正江码头对河道壅水影响计算

正江码头对河道壅水影响计算
正江码头对河道壅水影响计算

万方数据

万方数据

万方数据

HEC-RAS模型在跨河桥梁防洪壅水计算中的应用

HEC-RAS模型在跨河桥梁防洪壅水计算中的应用 发表时间:2018-10-22T11:08:08.947Z 来源:《防护工程》2018年第14期作者:杨作书[导读] 介绍了HEC-RAS模型计算桥梁壅水的基本原理和应用范围,利用 HEC-RAS模型计算了50年、20年和10年一遇设计洪水频率下跨河桥梁建设前后河道水面线 杨作书 中水珠江规划勘测设计有限公司海南分公司海南海口 571126 摘要:介绍了HEC-RAS模型计算桥梁壅水的基本原理和应用范围,利用 HEC-RAS模型计算了50年、20年和10年一遇设计洪水频率下跨河桥梁建设前后河道水面线,分析了桥梁建设前后上游河道水位的壅高,并利用规范的经验公式对计算结果进行了验证,结果表明两者的计算值相差均较小,HEC-RAS模型用于跨河桥梁的壅水计算是合适的。关键词:HEC-RAS模型;防洪;壅水高度;水面线 0 引言 随着社会经济的发展和需要,河道中出现越来越多的涉河工程,这些跨河桥梁的的建设侵占行洪断面[1]面积,造成河道水位壅高,对河道防洪产生了较大影响。根据《河道管理范围内建设项目防洪评价报告编制导则(试行)的规定,对占用河道断面,影响洪水下泄的阻水建筑物,应进行壅水计算。本文基于HEC-RAS[2]模型对跨河桥梁的壅水进行了研究。 1 HEC-RAS模型介绍 HEC-RAS是美国陆军工程兵团水文工程中心(USACEHEC)开发的河流分析系统(RAS)软件,主要由河流恒定流模型、非恒定流模型、泥沙分析模型、水质分析模型、以及水力设计模块等组成,其在河道水力分析计算中有着广泛应用,且软件经过工程验证,是国际上有名的水文水力工程软件之一。 HEC-RAS 软件通过不同子模型可以模拟不同设计方案的河道沿程水位、水质变化分析,以及泥沙输移变化规律等,各子模型的地形文件可以很好地处理各种涉河建筑物如桥梁、涵洞、侧向堰、拦河闸坝、阻水障碍物等,同时可生成河道横断面图、水位~流量过程曲线、河道三维断面图等各种分析图表,为河道整治[ 3,4] 、两岸淹没风险分析、防洪堤建设、涉河建筑物设计、模拟溃坝洪水[5] 等方面决策提供服务,使用十分便捷,可以大大减小计算工作量。 1.1基本原理 HEC-RAS 软件包括图形界面、水力分析模块、资料输入与管理模块、以及结果输出模块等功能。用户操作界面见图1,该界面可以进行新建工程,地形和流量文件编辑与管理,并根据不同模拟需求进行恒定流、非恒定流、泥沙、水质分析等。 图1 HEC-RAS最新版V5.0.3使用界面 该模型的基本原理介绍如下: 1、恒定流水动力模型 HEC-RAS恒定流水动力模型计算原理基于能量守恒方程,逐断面采用直接步进法推求,可以对急流、缓流和临界流3种流态进行水面线计算,公式如下: 能量守恒方程: 2 案例计算与分析 2.1工程概况 G河是海南省东方市境内流入海的最大一条河流,发源于东方市与乐东县交界的朦瞳岭。G河流域面积381 km2,河长54.5km,干流平均坡降4.45‰,由东向西流经陀烈谷地经C城镇,最终汇入北部湾。GC大桥位于G河下游,距出海口约2.5km,河段较顺直,区间无较大支流汇入。GC大桥设计长300m,21孔,中墩直径为1.15m,过水净宽277m,设计桥面高程9.8~10.8m,桥板厚度1.0m,设计洪水频率1/100。河段防洪标准10年一遇。 2.2计算参数选取 本次计算地形资料采用2014 年实测地形。根据工程规模及河道特性,选取河段长4.3km,共设27个计算断面,第18断面为桥址断面。断面布置见图2。河道几何资料的建立: (1) 27号断面为上游边界,位于桥址断面上游1.8km 处,经壅水范围估算此处河段不受回水影响且河道地形平缓。(2) 结合该河段河道情况选取1号断面为下边界,位于桥址下游2.5km。(3)本次模型流量边界采用不同频率最大洪峰流量,下边界水位采用对应不频率的设计潮位值。详见表1。

桥梁工程水文计算

2、水文计算 基本资料:桥位于此稳定河段,设计流量31%5500/S Q Q m s ==,设计水位 457.00S H m =,河槽流速 3.11/s c v m =,河槽流量3 C Q =4722m /s ,河槽宽度c B 159.98m =,河槽平均水深c h 9.49m =,天然桥下平均流速0 3.00/M v m s =,断 面平均流速=2.61m/s υ,水面宽度B=180m ,河岸凹凸岸曲率半径的平均值 R=430m ,桥下河槽最大水深12.39mc h m =。 2.1桥孔长度 根据我国公路桥梁最小桥孔净长度Lj 公式计算。 该桥在稳定河段,查表知K=0.84,n=0.90。有明显的河槽宽度Bc ,则有: n 0.90 j s c c L =K (Q /Q )B =0.84(55004722) 159.98=154.16m ?÷? 换算成平面半径R=1500的圆曲线上最小桥孔净长度为154.23m 。 2.2桥孔布置图 根据河床断面形态,将左岸桥台桩号布置在K52+325.00。取4孔40m 预应力混凝土T 形梁为上部结构;钻孔灌注桩双柱式桥墩,桩径为1.6m ,墩径取1.4m ;各墩位置和桩号如图1所示;右桥台桩号为K52+485.00;该桥孔布置方案的桥孔净长度为155.80m 大于桥孔净长度154.23m ,故此桥孔布置方案是合理的。 2.3桥面最低高程 河槽弗汝德系数Fr= 2 2 3.119.809.49 =0.104c c v gh ?= <1.0。即,设计流量为缓流。桥前出现 壅水而不出现桥墩迎水面的急流冲击高度。 2.3.1桥前壅水高度?Z 和桥下壅水高度?Zq

桥梁壅水分析计算

公式(1):能量型公式 ???? ??????? ???+-???? ??=?∑222 2Z h h b B g V Z ξα 式中: α——动能校正系数,一般取α=1.1; ξ——过水面积收缩系数,取ξ=0.85-0.95,本次取0.85; B ——无桥墩时水面宽; V ——建桥前断面平均流速; h ——建桥前断面平均水深; △Z ——最大壅水高度; ∑b ——建桥后过水断面总宽(河宽减去桥墩总宽)。 该公式主要考虑了建桥前后过水断面宽度变化,而未考虑建桥后对天然河道过水断面减小的影响。公式中水位壅高值采用迭代法计算。 公式(2):铁路工程水文勘测设计规范公式 )(2 02V V Z M -=?η 式中: Z ?——桥前最大壅水高度(m ); η——阻水系数; M V ——桥下平均流速(m/s ); 0V ——断面平均流速(m/s )。 公式(3):铁科院曹瑞章公式 ??? ? ?-=?2022.m V m V g K Z 式中: V m ——桥下平均流速,V m =K p Q p /A j ; Q p ——设计流量; A j ——桥下净过水面积;

K p ——考虑冲刷引起的流速折减系数; K p =1/[1+A(p-1)] P ——冲刷系数,取P=1.0; A ——河床粒径系数,A=0.5×d 50-0.25; d 50——桥下河床中值粒径,mm ; V 0m ——天然状态下平均流速,V 0m =Q 0m /A 0m ; Q 0m ——天然状态下通过的设计流量; A 0m ——桥下过水面积; K ——壅水系数,K=2/(V m /V 0m -1)0.5; g ——重力加速度。 其它符号同公式(1),该公式考虑建桥后河道过水面积影响,并考虑了建桥后流速增加对河床冲刷的影响。 公式(4):铁科院李付军公式 ()g V KV R Z OM M 21182 .122 --=? 式中: V m ——桥下平均流速,V m =Q/A J ; Q ——计算流量; A J ——扣除桥墩和桥台阻水面积后的桥下净过水面积; V 0m ——计算流量时建桥前桥孔部分天然状态下平均流速,V 0m =Q 0m /A 0m ; Q 0m ——计算流量时建桥前从桥孔部分通过的流量; A 0m ——计算流量时建桥前桥孔部分天然过水面积; R ——考虑桥墩和桥台影响的反映桥孔压缩程度的系数,R= V m / V 0m ; K ——考虑冲刷影响的流速(动能)折减系数,取K=0.9。

常用桥梁壅水计算经验公式

道不松公式: ?Z=η(V M2?V02) 式中:?Z──最大壅水高度(m); η──与河段特征及河滩路堤阻挡流量和设计流量的比值有关的系数, 根据《公路桥位勘测设计规范》,η取值见表1; V M──桥下断面平均流速(m/s); V0──桥前断面平均流速(m/s)。 实用水力学公式: ?Z=αV2 2g [ B ξb 2 ? ? ?+?Z 2 ] 式中:α──动能校正系数,一般取1.1; ξ──过水面积收缩系数,取0.85~0.95; B──河宽(m); V──建桥前断面平均流速(m/s); h──建桥前断面平均水深(m); ?Z──最大壅水高度(m); b──建桥后过水断面总宽,河宽减去桥墩总宽(m)。Henderson公式: ?Z=1+ηV22 2g ? V12 2g 式中:η──与桥墩形状有关的系数,矩形墩取0.35,圆形墩取0.18; V1、V2──桥位断面和河道断面的平均流速(m/s)。 铁科院陆浩公式: ?Z=K N?K V V q2?V0q2 2g 式中:V q──桥下断面平均流速,V q=K p Q S/ωj(m/s); V0q──桥前断面平均流速,V0q=Q S/ωG(m/s); K N、K V──系数,计算公式为:

K N= V q V0q ?1.0 ,K V=0.5 V q g ?0.1 K N──定床壅水系数,与建桥前后桥下断面流速变化有关; K V──与建桥后桥下水流流态有关的系数; Q S──设计流量(m3/s); ωG──有限过水面积(m2) K p──反映桥下流速随河床冲刷断面增大而减小的系数, K p=1/[1+A(p?1)],对于岩石河床取1.0(A──河床粒径系数,A=0.5×d50?0.25;d50──中值粒径(mm);p──冲刷系数); ωj──冲刷前桥下净过水面积(m2)。 铁科院曹瑞章公式: ?Z=K (V m2?V0m2) 式中:V m──桥下平均流速,V m=K p Q p/A j,( m/s); Q p──设计流量(m3/s); A j──桥下净过水面积(m2); K p──反映桥下流速随河床冲刷断面增大而减小的系数, K p=1/[1+A(p+1)],对于岩石河床取1.0(A──河床粒径系数,A=0.5×d500.25;d50──中值粒径(mm);p──冲刷系数); V0m──天然状态下平均流速(m/s); K──壅水系数,K=2/(V m V0m ?1)0.5; g──重力加速度。

冲刷计算精编版

4.2.1洛河冲刷分析计算 a.冲刷计算 冲刷深度参照《堤防工程设计规范》(GB50286-2013)(以下简称《规范2013》)附录D.2计算。 其冲刷深度按下列公式计算: s 01n cp c U h h U ?? ????=- ??????? (D.2.2-1) 21cp U U η η =+ (D.2.2-2) 公式中: h s ——局部冲刷深度(m ); h 0——冲刷处的水深(m ),取3.85m; U cp ——近岸垂线平均流速,取4.42m/s ; n ——与防护岸坡在平面上的形状有关,取n=1/5; η——水流流速不均匀系数,根据水流流向与岸坡交角α查《规范2013》附录D2表D.2.2,取1.00; U ——行近流速(m/s ),取4.42m/s ; U c ——泥沙起动流速(m/s ),对于卵石的起动流速,可采用长江科学院的起动公式(D.2.1-6)计算; 1 7 050 501.08s c H U gd d γγ γ ??-= ??? (D.2.1-6) g ——重力加速度(m/s 2),9.8m/s 2; d 50——床沙的中值粒径,0.0215m ;

H 0——行近流速水深(m ),取4.09m ; γs 、γ——泥沙与水的容重(kN/m 3),γs 取1.7kN/m 3;γ取1.0kN/m 3。 使用以上公式,经过计算机软件计算,结果列表4.18淄阳河冲刷水深计算成果表。 表4.18 洛河冲刷水深计算成果表 综上所述:该管道穿越河道处冲刷深度为1.5m,根据相关规范要求管道开挖深度应位于河道冲刷深度0.5米以下,即管道开挖深度应大于等于2m 。 河流名称 U (m/s ) η g (m/s 2 ) d 50 (m ) H 0 (m ) r s (kN/m 3 γ (kN/ m 3 h 0 (m ) H s (m ) 洛河 4.42 1.00 9.8 0.0215 4.09 1.7 1.0 3.85 1.50

水利工程设计常用计算公式

水利常用专业计算公式 一、枢纽建筑物计算 1、进水闸进水流量计算:Q=B0δεm(2gH03)1/2 式中:m —堰流流量系数 ε—堰流侧收缩系数 2、明渠恒定均匀流的基本公式如下: 流速公式: u=Ri C 流量公式 Q=Au=A Ri C 流量模数 K=A R C 式中:C—谢才系数,对于平方摩阻区宜按曼宁公式确定,即

C = 6/1n 1R R —水力半径(m ); i —渠道纵坡; A —过水断面面积(m 2); n —曼宁粗糙系数,其值按SL 18确定。 3、水电站引水渠道中的水流为缓流。水面线以a1型壅水曲线和b1型落水曲线最为常见。求解明渠恒定缓变流水面曲线,宜采用逐段试算法,对棱柱体和非棱柱渠道均可应用。逐段试算法的基本公式为 △x=f 21112222i -i 2g v a h 2g v a h ???? ??+-???? ??+ 式中:△x ——流段长度(m );

g ——重力加速度(m/s 2); h 1、h 2——分别为流段上游和下游断面的水深(m ); v 1、v 2——分别为流段上游和下游断面的平均流速(m/s ); a 1、a 2——分别为流段上游和下游断面的动能修正系数; f i ——流段的平均水里坡降,一般可采用 ??? ??+=-2f 1f -f i i 21i 或??? ? ??+=?=3/4222 224/312121f f v n R v n 21x h i R 式中:h f ——△x 段的水头损失(m ) ; n 1、n 2——分别为上、下游断面的曼宁粗糙系数,当壁面条件相同时,则n 1=n 2=n ; R 1、R 2——分别为上、下游断面的水力半径(m ); A 1、A 2——分别为上、下游断面的过水断面面积(㎡); 4、各项水头损失的计算如下: (1)沿程水头损失的计算公式为

涉河桥梁壅水计算经验公式法优缺点分析

涉河桥梁壅水计算经验公式法优缺点分析 发表时间:2018-11-16T11:00:37.840Z 来源:《基层建设》2018年第30期作者:黄科琪薛晓鹏吴丝莹夏珊珊 [导读] 摘要:桥梁建成后,桥孔对水流压缩,桥址上游水流流速变缓、桥下流速增大,上游水位壅高的同时,桥位河段的水沙运动及河床演变变得非常复杂。 宁波市水利水电规划设计研究院浙江宁波 315192 摘要:桥梁建成后,桥孔对水流压缩,桥址上游水流流速变缓、桥下流速增大,上游水位壅高的同时,桥位河段的水沙运动及河床演变变得非常复杂。本文旨对现行主流经验公式法的优缺点进行研究,实现壅水计算的规范、准确。 关键词:桥梁壅水;经验公式 1、研究背景 桥梁构筑物目前是人类克服自然水体阻隔、扩大人类活动范围的最经济、最有效的方法。但桥梁建设后,桥孔对水流压缩,上游水位壅高。同时由于桥孔约束水流,桥下流速增大,使原来水流与河床泥沙相对运动平衡状态遭受破坏,桥位河段的水沙运动及河床演变变得非常复杂,导致桥址断面发生一般冲刷和桥墩桥台附近的局部冲刷,影响两岸防洪安全及桥梁自身的设防安全。因此,需加强涉河桥梁壅水计算方法的理论研究,制定更为规范的计算方法。 2、桥梁壅水经验公式法介绍 现行的经验公式法主要分为能量公式、动量公式和试验公式三类。能量公式是根据能量转化原理或能量守恒定律建立起来的壅水计算公式,是守恒缓变非均匀水流的伯努利方程的应用。最初的壅水公式就是能量公式推导出的,其中最具有代表性的是道不松 (D’Aubuioson)公式。动量公式是依据动量守恒原理建立起来的,其中具有代表性的是拉笛申科夫公式(1959年)。试验公式是建立在物理模型试验的基础上得到的经验公式,其中最著名的是Yarnell公式,该式在美国工程界和HEC-2,HEC-RAS及MIKE11等行业软件中获得广泛应用。 3、经验公式法优缺点对比分析 桥梁的壅水计算按照解决问题的途径和求解方法可分为经验公式法、数值模拟法和物理模型试验法。 国内外,常用的经验公式主要如下: 1、D’Aubuioson公式 ?Z=ηVm2-V2 式中,?Z—桥前最大壅水高度,m;η—与河段特征及河滩路堤阻挡流量和设计流量的比值有关的系数;Vm2—桥下平均流速,m/s,为设计流量被全河过水断面除得之商。 公式形式简单,参数容易选择,考虑因素较多,适用于各类河流,阻力系数的η值的取值标准和桥下平均流速计算方法过于粗略,参数取值的随意性和不确定性大,会造成壅水计算结果的不稳定。 2、实用水力学公式 ?Z=αV22gBξ∑b2-hh+?Z2 式中α—动能校正系数,一般取α=1.1;V—建桥前断面平均流速,m/s;B—无桥墩时水面宽,m;ξ—过水面积收缩系数,取值 0.85~0.95;h—建桥前断面平均水深,m;?Z—最大壅水高度,m;∑b—建桥后过水断面总宽(河宽减去桥墩总宽),m。公式中水位壅高值采用迭代法计算。 适用于平原宽浅河道,但未考虑河床冲刷因素和建桥后天然河道过水断面减小的影响,对于断面平均流速大的峡谷式河槽,存在明显不合理现象。 3、Henderson公式 ?Z=1+ηV222g-V122g 式中,η—与桥墩形状有关的Henderson系数,矩形桥墩取0.35,圆形墩取0.18;V2,V1—分别为桥位断面和桥位上断面的平均流速,m/s。 可用于跨渠道桥梁和跨河流桥梁的壅水计算,尤其对大糙率的天然河流有较好的适应性,但参数选取过于粗略,未考虑桥下冲刷的影响。 4、Yarnell公式 ?Z=2KYKY+10ω-0.6a+15a4V322g 式中:KY为桥墩形状系数;ω=V322gh3为流速水头与收缩断面的下游水深比。V3是桥墩下游断面的流速,a为阻水比。 原则上仅适用于a>0.1的情况,低阻水比情形结果偏大。 5、无坎宽顶堰流公式 水流流经小桥孔,由于受桥台、桥墩的侧向约束,使过水断面减小,形成宽顶堰溢流。一般情况下,桥孔下坎高为零,桥孔的过水可视为无底坎的宽顶堰溢流,因此可利用无坎宽顶堰的原理进行桥梁的泄流能力和壅水高度的计算。 ?Z=Q22gμ2A2-V122g 式中Q2—设计流量,m3/s;μ—流量系数,与桥墩头尾形状有关;A—桥下过水总面积,m2;V1—桥前行进流速,m/s。 应用于大中型跨河桥梁壅水计算往往存在较大误差,不适用于阻水比小于10%的桥梁。 6、陆浩公式 该公式系1998年的铁道部课题成果,为铁道部科学研究院陆浩、曹瑞章、王玉杰,根据我国模型试验和40余座桥梁调查资料,经多年不断完善和检验而指定的,目前已被列入最新《公路工程水文设计指南》推荐试用的公式。 ?Z=KNKVVq2-V0q22g 式中KN—定床壅水系数,与建桥前后桥下断面流速变化有关,KN=2Vq?V0q-1;KV—建桥后桥下水流流态有关的系数,KV=0.5Vqg-0.1;Vq—建桥后设计水位下桥下断面的实际流速,m/s,Vq=KpQs?ωj; V0q—天然状态时设计水位下桥下断面范围内的平均流速,m/s, V0q=Qs/ωG。其中Qs—设计流量,m3/s;ωG—有限过水面积,m2;Kp反映桥下流速随河床冲刷断面增大减小的系数,Kp=1/1+A(p-1),

水利计算公式知识讲解

1.河床稳定计算及河相分析 1.1.河床稳定计算 河床稳定指标可采用横向稳定指标、纵向稳定指标及综合稳定指标3种形式分析,以确定河道特性。 1.1.1.河道横向稳定分析 河道横向稳定系数按下式计算: 式中: 横向稳定系数; Q造床流量,m3/s; J河床比降; B相当于造床流量的平摊河宽,m。 1.1. 2.河道纵向稳定分析 水流对河床泥沙的拖曳力与床面泥沙抵抗运动的摩阻力之间的相互作用,决定河床的纵向稳定性。根据黄河水利出版社出版《治河及泥沙工程》中河道纵向稳定系数采用爱因斯坦水流强度函数按下式计算: 式中: 纵向稳定系数; D床沙平均粒径,mm; J河床纵比降; H河流平摊水深,m。

1.1.3. 综合稳定指标 综合稳定指标是综合考虑河床的纵、横向稳定性。建议采用的公式为 h 2 b *)(φφφ= 1.2. 河床演变分析与河相关系 调查工程区河道历史主流及河道变迁,分析工程区河道形态。共分为蜿蜒型河道、游荡型河道两种形式。 蜿蜒型河段一般凹岸崩退,凸岸淤长,凹岸深槽和过渡段浅滩在年内发生互相交替的冲淤变化。 游荡型河道的河岸及河床抗冲性较差,从长距离来看河道往往呈藕节状,其中窄段水流归顺,有控制河势的作用,宽段则河床宽浅,洲滩密布,汊道交织,水流散乱,主流迁徙不定。河道的平面状态可用“宽、浅、散、乱”四个字概括。 在水流长期作用下形成的河床,其形态有一定的规律,大量资料表明,表征河床形态的水深、河宽、比降等,与来水来沙条件及河床地质条件之间,有一定函数关系,这种关系便称为河相关系。 根据俄罗斯国立水文所提出公式,河道横断面河相关系公式为: H B = ξ 式中: ξ河相相关系数; B 造床流量下的水面宽(m ); H 造床流量下的平均水深(m ); (蜿蜒型河道ζ约为2~4,较为顺直的过渡性河段约为8~12,游荡型河道ζ约为20~30) 2. 护岸结构设计 2.1. 护岸顶高程确定 根据《堤防工程设计规范》(GB50286-2013)(以下简称《堤防规范》)要求,堤顶高程为设计洪水位加超高值确定。堤顶超高按下式计算:

桥梁防洪评价报告(通过省厅评审)

XXX桥跨XX河 防洪评价报告(报批稿) XXXX 二0一七年七月

XXX 防洪评价报告 (报批稿) 批准:XXX 审定:XXX 审查:XXX 校核:XXX 报告编写:XXX

目录 1 概述 (1) 1.1 项目背景 (1) 1.2 评价依据 (3) 1.3 技术路线及工作内容 (5) 1.4 其它 (6) 1.5 评价范围 (6) 1.6 评价洪水标准的确定 (7) 2 基本情况 (8) 2.1 建设项目概况 (8) 2.2 河道基本情况 (10) 2.3 现有水利工程及其它设施情况 (15) 2.4 水利规划及实施安排 (15) 3 河道演变 (18) 3.1 河道历史演变概况 (18) 3.2 河道近期演变分析 (20) 3.3 河道演变趋势分析 (25) 4 防洪评价计算 (27) 4.1 水文分析计算 (27) 4.2 壅水高度及壅水范围 (36) 4.3 桥梁下弦高程的复核 (39) 4.4 冲刷计算 (39) 5 防洪综合评价 (44)

5.1 建设项目与有关水利规划的关系及影响分析 (44) 5.2 项目建设是否符合防洪防凌标准、有关技术和管理要求 (44) 5.3 项目建设对河道行洪安全的影响分析 (44) 5.4 项目建设对河势稳定的影响分析 (46) 5.5 项目建设对护岸及其它水利工程与设施的影响分析 . 46 5.6 建设项目对防汛抢险的影响分析 (46) 5.7 建设项目防御洪涝的设防标准与措施是否适当 (46) 5.8 项目建设对周边环境及水质的影响 (47) 5.9 项目建设对第三人合法水事权益的影响分析 (47) 6 影响的防治与补救措施 (48) 6.1 降低对河道岸坡影响的措施 (48) 6.2 降低对环境、水质影响的措施 (48) 6.3 桥梁汛期施工应采取的措施 (49) 7 结论与建议 (50) 7.1 结论 (50) 7.2 建议 (50) 附图:

溢流坝水力计算实例

溢流坝水力计算实例

溢流坝水力计算 一、基本资料: 为了解决某区农田灌溉问题。于某河建造拦河溢流坝一座,用以抬高河中水位,引水灌溉。进行水力计算的有关资料有:设计洪水流量为550m 3/s ;坝址处河底高程为43.50m ;由灌区 高程及灌溉要求确定坝顶高程为48.00m ;为减小建坝后的壅水对上游的影响,根据坝址处河面宽度采用坝的溢流宽度B =60m ;溢流坝为无闸墩及闸门的单孔堰,采用上游面铅直的三弧段WES 型实用堰剖面,并设有圆弧形翼墙; 坝前水位与河道过水断面面积关系曲线,见图15.2;坝下水位与河道流量关系曲线,见图15.3;坝基土壤为中砾石;河道平均底坡;00127.0=i 河道实测平均糙率04.0=n 。

二、水力计算任务: 1.确定坝前设计洪水位; 2.确定坝身剖面尺寸; 3.绘制坝前水位与流量关系曲线; 4.坝下消能计算; 5.坝基渗流计算; 6.坝上游壅水曲线计算。 三、水力计算 1、确定坝前设计洪水位 坝前设计洪水位决定于坝顶高程及设计水头d H ,已知坝顶高程为4800m ,求出d H 后,即可 确定坝前设计洪水位。 溢流坝设计水头d H 可用堰流基本方程 (10.4)3 2 02H g mB Q ? =σε计算.因式中σε及、0 H 均与d H 有关,不能直接解出d H ,故用试算法求解。 设d H =2.53m ,则坝前水位=48.00+2.53= 50.53m . 按坝前水位由图15.2查得河道过水断面面积A 0=535m 2 ,又知设计洪水流量,则 s m Q /5503 =

m g av H H m g av s m A Q v d 586.2056.053.22056.08 .9203.10.12/03.1525 5502 02 000=+=+==??==== 按设计洪水流量Q ,由图15.3查得相应坝下水位为48.17m .下游水面超过坝顶的高度 15.0066.0586 .217 .017.000.4817.480 <== =-=H h m h s t 下游坝高 0.274.1586 .250 .450.400.4300.480 1 <== =-=H a m a 因不能完全满足实用堰自由出流条 件:故及 ,0.215.001 ≥≤H a H h s 为实用堰淹没出流。 根据0 10 H a H h t 及值由图10.17查得实用堰淹没系 数999.0=σ。因溢流坝为单孔堰,溢流孔数n =1;溢流宽度60==b B m 。按圆弧形翼墙由表10.4查得边墩系数7 .0=k ζ .则侧收缩系数 nb H n k 00] )1[(2.01??ε+--= 994.060 1586 .27.02.01=???-= 对于WES 型实用堰,当水头为设计水头时,流量系数502 .0==d m m 。于是可得溢流坝流量

桥梁壅水分析计算

公式(1):能量型公式 式中: α——动能校正系数,一般取α=1.1; ξ——过水面积收缩系数,取ξ=0.85-0.95,本次取0.85; B——无桥墩时水面宽; V——建桥前断面平均流速; h——建桥前断面平均水深; △Z——最大壅水高度; ∑b——建桥后过水断面总宽(河宽减去桥墩总宽)。 该公式主要考虑了建桥前后过水断面宽度变化,而未考虑建桥后对天然河道过水断面减小的影响。公式中水位壅高值采用迭代法计算。 公式(2):铁路工程水文勘测设计规范公式 式中: ?——桥前最大壅水高度(m); Z η——阻水系数; V——桥下平均流速(m/s); M V——断面平均流速(m/s)。 公式(3):铁科院曹瑞章公式 式中: V m——桥下平均流速,V m =K p Q p/A j; Q p——设计流量; A j——桥下净过水面积; K p——考虑冲刷引起的流速折减系数; K p=1/[1+A(p-1)]

P——冲刷系数,取P=1.0; A——河床粒径系数,A=0.5×d50-0.25; d50——桥下河床中值粒径,mm; V0m——天然状态下平均流速,V0m =Q0m/A0m; Q0m——天然状态下通过的设计流量; A0m——桥下过水面积; K——壅水系数,K=2/(V m/V0m-1)0.5; g——重力加速度。 其它符号同公式(1),该公式考虑建桥后河道过水面积影响,并考虑了建桥后流速增加对河床冲刷的影响。 公式(4):铁科院李付军公式 式中: V m——桥下平均流速,V m =Q/A J; Q——计算流量; A J——扣除桥墩和桥台阻水面积后的桥下净过水面积; V0m——计算流量时建桥前桥孔部分天然状态下平均流速,V0m =Q0m/A0m; Q0m——计算流量时建桥前从桥孔部分通过的流量; A0m——计算流量时建桥前桥孔部分天然过水面积; R——考虑桥墩和桥台影响的反映桥孔压缩程度的系数,R= V m/ V0m; K——考虑冲刷影响的流速(动能)折减系数,取K=0.9。

溢流坝水力计算实例

溢流坝水力计算 一、基本资料: 为了解决某区农田灌溉问题。于某河建造拦河溢流坝一座,用以抬高河中水位,引水灌 溉。进行水力计算的有关资料有:设计洪水流量为550m 3 /s ;坝址处河底高程为43.50m ;由灌区高程及灌溉要求确定坝顶高程为48.00m ;为减小建坝后的壅水对上游的影响,根据坝址处河面宽度采用坝的溢流宽度B =60m ;溢流坝为无闸墩及闸门的单孔堰,采用上游面铅直的三弧段WES 型实用堰剖面,并设有圆弧形翼墙; 坝前水位与河道过水断面面积关系曲线,见图15.2;坝下水位与河道流量关系曲线,见图15.3;坝基土壤为中砾石;河道平均底坡;00127.0=i 河道实测平均糙率04.0=n 。 二、水力计算任务: 1.确定坝前设计洪水位; 2.确定坝身剖面尺寸; 3.绘制坝前水位与流量关系曲线; 4.坝下消能计算; 5.坝基渗流计算; 6.坝上游壅水曲线计算。 三、水力计算 1、确定坝前设计洪水位 坝前设计洪水位决定于坝顶高程及设计水头d H ,已知坝顶高程为4800m ,求出d H 后,即可确定坝前设计洪水位。 溢流坝设计水头d H 可用堰流基本方程(10.4)32 02H g mB Q ? =σε 计算.因式中 图15.2 图 15.3

σε及、0H 均与d H 有关,不能直接解出d H ,故用试算法求解。 设d H =2.53m ,则坝前水位=48.00+2.53=50.53m . 按坝前水位由图15.2查得河道过水断面面积A 0=535m 2 ,又知设计洪水流量 ,则s m Q /5503= m g av H H m g av s m A Q v d 586.2056.053.22056.08 .9203.10.12/03.1525 5502 02 000=+=+==??==== 按设计洪水流量Q ,由图15.3查得相应坝下水位为48.17m .下游水面超过坝顶的高度 15.0066.0586 .217 .017.000.4817.480 <== =-=H h m h s t 下游坝高 0.274.1586 .250 .450.400.4300.480 1 <== =-=H a m a 因不能完全满足实用堰自由出流条件: 故及,0.215.00 10≥≤H a H h s 为实用堰淹没出流。 根据 10H a H h t 及值由图10.17查得实用堰淹没系数999.0=σ。因溢流坝为单孔堰,溢流孔数n =1;溢流宽度60==b B m 。按圆弧形翼墙由表10.4查得边墩系数7.0=k ζ.则侧收缩系数 nb H n k 0 0] )1[(2.01??ε+--= 994.060 1586 .27.02.01=?? ?-= 对于WES 型实用堰,当水头为设计水头时,流量系数502.0==d m m 。于是可得溢流坝流量

冲刷计算

4.3 冲刷与淤积分析计算 建桥后,由于桥墩的束水作用,桥位处河床底部将发生下切冲刷。根据工程地质勘探报告,该桥桥址处,河床冲刷层为亚粘土。河床的冲刷计算按粘性土河床处理。 4.3.1一般冲刷计算 采用《公路桥位勘测设计规范》中8.5.4-1式 8 5 1 3 5'233.0?????? ? ? ????? ????? ??=L c mc c p I h h B Q A h μ (4-3式) 式中, h p --桥下一般冲刷后的最大水深(m); Q 2 --河槽部分通过的设计流量(m 3 /s ) ; μ—桥墩水流侧向压缩系数,查《公路桥位勘测设计规范》中 表8.5.3-1; h mc --桥下河槽最大水深(m ) ; c h --桥下河槽平均水深(m ); A —单宽流量集中系数,5 .0??? ? ??=H B A ,B 、H 为平滩水位时河槽宽 度和河槽平均水深。A=1.0~1.2 'c B --桥下河槽部分桥孔过水净宽(m ) ,当桥下河槽扩宽至 全桥时'c B 即为全桥桥下过水净宽;

I L --冲刷坑范围内粘性土液性指数,在本公式中I L 的范围为0.16~1.19。根据工程地质勘探报告,牧野桥I L =0.67。 经计算得: 现状河道条件下,该桥100年一遇设计洪水位为72.73m 时,一般冲刷完成后,主槽最大水深h p 为9.19m ,最大冲坑深3.58m 。 按规划整治后的河道条件下,该桥100年一遇设计洪水位为71.30m 时,一般冲刷完成后,主槽最大水深h p 为6.42m ,最大冲坑深1.26m 。 4.3.2 局部冲刷计算 牧野路卫河桥设计墩宽b=2.40m ,桥墩的走向与水流方向一致,墩形计算宽度B 1=2.40m ,查《公路桥位勘测设计规范》附录16,K ξ =0.98。 一、现状河道条件下,该桥100年一遇设计洪水位为72.73m 时,一般冲刷完成后,主槽最大水深h p 为9.19m ,H p /B 1=3.83>2.5,根据《公路桥位勘测设计规范》采用该规范中的8.5.4-3式 V I B K h L b 25 .16.0183.0ξ= (4-4式) 式中,h b --桥墩局部冲刷深度(m); K ξ --墩形系数; B 1 --桥墩计算宽度(m ) ; h p --一般冲刷后最大水深 (m); d -- 河床泥沙平均粒径, d =0.0145(mm );

桥梁壅水计算

桥梁壅水计算 我多次参加桥梁防洪评价评审工作,对桥梁壅水计算使用的经验公式多种多样,究竟哪个合适,评审无所是从。水利部发布的《洪水影响评价报告编制导则》LS520-2014附录A给出了答案,A.2.2.3 “桥梁等阻水建筑物壅水高度及壅水曲线长度的计算,应参照TB10017和JTG C30进行。”其中TB10017即《铁路工程水文勘测设计规范》TB10017-99,现将规范的计算公式介绍如下: 3.5.1桥前壅水可按下式计算: △Z M =η(2 2 v v M )(3.5.1) 式中:△Z M —桥前最大壅水高度(m); η—系数,应按表3.5.1的规定取值; v—断面平均流速,为设计流量被全河过水断面(包括边滩和河滩)除得之商(m/s); M v—桥下平均流速,应按表3.5.1-2规定计算求得(m/s)。 3.5.2桥下壅水高度可采用桥前最大壅水高度的一半。对于山区和山前河流,洪水涨落急骤,历时短促,且河床质坚实不易冲刷时,桥下壅水高度可采用桥前最大壅水值。对于平原洪水涨落很缓慢的河流,且河床质松软,易于造成冲刷时,桥下壅水可不计。 (见下页)

表3.5.1-2 桥下平均流速 表3.5.1-2中: P —冲刷系数; g x P ωω= g ω—桥下供给过水断面积(m 2),当桥址上、下游有阻水山包 或其他挡水 建筑物时,桥下供给过水断面积应扣除其影响部分; x ω—桥下需要过水断面积(m 2); x ω= α cos p P v Q p v —设计流速(m/s ),对河滩较小、压缩不多的河段,可采 用通过设计流量时河槽(包括边滩)的天然平均流速;当河滩很大时,可按经验确定;渠道或运河上的桥,可采用设计渠道或运河的设计流速; p Q —设计流量(m 3/s ); α—水流方向与桥梁轴线之法线间的夹角(o)。 3.5.3 壅水曲线全长可按下列公式估算: 0 2I Z L M y ?= 式中: y L —壅水曲线全长(m );

桥梁计算书(含水文、荷载、桩长、挡墙的计算)

年河桥梁计算书(含水文、荷载、桩长、挡墙的计算)** 本计算书中包括桥涵水文的计算、恒荷载计算、活荷载计算桩长、以及挡墙的计算。 荷载标准:公路Ⅱ级乘0.8的系数 桥面宽度:净4.5+2×0.5m 跨度:13孔×13m 1、工程存在问题 年河桥位于长江下游1000m处,建于1982年,为钢筋砼双排架式桥墩,预制拼装型板梁桥面,17孔,每跨8.85m。总长150.45m,宽5.3m。该桥运行20多年,根据***省水利建设工程质量监测站检验测试报告检测结果如下: (1)桥墩 A.桥墩基础 桥墩基础为抛石砼,设计强度等级为150#,钻芯法检测砼现有强度代表值为16.4MPa。 B.排架立柱及联系梁 立柱设计强度等级为200#,超声回弹综合法检测砼现有强度代表值为14.0~18.3MPa。联系梁设计强度等级为200#,超声回弹综合法检测砼现有强度代表值为14.7MPa。 立柱外观质量总体较差,局部区域麻面较重。立柱砼碳化深度最大值为31mm,最小值为5mm,平均值为14mm。立柱钢筋保护层实测厚度为20mm,钢筋目前未锈,但碳化深度平均值已接近钢筋保护层厚度。通过普查,全桥64根立柱中有12根35处箍筋锈胀外露,有6处联系梁主筋外露。 C.盖梁 盖梁设计强度等级为200#,超声回弹综合法检测砼现有强度代表值为17.4~21.5MPa。 盖梁外观质量一般,梁体砼总体感觉较疏松。盖梁砼碳化深度最大值为24mm,最小值为9mm,平均值为18mm。,盖梁主筋侧保护层实测厚度为9~13mm,底保护

层实测厚度29~42mm,砼碳化深度已超过钢筋侧保护层厚度,盖梁主筋已开始锈蚀。通过普查,全桥32根盖梁中共有14根15处主筋锈蚀膨胀,表层砼脱落,主筋外露,长度15~70cm;有28处箍筋锈胀外露。 (2)T型梁 T型梁设计强度等级为200#,每跨中间两根T型外观较好,两边T型梁外观较差。T型梁砼碳化深度最大值为20mm,最小值为7mm,平均值为14mm。T型梁主筋保护层设计厚度为20mm,砼碳化深度已经接近钢筋保护层设计厚度,实际保护层相对较薄的主筋已经开始锈蚀。通过普查,全桥34根边梁中共有9根10处肋梁主筋锈蚀膨胀,砼开裂或脱落,长度15~160cm;全桥34根边梁中共有15根工52处肋梁箍筋锈胀外露,有13块三角形隔板钢筋锈胀,表层脱落。 (3)桥台 两侧浆砌石桥台总体没有大的变形,左岸桥台浆砌石有纵向和斜向裂缝,右岸桥台浆砌石发现斜向裂缝,裂缝较长较宽。 (4)桥面及栏杆 桥面铺装层破损露石,栏杆老化损坏,钢筋外露,且多处被撞。 (5)桥墩基础防护工程 该桥的底部和侧向的防护工程水毁现象非常严重。左岸浆砌石护坡全部损毁、坍塌,7#桥墩基础裸露,基础下土壤已经开始流失,出现空洞。浆砌石护底下游的土壤(砂质)已全部被水流带走,经常受水流冲刷的护底局部已被淘空,护底已出现不同程度的损坏,危及桥墩基础乃至整座桥梁的安全。 (6)结论 由于该桥原设计标准较低,长期超负荷运行,工程老化失修,水毁严重,且为中和岛内防洪抢险撤离的主要通道,选取方案时优先考虑拆除重建方案。 2、设计标准 荷载标准:公路Ⅱ级乘0.8的系数; 桥面宽度:净4.5+2×0.5m; 跨度:13孔×13m; 结构形式:桥面结构采用13m跨钢筋砼预制空心板,下部为Ф80砼桥墩柱,基础为Ф100灌注桩。

桥梁壅水分析计算

公式(1):能量型公式 ???? ??????? ???+-???? ??=?∑222 2Z h h b B g V Z ξα 式中: α——动能校正系数,一般取α=1.1; ξ——过水面积收缩系数,取ξ=0.85-0.95,本次取0.85; B——无桥墩时水面宽; V ——建桥前断面平均流速; h ——建桥前断面平均水深; △Z ——最大壅水高度; ∑b ——建桥后过水断面总宽(河宽减去桥墩总宽)。 该公式主要考虑了建桥前后过水断面宽度变化,而未考虑建桥后对天然河道过水断面减小的影响。公式中水位壅高值采用迭代法计算。 公式(2):铁路工程水文勘测设计规范公式 )(2 02V V Z M -=?η 式中: Z ?——桥前最大壅水高度(m); η——阻水系数; M V ——桥下平均流速(m /s ); 0V ——断面平均流速(m/s )。 公式(3):铁科院曹瑞章公式 ??? ? ?-=?2022.m V m V g K Z 式中: V m ——桥下平均流速,Vm =K p Q p /A j ; Q p——设计流量; Aj ——桥下净过水面积;

K p ——考虑冲刷引起的流速折减系数; K p =1/[1+A(p-1)] P ——冲刷系数,取P=1.0; A ——河床粒径系数,A=0.5×d 50-0.25; d50——桥下河床中值粒径,mm ; V 0m ——天然状态下平均流速,V 0m =Q0m /A 0m ; Q 0m ——天然状态下通过的设计流量; A 0m——桥下过水面积; K ——壅水系数,K =2/(Vm /V 0m -1)0.5; g ——重力加速度。 其它符号同公式(1),该公式考虑建桥后河道过水面积影响,并考虑了建桥后流速增加对河床冲刷的影响。 公式(4):铁科院李付军公式 ()g V KV R Z OM M 21182 .122 --=? 式中: V m——桥下平均流速,V m =Q/A J ; Q ——计算流量; A J ——扣除桥墩和桥台阻水面积后的桥下净过水面积; V0m——计算流量时建桥前桥孔部分天然状态下平均流速,V 0m =Q 0m/A 0m; Q 0m ——计算流量时建桥前从桥孔部分通过的流量; A 0m ——计算流量时建桥前桥孔部分天然过水面积; R ——考虑桥墩和桥台影响的反映桥孔压缩程度的系数,R= Vm / V 0m; K ——考虑冲刷影响的流速(动能)折减系数,取K=0.9。

桥梁与河流的相互影响

桥梁与河流的相互影响 学号:2010301550078 姓名:张海洋学院:土木建筑工程学院专业:土木工程 关键词:桥梁、桥墩破坏、河道、泥沙、影响 随着经济的不断发展,在人类的社会生活中,交通运输愈发的显得重要,桥梁与河道作为交通运输必不可少的两大重要通道。桥梁作为连接河流两岸陆域,占据着跨河流交通不可替代的地位,在对人员、车辆、物资流动方面起着积极的交通功能;河道则起着对大规模物流的水上运输,然而人为的在河道上建起桥梁建筑也对运输和防洪产生许多负面影响,另一方面河水及其所携带的泥沙又有反馈作用,对桥梁建筑产生了或多或少的不利影响。 1.洪水及其泥沙对桥梁建筑的影响 1.1洪水对桥墩的冲刷作用 由于桥梁及其附属建筑的改变原有河道的局部形态,使桥梁所在河道局部变窄,河床由于桥梁建筑的修建开挖有所扰动。当遭遇洪水季节,大量的洪水携带相当量的泥沙以较快的速度自上而下,在桥梁所在处由于河道的突然变窄,过水断面的面积减小,一方面会在距桥址上游一定距离内发生整体横段面的壅水,桥前壅水随来流量的增大而增加,且流量越大,比降越陡,壅水的影响范围就越小;不同的桥型在相同流量下,桥墩阻水面积比越大,水位变化就越大;在壅水的始发部位即临界过渡区,由于水流速的减小一部分泥沙会在重力作用下沉降,而在桥墩部位水流速增大为对桥墩有很大的冲刷作用 ,同时会在桥墩处形成漩涡对桥墩基础造成很大的冲刷,带走基石,久而久之会使桥墩基础不稳固,有可能使桥墩受力不均或者下沉从而使桥梁桥面板受拉,由于钢筋混凝土抗拉能力小,造成桥面有裂隙甚至开裂断开造成严重危害。因此对于桥梁的维护就显得至关重要,如武汉长江大桥,建成至今有五十多年,每年都需对桥墩的加固,向桥墩周围抛填几百吨的岩石。 与此同时,冲刷所进一步带来的暗流与漩涡所造成会对来往船只造成很大影响,当两船在相距不太大的桥洞相向航行时,两船间的漩涡所产生真空水压小于船两侧的水压,在水压的作用下会使两船相撞,发生巨大灾难。 除此之外,洪水还会对钢筋混凝土的产生气蚀,其原因是当很大的水流流速通过桥墩时,在桥墩表面处会产生真空压使水体有一部分汽化产生气泡与桥墩粗糙面接触时破裂巨大瞬间气压使表面水泥剥落,减弱了桥墩的抗渗性与抗侵蚀性,还会有一部分水体中有害物质进入桥墩与其内部的钢筋反应,从而破坏桥墩。 1.2洪水对过水断面底部河床的冲刷所带来的桥梁整体下沉 由于过水断面处的水流速较大,会对河床进行冲刷,使各个桥墩间出现凹槽,桥墩处沙石向凹槽内下滑及桥墩基础下沙石向两边挤压使桥基整体下沉,一般情况下下沉量很小甚至不易测出,但也可能带来巨大的灾害。

相关文档
最新文档