土力学实验二 固结实验

土力学实验二  固结实验
土力学实验二  固结实验

实验二 固结实验

A 、实验目的

固结实验的目的是测定试样在侧限与轴向排水条件下的变形和压力或孔隙比和压力的关系曲线,并根据孔隙比和压力关系曲线(p e -曲线)计算出压缩系数和压缩模量等土的压缩性指标,以便判断土的压缩性和计算基础沉降时间。此外,由饱和粘性土的压缩实验也可得到在某一压力下变形与时间的关系曲线,从而估算土的固结系数和渗透系数。

B 、实验要求

1、由实验室提供土样一份,要求学生在侧限压缩仪中测定土的压缩性,绘制压缩曲线(p e -曲)。

2、求出21-a 和21-S E ,并判断该土样的压缩性。

3、仔细观察土的变形与时间关系这一重要特性(可以绘制出每一级荷载作用下的t s -曲线)。

C 、实验方法

一、基本原理和方法

土的固结就是土在外部压力作用下压缩随时间增长的过程。本实验是将土样放在固结仪上的金属容器内,在有侧限的条件下施加压力,测定试样在侧限及轴向排水条件下的变形和压力(或孔隙比和压力)的关系,变形和时间的关系,测求土的单位沉降量、压缩系数、压缩指数、压缩模量、固结系数及原状土的先期固结压力,了解土的压缩特性,作为设计计算的依据。

本实验采用法用砝码通过杠杆加压,每一级荷重的施加,是在前一级荷重下压缩至稳定后施加的,稳定是相对的,按稳定标准的不同通常压缩试验分为三类。

1、稳定压缩。在每级荷重下24小时内土样厚度不再变化,百分表读数不变,即不认为稳定,继续加一级荷重。这种方法所需时间太长,一般不太采用。

2、假稳定压缩。一小时内土样压缩量不超过0.05mm 即认为稳定,或以24小时为标准,然后压力以下一级荷重,试验证明,实验结果符合规程规定的标准。

3、快速压缩。在各级荷重下,压缩一小时后,不管变化如何即加一级压力,但在最后一级荷重下,除测读一小时的变形量外,还应继续测试达到假稳定为准。计算时,根据最后一级变形量核正前几级荷重下的变形量,当精度要求不高时,一般采用此方法可以大大缩短实验时间。本试验采用上述第三种方法进行快速压缩操作。

二、仪器设备

1、中压三联固结仪(如下图,由主机包括固定于其上的零部件,容器包括可供30cm 2和50 cm 2两种实验的护环、导环、环刀、传压板、上下透水石等及由杠杆部件包括水平调节、平衡装置等组成,荷载由四等标准砝码传递)

2、测含水率和密度所用设备 三、操作步骤

1、切取原状土样或制备所需湿度密度的扰动土样,切取时应使试样在实验时的受压情况与天然土层受荷方向一致。

2、用钢丝锯将土样修成略大于环刀直径的土柱,然后用手轻轻将环刀垂直下压,边压边修,直至环刀装满土样为止,然后用刮土刀修平两端,同时注意刮平试样时,不得用刮刀往复涂抹上面,在切削过程中应细心观察试样并记录其层次、颜色荷有无杂质等。

3、擦净环刀外壁,称环刀与土合重,准确至0.1克,并取环刀两面修下的土样测定其含水量。

上横梁

容器

面板

平衡架

上下调节杆

水准泡

杠杆

挂盘

下横梁

升降杆 平衡杠杆 平衡锤

表架

立杆

小平板

蜗轮箱

4、在固结容器内装上切土环刀(刀口向下),两端应贴上洁净而湿润的滤纸,再用提环螺丝将导环置于固结容器,然后放上透水石和传压活塞及定向钢球。

5、将固结容器置于加压框架中,密合传压活塞及横梁,预加1.0Kpa压力,使

固结仪内务部分紧密接触,装好测微表,并调整读数至零。

6、去掉预压负荷,立即加第一级荷载。加砝码时应避免冲击和摇晃,在加砝码的同时,立即开动秒表。土样加荷顺序可参照下表。

7、荷载加上后每隔30min记载微表读数一次。读数精确至0.01mm,两次读数变化不超过0.01mm,快速压缩应无限制,即认为沉降稳定允许加次一级荷载。

8、如系饱和试样,则在施加第一级荷载后,立即向容器内注水至满。如系非饱和试样须以湿棉纱围住上下透水面四周,避免水分蒸发。

9、如需确定沉降土的前期固结压力时,荷载率宜小于1,可采用0.5或0.25倍,最后一级荷载应大于1000Kpa,使e-lgp曲线下端出现直线段。

10、如需测定沉降速率、固结系数等指标,一般施加每一级压力后宜按下表所列时间顺序记测微表读数:15s,1min,2min15s,4min,6min15s,9min,12min15s,16min,20min15s,25min,30min15s,36min,42min15s,60min,120min……,直到稳定为止,再加下一级荷载,当不需要测定沉降速率时,则施加每一级压力后24h,测记试样高度变化作为稳定标准。当试样的渗透系数大于10-5cm/s时,允许以主固结完成作为相对稳定的标准。

11、需要进行回弹实验时,可在某级压力(大于上覆压力)下固结稳定后退压,直到退到第一级压力,每次退压至24h 后测定试样的回弹量。

12、实验结束后吸去容器内的水,迅速拆除仪器各部件,取出试样,测含水量。

四、成果整理:

1、按下式计算初始孔隙化:1)

1(00-+=

ρ

ωs d e

2、计算单位沉降量:)/(10000

m mm h h S i

i

??=

3、计算各级荷重下变形稳定后的也隙比:1000

)

1(00i

i S e e e +-= 4、计算各级荷得下的压缩系数a :i

i i i i i i i P P e S S P P e e a -+-=

--=

++++101111000

/)1)(( 5、计算各级及荷重范围内的压缩横量s E :0

11111000/)(e e S S P P E i

i i i i s ++?

--=++ 式中:0e ——初始空隙比

s d ——土粒密度(比重)g/cm 3

0ρ——试样初始密度(容重)g/cm 3 0ω——试样初始含水量%

0h ——试样初始高度(mm )

∑?i

h ——某一级荷重下土样变形量(mm )

S——单位沉降量(mm/m)

i

e——某一级荷重下的孔隙比

i

a——压缩系数(KPa-1)

P——某一级荷重值(KPa)

i

E——压缩模量(KPa)

s

6、将计算成果填实验报告表中,作p

e 曲线。

实验报告三

工程名程实验者

实验日期校核者

实验记录一

含水量实验

密度实验

孔隙比及饱和度计算

实验记录二

思考题:

1、快速压缩法根据什么原理求得变形量?

2、根据稳定标准的不同有几种压缩方法,各有什么优缺点?

3、土的压给指数和压缩系数有什么不同?在压力较低的情况下能否求得压缩指数?

4、根据你的实验结果,分析该土的压缩性?

土力学实验

问答题 1.三轴试验中周围压力大小与工程实际荷载相适应,对吗? 答:对的,并尽可能使最大周围压力与土体的最大实际荷重大致相等,也可按100kpa ,200kpa ,300kpa ,400kpa 施加。 2.在h-w 图中,怎么判断液限和塑限? 答:h=2mm 时,对应含水率为塑限;h=17mm 时,对应含水率为液限。 3.在液限,塑限实验中,锥体弄脏了,怎么办? 答:抹干净,涂少许凡士林即可再用。 4.环刀内壁涂一薄层凡士林,主要为了什么? 答:主要为了取出土样时避免弄脏手,使内壁更干净。次要是为了容易取出。 5.击实试验中,怎么控制喷水的质量? 答:将盛好土的盛土盘放在天平上,记录盘和土的质量,然后在天平上一边称量一边均匀喷水,直至加完所需水量。 6.实验室只有称量2000g 的天平,但现要称量3000g 的试样,怎么办? 答:将盛土盘放在两个天平上,记录盘的质量 m 0,往盘上加土,直至两个天平上读数加起来等于 m 0 +3000g 简述题 1.三轴试验的结束条件是什么? 答:当轴向量力环读数出现峰值,再剪3%~5%的垂直应变(或没有峰值时,轴向应变达到20%)后,试验结束。 2.三轴不固结不排水剪试验中怎样施加周围压力? 答:开周围压力阀,施加所需的周围压力,周围压力大小应与工程实际荷重相适应,并尽可能使最大围压与土体最大实际荷重大致相等。也可按100kpa ,200kpa ,300kpa ,400kpa 施加。 3.UU 试验中怎么施加轴向压力? 答:剪切应变速率宜每分钟应变0.5%~1.0%启动电动机,合上离合器,开始剪切。每产生0.2%或0.5%轴向应变时,测计测力环变形和孔隙水压力,直至土样破坏或应变量进行到20%为止。 4.简述含水率试验的过程。 答:1)取代表性试样15~30g ,对于砾类土,取100g 以上试样。放入铝盒内,迅速盖好盒盖,称量m 1,准确至0.01g 。称量结果减去铝盒质量m 0,得湿土质量m m m 0 1-=

高等土力学读书报告

高等土力学读书报告 姓名:杨耀辉 学院:水利与土木工程学院 专业:水利工程 学号: 1338020126

无粘性土颗粒组成的类型与基本性质 一 无粘性土颗粒组成类型与分类 1.颗粒组成 颗粒组成是研究无粘性土基本性质的主要依据,通常以各粒径含量的累积曲线或分布曲线表示。 均匀土:分布曲线是单峰形式,各粒径都有一定的含量,峰值粒径含量占绝对优势,其破坏形式主要是流土破坏。 单峰形:峰值远离中值,呈左偏峰,出现双峰时右峰较低,两峰连续,谷点里粒径至少占4%至5%,曲线无明显平缓段,集中在某段,无峰值。 不均匀土:级配连续和级配不连续。 双峰形:双峰间有间断,有的相连接,但最低点粒径含量小于或等于3%,累积曲线呈椅子形,出现台阶。 2.均匀土的区分原则和方法 均匀土特点:级配不良,压实性差,孔隙率大,稳定性差。 太沙基指出5,1.0<

质仍取决于粗料。但随细料的含量的增加,混合料密度增加,孔隙相应减小,到细料超出一定含量时,混合料性质就取决于细料。最优级配的细料含量P=25%到30%。 混合料中开始参与骨架作用的细料含量 21n n n = ;并考虑到无粘性土一般21s s ρρ=;得出细料含量与孔隙率的关系 理想状态下的计算式: ()2 222 1 1 1n n n P d s d ?+?-?= ρρρ 其中 ()1 111 s d n ρρ?-=; 在理想状态下: n n n P --= 12。 为使P 含量与实际相符,就要考虑粗料孔隙体积被撑开的影响,由实验分 析知2n 随n 增大而增大,且223n n =?;我们取粗料孔隙率为0.3,则2 233.0n n += ∴ n n n P --+= 133.02 但在实际中,混合料中细料是多少要撑开粗料孔隙的,所以理论计算的P 要小于实际中的。 实际值小于它时表明细料没填满粗料孔隙; 实际值大于它时细料填满粗料孔隙且与粗料共同组成骨架; 当实际值等于它时认为混合料有最优级配料。 渗透系数与细料含量的关系; P 〈30%时填不满孔隙,对渗透系数起控制作用的是粗料。 P 〉30%时孔隙与细料产生关系。 P 〉70%时粗料只起填充作用,对渗透系数的影响减少直到消失。 4.级配连续土的基本性质 级配连续土的性质: Cu>10 1

一些土力学试验实验

实验一:密度试验(环刀法) 一、概述 土的密度ρ是指土的单位体积质量,是土的基本物理性质指标之一,其单位为g/cm3。土的密度反映了土体结构的松紧程度,是计算土的自重应力、干密度、孔隙比、孔隙度等指标的重要依据,也是挡土墙土压力计算、土坡稳定性验算、地基承载力和沉降量估算以及路基路面施工填土压实度控制的重要指标之一。土的密度一般是指土的天然密度。 二、试验方法及原理 密度试验方法有环刀法、蜡封法、灌水法和灌砂法等。对于细粒土,宜采用环刀法;对于易碎、难以切削的土,可用蜡封法,对于现场粗粒土,可用灌水法或灌砂法。环刀法就是采用一定体积环刀切取土样并称土质量的方法,环刀内土的质量与环刀体积之比即为土的密度。 1.仪器设备 (1)恒质量环刀:内径6. 18cm(面积30cm2)或内径7. 98cm(面积50cm2),高20mm,壁厚1.5mm; (2)称量500g、最小分度值0. 1g的天平; (3)切土刀、钢丝锯、毛玻璃和圆玻璃片等。 2. 操作步骤 (1) 按工程需要取原状土或人工制备所需要求的扰动土样,其直径和高度应大于环刀的尺寸,整平两端放在玻璃板上。 (2) 在环刀内壁涂一薄层凡士林,将环刀的刀刃向下放在土样上面,然后用手将环刀垂直下压,边压边削,至土样上端伸出环刀为止,根据试样的软硬程度,采用钢丝锯或修土刀将两端余土削去修平,并及时在两端盖上圆玻璃片,以免水分蒸发。

(3)擦净环刀外壁,拿去圆玻璃片,然后称取环刀加土质量,准确至0. 1g。 环刀法试验应进行两次平行测定,两次测定的密度差值不得大于0.03 g/cm3.,并取其两次测值的算术平均值。 实验二:含水率试验(烘干法) 一、概述 土的含水率是指土在温度105-110℃下烘到衡量时所失去的水质量与达到恒量后干土质量的比值,以百分数表示。 二、试验方法及原理 含水率试验方法有烘干法、酒精燃烧法、比重法、碳化钙气压法、炒干法等,其中以烘干法为室内试验的标准方法。烘干法是将试样放在温度能保持105~110℃的烘箱中烘至恒量的方法,是室内测定含水率的标准方法。 1.仪器设备 (1)保持温度为105110℃的自动控制电热恒温烘箱或沸水烘箱、红外烘箱、微波炉等其他能源烘箱; (2)称量200g、最小分度值0. 0lg的天平; (3)装有干燥剂的玻璃干燥缸; (4)恒质量的铝制称量盒。 2.操作步骤 (1)从土样中选取具有代表性的试样15~30g(有机质土、砂类土和整体状构造冻土为50g),放人称量盒内,立即盖上盒盖,称盒加湿土质量,准确至0. 0lg。 (2)打开盒盖,将试样和盒一起放人烘箱内,在温度105^-110℃下烘至恒量。试样烘至恒量的时间,对于粘土和粉土宜烘8~10h,对于砂土宜烘6~8h。对于有机质超过干土质量5%的土,应将温度控制在65~70℃的恒温下进行烘干。 (3)将烘干后的试样和盒从烘箱中取出,盖上盒盖,放人干燥器内冷却至室温。 (4)将试样和盒从干燥器内取出,称盒加干土质量,准确至0. 0lg。 烘干法试验应对两个试样进行平行铡定,并取两个含水率测值的算术平均值。当含水率小于40%时,允许的平行测定差值为1%;当含水率等于、大于40%时,允许的平行测定差值为2%。 实验三:土的压缩、固结试验 一、概述 标准固结试验就是将天然状态下的原状土或人工制备的扰动土,制备成一定规格的土样,然后在侧限与轴向排水条件下测定土在不同荷载下的压缩变形,且试样在每级压力下的固结稳定时间为24h。 二、试验方法与原理 1. 仪器设备 (1) 固结容器。由环刀、护环、透水板、加压上盖等组成,土样面积30cm2或50cm2,高度2cm。 (2)加荷设备。可采用量程为5~l0kN的杠杆式、磅秤式或气压式等加荷设备。 (3) 变形量测设备。可采用最大量程l0mm, 最小分度值0.0lmm的百分表,也可采用一准确度为全量程0. 2%的位移传感器及数字显示仪表或计算机。

《土工试验规程》(SL237-1999)土力学简版要点

土力学实验指导书 目录 土力学实验的目的 (1) 一、颗粒分析试验 (1) [附1-1]筛析法 (1) [附1-2]密度计法(比重计法) (2) 二、密度试验(环刀法) (5) 三、含水率试验(烘干法) (5) 四、比重试验(比重瓶法) (6) 五、界限含水率试验 (8) 液限、塑限联合测定 (8) 六、击实试验 (10) 七、渗透试验 (11) [附7-1]常水头试验(70型渗透仪) (11) [附7-2]变水头试验(南55型渗透仪) (12) 八、固结试验(快速法) (13) 九、直接剪切试验 (15) 十、相对密度试验 (16) 十一、无侧限抗压强度试验 (18) 十二、无粘性土休止角试验 (19) 十三、三轴压缩试验 (20)

土力学实验指导书 《土力学实验》的目的 土力学试验是在学习了土力学理论的基础上进行的,是配合土力学课程的学习而开设的一门实践性较强的技能训练课。根据教学计划的需要,安排试验内容,以突出实践教学,突出技能训练。 试验课的目的:一、是加强理论联系实际,巩固和提高所学的土力学的理论知识;二、是增强实践操作的技能;三、是结合工程实际,让学生掌握土工试验的全过程和运用实验成果于实际工程的能力。 《土力学实验》的内容及要求 土力学实验指导书是依据中华人民共和国水利部发布《土工试验规程》(SL237-1999)规范编写的。根据教学大纲要求,安排下列实验项目。也可根据实验学时选做。 一、颗粒分析试验 [附1-1] 筛分法 (一)试验目的 测定干土各粒组占该土总质量的百分数,以便了解土粒的组成情况。供砂类土的分类、判断土的工程性质及建材选料之用。 (二)试验原理 土的颗粒组成在一定程度上反映了土的性质,工程上常依据颗粒组成对土进行分类,粗粒土主要是依据颗粒组成进行分类的,细粒土由于矿物成分、颗粒形状及胶体含量等因素,则不能单以颗粒组成进行分类,而要借助于塑性图或塑性指数进行分类。颗粒分析试验可分为筛析法和密度计法,对于粒径大于0.075mm的土粒可用筛析法测定,而对于粒径小于0.075mm的土粒则用密度计法来测定。筛析法是将土样通过各种不同孔径的筛子,并按筛子孔径的大小将颗粒加以分组,然后再称量并计算出各个粒组占总量的百分数。 (三)仪器设备 1.标准筛:孔径10、5、2、1.0、0.5、0.25、0.075mm; 2.天平:称量1000g,分度值0.1g; 3.台称:称量5kg,分度值1g; 4.其它:毛刷、木碾等。 (四)操作步骤 1.备土:从大于粒径0.075mm的风干松散的无粘性土中,用四分对角法取出代表性 的试样。 2.取土:取干砂500g称量准确至0.2g。 3.摇筛:将称好的试样倒入依次叠好的筛,然后按照顺时针或逆时针进行筛析。振摇时间一般为10~15分钟。 4.称量:逐级称取留在各筛上的质量。 (五)试验注意事项 1.将土样倒入依次叠好的筛子中进行筛析。 2.筛析法采用振筛机,在筛析过程中应能上下振动,水平转动。 3.称重后干砂总重精确至 2g。 (六)计算及制图 1.按下列计算小于某颗粒直径的土质量百分数:

土力学读书报告分析

高等土力学读书报告 学院:土木工程 专业:结构工程 指导教师: 姓名: 学号: 2015.12.30

本学期学了土的应力与应变,强度理论,全量理论,增量理论,模型理论,滑线场理论及极限分析。以下对这些理论做简要回顾。 应力应变 土的应力应变关系十分复杂,除了时间外,还有温度、湿度等影响因素。其中时间是一个主要影响因素。与时间有关的土的本构关系主要是指反映土流变性的理论。而在大多数情况下,可以不考虑时间对土的应力——应变和强度(主要是抗剪强度)关系的影响。土的强度是土受力变形发展的一个阶段,即在微小的应力增量作用下,土单元会发生无限大(或不可控制)的应变增量。因而它实际上是土的本构关系的一个组成部分。 由于土是岩石风化而成的碎散颗粒的集合体,一般包含有固、液、气三相,在其形成的漫长的地质过程中,受风化、搬运、沉积、固结和地壳运动的影响,其应力应变关系十分复杂,并且与诸多因素有关。其中主要的应力应变特性是其非线性、弹塑性和剪胀(缩)性。主要的影响因素是应力水平(Stresslevel、应力路径(Strespath)和应力历史(Stresshistor),亦称3S影响 土的强度理论 土在外力作用下达到屈服或破坏时的极限应力。由于剪应力对土的破坏起控制作用,所以土的强度通常是指它的抗剪强度。 确定强度的原则土的强度一般是由它的应力-应变关系曲线上某 些特征应力来确定的,如屈服应力、破坏应力(或峰值应力)等,这些特征应力值与土的种类和物理条件(如加载时间、加载速率和排水条件等)有关。在不考虑加载时间或加载速率对土强度影响的常规试验中,对于不同的土,大体上可获得三种典型的应力-应变关系曲线,一种是当应力随应变增大直至峰值时,土体出现破裂,随着应变进一步增大,应力由峰值逐渐降低,最后达到稳定应力值。对此,人们取峰值应力作为破坏强度,取最后稳定应力值作为破坏后的强度。第二种是当应力达到最大值后,应力虽然不增加,但应变继续增加,对此,也可取最大应力值作为破坏强度。第三种是,在较大应变下,应力仍未达到最大值,而是随

土力学结课论文及对工程案例的分析

高等土力学读书报告 对地基下沉问题的讨论 姓名刘兴顺 学号2014210046 年级2014 专业桥梁与隧道工程系(院)建筑工程学院指导教师陈颖辉 2015年5月26日

摘要 本论文主要是本人对高等土力学的学习总结,并根据工程中遇到的问题用土力学的知识进行分析(由于本人没有实际的工程经验,现主要是对比比较著名的一些工程)。土力学是研究土体在力的作用下的应力-应变或应力-应变-时间关系和强度的应用学科,是工程力学的一个分支。为工程地质学研究土体中可能发生的地质作用提供定量研究的理论基础和方法。主要用于土木、交通、水利等工程。本论文主要结合中外建筑物倾斜(意大利比萨斜塔和中国苏州虎丘塔)与地基严重下沉(中国上海展览中心馆和墨西哥市艺术馆)来讨论其中关于土力学的乱放,并运用土力学的方法进行分析。 关键词:高等土力学;工程实例;地基基础

ABSTRACT This thesis is mainly my learning of advanced soil mechanics summary,and according to the problems encountered in engineering with the knowledge of soil mechanics analysis (because I didn't have the practical engineering experience,now is mainly contrast compared to the well-known engineering).Soil mechanics is a branch of engineering mechanics,which is applied to study the stress-strain,stress-strain,time and strength of the stress strain time relationship and strength of the soil..To provide the theoretical basis and methods for quantitative study of geological effects that may occur in the engineering geology..Mainly used in civil engineering,transportation,water conservancy and other projects.This paper mainly combines(Leaning Tower of Pisa,Italy and China Suzhou Huqiu tower and ground sinking heavily(China Shanghai Exhibition Center Museum and Mexico City Museum of Art) inclined buildings at home and abroad is to discuss the misplacing on soil mechanics,and using the method of soil mechanics analysis. Key words:advanced soil mechanics;engineering examples;foundation foundation

土力学实验报告

园林学院 土力学实验报告 学生姓名 学号2009041001 专业班级土木工程091 指导教师李西斌 组别第三组 成绩

实验目录 前言 (1) 实验一含水量试验 (2) 实验二密度实验 (5) 实验三液限和塑限试验 (7) 实验四固结试验 (13) 实验五直接剪切试验 (18)

前言 土是矿物颗粒所组成的松散颗粒集合体,其物理力学性质与其他材料不同;土力学是利用力学的基本原理和土工试验技术来研究土的强度和变形及其规律性的一门应用学科。 土的天然含水率、击实性、压缩性、抗剪强度是水利工程中的四大问题,他们的好坏与否直接关系到水利工程的经济效益与安全问题,因此在工程中作好土料的指标实验,确定出相应标对水利工程具有十分重要的意义。

实验一 含水量试验 一、概述 土的含水率 是指土在温度105~110℃下烘干至恒量时所失去的水质量与达 到恒量后干土质量的比值,以百分数表示。 含水率是土的基本物理性质指标之一,它反映了土的干、湿状态。含水率的变化将使土物理力学性质发生一系列变化,它可使土变成半固态、可塑状态或流动状态,可使土变成稍湿状态、很湿状态或饱和状态,也可造成土在压缩性和稳定性上的差异。含水率还是计算土的干密度、孔隙比、饱和度、液性指数等不可缺少的依据,也是建筑物地基、路堤、土坝等施工质量控制的重要指标。 二、实验原理 土样在在105℃~110℃温度下加热,土中自由水会变成气体挥发,土恒重后, 即可认为是干土质量s m ,挥发掉的水分质量为w s m m m =-。 三、实验目的 测定土的含水量,供计算土的孔隙比、液性指数、饱和度等不可缺少的一个基本指标。并查表可确定地基土的允许承载力 四、实验方法 含水率实验方法有烘干法、酒精燃烧法、比重法、碳化钙气压法、炒干法等,其中以烘干法为室内实验的标准方法。在此仅用烘干法来测定。 烘 烘干法是将实样放在温度能保持105~110℃的烘箱中烘至恒量的方法,是室内测定含水率的标准方法。 (一)仪器设备 (1)保持温度为105~110℃的自动控制电热恒温烘箱; (2)称量200g 、最小分度值0.01g 的天平; (3)玻璃干燥缸;

土力学实训总结

土力学实训总结转眼间,一周的实训马上就要结束了。这才觉悟到时间如白驹过隙,过得飞快。现在想起刚学这门课的时候对什么都觉得不知道老师讲了也不是很懂。就连出去跟老师在外面的铁路线路上实习。自己也是看热闹。对于许多东西都事是而非。即便老师讲了对于初次接触的我也只是觉得好奇。根本忘了自己学习的目的。 在实训的过程中我根据任务指导书上的要求,通过查课本把自己以前没有搞懂的问题认真的全都弄明白了。在每一个细节上都很认真地完成了。尤其是缩短轨配置的计算,把自己以前老搞混淆的计算步骤现在也搞清楚了。对于自己不懂的地方我也虚心的请教同学、和老师。经过同学和老师的耐心讲解自己以前不会的也彻底懂了,自己由以前对这门课的讨厌也变得喜欢。 实习过程中我对土力学的:土的密度试验,土的界限含水率试验,土的剪切试验,土的固结试验以及土的击实试验,都有了了解。现将了解到的知识总结如下: 实验一土的含水率试验 (一)、试验目的 105—1100C下烘于恒量时所失去的水的质量和干土质量的百分比值。土在天然状态下的含水率称为土的天然含水率。所以,试验的目土的含水率指土在的:测定土的含水率。 (二)、烘干法试验 1.操作步骤 (1)取代表性试样,粘性土为15—30g,砂性土、有机质土为50g,放入质量为m ,精确至0.01g. 的称量盒内,立即盖上盒盖,称湿土加盒总质量m 1 (2)打开盒盖,将试样和盒放入烘箱,在温度105——1100C的恒温下烘干。烘干时间与土的类别及取土数量有关。粘性土不得少于8小时;砂类土不得少于6小时;对含有机质超过10%的土,应将温度控制在65——700C的恒温下烘至恒量。

(3)将烘干后的试样和盒取出,盖好盒盖放入干燥器内冷却至室温,称干土加盒质量m 为,精确至0.01g 2 实验二土的密度试验 (一)、试验目的 测定土在天然状态下单位体积的质量。 (二)、试验方法与适用范围 1、操作步骤 。 (1)测出环刀的容积V,在天平上称环刀质量m 1 (2)取直径和高度略大于环刀的原状土样或制备土样。 (3)环刀取土:在环刀内壁涂一薄层凡士林,将环刀刃口向下放在土样上,随即将环刀垂直下压,边压边削,直至土样上端伸出环刀为止。将环刀两端余土削去修平(严禁在土面上反复涂抹),然后擦净环刀外壁。 (4)将取好土样的环刀放在天平上称量,记下环刀与湿土的总质量m 2 2、计算土的密度:按下式计算 3、要求:①密度试验应进行2次平行测定,两次测定的差值不得大于 0.03g/cm3,取两次试验结果的算术平均值;②密度计算准确至0.01 g/cm3. 实验三土的界限含水率试验 (一)、试验目的 细粒土由于含水量不同,分别处于流动状态、可塑状态、半固体状态和固体状态。液限是细粒土呈可塑状态的上限含水量;塑限是细粒土呈可塑状态的下限含水量。 本试验的目的是测定细粒土的液限、塑限,计算塑性指数、给土分类定名,共设计、施工使用。 实验四土的击实试验 (一)、试验目的 本试验的目的是用标准的击实方法,测定土的密度与含水率的关系,从而确定土的最大干密度与最优含水率。 轻型击实试验适用于粒径小于5mm的粘性土,重型击实试验适用于粒径小于20mm 的土。 (二)、计算与制图 以干密度为纵坐标,含水率为横坐标,绘制干密度与含水率的关系曲线,即为击实曲线。曲线峰值点的纵、横坐标分别代表土的最大干密度和最优含水率。如果曲线不能得出峰值点,应进行补点试验。 计算数个干密度下的饱和含水率。以干密度为纵坐标,含水率为横坐标,在击实曲线的图中绘制出饱和曲线,用以校正击实曲线。 实验五土的固结试验 (一)、试验目的 本试验的目的是测定试样在侧限与轴向排水条件下的变形和压力,或孔隙比和压力的关系,变形和时间的关系,以便计算土的压缩系数、压缩指数、压缩模量、固结系数及原状土的先期固结压力等。 (二)、试验方法

土力学实验报告

土力学 实验报告 姓名 班级 学号

含水量实验 一、实验名称:含水量实验 二、实验目的要求 含水量反映了土的状态,含水量的变化将使土的一系列物理力学性质指标 也发生变化。测定土的含水量,以了解土的含水情况,是计算土的孔隙比、液性指数、饱和度和其他物理力学性质指标不可缺少的一个基本指标。 三、试验原理 土样在100~105℃温度下加热,途中自由水首先会变成气体,之后结合水也会脱离土粒的约束,此时土体质量不断减少。当图中自由水和结合水均蒸发脱离土体,土体质量不再变化,可以得到固体矿物即土干的重。土恒重后,土体质量即可被认为是干土质量m s ,蒸发掉的水分质量为土中水质量m w =m-m s 。 四、仪器设备 烘箱、分析天平、铝制称量盒、削土刀、匙、盛土容器等。 五、试验方法与步骤 1.先称量盒的质量m 1,精确至0.01g 。 2.从原状或扰动土样中取代表性土样15~30g (细粒土不少于15g ,砂类土、有机质土不少于50g ),放入已称好的称量盒内,立即盖好盒盖。 3.放天平上称量,称盒加湿土的总质量为m 0+m ,准确至0.01g 。 4.揭开盒盖,套在盒底,通土样一样放入烘箱,在温度100~105℃下烘至质量恒定。 5.将烘干后的土样和盒从烘箱中取出,盖好盒盖收入干燥器内冷却至室温。 6.从干燥器内取出土样,盖好盒盖,称盒加干土质量m 0+m s (准确至0.01g ) 。 六、试验数据记录与成果整理 含水量试验(烘干法)记录 计算含水量:%100) () ()(000?++-+= s s m m m m m m w 实验日期 盒质量 m 0/g 盒+湿土质 量(m 0+m )/g 盒+干土质 量(m 0+m s ) /g 水质量/g 干土质量m s /g 含水量w/% 1 2 3 4=2-3 5=3-1 4/5

高等土力学读书报告第二章

第二章 土的本构关系 2.1 概述 材料的本构关系是反映材料的力学性状的数学表达式,表示形式一般为应力-应变-时间关系。与时间有关的土的本构关系主要是指反映土流变性的理论,本章介绍的主要是与时间无关的本构关系。 土力学的基本理论有土的莫尔-库伦强度理论、有效应力原理和饱和粘土的一维固结理论。但人们总是在实际中将问题分类为变形问题和稳定问题,前者一般基于弹性理论计算,后者多用刚塑性或理想塑性的理论(如极限平衡分析)。 多年来本构关系已经得到很大的发展,进而推动了岩土数值计算的发展和土工试验的发展。下文将对土的本构关系进行详细论述。 2.2应力和应变 1、应力 (1)应力分量与应力张量 设土体中的一点为M (x,y,z )的应力状态用通过该点的微小立方体上的应力分量表示。即: []?= ???? ? ????????z zy zx yz y yx xz xy x ττττττ=???????????????????333231232221131211亦即{σ}T ={zx yz xy z y x τ ττ???}。 土力学中正应力正方向规定压为正。剪应力,在正面(外法向与坐标轴一致的面),剪应力与坐标轴方向相反为正;在负面(外法向与坐标轴方向相反),剪应力与坐标轴方向一致为正。 (2)应力张量的坐标变换 二阶张量 ij ?在任一新坐标系下的分量 [ [j i ?应满足:[[j i ?=kl l j k i ?[[αα,其中l j k i [[αα与为新坐标系 轴与老坐标系轴夹角的余弦。 (3)应力张量的主应力和应力不变量 在过一点的斜截面上,如果只有法向应力而无剪应力时,这个斜截面就是主应力面。 第一应力不变量:kk z y x I σσσσ=++=1 第二应力不变量: 2 222zx yz xy x z z y y x I τττσσσσσσ---++=

高等土力学读书报告

高等土力学读书报告 张文川220132524 指导老师:缪林昌教授摘要:《土工原理》是土力学专著,系统地总结和介绍了国内外在土力学重要领域内的理论发展,重在阐述原理。内容包括土的组成和基本性质,土的压缩性与沉降计算,土的强度,土体渗流原理与计算,土的三向变形与本构模型,有限单元法在土工中的应用,土的固结理论,土体的流变理论,土坡的稳定性,砂土液化与地震永久变形,城市环境岩土工程,地基承载力。 1、土的应力应变关系的特征及其影响因素:非线性、弹塑性、剪胀性、(各向异性、结构性、流变性);应力水平、应力路径、应力历史。 2、邓肯—张模型分析总结:应变仅由偏应力贡献,球应力没有贡献。优点:①能反映土体变形的主要特征,非线性、应力历史、应力路径;②简单,容易为工程接受;③模型参数容易确定,积累了丰富的确定模型的经验。缺点:不能反映土体变形的剪胀性、软化、各向异性和结构性。 3、剑桥模型的试验基础和基本假设:①试验基础:正常固结土和弱超固结土试验基础上建立②基本假设:帽子屈服面,相适应的流动规则,以塑性体应变为硬化参数(加工硬化定律)。只要有三个试验场数:各向等压固结系数λ,回弹系数k,破坏常数m。 4、土的强度的三个特点:由于土的碎散性、多相性造成土①强度主要由颗粒相互作用力决定,土的破坏主要是剪切破坏,其强度主要表现为粘聚力和摩擦力;②研究时要考虑孔隙水压力、吸力等土特有的影响强度的因素;③土的地质历史造成土强度强烈的多变性、结构性和各向异性。 5、屈服与破坏的关系:对于刚弹性体和弹性—理想塑性体屈服即意味着破坏,对于增量弹性模量屈服和破坏并不是同一概念。土的屈服与强度与人们选择的理论模型有关,土体破坏与边值问题的具体边界有关。 6、影响土的抗剪强度的因素:①内部因素:土的组成(如矿物成分、颗粒大小、级配、含水量等)、土的状态(如密度、孔隙比)、土的结构(如絮凝结构);②外部因素:温度、应力应变因素(如围压、中主应力)、应力历史、主应力方向、加载速率、排水条件等。 7、一维渗流固结理论的基本假定:①土层是均质的、完全饱和的;②土粒与水均为不可压缩介质;③外荷载一次性瞬时施加到土体上,在固结过程中保持不变;④土体他应力与应变之间存在线性关系,压缩系数为常数;⑤在外力作用下,土体中只引起上下方向的渗流与压缩;⑥土中水的渗流服从达西定律,渗透系数保持不变;⑦土体变形完全是由孔隙水排出和超静水压力消散所引起的。 8、 Biot理论与准三维固结理论比较:①二者建立方程的依据基本一致:小变形、线弹性、渗流符合达西定律,但准三维固结理论假设法向总应力随时间不变,而Biot理论不作此假定;②Biot理论考虑土骨架变形孔压的影响,即位移与孔压相互耦合,而准三维固结理论对土体变形和孔 压消散分别加以计算,其直接后果是后者无法解释Mandel-Cryer效应。 9、常规三轴试验的优缺点:①近似单元体试验,试样内στ、相对对均匀;②σ状态和路径明确;③排水条件清楚,可控制;④破坏面非人为固定;⑤操作复杂,现场无法试验;⑥不能反映2σ的影响;⑦边界条件、膜嵌入的影响。 10、割线模型与切线模型的比较:①割线模型考虑了应力应变全量关系,能反映土变形的非线性及应力水平的影响,可用于应变软化阶段。但理论不严密,不能保证解的唯一性;②切线模型为分段线性化的增量形式的胡克定律,能反映土变形全过程。 11、在直剪、単剪、环剪试验中,试样的应力和应变的特点:①直剪:破坏面人为确定,应力和应变不均匀且十分复杂,试样内各点应力状态及应力路径不同。在初始状态,剪切面土单元与试样中其他单元一样是K0应力状态,即3001vKKσσσ==。在剪切破坏时,剪切面附近土单元主应力大小和方向决定与强度包线;②単剪:试样内所施加的应力被认为是纯剪,加载过程中竖直应力vσ和水平应力hσ保持常数,()vhhv ττ不断增加。应力莫尔圆圆心不变,其直径逐渐扩大,直至与强度包线相切;③剪切面的总面积不变。

土力学实验一__相对密度

实验一 相对密度、密度、含水量测定 A 、实验目的 测定土的相对密度、密度和含水量,以了解土的疏密、干湿状态和含水情供计算土的其它物理指标和设计以及控制施工质量之用。 B 、实验要求 1、由实验室提供一份扰动土样,要求学生测定该上样的含水量、密度和该土 的相对密度; 2、根据实验结果要求学生确定该土的孔隙比(e )、孔隙率(n )、饱和度(r S )、干土密度(d ρ)及饱和土密度(sat ρ)等物理指标; 3、参观原状土样。 C 、实验方法 一、相对密度实验(又称比重实验) 土粒的相对密度是土在100℃—105℃下烘至恒重时土粒的密度与同体积4℃时纯水密度的比值。 (一)实验目的 测定土的相对密度(比重),为计算土的孔隙比、饱和度以及为其它土的物理力学实验(如颗粒分析的比重计法实验、压缩实验等)提供必需的数据。 (二)实验方法 相对密度实验的方法取决于试样的粒度大小和土中是否含有水溶盐,如果水中不含水溶盐时,可采用比重瓶和纯水煮沸排气法。土中含有水溶盐时,要用比重瓶和中性液体真空排气法。粒径都大于5mm 时则可采用缸吸筒法或体积排水法。本实验采用比重瓶和纯水煮沸排气法。 (三)仪器设备

1、比重瓶:容量100毫升: 2、天平:称量200克,感量0.001克; 3、恒量水槽:灵敏度±1℃; 4、电热砂浴(或可调电热器); 5、孔径5mm 土样筛、烘箱、研钵、漏斗、盛土器、纯水、蒸馏水发生器等。 (四)实验步骤 1、试样制备 将风干或烘干之试样约100克放在研钵中研碎,使全部通过孔径为5mm 的筛,如试样中不含大于5mm 的土粒,则不要过筛。将已筛过的试样在100℃—105℃下恒重后放入干燥器内冷却至室温备用。(此项工作由实验室工作人员负责完成) 2、将烘干土约15克,用漏斗装入烘干了的比重瓶内并称其质量,得瓶加上的质量m l ,准确至O.001克。 3、将已装入干土的比重瓶注纯水至瓶的一半处。 4、摇动比重瓶,使土粒初步分散,然后将比重瓶放在电热砂浴上煮沸(注意将瓶塞取下)。煮沸时要注意调节砂浴温度,避免瓶内悬液溅出。煮沸时间从开始沸腾时算起,砂土和粉土不小于30分钟,粉质粘土和粘土不小于1小时。本次实验因时间关系,煮沸时间由教师根据具体情况决定。 5、将比重瓶从砂浴上取下,注入纯水至近满,然后放比重瓶于恒温水槽内,待瓶内悬液温度稳定后(与水槽内的水温相同),测记水温(T),准确至0.5℃(注:本实验室槽内水温控制在20℃)。 6、轻轻插上瓶塞,使多余水分从瓶塞的毛细管上溢出(溢出的水必须是不含土粒的清水)。取出比重瓶,擦干比重瓶外部水分,称瓶加水加土的总质量(4m )准确至0.001克。 (五)计算 按下式计算相对密度: C w wT m m m m ds ??-+= 44300ρρ

计算科学导论读书报告

计算科学导论读书报告刘青山 引言:刚入大学不长时间,我自己对专业的认识不足,不知道自己应该重点学 什么,朝着什么方向发展,甚至更不知道从何学起。但是,经过将近半年的时间对计算科学导论这一课程的学习,我受益匪浅。导论老师教给了我们学什么,怎么学,这对我们计算机科学与技术专业的学生有着至关重要的影响。在老师的带领下,我们对这一专业有了清醒的认识,并对今后的发展方向有了初步的认识。 一、对计算机科学与技术学科的初步认识 (1)对计算机发展的初步认识 计算机的发展不是一蹴而就的,而是经过漫长的历史过程。1946年由冯诺依曼发明的ENIAC是世界上第一台电子计算机,它的产生明确了计算机的五大部分:运算器、控制器、存储器、输入设备、输出设备,并使用二进制运算代替了原来十进制运算,对今后计算机的发展有着巨大的影响。随后又经历了第一代计算机(电子管1951—1959)、第二代计算机(晶体管1959—1963)、第三代计算机(集成电路1964—1975)、第四代计算机(超大规模集成电路式微处理器1975—至今)的四次改革,使得计算机走进寻常人家,适应了社会的需要。 (2)主要课程 所谓的计算机技术包括文字处理,信息管理,多媒体,网络管理等在内的计算机应用技术。而所谓的计算机科学,一般指的是数据结构,组成原理,操作系统,编译原理等计算机内部实现机制。而我们这个专业的主要学习计算机科学与技术方面的基本理论和基本知识,接受应用计算机的基本训练,具有开发计算机系统的基本能力。而我校制定的我们这一专业的发展特色是软件开发。以下是我们的主要课程:C语言程序设计、计算机组成原理、编译原理、离散数学、数字逻辑、数值分析、数据结构、操作系统、微机原理及汇编语言、计算机网络、计算机系统结构、软件工程、面向对象程序设计电路原理、计算机英语等。 (3)计算学科的发展主线 第一层面是计算科学应用层包括人工智能与应用与系统,信息、管理与决策系统,移动计算,计算可视化,科学计算等计算机应用的各个方向;第二层面是计算科学的专业基础层,它是为应用层提供技术和环境的一个层面,包括软件开发方法学,计算机网络与通信技术,程序设计科学,计算机体系结构,电子计算机系统基础;第三层面是计算科学的基础层,它包括计算的数学理论,高等逻辑等内容。这三个层面构成的计算科学发展的历程中,创造出了各种计算机系统,扩展了计算机的应用领域和应用水平。我们应正确的认识到计算机的发展主线。 (4)计算机产业发展前景 计算机产业作为工业革命的产物,在20世纪的出现已经极大地改变了整个世界的面貌,深刻影响并仍将继续影响世界各国政治、经济、军事、文化、环境格局,人类的生存前景和生活质量。而在我国主要是软件的发展,下面我们重点讨论软件产业在中国的发展前景。众所周知,软件的开发首先是一项高智力的活动,软件产业的发展既有生产成本低,产品高附加值,高收益的特点,也有产品寿命短,升级代换快,市场变化快,投资风险大的特点。总结过去我们在发展软件产业方面的经验和教训,对今后更好的发展软件产业是十分有益的。我们过去的主要问题是没有按照软件产业发展的规律行事,过多的依赖科研机构。现在,越来越多

土力学实验总结

土力学地基基础实验总结 土力学地基基础实验是课程教学的一个重要组成部分。参与实验的是05级建筑工程技术专业两个班的学生,其中一班34人,二班35人。根据实验室设备情况,将每个班分成四批次,每批学生8~9人,每一批次又分成4个小组,每小组2人协调配合操作共同完成实验。 本学期土力学实验出勤情况总体很好,能够按照实验课程时间的安排和实验大纲的要求进行实验。学生对实验的积极性比较高,对动手操作的实验课程比较感兴趣,能积极主动的参与到实验操作中来。甚至平时学习不太努力,学习成绩比较差的同学也能积极主动参加实验。 在刚开始的几个实验中,能明显看的出来学生动手能力不强。经了解很多同学在中学阶段很少参与亲自动手的实验,甚至有些学生在上大学前学习的时候实验课程就是看老师进行实验演示,从来没有参加过这样的动手实验,这也许是学生动手能力不太强的一个原因。在前几个实验中,明显感觉到学生操作动作比较生硬,动作过于谨慎,刚开始的实验虽然安排的是密度、含水量这些比较简单的实验,但实验过程还不够连贯,实验数据准确度不够。经过实验指导教师的鼓励、指导和演示,这一现象很快就有了较大变化,后面实验如压缩实验,剪切实验虽然复杂很多,但学生的操作明显比前面的实验要好。这基本达到我们本实验课程在一定程度上提高学生动手操作能力的目的。 通过实验后的抽问的情况来看,学生对土力学的基本概念有了更深的了解。同时也增加了学生对土力学基本理论学习的兴趣,反过来发现学生在学理论课时原来只是走马观花或死记硬背的概念和理论,他们能够自觉深入去理解。这也达到我们通过实验加深理论知识的学习的目的。

通过实验还发现实验课程能增进师生交流的作用,由于实验每一批次学生人数比较少,提供了教师与学生面对面交流的更多机会,老师对学生有了更多的了解,学生和老师也建立了更密切的关系。在实验过程中充分发现学生的优点和进步,通过表扬和鼓励,在获得学生好感的同时,学生实验不但能更好地遵守纪律,不但实验进行的更加顺利,实验气氛也比较好。教师也更大一步获得学生的信任,师生之间也有了感情交流。通过实验发现学生在课余时间和老师见面时打招呼时明显热情多了,在密切了师生关系的同时,更进一步提高了学生对课程学习的兴趣。 从实验具体内容来看,在密度实验中,学生在预习是普遍不能很好理解凡士林作为润滑剂涂在环刀内壁的作用,应该在实验之前给予解释润滑剂保持切面土体更加完整,保持土体体积更加准确的作用。在含水量实验中学生觉得称量盒盖是多余的,结合实验应该讲解在野外取土时称量盒盖保持水分不流失得以准确称量的作用。在塑限实验中学生对土条粗细把握方面不太准确,在搓土条时用力把握的不是很好,容易形成空心搓,对裂纹具体是怎样一种情况作为判定标准也把握的不是很好,应该在实验过程中找一组做的好的样品给同学展示,让该实验有更具体的参照标准。在液限实验中落锥时锥尖的高度把握不太好,学生对加水的量没有认识,这个实验要经过多次反复调试才能达到实验要求,实验时间拉的比较长,结果准确度有较大偏差,学生在试了多次还不成功的情况下容易产生急噪心理,实验指导教师应该在实验过程中对加水量进行指导,同时在实验之前应该让学生有足够的心理准备,在锻炼学生耐心的同时,也可以提高实验数据能准确度。在压缩实验时,由于该实验时间比较长,在发生错误时要求学生重新做比困难,在实验之前就要求学生注意实验操作步骤;这个实验在百分表的安装,砝码

土力学实验报告(最终版)

《土力学与基础工程》 土 工 实 验 报 告 书 学院:环资学院 班级:地质1301班 姓名:郑 学号:20131140 时间:2015.11.24

目录 实验一侧限压缩实验 (3) 1实验目的 (3) 2实验原理 (3) 3仪器设备 (3) 4操作步骤 (3) 5实验数据整理 (4) 实验二直接剪切实验 (7) 1土的抗剪强度及实验方法 (7) 1.1 土的抗剪强度 (7) 1.2实验目的 (7) 1.3实验原理 (7) 2 直接剪切实验步骤 (7) 2.1 仪器设备 (7) 2.2 操作步骤 (7) 2.3 实验数据整理 (8) 三、三轴压缩实验 (10) 1实验目的 (10) 2实验原理 (10) 3实验设备 (10) 4实验步骤 (10) 5计算与绘图 (10) 6实验记录 (12) 四、实验总结 (12)

实验一 侧限压缩实验 1实验目的 通过测定变形和压力的关系或者孔隙比与压力的关系、变形和时间的关系,进而计算单位沉降量 i s 、压缩系数 v 、压缩指数c C 、压缩模量s E 。 2实验原理 实验基于构成土骨架的矿物颗粒在土体变形过程中保持刚性且竖向变形是连续的假设前提。 3仪器设备 (1)固结仪:试样面积302 cm ,高为2cm ; (2)加压设备:称量500kg~1000kg 。感量为0.2kg~0.5kg 的磅秤。 (3)百分表:量程10mm ,分度值为0.01mm ; (4)其它:钢丝锯、天平、环刀、刮土刀等。 4操作步骤 (1)制备式样:取面积为302 cm 的环刀抹上适量的凡士林并称量,记录读数为42.9g ,取原状土按一定的含水量制备试样,用环刀切取土样并用天平称量,记录数据为162.0g ; (2)土样装入固结仪器中:先装入下透水石,再将带有环刀的试样小心装入护环,在装入固结仪容器内,然后放上透水石和加压盖板,至于加压框下,对准加压框架的正中,安装量表。(透水石的湿度应尽量与试样保持一致); (3)为保证试样与仪器上下各部件之间接触良好,应施加1KPa 预压荷载,然后调整量表归零; (4)对试样施加压力,加压等级分别为50.0、100、200、300、400、1600KPa ; (5)需要确定原状土的先期固结压力时,加压率应小于1,可采用0.5或0.25倍。最后一级压力应大于1000KPa ; (6)第一级压力的大小取决于土的软硬程度,此次实验采取50KPa ; (7)加荷后按下列时间顺序计量表读数:6”、15”、1’、2’15”、4’、6’15”、9’、12’15”、16’、20’15”、25’、30’15”、36’、42’15”、49’、64’、100’、200’、400’、23h 和24h ,至稳定为止。(中间加压等级只读数0’’、60’’即可); (8)固结稳定标准规定为每级压力下压缩24h ; (9)整理设备,清理实验仪器。

相关文档
最新文档