×

4

114112113-??????????? ??-???? ??-n , 所以S 2n =-2+)1(211

2≥?

?

?

??-n n .

再考虑奇数项有:

S 2n +1-S 2n -1=3·n

221???

??

S 2n -1-S 2n -3=3·2

221-?

?

?

??n

……

S 3-S 1=3·2

21??

?

??

将以上各式叠加得S 2n +1=2-)1(212≥??

?

??n n

所以a 2n +1=S 2n +1-S 2n =4-3×n

221??? ??,a 2n =S 2n -S 2n -1=-4+3×1

221-?

?

?

??n .

综上所述a n =???

??????? ???+-???

???---为偶数,为奇数n n n n 1

1

2134,2134,即a n =(-1)n -1

·??????????? ???--1

2134n . 例5.(a n +1=pa n +r 类型数列)在数列{a n }中,a n +1=2a n -3,a 1=5,求{a n }的通项公式.

解:∵a n +1-3=2(a n -3)

∴{a n -3}是以2为首项,公比为2的等比数列. ∴a n -3=2n ∴a n =2n +3.

练习2.在数列{a n }中,a 1=2,且a n +1=2

1

2

+n a ,求{a n }的通项公式.

解:a n +12=

21a n 2+21 ∴a n +12-1=2

1

(a n 2-1)

∴{a n +12-1}是以3为首项,公比为

2

1

的等差数列. ∴a n +12-1=3×1

21-??

?

??

n ,即a n =1

23

1-+

n

例6(a n +1=pa n +f (n )类型)已知数列{a n }中,a 1=1,且a n =a n -1+3n -

1,求{a n }的通项公式.

解:(待定系数法)设a n +p ·3n =a n -1+p ·3n -

1

则a n =a n -1-2p ·3n -

1,与a n =a n -1+3n

-1

比较可知p =-

2

1

. 所以???

?

??-23n n a 是常数列,且a 1-23=-21.

所以23n n a -=-2

1,即a n =21

3-n .

练习3.已知数列{a n }满足S n +a n =2n +1,其中S n 是{a n }的前n 项和,求{a n }的通项公式. 解:∵a n =S n -S n -1 ∴S n +S n -S n -1=2n +1 ∴2S n =S n -1+2n +1

(待定系数法)设2(S n +pn +q )=S n -1+p (n -1)+q

化简得:-pn -p -q =2n +1,所以???=+-=-12q p p ,即?

??=-=12

q p

∴2(S n -2n +1)=S n -2(n -1)+1,

又∵S 1+a 1=2+1=3,∴S 1=

23,S 1-2+1=21 ∴{S n -2n +1}是以21为公比,以2

1

为首项的等比数列.

∴S n -2n +1=n ??? ??21,即S n =n ??? ??21+2n -1,a n =2n +1-S n =2-n

??

?

??21.

例7.(a n +1=pa n r 型)(2005年江西高考题)已知数列{a n }各项为正数,且满足a 1=1,

a n +1=

)4(21

n n a a -.

(1)求证:a n

(2)a n +1=-

21

(a n -2)2+2 ∴a n +1-2=-21

(a n -2)2

∴2-a n +1=2

1

(2-a n )2

∴由(1)知2-a n >0,所以log 2(2-a n +1)=log 2

2

1

(2-a n )2=2·log 2(2-a n )-1 ∴log 2(2-a n +1)-1=2[log 2(2-a n )-1]

即{log 2(2-a n )-1}是以―1为首项,公比为2的等比数列

∴log 2(2-a n )-1=-1×2n -

1 化简得a n =2-1

2

12--n .

练习4.(2006年广州二模)已知函数4444

(1)(1)()(1)(1)x x f x x x ++-=+--(0x ≠).

在数列{}n a 中,12a =,1()n n a f a +=(n *∈N ),求数列{}n a 的通项公式.

解:4

444114441(1)(1)1(1)1(1)(1)1(1)1n n n n n n n n n n n a a a a a a a a a a a +++??++-+++=?== ?+-----??

从而有1111

ln

4ln 11

n n

n n a a a a ++++=--, 由此及111

ln

ln301

a a +=≠-知: 数列1ln 1n n a a ??+??-??

是首项为ln3,公比为4的等比数列,

故有1

1141

441131ln 4ln 331131

n n n n n n n n n a a a a a ----+++=?=?=---(n *∈N )。

例8.(三角代换类型)已知数列{a n }中,a 1=2,a n =

1

1

11---+n n a a ,求{a n }的通项公式.

解:令a n -1=tan θ,则a n +1=

θπθ

π

tan 4

tan 1tan 4

tan

?-+=tan ??? ??+θπ4

∴a n =tan ??

?

?

??+-2tan 4)1(atc n π.

(推荐)高中数学奥赛辅导

数列与递进 知识、方法、技能 数列是中学数学中一个重要的课题,也是数学竞赛中经常出现的问题. 所谓数列就是按一定次序排列的一列数.数列的一般形式是a 1, a 2, …,a n , …通常简记为{a n }.如果数列{a n }的第n 项a n 与n 之间的函数关系可用一个公式来表示,这个公式就叫做这个数列的通项公式. 从函数的角度看,数列可以看做是一个函数,定义域是自然数集或自然数集的一个有限子集,函数表达式就是数列的通项公式. 对于数列{a n },把S n =a 1+a 2+…+a n 叫做数列{a n }的前n 项和,则有 ?? ?≥-==-). 2(),1(11 n S S n S a n n n I .等差数列与等比数列 1.等差数列 (1)定义:.2 )(2 11++++==-n n n n n a a a d a a 或常量 (2)通项公式:a n =a 1+(n -1)d . (3)前n 项和公式:.2 ) 1(2)(11d n n na a a n S n n -+=+= (4)等差中项:.2 21+++= n n n a a a (5)任意两项:a n =a m +(n -m)d. (6)性质: ①公差为非零的等差数列的充要条件是通项公式为n 的一次函数; ②公差为非零的等差数列的充要条件是前n 项和公式为n 的不含常数项的二次函数; ③设{a n }是等差数列,如果m 、n 、p 、q ∈N*,且m+n=p+q ,那么a m +a n =a p +a q ; ④设S n 是等差数列{a n }的前n 项和,则S m , S 2m -S m , S 3m -S 2m , …, S pm -S (p -1)m (m>1,p ≥3,m 、p ∈N*)仍成等差数列; ⑤设S n 是等差数列{a n }的前n 项和,则}{ n S n 是等差数列; ⑥设{a n }是等差数列,则{λa n +b}(λ,b 是常数)是等差数列;

高中数学竞赛系列辅导材料 集合

集合(一) 内容综述: 本讲先介绍了以下一些重要的概念:集合、子集、两集合相等、真子集、并集、交集、相对补集,然后介绍了著名的容斥原理,接着介绍了以下几个定律:零律、分配律、排中律、吸收律、补交转换律、德·摩根律。 然后通过6道例题分析了一部分集合题目的解题方法与技巧,同学们应在熟悉以上定义、定理、定律的基础上仔细分析例题材解法,争取可以独立解决训练题。 要点讲解: §1.基本理论 除了课内知识外,我们补充以下知识 相对补集:称属于A而不属于B的全体元素,组成的集合为B对A的相对补集或差集,记作A-B。 容斥原理:以表示集合A中元素的数目,我们有 ,其中为n个集合称为A的阶。 n阶集合的全部子集数目为。 A,B,C为三个集合,就有下面的定律。 (1)分配律 (2)零律

(3)排中律 (4)吸收律 (5)补交转换律 (6)德·摩根律的相对形式 例题分析: 例1:对集合{1,2,…,n}及其每一个非空了集,定义一个唯一确定的“交替和”如下:按照递减的次序重新排列该子集,然后交替地减或加后继的数所得的结果,例 如,集合的“交替和”是9-6+4-2+1=6.的“交替和”是6-5=1,的交替和是2。那么,对于n=7。求所有子集的“交替和”的总和。 分析;n=7时,集合{7,6,5,4,3,2,1}的非空子集有个,虽然子集数 目有限,但是逐一计算各自的“交替和”再相加,计算量仍然巨大,但是,根据“交替和”的定义,容易看到集合{1,2,3,4,5,6,7}与{1,2,3,4,5,6}的“交替 和”是7;可以想到把一个不含7的集和A与的“交替和”之和应为7。那么,我们也就很容易解决这个问题了。 解:集合{1,2,3,4,5,6,7}的子集中,除去{7}外还有个非空子集合,把这个非空子集两两结组后分别计算每一组中“交替和”之和,结组原则是设 这是把结合为一组,显然,每组中,“交替和”之和应为7,共有组.所以,所有“交替和”之和应该为 。

高中数学数列专题大题训练

高中数学数列专题大题组卷 一.选择题(共9小题) 1.等差数列{a n}的前m项和为30,前2m项和为100,则它的前3m项和为()A.130 B.170 C.210 D.260 2.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7 C.6 D. 3.数列{a n}的前n项和为S n,若a1=1,a n+1=3S n(n≥1),则a6=() A.3×44B.3×44+1 C.44D.44+1 4.已知数列{a n}满足3a n+1+a n=0,a2=﹣,则{a n}的前10项和等于()A.﹣6(1﹣3﹣10)B.C.3(1﹣3﹣10)D.3(1+3﹣10)5.等比数列{a n}的前n项和为S n,已知S3=a2+10a1,a5=9,则a1=()A.B.C.D. 6.已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=()A.138 B.135 C.95 D.23 7.设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3 B.4 C.5 D.6 8.等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=() A.n(n+1)B.n(n﹣1)C.D. 9.设{a n}是等差数列,下列结论中正确的是() A.若a1+a2>0,则a2+a3>0 B.若a1+a3<0,则a1+a2<0 C.若0<a 1<a2,则a2D.若a1<0,则(a2﹣a1)(a2﹣a3)>0 二.解答题(共14小题) 10.设数列{a n}(n=1,2,3,…)的前n项和S n满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.

高一数学竞赛培训讲座之函数的基本性质

函数的基本性质 基础知识: 函数的性质通常是指函数的定义域、值域、解析式、单调性、奇偶性、周期性、对称性等等,在解决与函数有关的(如方程、不等式等)问题时,巧妙利用函数及其图象的相关性质,可以使得问题得到简化,从而达到解决问题的目的. 关于函数的有关性质,这里不再赘述,请大家参阅高中数学教材及竞赛教材:陕西师范大学出版社 刘诗雄《高中数学竞赛辅导》、刘诗雄、罗增儒《高中数学竞赛解题指导》. 例题: 1. 已知f(x)=8+2x -x 2,如果g(x)=f(2-x 2 ),那么g(x)( ) A.在区间(-2,0)上单调递增 B.在(0,2)上单调递增 C.在(-1,0)上单调递增 D.在(0,1)上单调递增 提示:可用图像,但是用特殊值较好一些.选C 2. 设f(x)是R 上的奇函数,且f(x +3)=-f(x),当0≤x≤ 23时,f(x)=x ,则f(2003)=( ) A.-1 B.0 C.1 D.2003 解:f(x +6)=f(x +3+3)=-f(x +3)=f(x) ∴ f(x)的周期为6 f(2003)=f(6×335-1)=f(-1)=-f⑴=-1 选A 3. 定义在实数集上的函数f(x),对一切实数x 都有f(x +1)=f(2-x)成立,若f(x)=0仅有 101个不同的实数根,那么所有实数根的和为( ) A.150 B.2303 C.152 D.2 305 提示:由已知,函数f(x)的图象有对称轴x = 23 于是这101个根的分布也关于该对称轴对称.

即有一个根就是23,其余100个根可分为50对,每一对的两根关于x =2 3对称 利用中点坐标公式,这100个根的和等于 23×100=150 所有101个根的和为 23×101=2303.选B 4. 实数x ,y 满足x 2=2xsin(xy)-1,则x 1998+6sin 5 y =______________. 解:如果x 、y 不是某些特殊值,则本题无法(快速)求解 注意到其形式类似于一元二次方程,可以采用配方法 (x -sin(xy))2+cos 2(xy)=0 ∴ x=sin(xy) 且 cos(xy)=0 ∴ x=sin(xy)=±1 ∴ siny=1 xsin(xy)=1 原式=7 5. 已知x =9919+是方程x 4+bx 2+c =0的根,b ,c 为整数,则b +c =__________. 解:(逆向思考:什么样的方程有这样的根?) 由已知变形得x -9919= ∴ x 2-219x +19=99 即 x 2-80=219x 再平方得x 4-160x 2+6400=76x 2 即 x 4-236x 2+6400=0 ∴ b=-236,c =6400 b + c =6164 6. 已知f(x)=ax 2+bx +c(a >0),f(x)=0有实数根,且f(x)=1在(0,1)内有两个实数根, 求证:a >4. 证法一:由已知条件可得 △=b 2-4ac≥0 ① f⑴=a +b +c >1 ②

高中数学奥赛的技巧(上篇)

奥林匹克数学的技巧(上篇) 有固定求解模式的问题不属于奥林匹克数学,通常的情况是,在一般思维规律的指导下,灵活运用数学基础知识去进行探索与尝试、选择与组合。这当中,经常使用一些方法和原理(如探索法,构造法,反证法,数学归纳法,以及抽屉原理,极端原理,容斥原理……),同时,也积累了一批生气勃勃、饶有趣味的奥林匹克技巧。在2-1曾经说过:“竞赛的技巧不是低层次的一招一式或妙手偶得的雕虫小技,它既是使用数学技巧的技巧,又是创造数学技巧的技巧,更确切点说,这是一种数学创造力,一种高思维层次,高智力水平的艺术,一种独立于史诗、音乐、绘画的数学美。” 奥林匹克技巧是竞赛数学中一个生动而又活跃的组成部分。 2-7-1 构造 它的基本形式是:以已知条件为原料、以所求结论为方向,构造出一种新的数学形式,使得问题在这种形式下简捷解决。常见的有构造图形,构造方程,构造恒等式,构造函数,构造反例,构造抽屉,构造算法等。 例2-127 一位棋手参加11周(77天)的集训,每天至少下一盘棋,每周至多下12盘棋,证明这棋手必在连续几天内恰好下了21盘棋。 证明:用n a 表示这位棋手在第1天至第n 天(包括第n 天在内)所下的总盘数(1,2,77n =…),依题意 127711211132a a a ≤<<≤?=… 考虑154个数: 12771277,,,21,21,21a a a a a a +++…,?, 又由772113221153154a +≤+=<,即154个数中,每一个取值是从1到153的自然数,因而必有两个数取值相等,由于i j ≠时,i i a a ≠ 2121i j a a +≠+ 故只能是,21(771)i j a a i j +≥>≥满足 21i j a a =+ 这表明,从1i +天到j 天共下了21盘棋。 这个题目构造了一个抽屉原理的解题程序,并具体构造了154个“苹果”与153个“抽屉”,其困难、同时也是精妙之处就在于想到用抽屉原理。 例 2-128 已知,,x y z 为正数且()1xyz x y z ++=求表达式()()x y y z ++的最最小值。 解:构造一个△ABC ,其中三边长分别为a x y b y z c z x =+??=+??=+? ,则其面积为 1?= 另方面2()()2sin x y y z ab C ?++==≥ 故知,当且仅当∠C=90°时,取值得最小值2,亦即222()()()x y y z x z +++=+

高中数学数列放缩专题:用放缩法处理数列和不等问题

用放缩法处理数列和不等问题(教师版) 一.先求和后放缩(主要是先裂项求和,再放缩处理) 例1.正数数列{}n a 的前n 项的和n S ,满足12+=n n a S ,试求: (1)数列{}n a 的通项公式; (2)设11+= n n n a a b ,数列{}n b 的前n 项的和为n B ,求证:2 1

(完整版)高三文科数学数列专题.doc

高三文科数学数列专题 高三文科数学复习资料 ——《数列》专题 1. 等差数列{ a n}的前n项和记为S n,已知a1030, a2050 . ( 1)求通项a n; ( 2)若S n242 ,求 n ; ( 3)若b n a n20 ,求数列 { b n } 的前 n 项和 T n的最小值. 2. 等差数列{ a n}中,S n为前n项和,已知S77, S1575 . ( 1)求数列{ a n}的通项公式; ( 2)若b n S n,求数列 {b n } 的前 n 项和 T n. n 3. 已知数列{ a n}满足a1 1 a n 1 ( n 1) ,记 b n 1 , a n . 1 2a n 1 a n (1)求证 : 数列{ b n}为等差数列; (2)求数列{ a n}的通项公式 . 4. 在数列a n 中, a n 0 , a1 1 ,且当 n 2 时,a n 2S n S n 1 0 . 2 ( 1)求证数列1 为等差数列;S n ( 2)求数列a n的通项 a n; ( 3)当n 2时,设b n n 1 a n,求证: 1 2 (b2 b3 b n ) 1 . n 2(n 1) n 1 n 5. 等差数列{ a n}中,a18, a4 2 . ( 1)求数列{ a n}的通项公式; ( 2)设S n| a1 | | a2 || a n |,求 S n;

1 (n N *) , T n b1 b2 b n (n N *) ,是否存在最大的整数m 使得对任( 3)设b n n(12 a n ) 意 n N * ,均有T n m m 的值,若不存在,请说明理由. 成立,若存在,求出 32 6. 已知数列{log2(a n1)} 为等差数列,且a13, a39 . ( 1)求{ a n}的通项公式; ( 2)证明: 1 1 ... 1 1. a2 a1 a3 a2 a n 1 a n 7. 数列{ a n}满足a129, a n a n 12n 1(n 2, n N * ) . ( 1)求数列{ a n}的通项公式; ( 2)设b n a n,则 n 为何值时, { b n } 的项取得最小值,最小值为多少?n 8. 已知等差数列{ a n}的公差d大于0 , 且a2,a5是方程x2 12 x 27 0 的两根,数列 { b n } 的前 n 项和 为 T n,且 T n 1 1 b n. 2 ( 1)求数列{ a n} , { b n}的通项公式; ( 2)记c n a n b n,求证:对一切 n N 2 , 有c n. 3 9. 数列{ a n}的前n项和S n满足S n2a n 3n . (1)求数列{ a n}的通项公式a n; (2)数列{ a n}中是否存在三项,它们可以构成等差数列?若存在,请求出一组适合条件的项;若不存在,请说明理由 . 10. 已知数列{ a n}的前n项和为S n,设a n是S n与 2 的等差中项,数列{ b n} 中, b1 1,点 P(b n , b n 1 ) 在 直线 y x 2 上. ( 1)求数列{ a n} , { b n}的通项公式

高中数学竞赛讲义

高中数学竞赛资料 一、高中数学竞赛大纲 全国高中数学联赛 全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。 全国高中数学联赛加试 全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是: 1.平面几何 几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。三角形中的几个特殊点:旁心、费马点,欧拉线。几何不等式。几何极值问题。几何中的变换:对称、平移、旋转。圆的幂和根轴。面积方法,复数方法,向量方法,解析几何方法。 2.代数 周期函数,带绝对值的函数。三角公式,三角恒等式,三角方程,三角不等式,反三角函数。递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。 第二数学归纳法。平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。 复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。 n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。 函数迭代,简单的函数方程* 3.初等数论 同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。

4.组合问题 圆排列,有重复元素的排列与组合,组合恒等式。组合计数,组合几何。抽屉原理。容斥原理。极端原理。图论问题。集合的划分。覆盖。平面凸集、凸包及应用*。 注:有*号的内容加试中暂不考,但在冬令营中可能考。 二、初中数学竞赛大纲 1、数 整数及进位制表示法,整除性及其判定;素数和合数,最大公约数与最小公倍数;奇数和偶数,奇偶性分析;带余除法和利用余数分类;完全平方数;因数分解的表示法,约数个数的计算;有理数的概念及表示法,无理数,实数,有理数和实数四则运算的封闭性。 2、代数式 综合除法、余式定理;因式分解;拆项、添项、配方、待定系数法;对称式和轮换对称式;整式、分工、根式的恒等变形;恒等式的证明。 3、方程和不等式 含字母系数的一元一次方程、一元二次方程的解法,一元二次方程根的分布;含绝对值的一元一次方程、一元二次方程的解法;含字母系数的一元一次不等式的解法,一元二次不等式的解法;含绝对值的一元一次不等式;简单的多元方程组;简单的不定方程(组)。 4、函数 二次函数在给定区间上的最值,简单分工函数的最值;含字母系数的二次函数。 5、几何 三角形中的边角之间的不等关系;面积及等积变换;三角形中的边角之间的不等关系;面积及等积变换;三角形的心(内心、外心、垂心、重心)及其性质;相似形的概念和性质;圆,四点共圆,圆幂定理;四种命题及其关系。 6、逻辑推理问题 抽屉原理及其简单应用;简单的组合问题简单的逻辑推理问题,反证法;

学高中数学竞赛辅导计划

学高中数学竞赛辅导计 划 Document number【AA80KGB-AA98YT-AAT8CB-2A6UT-A18GG】

2016年高中数学竞赛辅导计划 为搞好2016年全国数学联赛备考工作,并以此为契机,培养我校学生数学学习的积极性,进一步提高我校的办学品位,特举办本届高中数学联赛辅导班。 一、指导思想: 以科学发展观、新课程理论为指导;以提高学生学习数学、应用数学的兴趣,提高学生的数学素养为宗旨;坚持以生为本、有利于学生的终生发展的原则,立足实际、因材施教,开展数学竞赛辅导班工作。 二、目标要求 1、适当拓宽学生数学知识视野,注重渗透一些常用的数学思想方法、加深对数学本质的认识。 2、注重培养学生良好的思维品质,提高学生的探究知识及运用数学知识和数学思想方法分析、解决问题的能力。 3、注意培养学生的应用意识、创新意识、协作意识,培养学生良好的科学态度。 4、使学生在探究知识,解决问题的过程中,感受数学文化的博大精深和数学方法的巨大创造力,感受数学的魅力,增强对数学的向往感;从而激发学生学习数学的热情。培养学生不畏困难、敢于攀登科学高峰的勇气。 5、力争在2016年高中数学联赛中至少有两人次取得省级三等以上的奖项,在本市同层次学校中名列前茅,为学校争光。 三、管理措施: 1、依据全国数学联赛考试大纲,结合近几年数学联赛试题特点,根据教学进度和学生认知结构特点,精心选择、合理安排教学内容,循序渐进,逐步提高。 2、精心准备,讲究实效。认真编写讲义(或教案),上课前一周将讲义制好并分发给学生。认真上好每一节辅导课,使学生真正学有所得。 3、以集体讲解与学生自主学习和小组合作学习相结合的学习形式组织学习,充分调动学生学习的积极性,保障学生的主体地位。 4、精编课后巩固练习与强化,及时检查、及时批改、及时反馈,确保质量。 5、制定辅导班班规,严格考勤制度。 6、争取学校有关领导、班主任及数学教师的支持,确保后勤保障。 五、学生选拔:先由学生本人自愿报名,经家长同意后,由有关班主任、任课教师协商并推荐人选,通过选拔考试择优录取50名。 六、辅导教师: 七、活动时间: 八、活动地点: 注: 1、若有特殊情况须作临时调整,则另行通知。 2、本计划有不周之处或未尽事宜,将在执行过程中进行不断完善。 年月日2016年高中数学联赛辅导课安排表

高中数学奥林匹克竞赛

高中数学奥林匹克竞赛 奥数学林匹克竞竞~竞称奥数。年和年~竞竞竞始在列格勒宁和莫斯科竞竞中竞竞~学数学19341935 并冠以数学奥林匹克的名~称年在布加勒斯特竞竞第一届国数学奥竞竞竞竞林匹克。竞竞竞竞国数学奥1959 林匹克作竞一竞竞性竞事~由竞国国数学教育竞家命竞。 我的高中竞竞分三竞,每年国数学月中旬的全竞竞~次年一月的国;冬令竞,~次年三10CMO月竞始的家国集竞竞的竞竞竞拔。与 “全高中竞竞国数学”;竞竞于年,~承竞方式初中竞竞相同~每年与月竞行~分竞一竞和198110二竞~在竞竞竞竞中取得竞成竞的全竞异国名生有竞格加由中主竞的“学参国数学会中林国数学奥90 匹克;,竞全中生冬令竞”;每年元月,。国学数学CMO 全竞竞分竞一竞、加竞国数学(即称俗的“二竞”)。各省自己竞竞的“初竞”、个份“初竞”、“竞竞”等等~都不是正式的全竞竞名及程序。国称一竞 全高中竞竞的一竞竞竞大竞~完全按照全日制中《大竞》中所竞定的要求国数学学数学教学教学 和容~高考所竞定的知竞范竞和方法~在方法的要求上略有提高~其中率和内即概微竞分初步 不考。 二竞 平面何几 基本要求,掌握初中竞竞大竞所定的所有容。确内

竞充要求,面竞和周竞方法。 几个重要定理,梅涅竞斯定理、塞瓦定理、托勒密定理、西姆松定理。 几个重要的极竞,到三角形三竞点距之和最小的点离——竞竞点。到三角形三竞点距的离平方 和最小的点重心。三角形到三竞距之竞最大的点重心。——内离—— 几何不等式。 竞竞的等周竞竞。了解下述定理, 在周竞一定的竞形的集合中~正竞形的面竞最大。n n 在周竞一定的竞竞竞曲竞的集合中~竞的面竞最大。 在面竞一定的竞形的集合中~正竞形的周竞最小。nn 在面竞一定的竞竞竞曲竞的集合中~竞的周竞最小。 几运何中的竞,反射、平移、旋竞。 竞数方法、向量方法。* 平面凸集、凸包及竞用。 代数 在一竞大竞的基竞上外要求的容,另内 周期函数与周期~竞竞竞竞的函的竞像。数三倍角公式~三角形的一些竞竞的恒等式~三角不 等式。 第二竞竞法。竞竞~一竞、二竞竞竞~数学特征方程法。 函迭代~求数次迭代~竞竞的函方程数。n** 个竞元的平均不等式~柯西不等式~排序不等式及竞用。n 竞的指形式~数数欧拉公式~美弗定理棣~竞位根~竞位根的竞用。竞排列~有重竞的排列竞合。竞竞的与竞合恒等式。

备战高考技巧大全之高中数学黄金解题模板:专题26 数列求和方法答案解析

【高考地位】 数列是高中数学的重要内容,又是高中数学与高等数学的重要衔接点,其涉及的基础知识、数学思想与方法,在高等数学的学习中起着重要作用,因而成为历年高考久考不衰的热点题型,在历年的高考中都占有重要地位。数列求和的常用方法是我们在高中数学学习中必须掌握的基本方法,是高考的必考热点之一。此类问题中除了利用等差数列和等比数列求和公式外,大部分数列的求和都需要一定的技巧。下面,就近几年高考数学中的几个例子来谈谈数列求和的基本方法和技巧。 【方法点评】 方法一 公式法 解题模板:第一步 结合所求结论,寻找已知与未知的关系; 第二步 根据已知条件列方程求出未知量; 第三步 利用前n 项和公式求和结果 例1.设}{n a 为等差数列,n S 为数列}{n a 的前n 项和,已知77=S ,7515=S ,n T 为数列}{n S n 的前n 项和,求n T . 【评析】直接应用公式求和时,要注意公式的应用范围,如当等比数列公比为参数(字母)时,应对其公比是否为1进行讨论.常用的数列求和公式有:

等差数列前n 项和公式: 11()(1)22 n n n a a n n S na d +-==+. 等比数列前n 项和公式:111(1)(1)(1)11n n n na q S a q a a q q q q =??=--?=≠?--? . 自然数方幂和公式:1123(1)2 n n n +++???+=+ 22221123(1)(21)6 n n n n +++???+=++ 333321123[(1)]2 n n n +++???+=+ 【变式演练1】已知{a n }是等差数列,a 1+a 2=4,a 7+a 8=28,则该数列前10项和S 10等于( ) A.64 B.100 C.110 D.120 【答案】B 【解析】 试题分析:a 1+a 2=4,a 7+a 8=28,解方程组可得11,2a d == 101109101002 S a d ?∴=+ = 考点:等差数列通项公式及求和 方法二 分组法 解题模板:第一步 定通项公式:即根据已知条件求出数列的通项公式; 第二步 巧拆分:即根据通项公式特征,将其分解为几个可以直接求和的数列; 第三步 分别求和:即分别求出各个数列的和; 第四步 组合:即把拆分后每个数列的求和进行组合,可求得原数列的和. 例2. 已知数列{a n }是3+2-1,6+22-1,9+23-1,12+24-1,…,写出数列{a n }的通项公式并求其前n 项 S n .

人教版最新高中数学数列专题复习(综合训练篇含答案)Word版

——教学资料参考参考范本——人教版最新高中数学数列专题复习(综合训练篇含答案)Word 版 ______年______月______日 ____________________部门

———综合训练篇 一、选择题: 1. 在等差数列中,,则的值为 ( D ){}n a 120 31581=++a a a 1092a a - A .18 B .20 C .22 D .24 2.等差数列满足:,若等比数列满足则为( B ) A .16 B .32 C .64 D .27{}n a 30,8531==+S a a {} n b ,,4311a b a b ==5b 3.等差数列中,则数列的前9项之和S9等于{} n a 1 a {a ( C )A .66 B .144 C .99 D .297 4.各项都是正数的等比数列的公比q ≠1,且,,成等差数列,则为(A ) A . B . C . D .或{} n a 2a 321a 1 a 5 443a a a a ++2 15-215+2 51-2 1 5+215- 5.设等比数列的前项和为,若则( B ){}n a n n S ,33 6=S S = 69S S A. 2 B. C. D.3738 3

6.已知等差数列的前项的和为,且,,则过点和的直线的一个方向向 量的坐标是 ( B ){}n a n n S 210S =555S =(,) n P n a 2(2,)()n Q n a n N *++∈ A. B. C. D.1(2,)2 1(,2)2--1(,1) 2--(1,1)-- 7.设a 、b 、c 为实数,3a 、4b 、5c 成等比数列,且、、成等差数列,则 的值为( C ) A . B . C . D .a 1b 1c 1a c c a +15941594±15341534 ± 8. 已知数列的通项则下列表述正确的是 ( A ){} n a ,1323211 ????????-??? ??? ? ? ??=--n n n a A .最大项为最小项为 B .最大项为最小项不存在,1a 3 a ,1a C .最大项不存在,最小项为 D .最大项为最小项为3 a ,1a 4a 9.已知为等差数列,++=105,=99.以表示的前项和,则使得达到最大 值的是(B ){}n a 1a 3a 5a 246a a a ++n S {}n a n n S n A .21 B .20 C .19 D .18 9.一系列椭圆都以一定直线l 为准线,所有椭圆的中心都在定点M , 且点M 到l 的距离为2,若这一系列椭圆的离心率组成以为首项,为公比的等比数列,而椭圆相应的长半轴长为ai=(i=1,2,…,n),设bn=2(2n+1)·3n -2·an ,且Cn=,Tn=C1+C2+…+Cn ,若

高中数学奥赛辅导讲课稿

数列与递进 知识、方法、技能 数列是中学数学中一个重要的课题,也是数学竞赛中经常出现的问题. 所谓数列就是按一定次序排列的一列数.数列的一般形式是a 1, a 2, …,a n , …通常简记为{a n }.如果数列{a n }的第n 项a n 与n 之间的函数关系可用一个公式来表示,这个公式就叫做这个数列的通项公式. 从函数的角度看,数列可以看做是一个函数,定义域是自然数集或自然数集的一个有限子集,函数表达式就是数列的通项公式. 对于数列{a n },把S n =a 1+a 2+…+a n 叫做数列{a n }的前n 项和,则有 ???≥-==-).2(),1(11n S S n S a n n n I .等差数列与等比数列 1.等差数列 (1)定义:.2)(211++++= =-n n n n n a a a d a a 或常量 (2)通项公式:a n =a 1+(n -1)d . (3)前n 项和公式:.2 )1(2)(11d n n na a a n S n n -+=+= (4)等差中项:.2 21+++=n n n a a a (5)任意两项:a n =a m +(n -m)d. (6)性质: ①公差为非零的等差数列的充要条件是通项公式为n 的一次函数; ②公差为非零的等差数列的充要条件是前n 项和公式为n 的不含常数项的二次函数; ③设{a n }是等差数列,如果m 、n 、p 、q ∈N*,且m+n=p+q ,那么a m +a n =a p +a q ; ④设S n 是等差数列{a n }的前n 项和,则S m , S 2m -S m , S 3m -S 2m , …, S pm -S (p -1)m (m>1,p ≥3,m 、p ∈N*)仍成等差数列; ⑤设S n 是等差数列{a n }的前n 项和,则}{n S n 是等差数列; ⑥设{a n }是等差数列,则{λa n +b}(λ,b 是常数)是等差数列;

(推荐)高中数学竞赛基本知识集锦

高中数学竞赛基本知识集锦 一、三角函数 常用公式 由于是讲竞赛,这里就不再重复过于基础的东西,例如六种三角函数之间的转换,两角和与差的三角函数,二倍角公式等等。但是由于现在的教材中常用公式删得太多,有些还是不能不写。先从最基础的开始(这些必须熟练掌握): 半角公式 α αααααα cos 1sin sin cos 1cos 1cos 12tan +=-=+-±= 积化和差 ()()[]βαβαβα-++=sin sin 2 1cos sin ()()[]βαβαβα--+=sin sin 2 1sin cos ()()[]βαβαβα-++=cos cos 2 1cos cos ()()[]βαβαβα--+-=cos cos 2 1sin sin 和差化积 2 cos 2sin 2sin sin βαβ αβα-+=+ 2 sin 2cos 2sin sin βαβαβα-+=- 2 cos 2cos 2cos cos βαβαβα-+=+ 2 sin 2sin 2cos cos βαβαβα-+-=- 万能公式 α αα2tan 1tan 22sin += α αα22tan 1tan 12cos +-= α αα2tan 1tan 22tan -= 三倍角公式 ()()αααααα+-=-= 60sin sin 60sin 4sin 4sin 33sin 3 ()() αααααα+-=-= 60cos cos 60cos 4cos 3cos 43cos 3 二、某些特殊角的三角函数值

三、三角函数求值 给出一个复杂的式子,要求化简。这样的题目经常考,而且一般化出来都是一个具体值。要熟练应用上面的常用式子,个人认为和差化积、积化和差是竞赛中最常用的,如果看到一些不常用的角,应当考虑用和差化积、积化和差,一般情况下直接使用不了的时候,可以考虑先乘一个三角函数,然后利用积化和差化简,最后再把这个三角函数除下去 举个例子 求值:7 6cos 74cos 72cos πππ++ 提示:乘以72sin 2π,化简后再除下去。 求值:??-?+?80sin 40sin 50cos 10cos 22 来个复杂的 设n 为正整数,求证n n n i n i 21212sin 1+=+∏=π 另外这个题目也可以用复数的知识来解决,在复数的那一章节里再讲 四、三角不等式证明 最常用的公式一般就是:x 为锐角,则x x x tan sin <<;还有就是正余弦的有界性。 例 求证:x 为锐角,sinx+tanx<2x 设12π ≥≥≥z y x ,且2π =++z y x ,求乘积z y x cos sin cos 的最大值和最小值。 注:这个题目比较难

高中数学数列求和专题复习知识点习题.doc

数列求和例题精讲 1. 公式法求和 (1)等差数列前 n 项和公式 S n n(a 1 a n ) n(a k 1 a n k ) n( n 1) d 2 2 na 1 2 (2)等比数列前 n 项和公式 q 1 时 S n na 1 q 1 时 S n a 1 (1 q n ) a 1 a n q 1 q 1 q (3)前 n 个正整数的和 1 2 3 n(n 1) n 2 前 n 个正整数的平方和 12 22 32 n 2 n(n 1)(2n 1) 6 前 n 个正整数的立方和 13 23 33 n 3 [ n(n 1) ] 2 ( 1)弄准求和项数 n 的值; 2 公式法求和注意事项 ( 2)等比数列公比 q 未知时,运用前 n 项和公式要分类。 例 1.求数列 1,4,7, ,3n 1 的所有项的和 例 2.求和 1 x x 2 x n 2 ( n 2, x 0 )

2.分组法求和 例 3.求数列 1, 1 2,1 2 3,,1 2 3 n 的所有项的和。 5n 1 (n为奇数 ) 例 4.已知数列a n中,a n ,求 S2m。 ( 2) n (n为偶数 ) 3.并项法求和 例 5.数列a n 中, a n ( 1) n 1 n2,求 S100。 例 6.数列a n中,,a n( 1) n 4n ,求 S20及 S35。 4.错位相减法求和 若a n 为等差数列,b n 为等比数列,求数列a n b n(差比数列)前n项 b n 的公比。 和,可由S n qS n求 S n,其中q 为

例 7.求和12x 3x 2nx n 1(x0 )。 5.裂项法求和 :把数列各项拆成两项或多项之和,使之出现成对互为相反数的项。 例 8.求和 1 1 1 1 。 1 3 3 5 5 7 (2n 1)(2n 1) 例 9.求和 1 1 1 1 2 1 3 2 23 。 n 1n [练习] 1 1 1 1 1 2 3 2 3 n 1 2 1 a n S n 2 1 n 1

高三数列专题练习30道带答案

高三数列专题训练二 学校:___________姓名:___________班级:___________考号:___________ 一、解答题 1.在公差不为零的等差数列{}n a 中,已知23a =,且137a a a 、、成等比数列. (1)求数列{}n a 的通项公式; (2)设数列{}n a 的前n 项和为n S ,记,求数列{}n b 的前n 项和n T . 2.已知等差数列{}n a 的前n 项和为n S ,公差,50,053=+≠S S d 且1341,,a a a 成等比数列. (Ⅰ)求数列{}n a 的通项公式; 1,公比为3的等比数列,求数列{}n b 的前n 项和n T . 3.设等比数列{}n a 的前n 项和为n S ,,2S ,3S 成等差数列,数列{}n b 满足2n b n =. (1)求数列{}n a 的通项公式; (2)设n n n c a b =?,若对任意*n N ∈,求λ的取值范围. 4.已知等差数列{n a }的公差2d =,其前n 项和为n S ,且等比数列{n b }满足11b a =, 24b a =,313b a =. (Ⅰ)求数列{n a }的通项公式和数列{n b }的前n 项和n B ; (Ⅱ)记数列的前n 项和为n T ,求n T . 5.设数列{}n a 的前n 项和为n S ,且满足()21,2,3,n n S a n =-=. (1)求数列{}n a 的通项公式; (2)若数列{}n b 满足11b =,且1n n n b b a +=+,求数列{}n b 的通项公式; (3)设()3n n c n b =-,求数列{}n c 的前n 项和n T .

江苏省金湖县实验中学高中数学 奥赛辅导 构造一次方程组的技巧

- 1 - 一、利用同类项的定义构造: 例1:已知m n m n b a --31999 1和1079999+-m n a b 是同类项,则.________22=+n m 二、利用二元一次方程的定义构造: 例2:若243724953=+--++n m n m y x 是二元一次方程,则n m 的值等于________. 三、利用方程组的解的定义构造: 例3:若???==12y x 是方程组???=+=-5 213by ax y ax 的解,求b a 、的值. 四、利用相反数的性质构造: 例4:已知a 的相反数是12+b ,b 的相反数是13+a ,则.________22=+b a 五、利用非负数性质构造: 例5:如果实数y x ,满足()022=++-y x x ,那么.________=y x 六、利用多项式恒等性质构造: 例6:已知多项式682322 2-+--+y x y xy x 可以分解为()()n y x m y x +-++22的形式,那么.________1 123=++n m 七、利用一次方程的解的特征构造: 例7:已知关于x 的方程()()()15133+=++-x x b x a 有无穷多个解,那么.________________,==b a 八、取特殊值构造: 例8:设b ax x x ++-2 32除以()()12+-x x 所得的余式为12+x ,那么.________________,==b a 九、弱化某些未知数构造: 例9:若,073, 0452=-+=++z y x z y x 则.________=-+z y x 十、利用新运算的定义构造: 例10:对于实数y x ,定义一种新运算*:,c by ax y x ++=*其中c b a 、、为常数,等式右边是通常的加法与乘法运算. 已知:,2874, 1553=*=*那么.________11=*

高中数学竞赛校本教材[全套](共30讲)

高中数学竞赛校本教材[全套](共30讲,含详细答案) 目录 §1数学方法选讲(1) (1) §2数学方法选讲(2) (11) §3集合 (22) §4函数的性质 (30) §5二次函数(1) (41) §6二次函数(2) (55) §7指、对数函数,幂函数 (63) §8函数方程 (73) §9三角恒等式与三角不等式 (76) §10向量与向量方法 (85) §11数列 (95) §12递推数列 (102) §13数学归纳法 (105) §14不等式的证明 (111) §15不等式的应用 (122) §16排列,组合 (130) §17二项式定理与多项式 (134) §18直线和圆,圆锥曲线 (143) §19立体图形,空间向量 (161) §20平面几何证明 (173)

§21平面几何名定理 (180) §22几何变换 (186) §23抽屉原理 (194) §24容斥原理 (205) §25奇数偶数 (214) §26整除 (222) §27同余 (230) §28高斯函数 (238) §29覆盖 (245) §29涂色问题 (256) §30组合数学选讲 (265) §1数学方法选讲(1) 同学们在阅读课外读物的时候,或在听老师讲课的时候,书上的例题或老师讲解的例题他都能听懂,但一遇到没有见过面的问题就不知从何处入手。看来,要提高解决问题的能力,要能在竞赛中有所作为,首先得提高分析问题的能力,这就需要学习一些重要的数学思想方法。 例题讲解 一、从简单情况考虑 华罗庚先生曾经指出:善于“退”,足够的“退”,退到最原始而又不失去重要性的地方,是学好数学的一个诀窍。从简单情况考虑,就是一种以退为进的一种解题策略。 1. 两人坐在一张长方形桌子旁,相继轮流在桌子上放入同样大小的硬币。条件是硬币一定要平放在桌子上,后放的硬币不能压在先放的硬币上,直到桌子上再也放不下一枚硬币为止。谁放入了最后一枚硬币谁获胜。问:先放的人有没有必定取胜的策略?

相关文档
最新文档