水电厂电气部分设计

水电厂电气部分设计
水电厂电气部分设计

摘要

本次设计是水电厂电气部分设计,根据原始材料该水电站的总装机容量为3×34=102 MW。低压侧

10kV高压侧为220Kv,一回出线与系统相连,水电厂的厂用电率一般为0.2%。根据所给出的原始资料

该电厂不为大型电厂,主要承担基荷和调度使用。拟定三种电气主接线方案,然后对这三种方案进行可

靠性、经济性和灵活性比较后,保留两种较合理的方案,最后通过定量的技术经济比较确定最终的电气

主接线方案。在对系统各种可能发生的短路故障分析计算的基础上,进行了电气设备和导体的选择校验

设计。

目录

摘要 .......................................................................................................................................................

第一部分设计说明书 (4)

第一章对原始资料的分析 (4)

1.1 主接线设计的基本要求 (6)

第二章电气主接线设计 (6)

2.1 原始资料的分析 (6)

2.2 电气主接线设计依据 (6)

2.3 主接线设计的一般步骤 (6)

2.4 发电机电压(主)接线方案10KV侧 (6)

2.5 主接线方案的拟定 (9)

2.6 水轮发电机的选择 (12)

2.7 变压器的容量 (13)

2.8 主变的选择 (14)

2.9 相数的选择 (14)

2.10 绕组的数量和链接方式的选择 (14)

2.11 普通型与自耦型的选择 (14)

2.12 各级电压中性点运行方式选择 (15)

第三章短路电流计算 (15)

3.1 短路电流计算的基本假设 (15)

3.2 电路元件的参数计算 (16)

3.3 网络变换与简化方法 (16)

3.4 短路电流实用计算方法 (16)

第四章电气设备选择及校验 (17)

4.1 电气设备选择的一般规定 (17)

4.1.1 按正常工作条件选择 (17)

4.1.2 按短路条件校验 (17)

4.2 断路器和隔离开关的选择和校验 (18)

第二部分设计计算书 (18)

第五章短路电流计算过程 (19)

5.1 阻抗元件标么值计算 (19)

第六章电气设备选择及校验部分计算 (21)

6.1 断路器和隔离开关的选择和校验 (21)

6.1.1 机端断路器和隔离开关(10.5KV)的选择和校验 (21)

6.1.2 主变压器出口断路器和隔离开关(220KV)的选择和校验 (22)

6.1.3 220kV出线断路器和隔离开关的选择和校验 (23)

6.2 导体、电缆的选择和校验 (23)

6.2.1 220kv母线的选择校验 (23)

个人总结 (24)

参考文献 (24)

附录...................................................................................................................................... .29

第一部分设计说明书

原始资料6

3×34MW水利水力发电厂电气初设计

水电厂装机容量3×34MW ,机组=max T 4500小时。,当地年平均最高气温30℃,海拔600m ,

地震烈度6级。土壤电阻率400Ω·m ,无其他特殊环境条件。

(1)主变压器采用SFPL 7-40000型,采用Y 0 /△-11接线方式,低压侧电压10.5KV ,高压侧242±2×2.5%。

(2)发电机额定电压10.5kV ,8.0cos =?5,次暂态电抗18.0"

=d x (标么值)。

(3)继电保护:主保护动作时间0.08s ,后备保护动作时间3s ,断路器采用SW 6-220型,动作时间0.6s ,固有分闸时间0.06s 。

(4)厂用电:无高压厂用电气设备。

(5)接入系统:一回220kV,14km 架空线路接入枢纽变电所,系统容量按无限大考虑,地区变电所母线最大短路电流27KA (周期分量,并计入十年发展),线路阻抗0.4Ω/km 。

第一章 对原始资料的分析

根据原始资料,本电厂是中小型发电厂,基本不承担负荷。主要与220KV 系统相连, 由资料我们可知,10kV 侧可以直接承担厂用供电,还可以供附近工厂用电。这里有两电压等级,分别是10kV , 220kV ,由10kV 升高为220kV 通过一回架空线与220kV 系统相连。

1主接线设计的基本要求

主接线设计的合理性直接影响电力系统运行的可靠性,灵活性及对电器的选择、配电装置、继电保护、自动控制装置和控制方式的拟定都有决定性的关系。根据《电力工程电气设计手册(电气一次部分)》中有关规定:“变电所的电气主接线应根据该变电所在电力系统中的地位,变电所的规划容量、负荷性质、线路、变压器连接元件总数、设备特点等条件确定。并综合考虑供电可靠、运行灵活、操作检修方便、投资节约和便于过渡或扩建等要求”。主接线设计的基本要求如下:

1可靠性

所谓可靠性是指主接线能可靠的运行工作,以保证对用户不间断供电。衡量可靠性的客观标准是运行实践,经过长期运行实践的考验,对以往所采用的主接线,优先采用。主接线的可靠性是它的各组成元件,包括一、二次设备部分在运行中可靠性的综合。同时,可靠性不是绝对的而是相对的。可能一种主接线对某些变电所是可靠的,而对另一些变电所可能就不是可靠的。评价主接线方式可靠的标志是:

(1)线路、母线(包括母线侧隔离刀闸)等故障或检修时,停电范围的大小和停电时间的长短,能否保证对一类、二类负荷的供电。

(2)线路、断路器、母线故障和检修时,停运线路的回数和停运时间的长短,以及能否保证对重要用户的供电。

(3)变电所全部停电的可能性。

(4)大型机组突然停电,对电力系统稳定运行的影响与后果。

2灵活性

电气主接线应能适应各种运行状态,并能灵活地进行运行方式的转换,灵活性主要包括以下几个方面:

(1)操作的方便性:电气主接线应该在满足可靠性的条件下,接线简单,操作方便,尽可能地使

操作步骤少,以便于运行人员掌握,不致在操作过程中出差错。

(2)调度的方便性:电气主接线在正常运行时,要能根据调度要求,方便地改变运行方式,并且在发生事故时,要能尽快地切除故障,使停电时间最短,影响范围最小,不致过多地影响对用户的供电和破坏系统的稳定运行。

(3)扩建的方便性:对将来要扩建的发电厂,其接线必须具有扩建的方便性。尤其是火电厂,在设计主接线时应留有发展扩建的余地。设计时不仅要考虑最终接线的实现,还要考虑到从初期接线到最终接线的可能和分段施工的可行方案,使其尽可能地不影响连续供电或在停电时间最短的情况下,将来能顺利完成过渡方案的实施,使改造工作量最少。

3 经济性

主接线的经济性和可靠性之间经常存在矛盾,所以应在满足可靠性和灵活性的前提下做到经济合理。经济性主要从以下几个方面考虑:

(1)节省一次投资。主接线应简单清晰,并要适当采取限制短路电流的措施,以节省开关电

器数量、选用价廉的电器或轻型电器,以便降低投资。

(2)占地面积少。主接线设计要为配电装置布置创造节约土地的条件,尽可能使占地面积少;同时应注意节约搬迁费用、安装费用和外汇费用。对大容量发电厂或变电站,在可能和允许条件下,应采取一次设计,分期投资、投建,尽快发挥经济效益。

(3)电能损耗少。在发电厂或变电站中,电能损耗主要来自变压器,应经济合理地选择变压器的形式、容量和台数,尽量避免两次变压而增加电能损耗。

第二章电气主接线设计

2.1 原始资料分析

根据设计任务书所提供的资料可知:该水电站为典型的小水电,不担任重要负荷的供电,对设计的可靠性、安全性、灵活性等没有很严格的要求,拟定1~2台变压器。,周围的环境和气候对设备的选择的制约也不大。综上,在设计中要充分分析所给的原始资料,同时结合实际的情况,做到设计的方案具有可靠性、安全性、经济性等。

2.2 电气主接线设计依据

电气主接线设计是水电站电气设计的主体。它与电力系统、枢纽条件、电站动能参数以及电站运行的可靠性、经济性等密切相关,并对电气布置、设备选择、继电保护和控制方式等都有较大的影响,必须紧密结合所在电力系统和电站的具体情况,全面地分析有关影响因素,正确处理它们之间的关系,通过技术经济比较,合理地选定接线方案。

2.3 主接线设计的一般步骤

1、对设计依据和基础资料进行综合分析。

2、确定主变的容量和台数,拟定可能采用的主接线形式。

3、论证是否需要限制短路电流,并采取合理的措施。

4、对选出来的方案进行技术和经济综合比较,确定最佳主接线方案。

2.4 发电机电压(主)接线方案10KV侧

根据我国现行的规范和成熟的运行经验,联系本小水电站的工程实际,满足可靠性、灵活性和经济性的前提下,发电机电压接线可采纳的接线方式有以下三种:

(一)单母线接线(图2.1)

图2.1

(1)优点:设备少,接线清晰,经济性好,操作简单方便,不易误操作,便于采用成套配电装置,并且母线便于向两端延伸,方便扩建。

(2)缺点:可靠性偏差,母线或母线隔离开关检修或故障时,所有回路都要停止工作,也就是要造成全厂长期停电。调度是很不方便,电源只能并列运行,不能分裂运行,并且线路侧发生短路时,有较大的短路电流。

(3)一般适用范围:一般只用在出现回路少,并且没有重要负荷的发电厂。

(二)单元接线(图2.2)

图2.2 单元接线示意图

(1)优点:发电机与主变压器容量相同,接线最简明清晰,故障影响范围最小,运行可靠、灵活;发电机电压设备最少,布置最简单方便,维护工作量也最小;继电保护简单。

(2)缺点:主变压器与高压断路器数量多,增加布置场地与设备的投资;主变压器高压侧出线回路多,布置复杂,对简化高压侧接线不利;主变压器故障时影响机组送电。

(3)一般适用范围:单机容量一般在100MW及以上机组,且台数在6台及以下者;单机容量在45MW~80MW之间,经经济比较采用其它接线方式不合适时。

(三)扩大单元接线(图2.3)

图2.3 扩大单元接线示意图

(1)优点:接线简单清晰,运行维护方便;与单元接线比较,减少主变压器台数及其相应的高压设备,缩小布置场地,节省投资;与单元接线比较,任一机组停机,不影响厂用电源供电,本单元两台机组停机,仍可继续有系统主变压器倒送;减少主变压器高压侧出线,可简化布置和高压侧接线。

(2)缺点:主变压器故障或检修时,两台机组容量不能送出;增加两台低压侧断路器,且增大发电机电压短路容量,对大型变压器低压侧可用分裂线圈以限制短路容量。

(3)一般适用范围:适应范围较广,能较好的适应水电站布置的特点,只要电力系统运行和水库调节性能允许,一般都可使用;当水电站只有一个扩大单元时,除满足系统允许条件外,应注意避免在主变压器回路故障或检修时造成大量弃水、损失电能和影响下游供水,同时还应考虑有可靠的外来厂用电源。

(四) 关于单元接线中装设断路器问题

单元接线的发电机电压回路中,具备下列情况之一者,可考虑装设断路器:

(1)担任尖峰负荷的水电站,经常有可能全厂停机,而机组启动、排水、照明等需通过变压器向厂用变倒送电,此时,可在接有厂用变压器的单元中装设断路器。

(2)在单元回路分支线上接有近区负荷者。

(3)当单元之间要求设置联络母线时,应考虑加装发电机电压断路器。

综合考虑该单元接线不需要装设断路器

2.5 主接线方案拟定

220Kv侧由于本电站是小水电,不承担主要负荷,没有重要机端负荷,从接线的可靠性、经济性和灵活性考虑,在我国运行的成熟经验一般采用单母线接线方式。所以本电站,220Kv侧采用单母线接线。

(一)根据以上三种主接线方式,并结合本设计水电站的实际,现拟定以下三种电气主接线方案(单相示意图):

(1)单母线接线其接线示意图如图2.5:

图2.5 单母线接线方案

(2)单元接线其接线示意图如图2.6:

图2.6 单元接线方案

(3)扩大单元接线其接线示意图如图2.7:

图2.7 扩大单元接线

(二)主接线方案初步比较:

由以上三种接线方案的优缺点分析和接线示意图,本着可靠性、灵活性和经济性的原则,结合电厂实际综合分析,可以得出:

单母线和扩大单元接线相比较,其可靠性和灵活性都很相近,厂用电都是在发电机10.5KV侧取得,然而本电站只有两台发电机,比较特殊,所以单母线和扩大单元接线形式相近。从接线图中可以明显地看出单母线接线低压侧多用三个(三相)断路器和三个(三相)隔离开关,增加了一次投资,同时也增

加了其继电保护的复杂程度。所以可以明显淘汰单母线接线方案,从而保留扩大单元接线(方案1)和单元接线方案(方案2)。

(三)主接线方案的确定

技术比较:

方案的技术特性分析,一般从以下几个方面进行分析:

1、供电的可靠性;

2、运行上的安全和灵活性;

3、接线和继电保护的简化;

4、维护与检修的方便等。

需要说明的是:在比较接线方案是,应估计到接线中发电机、变压器、线路、母线等的继电保护能否实现及其复杂程度。然而经验表明,对任何接线方案都能实现可靠的继电保护,由于一次设备投资远远大于二次设备的投资,所以即使某个别元件保护复杂化,也不能作为不采用较经济接线方案的理由。

从供电的可靠性看:对于方案2,厂用电从两台发电机上取得,即使检修其中一台变压器和两机组停机电厂也不会停电,然而两台变压器同时故障的可能性非常小。相比方案1,若检修变压器电厂就会停电,否则要另外接入厂用电源,这样投资就增加了。这样,方案2的可靠性相对高些。

从运行安全和灵活性看:方案2的变压器的短路容量比方案1小,对变压器和发电机的绝缘水平要求相对较低,安全性相对较高,其灵活性也比较好。

从接线和继电保护看:方案1的接线和继电保护都相对方案2较复杂。

2.6 水轮发电机的选择

在我国,水电站容量为20~80MVA的发电机额定电压取10.5kV,容量为20~170MVA的发电机功率因数取0.8~0.85。因此可以选发电机型号SF25-16/410,其参数如下表:

压态电抗

(1)主变压器采用SFPL 7-40000型,采用Y 0 /△-11接线方式,低压侧电压10.5KV ,高压侧242±2×2.5%。

(2)发电机额定电压10.5kV ,8.0cos =?5,次暂态电抗18.0"

=d x (标么值

2.7变压器容量

1、主变容量的确定

厂用电变压器容量的选择和校验应符合下列原则: a )满足在各种运行方式下,可能出现的最大负荷。

b )一台厂用电变压器计划检修或故障时,其余厂用电变压器应能担负I 、Ⅱ类厂用电负荷或短时担负厂用电最大负荷。但可不考虑一台厂用电变压器计划检修时另一台厂用电变压器故障或两台厂用电变压器同时故障的情况。

c )保证需要自启动的电动机在故障消除后电动机启动时所连接的厂用电母线电压不低于额定电压的60%--65%。

d )装设两台互为备用的厂用电电源变压器时,每台厂用电变压器的额定容量应满足所有I 、n 类负荷或短时满足厂用电最大负荷的需要。

e )装设三台厂用电电源变压器互为备用或其中一台为明备用时,计及负荷分配不均匀等情况,每台的额定容量宜为厂用电最大负荷的50%--60%。

f )装设3台以上厂用电电源变压器时,应按其接线的运行方式及所连接的负荷分析确定。

g )厂用电配电变压器容量选择应满足所连接的最大负荷需要。

h )厂用电变压器不宜采用强迫风冷时持续输出容量作为额定容量选择的依据,但对不经常运行或经常短时运行的厂用电配电变压器应充分利用其过负荷能力。

2、 厂用电变压器的选择

根据设计材料,我们可以确定厂用电负荷S’n

所以,我们分别从10KV Ⅰ母线和10KV Ⅱ段母线取电共3组,其中10KV 厂用。 变型号选定:SJL1—6300/10 额定容量:6300(KVA )

额定电压:10±5 % ;低压—6.3(KV ) 连接组标号: Y/Δ-11

损耗:空载—9.1 总损耗—61.1

阻抗电压(%):5.5

空载电流(%):1.3

参考价格:4.9万元

2.8主变的选择

该水电站远离负荷中心,水电站的厂用电很少(0.2%),且没有地区负荷,因此,选择主变压器的容量应大致等于与其连接的发电机容量。水电厂多数担任峰荷,为了操作方便,其主变压器经常不从电网切开,因此要求变压器空载损耗尽量小。

2.9相数的选择

主变采用三相或单相,主要考虑变压器的可靠性要求及运输条件等因素。根据设计手册有关规定,当运输条件不受限制时,在330KV及以下的电厂及变电所均选用三相变压器。因为三相变压器比相同容量的单相变压器具有节省投资,占地面积小,运行过程损耗小的优点,同时本电厂的运输地理条件不受限制,因而选用三相变压器。

2.10绕组数量和连接方式的选择

(1)绕组数量选择:根据《电力工程电气设计手册》规定:“最大机组容量为125MW及以下的发电厂,当有两种升高电压向用户供电与或与系统相连接时,宜采用三绕组变压器。结合本电厂实际,因而采用双绕组变压器。

(2)绕组连接方式选择:我国110KV及以上的电压,变压器绕组都采用连接,35KV一下电

压,变压器绕组都采用连接。结合很电厂实际,因而主变压器接线方式采用连接,根据题目要求的

2.11普通型与自偶型选择

根据《电力工程电气设计手册》规定:“在220KV及以上的电压等级才宜优先考虑采用自偶变压器。自偶变压器一般作为联络变压器和连接两个直接接地系统。从经济性的角度出发,结合本电厂实际,选用普通型变压器。

根据题目给定变压器型号SFPL7-40000采用Y0 /△-11接线方式,低压侧电压10.5KV,高压侧242±2×2.5%。

查《变压器常用技术数据与故障监测及实验新技术实用手册》主要技术参数如下:

额定容量:40000/40000(KVA)

额定电压:高压—242±2×2.5% ;低压—10.5(KV)

连接组标号:Ynd11

空载损耗:51(KW)

短路损耗:12~14(KW)

空载电流(%):0.7

所以一次性选择两台SFPL7-40000型变压器为主变。

2.12 各级电压中性点运行方式选择

运行经验表明,中性点运行方式的正确与否关系到电压等级、绝缘水平、通信干扰、接地保护方式、运行的可靠性、系统接线等许多方面。目前,我国电力系统中普遍采用的中性点运行方式有中性点直接接地、中性点不接地和中性点经消弧线圈接地等方式接地。

随着电力网电压等级的升高,对绝缘的投资大大增加,为了降低设备造价,可以采用中性点直接接地系统。目前,我国对110kV及以上电力系统一般都采用中性点直接接地系统,其优点是:单相接地时,其中性点电位不变,非故障相对地电压接近相电压(可能略有增大),因此降低了绝缘投资。3~10kV电力网中,当单相接地电流小于30A时,采用中性点不接地运行方式。发电机中性点均采用非直接接地方式,本设计方案采用的是单元接线,所以按规程应该采用经消弧线圈接地方式。

综上所述,2200kV侧采用中性点直接接地方案,10.5KV侧采用不接地方案,发电机中性点采用经消弧线圈接地方案。

第三章短路电流计算

3.1 短路电流计算的基本假设

(1)短路过程中各发电机之间不发生摇摆,并认为所有发电机的电势都相同电位。

(2)负荷只作近似估计,或当作恒定电抗,或当作某种临时附加电源,视具体情况而定。

(3)不计磁路饱和。系统各元件的参数都是恒定的,可以用叠加原理。

(4)对称三相系统。出不对称短路故障处不对称之外,实际系统都是对称的。

(5)忽略了高压线的电阻电容,忽略变压器的电阻和励磁电流,这就是说,发电机、输电、变电和用电的元件均匀纯电抗表示。

(6)金属性短路,即不计过度电阻的影响,认为过渡电阻为零的短路情况。

3.2 电路元件的参数计算

选取基准容量为100MVA,归算到220KV侧进行标么值计算。

具体的计算过程详见设计计算书。

3.3 网络变换与简化方法

综合运用Y—变换,网络中间点消去法,对该电厂的接线与外界接线进行变换和简化。

具体的计算过程详见设计计算书。

3.4 短路电流实用计算方法

在工程计算中短路电流的计算常采用实用曲线法,其计算步骤如下:

(1)选择计算短路点;

(2)画等值网络图;

A、选取基准容量和基准电压。

B、首先去掉系统中的所有负荷分支。线路电容、各元件的电阻,发电机电抗用次暂态电抗。

C、将各元件电抗换算为同一基准的标么值电抗。

D、汇出等值网络图,并将各元件电抗统一编号。

E、化简等值网络:为计算不同短路点的短路电流值,需要将等值网络分别化简为短路点为中心的

辐射形等值网络,并求出各电流与短路点之间的电抗,即转移电抗以及无限大电源对短路点的转移

电抗。

(3)求出计算电抗,

式中为第i台等值发电机的额定容量。

(4)由运算曲线查出个电源供给的短路电流周期分量标么值(运算曲线只作到)。

(5)计算无限大功率的电源供给的短路电流周期分量。

(6)计算短路电流周期分量有名值和短路容量。

(7)计算冲击电流。

(8)绘制短路电流计算结果表(表13.1)。

具体的计算过程详见设计计算书。

第四章电气设备选择及校验

4.1 电气设备选择的一般规定

选择与校验电气设备时,一般应满足正常工作条件及承受短路电流的能力,并注意因地制宜,力求经济,同类设备尽量减少品种,同时考虑海拔、湿热带、污秽地区等特殊环境条件。本设计主要考虑温度和海拔两个环境因素。

4.1.1 按正常工作条件选择

1、电器、电缆允许最高工作电压不得低于该回路的最高运行电压,即;电

器、导体长期允许电流不得小于该回路的最大持续工作电流,即。

在计算发电机变压器回路最大持续工作电流时,应按额定电流增加5%。这是考虑到在电压降低5%时,为确保功率输出额定,则电流允许超5%。

在选择导体、电器时,应注意环境条件:

2、110KV及以下电器,用于海拔不超过2000米时,可选用一般产品。

4.1.2 按短路条件校验

包括动稳定、热稳定以及电器的开断电流,一般按三相短路验算。

1、短路热稳定校验

式中:—电器设备允许通过的热稳定电流及相

—短路电流产生的热脉冲

计算用下式:

式中:、、—分别为短路发生瞬间、短路切除时间、短路切除时间的短路电流周期性分量(KA)

—短路切除(持续)时间,为继电保护时间与断路器的全开断时间之和(S) T—短路电流非周期分量等效时间,对于发电机出口可取0.15~0.2S,发电厂升压母线取0.08~0.1S,一般变电所取0.05S。若切除时间大于1S,只需考虑周期分量。

2、短路动稳定校验

动稳定校验一般采用短路冲击电流峰值,当回路的冲击系数与设备规定值不同,而且冲击电流值接近于设备极限通过电流峰值时,需要校验短路全电流有效值。

校验条件:

式中:—短路冲击电流峰值(KA );

—短路全电流有效值(KA ); —电器允许极限通过电流峰值(KA );

—电器允许的极限通过电流有效值(KA )。

3、电器的开断电流校验时,电器的开断计算时间取主保护时间及断路器固有分闸时间之和。这里,我们按最坏的情况考虑,主保护失灵,机端断路器取后备保护时间2S ,其余的取4S 。

4、《导体和电器选择设计技术规定》

“用熔断保护的导体和电器可不验算热稳定,除用有限流作用的熔断器保护者外,导体和电器的动稳定仍应验算。”

4.2 断路器和隔离开关的选择和校验条件

第二部分 设计计算书

第五章 短路电流计算过程

1.阻抗元件标么值计算

一、计算网络图

二、把个参数归算到220KV 侧,取平均电压,

。计算标么值如下:

发电机:

变压器:

第六章 电气设备选择及校验部分计算

6.1 断路器和隔离开关的选择和校验

6.1.1 机端断路器和隔离开关(10.5KV )的选择和校验 发电机最大持续工作电流为: 短路切除时间为

,故应不计非周期分量。

表中列出断路器、隔离开关的有关参数,并与计算数据比较。

????10kV ????10kV ??????10kV ????3150A ?????3150A

???????3150A

?????2.114kA ????50?kA

??????5.3907kA ????125kA 13.67[(KA ).S] ?????7500 ??????????10000 ?????5.3907kA

?????125kA

???125kA 由表中数据对比均满足校验条件,因此机端断路器可选ZN12-10型断路器型断路器、机端隔离开关可选GN2—10型隔离开关。

6.1.2 主变压器出口断路器和隔离开关(220KV)的选择和校验

主变压器出口最大持续工作电流为:

据题目要求,选用SW6-220型断路器,隔离开关选用GW4-220型变压器出口短路时,则流过变压器出口断路器的短路电流为:

断路器、隔离开关选择结果表

????220kV????220kV??????220kV

????316A?????3150A???????1000A

??????24.57kA????50kA

??????62.65kA

1847.2[(KA)?????2976.75[(KA).S]

??????62.56kA????125kA???????80kA

由表中数据对比均满足校验条件,因此主变压器出口断路器可选LW6-220型断路器、主变压器出口隔离开关可选GW7—220D型隔离开关。

6.1.3. 220KV 出线短路器和隔离开关

????220kV????220kV??????220kV

????316A?????3150A???????1000A

??????24.57kA????50kA

??????62.65kA

1847.2[(KA)?????2976.75[(KA).S]

??????62.56kA????125kA???????80kA

由表中数据对比均满足校验条件,因此主变压器出口断路器可选LW6-220型断路器、主变压器出口隔离开关可选GW7—220D型隔离开关。

6.2 导体、电缆的选择和校验

6.2.1 220kv母线的选择校验

1、按持续工作电流选择流过母线的最大长期工作电流选择母线截面。

最大工作电流为:

选用50x5的铝线,平放时=637A,周围环境为30时(按当地年最高温度),则温度修正系数为:

K=

2、热稳定校验

母线保护时间3s断路器全断开时间0.06s短路持续时间3.06s

周期分量的热效应:

[(kA).S]

正常运行时导体温度:

由,查表得C=99,则满足短路时发热的最小导体的截面为

故满足热稳定要求。

个人总结

(1)通过本次课设加深了对理论知识的理解,模拟将理论知识运用到实际中。

(2)在课程设计过程中,熟悉用各种软件进行电力绘图。

(3)对不同的电力系统采取不同的配电方案和接线方式,在不同的工作条件下,按其要求选择合适的元器件是十分必要的。

参考文献

[1] 水电站机电设计手册编写组.水电站机电设计手册.电气二次.北京.水利电力出版社,1989.8

[2] 水电站机电设计手册编写组.水电站机电设计手册.电气二次.北京.水利电力出版 社,1989.8

[3] 水利电力部西部电力设计院编.电力工程电气设计手册.电气一次部分.水利电力出版社,1989.12

[4] 水利电力部西部电力设计院编.电力工程电气设计手册.电气二次部分.水利电力出版社,1989.12

[5] 许建安主编.中小型水电站设计手册.北京:水利水电出版社,2002 [6] 刘天琪,邱晓燕编着.电力系统分析理论.北京:科学出版社,2005

[7] 熊信银主编,朱永利副主编.发电厂电气部分.第三版.北京:中国电力出版社,2004.9 [8] 贺家珍,宋从矩合编.电力系统继电保护原理.第三版.北京:中国电力出版社,1994.10 [9] 应敏华,程乃蕾主编,常美生编写.供用电工程.北京:中国电力出版社,2006.9 [10] 卓乐友编着.电力工程电气设计200例.北京:中国电力出版社,2004

[11] 水力水电电气信息网组织编写.水电站电气主接线图册.北京:中国水力水电出版社,2004.3 [12] 贺永华主编.发电厂及变电站的二次回路.北京:中国电力出版社,2007

附录

发电机SF25-16/410参数表

态电抗

主变压器采用SFPL 7-40000型,采用Y 0 /△-11接线方式,低压侧电压10.5KV ,高压侧242±2×2.5%

电力变压器技术参数

机端断路器和隔离开关(10.5KV )

????10kV ??????10kV ?????3150A

???????3150A

????50?kA

????125kA

?????7500??????????10000

?????125kA???125kA

主变压器出口断路器和隔离开关(220KV)????10kV??????10kV ?????3150A???????3150A ????50?kA

????125kA

?????7500??????????10000

?????125kA???125kA

短路计算表

试论中小型水电站的电气二次设计

试论中小型水电站的电气二次设计 发表时间:2019-04-03T11:13:36.270Z 来源:《防护工程》2018年第35期作者:杨海东 [导读] 而中小型水电站中的电气二次设计对于整个水电站的运行的安全与稳定发挥着极为重要的作用。本文主要就中小型水电站的电气二次设计进行探讨。 摘要:随着社会经济的不断发展,人们生活水平的不断提高以及企业规模的不断扩大,人们在生产经营以及日常生活中的用电量逐渐增大。随着用电需求的不断扩大,就使得各种发电系统得到了较为快速的发展。在近些年间,水电站以其可再生、清洁无污染、运行成本低等诸多优点成为发电行业的新宠。而随着经济的发展以及能源的日益紧张,中小型水电站在近些年得到了广泛的重视和应用,而中小型水电站中的电气二次设计对于整个水电站的运行的安全与稳定发挥着极为重要的作用。本文主要就中小型水电站的电气二次设计进行探讨。 关键词:中小型水电站电气二次设计探讨? 中小型水电站是将流动的水能转化为电能的大型工程,它的主要运行原理是通过水库将从高处泄落的水引入水电站的引水系统中,用水的落差形成重力作用,从而形成动力,推动水电站系统中的机组正常运行,将水能转化为电能,并将电能输送至发电厂,为居民日常生活和企业生产经营提供电力资源使用。在水电站的电气设备中一般包括电气一次设备与电气二次设备,常见的电气二次设备主要包括计算机监控系统设备、机组继电保护系统设备、机组励磁系统设备、机组状态监测系统设备、高压系统保护及自动装置所组成的设备等等。电气二次设备在水电站的电气设计中作用极大,是保障水电站正常运行的基础,也是水电站电气设计中必不可少的重要组成部分[1]。? 1 计算机监控系统设计? 中小型水电站电气二次设备中的计算机监控系统主要是对其它运行的设备进行监控,并对监控结果作出相应的调节,能够有效维护设备的正常运行。一般中小型水电站中的计算机监控系统均采用符合国际开放系统标准的分层分布结构,采用计算机监控系统的主要目的就是为了减少工作人员的工作量,尽可能地减少值班人员。计算机监控系统分为电站终端控制级与现场控制级两层,采用100Mb/s光纤通过太网进行连接。电站终端控制级主要负责对其它运行设备进行终端监控,实时反馈信息,并对监控结果进行相应调节;现场控制机则负责对水轮发电机组、电气一次设备以及公用设备等进行现场实时监控和调节,当电站终端控制级出现故障时,现场控制级可以不受其影响,单独运行和调节。电气二次设备中对计算机监控系统的要求为,必须实行与调度、水情测试状况、泄洪闸门控制等系统的实时联系与通讯[2]。? 2 机组继电保护系统设计? 电气二次设备中的机组继电保护系统设备的功能主要是为了给水电站运行过程中一些其它的重要设备提供继电保护。受机组继电保护系统保护的设备主要有水轮发电机组、变压器、110kV线路、厂用变保护等设备,电气二次设计中的保护装置内部含有自检功能,能够有效检查出水电站运行过程中一些重要的设施设备是否受到了电磁的影响,并对受到电磁影响的设施设备进行相应地保护和调节。另外,在电气二次设计中在机组继电保护系统中设计了一个与计算机监控系统相连接的接口,可以实现机组继电保护系统与计算机监控系统的实时通讯。? 3 机组励磁系统设计? 在中小型水电站电气二次设计中,应该为每台发电机、每台主变压器、110 kV线路以及厂用变保护设备等配备一块交流采样电量综合测试仪,检测每个设备中的所有的电气量,从而确定是否应该为发电机的励磁电压、励磁电流等配备电量变送器。而每台发电机的有功功率、无功功率、单相定子电压、单相主变低压侧6.3kV母线电压、0.4kV厂用电母线电压、220V直流母线电压、UPS电源交流电压以及频率等是否需要分别配置电量变送器,是由发电机的实际需要来决定的。除此之外,为了给宏观监控提供方面以及为计算机监控系统准备备用设备,在中央控制系统中还应该配备少量的常规电测电子仪表,可以采用数字式仪表或者指针式的仪表,但为了更为精准地进行检测,数字电子仪表更为合适[3]。? 4 直流电源设计? 在中小型水电站电气二次设计中直流电源系统一般设计为220V的直流电源,对水电站中全部设备的电气保护、控制、操作、自动装置、事故照明等提供直流电源。为了加强水电站系统设备的防爆功能,在进行直流电源设计时,应同时设计出一组104只铅酸蓄电池的电池组,容量为200AH,电池组需要具备阀控、免维护、防爆等功能,还要设计一套充电装置。直流母线上为单母线,母线上挂一组铅酸蓄电池与一套充电装置,并配备微机绝缘检测装置以及蓄电池巡察装置。充电装置中一般采用微机控制高频开关整流模块,采用N+1冗余模式。? 5 交流电源设计? 中小型水电站中一般采用独立的一组10kVA的UPS交流电源装置,在此交流电源装置中不需要配备蓄电池。在水电站正常运行时,由交流220V的厂用电进行供电,在装置中要配置无触点旁路开关[4]。在UPS中某单元发生故障时,开关可以自动切换交流电源,而当交流电源中断时,可以无障碍地切换至直流电源,这样就能保证交流输出的不间断,从而保障水电站运行的安全与稳定。? 6 结语? 综上所述,中小型水电站中的电气二次设备对于整个水电站的安全、平稳运行发挥着极为重要的作用。在电气二次设计中的接线设计通常是对一次系统进行实时地检测、控制和保护,同时也对一次系统中的一次设备进行监测和保护,以保证一次设备的正常平稳运行。因此,在中小型水电站中应该加强对电气二次设计的重视程度,同时注重设计的科学性与合理性,提升电气二次设计水平,使其能够充分发挥保证水电站正常运行的作用,进一步提升水电站运行效益。? 参考文献:? [1] 王成明,邓鹏,朱冠廷.缅甸道耶坎水电站电气二次设计[J].人民长江,2013(S2):71-73+113.? [2] 朱冠廷,黄天东,陈吉祥,邹来勇.湖北三里坪水电站电气二次设计[J].人民长江,2013(20):68-71.? [3] 周业荣,严映峰,宋柯,刘立春,王蓓蓓.瀑布沟水电站电气二次系统总体设计介绍[J].水电站机电技术,2014(06):28-32+35.?

某水电站电气主接线设计毕业设计(论文)word格式

前言 电力系统是由发电厂、变电站、线路和用户组成。变电站是联系发电厂和用户的中间环节,起着变换和分配电能的作用。为满足生产需要,变电站中安装有各种电气设备,并依照相应的技术要求连接起来。把变压器、断路器等按预期生产流程连成的电路,称为电气主接线。电气主接线是由高压电器通过连接线,按其功能要求组成接受和分配电能的电路,成为传输强电流、高电压的网络,故又称为一次接线或电气主系统。用规定的设备文字和图形符号并按工作顺序排列,详细地表示电气设备或成套装置的全部基本组成和连接关系的单线接线图,称为主接线电路图。 一、主接线的设计原则和要求 主接线代表了变电站电气部分主体结构,是电力系统接线的主要组成部分,是变电站电气设计的首要部分。它表明了变压器、线路和断路器等电气设备的数量和连接方式及可能的运行方式,从而完成变电、输配电的任务。它的设计,直接关系着全所电气设备的选择、配电装置的布置、继电保护和自动装置的确定,关系着电力系统的安全、稳定、灵活和经济运行。由于电能生产的特点是发电、变电、输电和用电是在同一时刻完成的,所以主接线设计的好坏,也影响到工农业生产和人民生活。因此,主接线的设计是一个综合性的问题。必须在满足国家有关技术经济政策的前提下,正确处理好各方面的关系,全面分析有关影响因素,力争使其技术先进、经济合理、安全可靠。 Ⅰ. 电气主接线的设计原则 电气主接线的基本原则是以设计任务书为依据,以国家经济建设的方针、政策、技术规定、标准为准绳,结合工程实际情况,在保证供电可靠、调度灵活、满足各项技术要求的前提下,兼顾运行、维护方便,尽可能地节省投资,就近取材,力争设备元件和设计的先进性与可靠性,坚持可靠、先进、适用、经济、美观的原则。 1.接线方式:对于变电站的电气接线,当能满足运行要求时,其高压侧应尽可能采用断路器较少或不用断路器的接线,如线路—变压器组或桥形接线等。若能满足继电保护要求时,也可采用线路分支接线。在110-220KV 配电装置中,当出线为2 回时,一般采用桥形接线;当出线不超过4 回时,一般采用分段单母线接线。在枢纽变电站中,当110-220KV 出线在4 回及以上时,一般采用双母接线。在大容量变电站中,为了限制6-10KV 出线上的短路电流,一般可采用下列措施:

中型水力发电厂电气部分初步设计

专业 班级 学生姓名 指导教师 课程设计任务书

目录 1.前言 (2)

1.1.变电站设计原则………………………………………………(2 1.2.对电气主接线的基本要求………………………………………) 2 1.3.主接线的设计依据……………………………………………(3 1.4.设计题目 (3) 1.5.设计内容 (3) 2.课程设计的任务要求 (4) 2.1.原始资料分析 (4) 2.2.主接线方案的拟定 (5) 2.3. 厂用电的设计…………………………………………() 8 2.4.1.发电机的选择及参数…………………………………() 8 2.4.2.变压器的选择及参数…………………………………() 9 2.4. 3.厂用变的选择及参数…………………………()9 2.5.短路电流计算………………………………()10 2.6.主要电气设备的选择…………………………()11 2.7.配电装置的选择……………………………()13 3.设计总结 (15) 参考文献 (15) 附录A………………………………………………………() 16 附录B……………………………………………………() 17 附录C……………………………………………………………() 22

1.前言 变电所是接受电能、变换电压、分配电能的环节,是供配电系统的重要组成部分,它直接影响整个电力系统的安全与经济运行。电力系统中的这些互联元件可以分为两类,一类是电力元件,它们对电能进行生产(发电机),变换(变压器,整流器,逆变器),输送和分配(电力传输线,配电网),消费(负荷);另一类是控制元件,它们改变系统的运行状态,如同步发电机的励磁调节器,调速器以及继电器等。电气主接线是发电厂变电所的主要环节,电气主接线的拟定直接关系着全厂(所)电气设备的选择、配电装置的布置、继电保护和自动装置的确定,是变电站电气部分投资大小的决定性因素。 1.1变电站设计原则 1. 必须严格遵守国家的法律、法规、标准和规范,执行国家经济建设的方针、政策和基本建设程序,特别是应贯彻执行提高综合经济效益和促进技术进步的方针。 2.必须从全局出发,按照负荷的等级、用电容量、工程特点和地区供电规划统筹规划,合理确定整体设计方案。 3.应做到供电可靠、保证人身和设备安全。要求供电电能质量合格、优质、技术先进和经济合理。设计应采用符合国家现行标准的效率高、能耗低、性能先进的设备。 1.2.对电气主接线的基本要求 变电站的电气主接线应满足供电可靠、调度灵活、运行,检修方便且具有经济性和扩建的可能性等基本要求。 1.供电可靠性:如何保证可靠地(不断地)向用户供给符合质量的电能是发电厂和变电站的首要任务,尽量避免发电厂、变电所全部停运的可能性。防止系统因为某设备出现故障而导致系统解裂,这是第一个基本要求。 2.灵活性:其含义是电气主接线能适应各种运行方式(包括正常、事故和检修运行方式)并能方便地通过操作实现运行方式的变换而且在基本一回路检修时,不影响其他回路继续运行,灵活性还应包括将来扩建的可能性。

小型水电站设计2×15MW的水力发电机组

; 小型水电站设计2×15MW的水力发电机组

目录 一选题背景 (3) 原始资料 (3) 设计任务 (3) 二电气主接线设计 (3) 对原始资料的分析计算 (3) 电气主接线设计依据 (4) 主接线设计的一般步骤 (4) 技术经济比较 (4) 发电机电侧电压(主)接线方案 (4) 主接线方案拟定 (4) 三变压器的选择 (7) 3. 1主变压器的选择 (7) 相数的选择 (7) 绕组数量和连接方式的选择 (7) 厂用变压器的选择 (8) 四.短路电流的计算 (9) 电路简化图8: (9) 计算各元件的标么值 (10) 短路电流计算 (11) d1点短路电流计算 (11) d2点短路 (13) 五电气设备选择及校验 (15) 电气设备选择的一般规定 (15) 按正常工作条件选择 (15) 按短路条件校验 (16) 导体、电缆的选择和校验 (16) 断路器和隔离开关的选择和校验 (17) 限流电抗器的选择和校验 (17)

电流、电压互感器的选择和校验 (18) 避雷器的选择和校验 (18) 避雷器的选择 (18) 本水电站接地网的布置 (19) 六.设计体会 (19) 附录 (20) 参考文献 (22)

一选题背景 原始资料 (1)、待设计发电厂为水力发电厂;发电厂一次设计并建成,计划安装2×15MW的水力发电机组,利用小时数4000小时/年; (2)、待设计发电厂接入系统电压等级为110kV,距系统110kV发电厂45km;出线回路数为4回; (3)、电力系统的总装机容量为600MVA、归算后的电抗标幺值为,基准容量Sj=100MVA; (4)、低压负荷:厂用负荷(厂用电率)%; (5)、高压负荷:110kV电压级,出线4回, Ⅲ级负荷,最大输送容量60MW,cosφ=; (6)、环境条件:海拔<1000m;本地区污秽等级2级;地震裂度<7级;最高气温36℃;最低温度-℃;年平均温度18℃;最热月平均地下温度20℃;年平均雷电日T=56日/年;其他条件不限。 设计任务 (1)、根据对原始资料的分析和本变电所的性质及其在电力系统中的地位,拟定本水电站的电气主接线方案。经过技术经济比较,确定推荐方案。 (2)、选择变压器台数、容量及型式。 (3)、进行短路电流计算。 (4)、导体和电气主设备(各电压等级断路器、隔离开关、母线、电流互感器、电压互感器、电抗器(如有必要则选)、避雷器)的选择和校验。 (5)、厂用电接线设计。 (6)、绘制电气主接线图。 二电气主接线设计 对原始资料的分析计算 为使发电厂的变压器主接线的选择准确,我们原始资料对分析计算如下; 根据原始资料中的最大有功及功率因数,算出最大无功,可得出以下数据

水电站电气部分设计说明

题目:水电站电气部分设计

容摘要 电力的发展对一个国家的发展至关重要,现今300MW及其以上的大型机组已广泛采用,为了顺应其发展,也为了有效的满足可靠性、灵活性、及经济性的要求,本设计采用了目前我国应用最广泛的发电机—变压器组单元接线,主接线型式为双母线接线,在我国已具有较多的运行经验。设备的选择更多地考虑了新型设备的选择,让新技术更好的服务于我国的电力企业。并采用适宜的设备配置及可靠的保护配置,具有较好的实用性,能满足供电可靠性的要求。 关键词:电气主接线;水电站;短路电流;

目录 容摘要 .............................................................. I 1 绪论 . (1) 1.1 水电站的发展现状与趋势 (1) 1.2 水电站的研究背景 (1) 1.3 本次论文的主要工作 (2) 2 电气设计的主要容 (3) 2.1 变电所的总体分析及主变选择 (3) 2.2 电气主接线的选择 (4) 2.3 短路电流计算 (4) 2.4 电气设备选择 (10) 2.5 高压配电装置的设计 (19) 3 变电所的总体分析及主变选择 (21) 3.1 变电所的总体情况分析 (21) 3.2 主变压器容量的选择 (21) 3.3 主变压器台数的选择 (21) 3.4 发电机—变压器组保护配置 (22) 4 电气主接线设计 (24) 4.1 引言 (24) 4.2 电气主接线设计的原则和基本要求 (24) 4.3 电气主接线设计说明 (25) 5 短路电流计算 (27) 5.1 短路计算的目的 (27) 5.2 变电所短路短路电流计算 (27) 6 结论 (30) 参考文献 (31)

发电厂电气部分初步设计

发电厂电气部分初步设计

188发电厂电气部分初步设计任务书 一、毕业设计的目的 电能有许多的优点,随着电力工业和国民经济的可持续发展,电力已成为国民经济建设中不可缺少的动力,并广泛应用于一切生产和日常生活方面。而电力的安全运行则是电力生产过程中的重中之重,本次设计主要考察学生对电站方面的认识,通过对可能问题的分析来加深学生对电站的理解和应用以及其在电力系统中的作用。 二、主要设计内容 1.电气主接线及高压厂用电接线设计; 2.短路电流计算及主要电气设备选择; 3.配电装置设计; 4.发电机、变压器、输电线路的保护配置设计; 5.发电机保护设计; 6.发电机保护整定计算。 三、重点研究问题 1、电气主接线及高压厂用电接线设计; 2、短路电流计算及主要电气设备选择; 3、配电装置设计。 四、主要技术指标或主要设计参数 本电厂拟采用1条110KV输电线路(厂系线)直接与系统联系;另一条110KV输电线路(厂甲线)经过变电站甲与系统构成环网。该电厂还以双回110KV线路(厂乙线I、厂乙线II)向变电站乙供电。甲、乙变电站的主要用户是煤矿、化肥厂、钢铁厂及一些乡镇工业、农副产品加工业、农业、居民生活用电等。

电厂装机容量 2×65MW+2×75MW,其中:QF 2 -65-2-10.5型2台,QFQ-75-2-10.5型2台。厂用电率:65MW机组取8%,75MW机组取8%。 五、设计成果要求 1. 完成电站电气主接线方案设计,并确定主变压器的台数和型号; 2. 根据设计资料计算短路电流; 3. 选择设计站110KV高压电气设备并进行动、热稳定计算; 4. 主变压器保护的配置; 5. 设计说明书、计算书一份;5. CAD绘制电气主接线图、开关站平面布置图、发电机保护原理接线图及展开图、10KV配电室平面布置图。 六、其他 负荷资料表 电压线路名称最大功率cosφ距离(km)Tmax(h/y) 其它 110KV 厂系线100 联络线厂甲线35MW 0.8 20 5100 东北方厂乙线40MW 0.8 90 5100 西方 10KV 棉I厂线2400KW 0.8 2 5500 棉II厂线2250KW 0.8 2 5500 钢铁厂线2230KW 0.8 4 4000 印染厂I线6100KW 0.8 3 52300 印染厂II 线 5150KW 0.8 3 5230 市区I线7500KW 0.8 4 4300 市区II线7340KW 0.8 8 4300 市区III线8370KW 0.8 10 3500 市区IV线6820KW 0.8 10 3500 备用I线6250KW

小型水电站电气设计

毕业设计 Graduation practice achievement 设计项目名称小型水电站电气设计

目录 设计计算书 第一章电气一次部分设计 1、电气主接线方案比较 (1) 2、主变压器容量选择 (3) 3、电气一次短路电流计算 (4) 4、高压电气设备的选择和校验 (13) 第二章厂用电系统设计 1、厂用变压器选择 (29) 2、厂用主要电气设备选择 (29) 第三章继电保护设计 1、继电保护方案 (32) 2、电气二次短路电流计算 (33) 3、继电保护整定计算 (37)

第一章电气一次部分设计 1、电气主接线方案比较 方案一:3台发电机共用一根母线,采用单母线接线不分段; 设置一台变压器,其容量为12000KVA; 方案二:1、2号发电机采用单母线接线;3号发电机-变压器单元接线; 设置了2台变压器,其容量分别为8000KVA、4000KVA; 35KV线路采用单母线接线不分段。

电气主接线方案比较: (1)供电可靠性 方案一供电可靠性较差; 方案二供电可靠性较好。 (2)运行上的安全和灵活性 方案一母线或母线侧隔离开关故障或检修时,整个配电装置必须退出运行,而任何一个断路器检修时,其所在回路也必须退出运行,灵活性也较差; 方案二单母线接线与发电机-变压器单元接线相配合,使供电可靠性大大提高,提高了运行的灵活性。 (3)接线简单、维护和检修方便 很显然方案一最简单、维护和检修方便。 (4)经济方面的比较 方案一最经济。 各种方案选用设备元件数量及供电性能列表:

综合比较:选方案二最合适。 经过综合比较上述方案,本阶段选用方案二作为推荐方案,接线见“电气主接线图”。 2、 变压器容量及型号的确定: 1、1T S =θCOS P ∑=KVA 80008 .032002=? 经查表选择SF7-8000/35型号,其主要技术参数如下: 2、KVA COS P S T 40008 .032002===∑θ 经查表选择SL7-4000/35型号, 其主要技术参数如下:

发电厂电气设计

发电厂电气部分课程设计 题目:220KV/35KV黄埠变电站一次系统设计学院:自动化工程学院 专业:电气工程及其自动化 姓名: 指导教师: 2011年9 月14 日

设计题目:220KV/35KV黄埠变电站一次系统设计 原始资料: (1)220KV进线2回。分别从主系统220KV双母线接线带旁路上引接;35KV 出线10回供给下级变电站。 (2)工程建设规模:主变压器两台,容量均为63MV A,年最大负荷利用小时数均为6000h,电压等级220KV/35KV。 (3)系统短路容量:两台主变压器分裂运行时,220KV母线三相最大短路容量为6137.35MV A,短路电流16.38KA;35KV母线三相最大短路容量为936.15MV A,短路电流15.44KA。 设计要求 1.为该变电站设计出电气主接线图。 2.选择主变压器型号。 3.选择变压器出口断路器和隔离开关(220KV)。 4.利用经济电流密度选择变压器出口母线。 5.选择35KV出口断路器和隔离开关。 6.选择电压互感器和电流互感器型号。

接线图

各部分设计 (1) 变压器 根据两台主变压器的容量和变比,根据华鹏变压器厂提供的产品样本 选择S (F )(P )Z11-63000,额定电压为220±8×1.25%/35KV ,联结组标号为YNd11的变压器。 (2) 变压器出口断路器和隔离开关 变压器出口(220KV 侧)最大持续电流为 A U S N N ax 6.173220 *363000*05.1305.1I m == = 根据变压器出口的U NS 、I max ,根据《发电厂电气部分》附表6,可选

[施工图][浙江]600MW大型发电厂电气初步设计图 D-45 厂用接线专题

初步设计 电气部分 高压厂用电方案研究 初步设计 电气部分 高压厂用电方案研究

批准:审核:校核:编制:

目录 1、本工程的基本特点 2、6kV厂用电接线方式 2.1 影响厂用电接线的几个主要因素2.1.1 高压厂变调压方式 2.1.2 脱硫辅机电源的接线方式 2.1.3 6kV输煤段的设置 2.2 主厂房6kV厂用电原则接线方案 2.3 事故保安电源接线 3 厂用电系统中性点的接地方式

1 本工程的基本特点 a)4台60万机组一起设计。 b)主接线方案在前一阶段中已经确定采用发电机设出口断路器。 c)每台机组按单元设FGD脱硫系统。脱硫系统为单套辅机方案。 d)汽机房经优化以后,留给6kV配电装置的空间受到限制,每台机组只有一跨。 e)由于本工程为超临界机组,汽机锅炉附机的电动机容量比亚临界大很多,而电动给水泵则达到9100KW。 e)运煤系统采用铁路运输,运煤工艺有明确的双路皮带同时运行要求,尤其是卸煤系统。当一路皮带失去电源时,即可能造成压车。因此,必须考虑双路电源皆能同时可靠供电。 2 6kV厂用电接线方式 2.1 影响厂用电接线的几个主要因素 2.1.1 高压厂变调压方式 发电机设有出口断路器,机组通过高压厂变直接启动,备变仅为停机备用。主变22kV侧最大电压波动已达88%-105%,因此主变或高压厂变必须采用带负荷调压方式。 在主变或高压厂变二种带负荷调压方式中,本工程采用高压厂变带负荷调压方式。此方式具有下列优点: 1、投资相近,但更有利于6kV厂用母线的电压稳定。采用+8?1.25%/-10?1.25%有载调压开关后,6kV厂用母线正常电压波动很容易稳定在±5%以内。而主变带负荷调压方式理论上只能保证主变低压侧(22kV)的电压稳定,不能抵消厂用母线上因厂用电负荷潮流变化引起的电压波动。

2×100MW发电厂电气部分设计毕业设计

2×100MW发电厂电气部分设计毕业设计 引言 随着高速发展的现代社会,电力工业在国民经济中的作用已为人所共知,它不仅全面的影响国民经济其他部门的发展,同时也极大的影响人民的物质与文化水平的提高,影响整个社会的进步,其中发电厂在电力系统中起着重要的作用.我国正在飞速发展,经济快速的增长使得对电能的需求量在不断提高,各类发电厂的数量随之而增加,特别是火力发电厂依然十分重要。 我本次设计的题目为“2 100MW发电厂电气部分设计”,设计的主要内容为:确定电气主接线图;选择主变压器的型号;对主接线上的短路点进行短路电流计算;设备选型及校验;发电机保护整定计算;防雷接地计算;屋外配置设计。 在佈仁图老师的认真辅导下使我在此次的毕业设计中对发电厂等方面的知识有了更多的了解,真是受益匪浅.

第一章绪论 随着我国经济发展速度的不断加快,特别是伴随西部大开发和振兴东北老工业基地的力度加大,我国的电力需求猛增。为了提高国家电力工业的效益,促进相关工业的技术水平的提高,增加新的经济增长点。近期的重点是:发展大容量、高效低污染的常规火电机组,积极开发洁净煤发电新技术,解决提高燃煤发电机组的效率和改善环境污染两大关键问题;开发水电站老机组的改造技术,提高机组效益和对水利资源的的效利用;加强电网关键技术的开发研究,积极推进跨大区电网互联,优化资源配置,建立有效电力市场体系;大力开发和推广节能降耗技术,加速对中小机组、老机组、城市和农村电网的技术改造,降低损耗,提高效益。 我国电力的发展将朝向“大机组、超高压、大电网、新能源”方向发展。 火力发电中的主要环节是热能的传递和转换,将初参数提高到超临界状态,提高了可用能的品位。使热能转换效率提高,这是大容量火电机组提高效率的主要方向。与同容量亚临界火电机组比较,超临界机组可提高效率2-2.5%,超临界机组可提高效率约5%。大型超临界机组的开发与应用,可以有效的改变我国电力工业目前能耗高和环境污染及依赖进口设备的局面,具有现实的经济、社会效益。 由于空冷电站的耗水量仅为湿冷电站的1/3,适合于我国富煤缺水的“三北”地区建设大型坑口电站,变输煤为输电。对减轻铁路运煤压力、促进“三北”及相邻地区的经济发展具有非常重要的现实意义。 设计为(2 100)MW发电厂电气部分设计,要任务是电气主接线,厂用电设计、短路计算、主要设备的选择和校验、防雷与接地装置设计、发电机保护的整定计算、配电装置设计。技术要求主接线可靠、灵活、经济、便于扩建。所有设计过程均需要考虑国家电力部门的技术规程和规范。

毕业设计-小型水电站电气部分设计

毕业设计成果 Graduation practice achievement 设计项目名称110KV变电站初步设计

序 毕业设计是我们完成大学学习的最后一次总结与学习的机会,是对我们所学各门功课的综合运用与提高。通过这次毕业设计,巩固与加深了我们所学的理论专业知识,锻炼了我们分析与解决实际工程问题的能力培养和提高了我们综合实用技术规范,技术资料和进行有关计算,设计和绘图,编写技术文件的初步技能,为今后的工作和学习打下坚实的基础。 这次的毕业设计是由仇新艳老师带领的,在设计期间老师和我们共同讨论,一起学习,对我的启发良多。对此我很感谢仇老师的耐心指导,尤其是仇老师碰到问题时那积极解决问题的态度很值得我学习。 最后我还要感谢我们这组同学,在设计期间,大部分都是经过我们的仔细讨论我才解决了我的一些疑惑。通过短路电流的计算,教会了我对于高压电气的具体选型及校验方法;对于在设计过电压防护中我学会了如何来确定避雷针的高度;对于厂用变压器的选择,我也有了很深刻的认识。以上种种问题的解决,才使我的毕业设计最后能按时的完成,对此我很感谢。 这期间我查阅了大量的资料,极大的锻炼了我搜集资料和分析资料的能力,为我以后的就业提供了很大的帮助。最后我很感谢学院的领导和老师们对我这三年的教育和关怀。

目录 序 第一章原始资料 (4) 1.1水能资料 (4) 1.2 电力系统资料 (4) 第二章电气主接线设计 (6) 2.1 电气主接线设计概述 (6) 2.2 主接线方案的选择 (7) 第三章短路电流计算 (9) 3.1 短路电流计算的目的 (9) 3.2 短路电流计算的一般规定 (9) 3.3 短路电流计算的内容 (9) 3.4 短路电流计算方法 (10) 3.5 短路电流的计算 (10) 第四章厂用电的设计 (23) 4.1 厂用电设计的基本要求 (23) 4.2 水电站厂用电的特点 (23) 4.3 统计原则及计算分析过程 (23) 4.4 厂用电气的选择 (26) 4.5校验 (27) 第五章电气设备的选择及校验 (28) 5.1 35KV断路器选择与校验 (28) 5.2 35KV隔离开关选择与校验 (29) 5.3 35KV电流互感器选择与校验 (30) 5.4 35KV电压互感器选择与校验 (31) 5.5 熔断器的选择与校验 (32) 5.6 避雷器的选择 (33) 5.7 母线的选择 (33) 5.8 6.3KV开关柜及电气设备的选择 (34) 第六章过电压保护 (37) 6.1 造成水电站事故的原因 (37) 6.2 感应雷和雷电侵入波的防护 (37) 6.3 直击雷的防护 (37) 参考文献 (39) 附图

水电厂设计

目录 一、题目 二、原始资料 三、水电站电气部分研究的背景 四、电气主接线的设计 1)、电气主接线须满足以下要求2)、主接线方案的拟定 3)、方案比较 五、导线的初步选择和变压器的选择 1)、与系统相连45km导线的选择 2)、变压器的选择 六、短路电流计算 七、电气一次设备的选择计算 1)、母线的选择 2)、110kV母线的选择 3)、断路器和隔离开关的选则 八、发电机机端电缆的选择 九、参考文献

一、题目:2×15MW水力发电厂电气一次部分设计 二、原始资料: 1、待设计发电厂类型:水力发电厂; 2、发电厂一次设计并建成,计划安装2×15 MW 的水力发电机组,利用小时数 4000 小时/年。 3、待设计发电厂接入系统电压等级为110kV,距系统110kV发电厂45km;出线回路数为4回; 4、电力系统的总装机容量为 600 MVA、归算后的电抗标幺值为,基准容量Sj=100MVA; 5、发电厂在电力系统中所处的地理位置、供电范围示意图如下所示。 6、低压负荷:厂用负荷(厂用电率) %; 7、高压负荷: 110 kV 电压级,出线 4 回,为 I 级负荷,最大输送容量60 MW, cosφ = ; 8、环境条件:海拔 < 1000m;本地区污秽等级 2 级;地震裂度< 7 级;

最高气温 36°C;最低温度?°C;年平均温度18°C;最热月平均地下温度20°C;年平均雷电日T=56 日/年;其他条件不限。 三、水电站电气部分研究的背景 地方中小型水电站的电气主接线选择,以及一次设备和二次设备的选择等等,应本着具体问题具体分析的原则,根据变电站在电力系统中的地位和作用、负荷性质、出线回路数、设备特点、周围环境及变电站规划容量等条件和具体情况,在满足供电可靠性、功能性、具有一定灵活性、还拥有一定发展裕度的前提下,尽量选择经济、简便实用的电气主接线以及一次设备和二次设备。如终端变电站,我们可根据其进线回路数较少的特点,选择线路变压器组接线,或者是桥型接线;中间变电站,我们可根据其交换系统功率和降压分配功率的双重功能的特点,选择单母线接线、单母线分段、单母线带旁路接线等形式。总之,电力网络的复杂性和多样性决定了我们不能教条地选择电站的电气主接线、一次设备、二次设备等等,要具体问题具体分析,选择具有自己特色的电气主接线和设备。 发电厂电气主接线的论证,电气一次设备及二次设备的选择,厂房、配电装置布置,自动装置选择和控制方式对电厂设计的安全性及经济性起着重要作用。同时对电力系统运行的可靠性,灵活性和经济性起决定性作用。 四、电气主接线的设计 1)、电气主接线须满足以下要求: 1、根据发电厂、变电站在电力系统中的地位、作用和用户性质,保证必要的供电可靠性和电能质量的要求。 2、应力求接线简单、运行灵活和操作简便。 3、保证运行、维护和检修的安全和方便。 4、应尽量降低投资,节省运行费用。 5、满足扩建的要求,实现分期过渡。 2)、主接线方案的拟定 方案一:低压侧母线采用单母线,高压侧采用单母线分段,如图一所示。 方案二:低压侧采用单母线,高压侧采用双母线分段,如图二所示。

火电厂电气部分设计

发电厂电气部分课程设计 设计题目火力发电厂电气主接线设计 指导教师 院(系、部) 专业班级 学号 姓名 日期

课程设计标准评分模板课程设计成绩评定表

发电厂电气部分 课程设计任务书 一、设计题目 火力发电厂电气主接线设计 二、设计任务 根据所提供的某火力发电厂原始资料(详见附1),完成以下设计任务: 1. 对原始资料的分析 2. 主接线方案的拟定 3. 方案的经济比较 4. 主接线最终方案的确定 三、设计计划 本课程设计时间为一周,具体安排如下: 第1天:查阅相关材料,熟悉设计任务 第2 ~ 3天:分析原始资料,拟定主接线方案 第4天:方案的经济比较 第5 ~ 6天:绘制主接线方案图,整理设计说明书 第7天:答辩 四、设计要求 1. 设计必须按照设计计划按时完成 2. 设计成果包括设计说明书(模板及格式要求详见附2和附3)一份、主接线方案图(A3)一张 3. 答辩时本人务必到场 指导教师: 教研室主任: 时间:2013年1月13日

设计原始数据及主要内容 一、原始数据 某火力发电厂原始资料如下:装机4台,分别为供热式机组2 ? 50MW(U N = 10.5kV),凝汽式机组2 ? 300MW(U N = 15.75kV),厂用电率6%,机组年利用小时T max = 6500h。 系统规划部门提供的电力负荷及与电力系统连接情况资料如下: (1) 10.5kV电压级最大负荷23.93MW,最小负荷18.93MW,cos?= 0.8,电缆馈线10回; (2) 220kV电压级最大负荷253.93MW,最小负荷203.93MW,cos?= 0.85,架空线5回; (3) 500kV电压级与容量为3500MW的电力系统连接,系统归算到本电厂500kV母线上的电抗标么值x S* = 0.021(基准容量为100MV A),500kV架空线4回,备用线1回。 二、主要内容 1. 对原始资料的分析 2. 主接线方案的拟定 (1) 10kV电压级 (2) 220kV电压级 (3) 500kV电压级 3. 方案的经济比较 (1) 计算一次投资 (2) 计算年运行费 4. 主接线最终方案的确定

中小型水电站电气部分初步设计毕业设计论文

郑州电力职业技术学院 学生毕业论文 论文题目:中小型水电站电气部分初步设计 院系:电力工程系 年级: 2011级 专业:发电厂及电力设备 摘要 本篇毕业设计主要是对某水电站电气部分的设计,包括主接线方案的设计,主要设备选择,短路电流计算,电气一次设备的选择计算。通过对

水电站的主接线设计,主接线方案论证,短路电流计算,电气设备动、热稳定校验,主要电气设备型号及参数的确定,较为细致地完成电力系统中水电站设计。 限于毕业设计的具体要求和设计时间的限制,本毕业设计主要完成了对水电站电气主接线设计及论证,短路电流计算,电气一次设备的选择计算,电气设备动、热稳定校验、电气设备型号及参数的确定做了较为详细的理论设计,而对其他方面分析较少,这有待于在今后的学习和工作中继续进行研究。 关键词 电气主接线;短路电流;电气一次设备。

目录 摘要 ..........................................................I Abstract ...................................... 错误!未定义书签。 第1章前言 (1) 1.1设计题目 (1) 1.2水电站电气部分研究的背景 (2) 1.3本课题的研究意义 (2) 1.3.1 电站电气主接线的论证意义 (2) 1.3.2 电气一次设备和二次设备选择及计算的意义 (3) 1.3.3 短路电流计算的意义 (3) 1.3.4 本课题研究的现实意义 (3) 1.4本课题的来源 (4) 1.5论文设计的主要内容 (4) 第2章主接线方案确定 (5) 2.1电气主接线释名 (5) 2.2主接线方案的拟定 (5) 2.2.1 方案一 (5) 2.2.2 方案二 (6) 2.2.3 方案三 (6) 2.2.4 方案比较说明 (7)

电气设计开题报告1

毕业论文(设计)开题报告 (理工类) 题目:2×8.75M W水电厂电气部分初步设计系(部):工程技术学院 年级、专业:2007级电气工程及其自动化 学生姓名:马鑫王伟鹏张克亮李玲黄贵凤 学号:0715103014 0715103009 0715103031 0715103019 0715103077 指导教师:褚晓锐李小伟日期:2010年10月19日

主要研究内容、研究意义及预期目标: (一)主要研究内容 本设计是发电厂电气部分的设计。设计内容重点在于发电厂电气主系统,同时也要求对全厂继电保护的配置、全厂的防雷保护等部分进行设计。整个设计,相当于实际工程设计的电气部分初步设计,部分可达技术设计的要求深度。 1 原始资料分析 (1)负荷资料分析 根据给定的负荷资料(性质、容量、距离等),若未给定发电机容量、台数,就应对发电厂装机容量和台数,逐步分期分批投入,负荷供电电压及供电电压及供电回路数进行规划;若已给发电机容量、台数就对负荷供电方式及供电回路数进行规划。(2)系统主接线分析 根据给定的系统接线图,论证本厂建成后在系统中的地位和作用,进行确定主变压器台数、高中压的联络方式。 2 电气主接线设计 按供电要求并遵守规程确定各级电压进出线支路的横向联络方案。各方案主变压器台数、容量和型号的选择;论证选定主接线方案的合理性以及运行方式的安排;对初步方案进行经济比较,选出最佳方案。 3 厂用电接线的设计 要求拟定供电电压等级,备用方式以及接线方案。 4 短路电流计算 选出需要计算的短路点,计算三相短路电流值I''、I ∞、 ch I、 ch i和所需要的 t I值。 5 导体及电气设备选择 (1)选择载流导体及主要电气设备(发电机、变压器、断路器、隔离开关、导线等)。(2)互感器、避雷器、熔断器的配置和选择。 (3)绘制完整的接线图。 在无继电保护整定资料的情况下,继电保护后备保护的时限,一般在电厂高压母线上认定为4s,对发电机直配线路上认定为2s。 6 配电装置的设计 高压配电装置的设计,应遵循设计技术规范,运用《电力工程设计手册》、典型设

超大型水电站电气主接线设计

超大型水电站电气主接线设计 陈树文 (水利部水利水电规划设计总院,北京100011) 摘要:在总结分析我国超大型水电站电气主接线设计选择的基础上,对我国超大型水电站电气主接线设计选择发展趋势进行了展望,并提出新的设计理 念。 关键词:超大型水电站;电气主接线;可靠性;灵活性;经济技术指标 1 前言 电气主接线设计是超大型水电站电气设计的核心。在超大型水电站装机规模、台数,电站接入系统电压、出线回路数、距离和位置确定的条件下,主接线设计对主变压器、断路器等主要电气设备的容量、台数、型式的选择与布置,对电站主要机电设备的继电保护、监控系统的设计,对厂房布置、枢纽布置以及机电设备和土建投资,环境保护和水土保持等都密切相关,有着较大的影响。而且,电气主接线设计对电站本身和电力系统的安全、可靠、经济运行也起着十分重要的作用。因此,电气主接线设计不仅是技术含量高、涉及范围广的一项错综复杂的系统工程,又是衡量设计水平的一个重要标志。 我国超大型水电站建设起步较晚,大多数始建于20世纪80年代,至今已建成或即将建成的超大型水电站主要有白山、万家寨、小浪底、丹江口、葛洲坝、刘家峡、龙羊峡、二滩、岩滩等18座。这18座超大型水电站的电气主接线设计,主要有如下几种方式:双母线接线、一倍半接线、角形接线、单母线接线和变压器—线路组接线(详见表1)。由表1可知,按电压等级统计,其220kV电压采用双母线接线(包括双母线带旁路、分段接线,以下相同)的有7座电站,占58%;采用变压器—线路组接线的有2座电站,占17%;采用单母线、角形和1倍半接线的各1座电站,各占8%。330kV电压采用双母线接线的有2座电站,占50%;采用角形和一倍半接线的各1座电站,各占25%。500kV电压采用双母线接线的有2座电站,占22%;采用一倍半接线的有6座电站,占67%;采用角形接线的有1座电站,占11%。而按电站数量统计,在18座超大型水电站的电气主接线设计中,采用双母线接线的数量最多,为13座电站,占48%;其次为采用一倍半接线,有8座电站,占30%;采用角形接线的有3座电站,占10%;而采用变压器—线路组接线的有2座电站,占7%;单母线接线的有1座电站,占4%。由此可知,无论是按电压等 级统计,还是按电站数量统计,采用双母线接线的占多数,超过50%;其次为采用一倍半接线,接近30%。在220kV电压采用双母线接线的占多数,500kV 电压采用一倍半接线的占多数。这就是我国超大型水电站电气主接线设计的基本 状况和发展水平。 双母线接线和一倍半接线何以成为我国超大型水电站电气主接线设计的主

水电厂电气部分设计

摘要 本次设计是水电厂电气部分设计,根据原始材料该水电站的总装机容量为3×34=102 MW。低压侧10kV高压侧为220Kv,一回出线与系统相连,水电厂的厂用电率一般为%。根据所给出的原始资料该电厂不为大型电厂,主要承担基荷和调度使用。拟定三种电气主接线方案,然后对这三种方案进行可靠性、经济性和灵活性比较后,保留两种较合理的方案,最后通过定量的技术经济比较确定最终的电气主接线方案。在对系统各种可能发生的短路故障分析计算的基础上,进行了电气设备和导体的选择校验设计。 目录

附录...................................................................................................................................... .29 第一部分 设计说明书 原始资料6 3×34MW 水利水力发电厂电气初设计 水电厂装机容量3×34MW ,机组=max T 4500小时。,当地年平均最高气温30℃,海拔600m , 地震烈度6级。土壤电阻率400Ω·m ,无其他特殊环境条件。 (1)主变压器采用SFPL 7-40000型,采用Y 0 /△-11接线方式,低压侧电压,高压侧242±2×%。 (2)发电机额定电压,8.0cos =?5,次暂态电抗18.0" =d x (标么值)。 (3)继电保护:主保护动作时间,后备保护动作时间3s ,断路器采用SW 6-220型,动作时间,固有分闸时间。 (4)厂用电:无高压厂用电气设备。

(5)接入系统:一回220kV,14km架空线路接入枢纽变电所,系统容量按无限大考虑,地区变电所母线最大短路电流27KA(周期分量,并计入十年发展),线路阻抗Ω/km。 第一章对原始资料的分析 根据原始资料,本电厂是中小型发电厂,基本不承担负荷。主要与220KV系统相连,由资料我们可知,10kV侧可以直接承担厂用供电,还可以供附近工厂用电。这里有两电压等级,分别是10kV, 220kV,由10kV升高为220kV通过一回架空线与220kV系统相连。 1主接线设计的基本要求 主接线设计的合理性直接影响电力系统运行的可靠性,灵活性及对电器的选择、配电装置、继电保护、自动控制装置和控制方式的拟定都有决定性的关系。根据《电力工程电气设计手册(电气一次部分)》中有关规定:“变电所的电气主接线应根据该变电所在电力系统中的地位,变电所的规划容量、负荷性质、线路、变压器连接元件总数、设备特点等条件确定。并综合考虑供电可靠、运行灵活、操作检修方便、投资节约和便于过渡或扩建等要求”。主接线设计的基本要求如下: 1可靠性 所谓可靠性是指主接线能可靠的运行工作,以保证对用户不间断供电。衡量可靠性的客观标准是运行实践,经过长期运行实践的考验,对以往所采用的主接线,优先采用。主接线的可靠性是它的各组成元件,包括一、二次设备部分在运行中可靠性的综合。同时,可靠性不是绝对的而是相对的。可能一种主接线对某些变电所是可靠的,而对另一些变电所可能就不是可靠的。评价主接线方式可靠的标志是: (1)线路、母线(包括母线侧隔离刀闸)等故障或检修时,停电范围的大小和停电时间的长短,能否保证对一类、二类负荷的供电。 (2)线路、断路器、母线故障和检修时,停运线路的回数和停运时间的长短,以及能否保证对重要用户的供电。 (3)变电所全部停电的可能性。 (4)大型机组突然停电,对电力系统稳定运行的影响与后果。 2灵活性 电气主接线应能适应各种运行状态,并能灵活地进行运行方式的转换,灵活性主要包括以下几个方面:

相关文档
最新文档