人工智能原理教案03章不确定性推理方法33主观Bayes方法

人工智能原理教案03章不确定性推理方法33主观Bayes方法
人工智能原理教案03章不确定性推理方法33主观Bayes方法

3.3 主观Bayes方法

R.O.Duda等人于1976年提出了一种不确定性推理模型。在这个模型中,他们称推理方法为主观Bayes方法,并成功的将这种方法应用于地矿勘探系统PROSPECTOR中。在这种方法中,引入了两个数值(LS,LN),前者体现规则成立的充分性,后者则表现了规则成立的必要性,这种表示既考虑了事件A的出现对其结果B的支持,又考虑了A的不出现对B的影响。

在上一节的CF方法中,CF(A)<0.2就认为规则不可使用,实际上是忽视了A不出现的影响,而主观Bayes方法则考虑了A 不出现的影响。

t3-B方法_swf.htm

Bayes定理:

设事件A1,A2 ,A3 ,…,An中任意两个事件都不相容,则对任何事件B有下式成立:

该定理就叫Bayes定理,上式称为Bayes公式。

全概率公式:

可写成:

这是Bayes定理的另一种形式。

Bayes定理给出了一种用先验概率P(B|A),求后验概率P (A|B)的方法。例如用B代表发烧,A代表感冒,显然,求发烧的人中有多少人是感冒了的概率P(A|B)要比求因感冒而发烧的概率P(B|A)困难得多。

3.3.1 规则的不确定性

为了描述规则的不确定性,引入不确定性描述因子LS, LN:对规则A→B的不确定性度量f(B,A)以因子(LS,LN)来描述:

表示A真时对B的影响,即规则成立的充分性

表示A假时对B的影响,即规则成立的必要性

实际应用中概率值不可能求出,所以采用的都是专家给定的LS, LN值。从LS,LN的数学公式不难看出,LS表征的是A的发生对B发生的影响程度,而LN表征的是A的不发生对B发生的影响程度。

几率函数O(X):

即,表示证据X的出现概率和不出现的概率之比,显然O(X)是P(X)的增函数,且有:

P(X)=0,O(X)=0

P(X)=0.5,O(X)=1

P(X)=1,O(X)=∞,几率函数实际上表示了证据X的不确定性。

几率函数与LS,LN的关系:

O(B|A) = LS·O(B)

O(B|~A) = LN·O(B)

几个特殊值:

LS、LN≥0,不独立。

LS, LN不能同时>1或<1

LS, LN可同时=1

3.3.2 证据的不确定性

证据的不确定性度量用几率函数来描述:

虽然几率函数与概率函数有着不同的形式,但是变化趋势是相同的:当A为真的程度越大(P(A)越大)时,几率函数的值也越大。

由于几率函数是用概率函数定义的,所以,在推理过程中经常需要通过几率函数值计算概率函数值时,此时可用如下等式:

3.3.3 推理计算

由于是不确定性推理,所以必须讨论证据发生的各种可能性。

①A必出现时(即P(A)=1):

O(B|A) = LS·O(B)

O(B|~A) = LN·O(B)

②当A不确定时即P(A)≠1时

设A'代表与A有关的所有观察,

P(B|A') = P(B|A)P(A| A')+P(B|~A)P(~A| A') 当P(A| A') = 1时,证据A必然出现

当P(A| A') = 0时,证据A必然不出现

当P(A| A') = P(A)时,观察A'对A没有影响:

P(B|A') = P(B)

这样可得P(A| A')为0,P(A),1时相应的P(B|A')的值,根据这三点可以得到线性插值图,见图3-2。P(A| A')的其它取值下的P(B|A')可根据此图通过线性插值法得到。

更简单的还有用两点直线插值的,当然也可以用更复杂的插值方法,只要你有足够的数据。

图3-2 线性插值图

t3-2插值_swf.htm

当证据不确定时,证据理论推理的基本原理是,从该证据A 往前看,即寻找A的出处。如果A是由A'导出的,即A' → A → B, 则当A不清楚的时候,采用A'的相关信息进行计算。如果还不行,就再往前推。是一个递归推导的过程。

注意:A'是指从A向前看的各个相关证据,所以有时可能存在多个相关证据。

③当存在两个证据时

P(A1∧A2|A')=min{P(A1|A'),P(A2|A')}

P(A1∨A2|A')=max{P(A1|A'),P(A2|A')}

④多个观察时

若A1→B,A2→B而A1,A2相互独立,对A1,A2的观察分别为A1',A2'

例题1

已知:P(A)=1,P(B1)=0.04, P(B2)=0.02

R1:A→B1 LS=20 LN=1

R2:B1→B2 LS=300 LN=0.001

计算:P(B2|A)

分析:当使用规则R2时,证据B1并不是确定的发生了,即P(B1)≠1,因此要采用插值方法。

解:

先依照A必然发生,由定义和R1得:

O(B1)=0.04/(1-0.04)=0.0417

O(B1|A)=LS*O(B1)=0.83

P(B1|A)=0.83/(1+0.83)=0.454

然后假设P(B1|A)=1,计算:

P(B2|B1)=300*0.02/(300*0.02+1)=0.857

最后进行插值:

P(B2|A)=0.02+(0.857-0.02) *(0.454-0.04)/(1-0.04)

=0.410

例题2

已知:证据A1,A2必然发生,且P(B1)=0.03,P(B2)=0.01,规则如下:

R1:A1→B1 LS=20 LN=1

R2:A2→B1 LS=300 LN=1

R3:B1→B2 LS=300 LN=0.0001

求B1,B2的更新值。

解:

先求B1的更新值:

依R1,P1(B)=0.03

O(B1)=0.03/(1-0.03)=0.030927

O(B1|A1)=LS×O(B1)=20×0.030927=0.61855

P(B1|A1)= 0.61855/(1+0.61855)=0.382

使用规则R1后,B1的概率从0.03上升到0.382

依R2:

O(B1|A1A2)=300×O(B1|A1)=185.565

P(B1|A1A2)= 185.565/(1+185.565)=0.99464

使用规则R2后,B1的概率从0.382上升到0.99464

再求B2的更新值:

由于B1不确定所以讨论其前项证据A,

证据A必然发生时,由以上计算可知P(B1)=0.03,规则

R1:A1→B1 LS=20 LN=1

对于规则R1,证据A必然发生,可得

P(B1|A)=0.382;

但是使用规则R3时,B1并非确定地发生,因此要用插值法。

先假设P(B1|A)=1,此时

P(B2|B1)=300*0.01/((300-1)*0.01+1)(公式(1))

=0.75188

再假设P(B1|A)=P(B1)=0.03时,即A对B1无影响

P(B2)=0.01

根据这两个值可进行插值计算:

P(B2|A)=0.01+(0.75188-0.01)*(0.382-0.03)/(1-0.03)

=0.305105

总结

主观Bayes方法优点:直观,明了。

问题:要求B j个事件相互独立(无关),实际上是不可能的。

P(A/B i)和P(B i)难以计算。实际应用中,为了避开这一点采用LS, LN的专家给定值。

小学数学四年级上册《不确定性》资料不确定性原理

小学数学四年级上册 《不确定性》资料 不确定性原理: 不确定性原理(Uncertainty principle),是量子力学的一个基本原理,由德国物理学家海森堡(Werner Heisenberg)于1927年提出。本身为傅立叶变换导出的基本关系:若复函数f(x)与F(k)构成傅立叶变换对,且已由其幅度的平方归一化(即f*(x)f(x)相当于x 的概率密度;F*(k)F(k)/2π相当于k的概率密度,*表示复共轭),则无论f(x)的形式如何,x与k标准差的乘积ΔxΔk不会小于某个常数(该常数的具体形式与f(x)的形式有关)。 德国物理学家海森堡1927年提出的不确定性原理是量子力学的产物。这项原则陈述了精确确定一个粒子,例如原子周围的电子的位置和动量是有限制。这个不确定性来自两个因素,首先测量某东西的行为将会不可避免地扰乱那个事物,从而改变它的状态;其次,因为量子世界不是具体的,但基于概率,精确确定一个粒子状态存在更深刻更根本的限制。 海森伯测不准原理是通过一些实验来论证的。设想用一个γ射线显微镜来观察一个电子的坐标,因为γ射线显微镜的分辨本领受到波长λ的限制,所用光的波长λ越短,显微镜的分辨率越高,从而测定电子坐标不确定的程度△q就越小,所以△q∝λ。但另一方面,光照射到电子,可以看成是光量子和电子的碰撞,波长λ越短,光量子的动量就越大,所以有△q∝1/λ。再比如,用将光照到一个粒子上的方式来测量一个粒子的位置和速度,一部分光波被此粒子散射开来,由此指明其位置。但人们不可能将粒子的位置确定到比光的两个波峰之间的距离更小的程度,所以为了精确测定粒子的位置,必须用短波长的光。但普朗克的量子假设,人们不能用任意小量的光:人们至少要用一个光量子。这量子会扰动粒子,并以一种不能预见的方式改变粒子的速度。所以,位置要测得越准确,所需波长就要越短,单个量子的能量就越大,这样粒子的速度就被扰动得更厉害。简单来说,就是如果要想测定一个量子的精确位置的话,那么就需要用波长尽量短的波,这样的话,对这个量子的扰动也会越大,对它的速度测量也会越不精确。如果想要精确测量一个量子的速度,那就要用波长较长的波,那就不能精确测定它的位置[3] 。换而言之,对粒子的位置测得越准确,对粒子的速度的测量就越不准确,反之亦然。[3] 经过一番推理计算,海森伯得出:△q△p≥?/2。海森伯写道:“在位置被测定的一瞬,即当光子正被电子偏转时,电子的动量发生一个不连续的变化,因此,在确知电子位置的瞬间,关于它的动量我们就只能知道相应于其不连续变化的大小的程度。于是,位置测定得越准确,动量的测定就越不准确,反之亦然。”

透过不确定性原理看物理世界

文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持. 题目:透过不确定性原理看物理世界 姓名:任丽行 学号:0103 专业:物理学 年级: 2008级 指导老师:宗福建 山东大学物理学院 二零一零年十二月 1

透过不确定性原理看物理世界 物理学院 2008级任丽行学号:0103 【摘要】不确定性原理由海森堡提出,表述了一个粒子的位置和动量不能被同时确定的最小程度。当粒子的位置非常确定时,其动量将会非常不确定。由此可以推广到许多对共轭物理量之间。不确定性原理是量子力学几率解释和波粒二象性的必然结果。在量子力学的发展史上,不确定性原理起到了极为重要的推动作用,尤其是玻尔与爱因斯坦两位物理学大师关于海森堡关系的争论,更是为相对论量子力学的发展奠定了基础。 【关键词】不确定性;海森堡;波粒二象性;理想实验 1.引言 本文主要研究了海森堡不确定性原理提出的背景、推理过程、后续的讨论与发展,以及它对量子力学与整个物理学的发展所起的推动作用。文中主要涉及三位物理学大师:海森堡、玻尔和爱因斯坦。由海森堡提出并论证的不确定性关系是玻尔互补原理的最好证明。爱因斯坦通过设计一系列的理想实验企图反驳不确定性原理,没想到反过来证明了不确定性原理的正确性。本文就是以不确定性原理为主线,把它与互补原理及波粒二象性联系在一起,简单地讨论了它的涵义以及量子力学的一些基本问题,从而透过不确定性原理来瞻仰近代物理学的发展历程。 2.理论背景 不确定性原理又名“测不准原理”,英文名为“Uncertainty principle”,是量子力学的一个基本原理,由德国物理学家海森堡于1927年提出。不确定性原理是指在一个量子力学系统中,一个粒子的位置和它的动量不可被同时确定。位置和动量满足如下关系: 2

人工智能不确定性推理部分参考答案教学提纲

人工智能不确定性推理部分参考答案

不确定性推理部分参考答案 1.设有如下一组推理规则: r1: IF E1 THEN E2 (0.6) r2: IF E2 AND E3 THEN E4 (0.7) r3: IF E4 THEN H (0.8) r4: IF E5 THEN H (0.9) 且已知CF(E1)=0.5, CF(E3)=0.6, CF(E5)=0.7。求CF(H)=? 解:(1) 先由r1求CF(E2) CF(E2)=0.6 × max{0,CF(E1)} =0.6 × max{0,0.5}=0.3 (2) 再由r2求CF(E4) CF(E4)=0.7 × max{0, min{CF(E2 ), CF(E3 )}} =0.7 × max{0, min{0.3, 0.6}}=0.21 (3) 再由r3求CF1(H) CF1(H)= 0.8 × max{0,CF(E4)} =0.8 × max{0, 0.21)}=0.168 (4) 再由r4求CF2(H) CF2(H)= 0.9 ×max{0,CF(E5)} =0.9 ×max{0, 0.7)}=0.63 (5) 最后对CF1(H )和CF2(H)进行合成,求出CF(H) CF(H)= CF1(H)+CF2(H)+ CF1(H) × CF2(H) =0.692

2 设有如下推理规则 r1: IF E1 THEN (2, 0.00001) H1 r2: IF E2 THEN (100, 0.0001) H1 r3: IF E3 THEN (200, 0.001) H2 r4: IF H1 THEN (50, 0.1) H2 且已知P(E1)= P(E2)= P(H3)=0.6, P(H1)=0.091, P(H2)=0.01, 又由用户告知: P(E1| S1)=0.84, P(E2|S2)=0.68, P(E3|S3)=0.36 请用主观Bayes方法求P(H2|S1, S2, S3)=? 解:(1) 由r1计算O(H1| S1) 先把H1的先验概率更新为在E1下的后验概率P(H1| E1) P(H1| E1)=(LS1× P(H1)) / ((LS1-1) × P(H1)+1) =(2 × 0.091) / ((2 -1) × 0.091 +1) =0.16682 由于P(E1|S1)=0.84 > P(E1),使用P(H | S)公式的后半部分,得到在当前观察S1下的后验概率P(H1| S1)和后验几率O(H1| S1) P(H1| S1) = P(H1) + ((P(H1| E1) – P(H1)) / (1 - P(E1))) × (P(E1| S1) – P(E1)) = 0.091 + (0.16682 –0.091) / (1 – 0.6)) × (0.84 – 0.6) =0.091 + 0.18955 × 0.24 = 0.136492 O(H1| S1) = P(H1| S1) / (1 - P(H1| S1)) = 0.15807 (2) 由r2计算O(H1| S2) 先把H1的先验概率更新为在E2下的后验概率P(H1| E2) P(H1| E2)=(LS2×P(H1)) / ((LS2-1) × P(H1)+1)

不确定性原理的前世今生

不确定性原理的前世今生 · 数学篇(一) 在现代数学中有一个很容易被外行误解的词汇:信号 (signal)。当数学家们说起「一个信号」的时候,他们脑海中想到的并不是交通指示灯所发出的闪烁光芒或者手机屏幕顶部的天线图案,而是一段可以具体数字化的信息,可以是声音,可以是图像,也可是遥感测量数据。简单地说,它是一个函数,定义在通常的一维或者多维空间之上。譬如一段声音就是一个定义在一维空间上的函数,自变量是时间,因变量是声音的强度,一幅图像是定义在二维空间上的函数,自变量是横轴和纵轴坐标,因变量是图像像素的色彩和明暗,如此等等。 在数学上,关于一个信号最基本的问题在于如何将它表示和描述出来。按照上面所说的办法,把一个信号理解成一个定义在时间或空间上的函数是一种自然而然的表示方式,但是它对理解这一信号的内容来说常常不够。例如一段声音,如果单纯按照定义在时间上的函数来表示,它画出来是这个样子的: 这通常被称为波形图。毫无疑问,它包含了关于这段声音的全部信息。但是同样毫无疑问的是,这些信息几乎没法从上面这个「函数」中直接看出来,事实上,它只不过是巴赫的小提琴无伴奏 Partita No.3 的序曲开头几个小节。下面是巴赫的手稿,从某种意义上说来,它也构成了对上面那段声音的一个「描述」: 这两种描述之间的关系是怎样的呢?第一种描述刻划的是具体的信号数值,第二种描述刻划的是声音的高低(即声音震动的频率)。人们直到十九世纪才渐渐意识到,在这两种描述之间,事实上存在着一种对偶的关系,而这一点并不显然。 1807 年,法国数学家傅立叶 (J. Fourier) 在一篇向巴黎科学院递交的革命性的论文 Mémoire sur la propagation de la chaleur dans les corps solides (《固体中的热传播》)中,提出了一个崭新的观念:任何一个函数都可以表达

浅析不确定性原理的哲学内涵

浅析不确定性原理的哲学内涵 摘要:不确定性原理作为量子力学中的基本原理之一,主要描述了对两个力学量算符在任一时刻其几率分布宽度的的关系。本文先介绍了何为不确定性原理,再重点阐释了对不确定性原理的哲学审视,最后在借鉴先哲们精粹思想的同时也对不确定性原理提出了一些浅显的看法。 关键词:不确定性原理变量哲学 1、引言 海森堡提出的不确定性原理以其特殊的性质给科学和哲学解释提出了挑战。不确定性原理,告诉我们微观客体的任何一对互为共轭的不确定变量都不可能同时确定出确定值,使人们放弃了经典的轨道概念。这表明,几率性、随机性、偶然性,并非是由于人类认识能力不足所导致的,而是自然界客观事物的本性。科学的发展要求从哲学层次来认识不确定性原理在科学理论中的作用和地位,分析它的本体论及认识论内涵,总结其基本特征,进而为不确定性原理的科学研究提供富有启示意义的哲学观念和方法论原则。 2、不确定性原理 不确定性原理(Uncertainty principle),是量子力学的一个基本原理,由德国物理学家海森堡于1927年提出,它反映了微观粒子运动的基本规律。 在云室(一种观察微观粒子运动径迹仪器)中观察到的电子径迹的解释上,海森堡的想法是如何用已知的数学形式去描述云室中的电子径迹。云室中的径迹并不是能反映粒子明确位置和速度的一条无限细的线,在云室中看到的电子径迹的宽度要比电子本身的线度大得多,这可能代表了电子的位置具有某种不确定性。通过推算,得到了一种不确定性原理,它表明:同时严格确定两个共轭变量(如位置和速度,时间和能量等)的数值是不可能的,它们的数值准确度有个下限。这是一条自然定律,它说明,在微观粒子层次上,同时得到一个粒子运动的位置和速度的严格准确的测量值在原则上是不可能的。用这个理论去解释试验中所观察到的电子轨迹,经过重新的分析整理,最终确定:云室中电子径迹并不是一条连续的线,实质上它是一系列离散而模糊的斑点,它们近似排列成线,并非真正的电子“径迹”,也就是说电子的位置是不确定的。 海森堡进一步验证此不确定性满足新的量子力学,得到了标准的量子条件:Pq-qP=h/2π (P为动量,q为与动量对应的位置,h为普朗克常量s)。 由上式出发,海森堡导出了位置和与速度相关的p的不确定关系式:ΔpΔq≥h。 3、不确定性原理的哲学思考 不确定性原理告诉人们:经典的轨道概念已不再适用,像经典物理学精确把握宏观物体那样将微观粒子的信息精确测出也是不可能的。更重要的是,波函数的统计诠释与不确定性原理两者可共存于一个理论体系,不确定性原理可以由量子力学基本公设推导,而且推导结果也没有超出量子力学的几率诠释。我们需要将二者结合起来,看看它们究竟告诉了我们什么。 有一些社会科学工作者,由于望文生义或不太理解量子力学理论,认为不确定性原理之不确定,几率诠释之几率。深入的思考者则认为,几率诠释告诉我们微观粒子之状态我们不能百分百把握,而不确定性原理则干脆将“不确定”确定下来,告诉我们不确定不是我们的仪器有什么问题,而是客观世界正是如此,不仅

不确定性推理部分参考答案

第6章不确定性推理部分参考答案 6.8 设有如下一组推理规则: r1: IF E1THEN E2 (0.6) r2: IF E2AND E3THEN E4 (0.7) r3: IF E4THEN H (0.8) r4: IF E5THEN H (0.9) 且已知CF(E1)=0.5, CF(E3)=0.6, CF(E5)=0.7。求CF(H)=? 解:(1) 先由r1求CF(E2) CF(E2)=0.6 × max{0,CF(E1)} =0.6 × max{0,0.5}=0.3 (2) 再由r2求CF(E4) CF(E4)=0.7 × max{0, min{CF(E2 ), CF(E3 )}} =0.7 × max{0, min{0.3, 0.6}}=0.21 (3) 再由r3求CF1(H) CF1(H)= 0.8 × max{0,CF(E4)} =0.8 × max{0, 0.21)}=0.168 (4) 再由r4求CF2(H) CF2(H)= 0.9 ×max{0,CF(E5)} =0.9 ×max{0, 0.7)}=0.63 (5) 最后对CF1(H )和CF2(H)进行合成,求出CF(H) CF(H)= CF1(H)+CF2(H)+ CF1(H) × CF2(H) =0.692 6.10 设有如下推理规则 r1: IF E1THEN (2, 0.00001) H1 r2: IF E2THEN (100, 0.0001) H1 r3: IF E3THEN (200, 0.001) H2 r4: IF H1THEN (50, 0.1) H2 且已知P(E1)= P(E2)= P(H3)=0.6, P(H1)=0.091, P(H2)=0.01, 又由用户告知: P(E1| S1)=0.84, P(E2|S2)=0.68, P(E3|S3)=0.36 请用主观Bayes方法求P(H2|S1, S2, S3)=? 解:(1) 由r1计算O(H1| S1) 先把H1的先验概率更新为在E1下的后验概率P(H1| E1) P(H1| E1)=(LS1× P(H1)) / ((LS1-1) × P(H1)+1) =(2 × 0.091) / ((2 -1) × 0.091 +1) =0.16682 由于P(E1|S1)=0.84 > P(E1),使用P(H | S)公式的后半部分,得到在当前观察S1下的后验概率P(H1| S1)和后验几率O(H1| S1)

不确定性原理的推导

不确定性原理的推导 一、(普遍的)不确定性原理推导: 对于任意一个可观测量A ,有(见(12)式): 2??()() A A A ΨA A Ψf f σ=--= (1) 式中:?()f A A ψ≡- 同样地,对于另外一个可观测量 B ,有: 2 B g g σ= 式中:?(g B B ψ≡- 由施瓦茨不等式(见(16)式),有: 2 22 A B f f g g f g σσ=≥ (2) 对于一个复数z (见(17)式): 2 22221 [Re()][Im()][Im()][ ()]2z z z z z z i *=+≥=- (3) 令z f g =,(2)式: 2 2 21[]2A B f g g f i σσ?? ≥- ??? (4) 又 ??()()f g A A B B ψψ=-- ?? ()()ΨA A B B ψ=-- ???? ()ΨAB A B B A A B ψ=--+ ???? ΨAB ΨB ΨA ΨA ΨB ΨA B ΨΨ=-++ ?? AB B A A B A B =--+ ??AB A B =- 类似有: ?? f g BA A B =-

所以 ?????? ,f g g f AB BA A B ??-=-=?? (5) 式中对易式:??????,A B AB BA ??≡-? ? 把(5)代入(4),得(普遍的)不确定性原理: 2 22 1??,2A B A B i σσ????≥ ????? (6) 二、位置与动量的不确定性 设测试函数f (x ),有(见(23)式): []d d ,()()()d d x p f x x f xf i x i x ??=-???? d d d d d d f x f x i i x i x i x ? ?= -- ??? ()i f x = (7) 去掉测试函数,则: [],=x p i (8) 令??,A x B p ==,把(8)代入(6): 2 222x p σσ?? ≥ ??? 由于标准差是正值,所以位置与动量的不确定性: 2 x p σσ≥ (9)

不确定性原理(非平稳作业)

学生:李洋学号:2014524019 不确定性原理(Uncertainty principle),又称“测不准原理”、“不确定关系”。傅立叶变换导出的基本关系:若复函数f(x)与F(k)构成傅立叶变换对,且已由其幅度的平方归一化(即f*(x)f(x)相当于x的概率密度;F*(k)F(k)/2π相当于k的概率密度,*表示复共轭),则无论f(x)的形式如何,x与k标准差的乘积ΔxΔk不会小于某个常数(该常数的具体形式与f(x)的形式有关)。海森堡证明,对易关系可以推导出不确定性,或者,使用玻尔的术语,互补性:不能同时观测任意两个不对易的变量;更准确地知道其中一个变量,则必定更不准确地知道另外一个变量。该原理表明:一个微观粒子的某些物理量(如位置和动量,或方位角与动量矩,还有时间和能量等),不可能同时具有确定的数值,其中一个量越确定,另一个量的不确定程度就越大。「不确定性原理」也有了新的形式。在连续情形下,我们可以讨论一个信号是否集中在某个区域内。而在离散情形下,重要的问题变成了信号是否集中在某些离散的位置上,而在其余位置上是零。数学家给出了这样有趣的定理: 一个长度为N 的离散信号中有a 个非零数值,而它的傅立叶变换中有 b 个非零数值,那么a+b ≥ 2√N。也就是说一个信号和它的傅立叶变换中的非零元素不能都太少。但是借助不确定性原理,却正可以做到这一点!原因是我们关于原信号有一个「很多位置是零」的假设。那么,假如有两个不同的信号碰巧具有相同的K 个频率值,那么这两个信号的差的傅立叶变换在这K 个频率位置上就是零。另一方面,因为两个不同的信号在原本的时空域都有很多值是零,它们的差必然在时空域也包含很多零。不确定性原理(一个函数不能在频域和时空域都包含很多零)告诉我们,这是不可能的。 在传统的信号理论中,频域空间和原本的时空域相比,信息量是一样多的,所以要还原出全部信号,必须知道全部的频域信息,就象是要解出多少个未知数就需要多少个方程一样。我的理解:测量物必然改变被测物,在微观世界的测量,改变值无法忽略,物质是否具有确定性是不可知的。不确定性原理是世界自身存在的原理,与测量与否没有关系。 王老师,我所研究的领域是微弱信号检测,研究传感器自身噪声,并且通过仿真模拟。 领域相关期刊:电子学报

人工智能不确定性推理部分参考答案

不确定性推理部分参考答案 1.设有如下一组推理规则: r1: IF E1THEN E2 (0.6) r2: IF E2AND E3THEN E4 (0.7) r3: IF E4THEN H (0.8) r4: IF E5THEN H (0.9) 且已知CF(E1)=0.5, CF(E3)=0.6, CF(E5)=0.7。求CF(H)=? 解:(1) 先由r1求CF(E2) CF(E2)=0.6 × max{0,CF(E1)} =0.6 × max{0,0.5}=0.3 (2) 再由r2求CF(E4) CF(E4)=0.7 × max{0, min{CF(E2 ), CF(E3 )}} =0.7 × max{0, min{0.3, 0.6}}=0.21 (3) 再由r3求CF1(H) CF1(H)= 0.8 × max{0,CF(E4)} =0.8 × max{0, 0.21)}=0.168 (4) 再由r4求CF2(H) CF2(H)= 0.9 ×max{0,CF(E5)} =0.9 ×max{0, 0.7)}=0.63 (5) 最后对CF1(H )和CF2(H)进行合成,求出CF(H) CF(H)= CF1(H)+CF2(H)+ CF1(H) × CF2(H) =0.692 2 设有如下推理规则 r1: IF E1THEN (2, 0.00001) H1 r2: IF E2THEN (100, 0.0001) H1 r3: IF E3THEN (200, 0.001) H2 r4: IF H1THEN (50, 0.1) H2 且已知P(E1)= P(E2)= P(H3)=0.6, P(H1)=0.091, P(H2)=0.01, 又由用户告知: P(E1| S1)=0.84, P(E2|S2)=0.68, P(E3|S3)=0.36 请用主观Bayes方法求P(H2|S1, S2, S3)=? 解:(1) 由r1计算O(H1| S1) 先把H1的先验概率更新为在E1下的后验概率P(H1| E1) P(H1| E1)=(LS1× P(H1)) / ((LS1-1) × P(H1)+1) =(2 × 0.091) / ((2 -1) × 0.091 +1) =0.16682 由于P(E1|S1)=0.84 > P(E1),使用P(H | S)公式的后半部分,得到在当前观察S1下的后验概率P(H1| S1)和后验几率O(H1| S1) P(H1| S1) = P(H1) + ((P(H1| E1) – P(H1)) / (1 - P(E1))) × (P(E1| S1) – P(E1))

不确定性推理方法研究word版

不确定性推理 摘要:对3种最常用的不确定性推理方法进行了分析和评述:概率推理、D-S证据推理和模糊推理。分别针对不同类型的不确定性。概率推理针对的是"事件发生与否不确定"这样的不确定性。D-S证据推理针对的是"分不清"或"不知道"这样的不确定性。模糊推理则是针对概念内涵或外延不清晰这样的不确定性。概率推理的理论体系是严密的,但其推理结果有赖可信的先验概率和条件概率。D-S证据推理是不可信的,但在一定条件下可以转化为概率推理问题来处理。模糊推理是一种很有发展潜力的推理方法,主要问题是推理规则需要具体设计,且设计好坏决定推理结果。 关键词:不确定性推理概率推理 D-S证据论模糊推理 引言 近年来,不确定性推理技术引起了人们的重视。这一方面是由于现实问题中普遍含有种种的不确定性,因此对不确定性推理技术有很大的需求。另一方面也在于不断出现的不确定性推理技术出现了一些问题,引起了人们的热议。 本文对三种应用最为广泛的不确定性推理技术进行了分析和评述。它们是:概率推理、D-S证据推理和模糊推理。它们分别具有处理不同类型的不确定性的能力。概率推理处理的是“事件发生与否不确定”这样的不确定性;D-S证据推理处理的是含有“分不清”或“不知道”信息这样的不确定性;模糊推理则是针对概念内涵或外延不清晰这样的不确定性。这些不确定性在实际的推理问题中是非常普遍的,因此这3种推理技术都有广泛的应用。 然而,这些推理技术在实际中的应用效果相差很大。有的得出的推理结果非常合理,用推理结果去执行任务的效果也非常好。也有的效果很差,推理结果怪异,完全背离人的直觉。应用效果差的原因可能是所用推理技术本身的缺陷,也可能是应用者对所用技术了解掌握不够。 无论如何,都非常有必要对这些不确定性推理技术进行一番对比分

测不准原理的理解及应用

不确定性原理的理解及应用 姓名: 班级: 学号:

摘要:不确定性原理作为量子力学中的一个重要组成部分,从海森堡提出至今一直受到各方争论和质疑。本文主要介绍不确定性原理的简单理解以及应用,对初学者理解不确定性原理是很有帮助的。 关键词:测量,准确性, 正文: 1.引言: 唯物主义告诉我们:物质是不依赖于人的意识的客观存在;时间的本质是物质而不是意识;先有物质后有意识;意识只不过是物质在人脑中的客观反映而已。这些都是正确的观念。然而随着二十世纪自然科学的发展,尤其是人们在探索微观世界发现了新的规律,被某些唯心主义者引用来向唯物主义的基本观点发难。其中倍受争议的是著名物理学家海森堡的“不确定性原理”。 2. 不确定性原理的介绍: 不确定性原理(Uncertainty principle),又称“测不准原理”、“不确定关系”,是量子力学的一个基本原理,由德国物理学家海森堡于1927年提出。本身为傅立叶变换导出的基本关系:若复函数f(x)与F(k)构成傅立叶变换对,且已由其幅度的平方归一化(即f*(x)f(x)相当于x的概率密度;F*(k)F(k)/2π相当于k的概率密度,*表示复共轭),则无论f(x)的形式如何,x与k标准差的乘积ΔxΔk不会小于某个常数(该常数的具体形式与f(x)的形式有关)。 该原理表明:一个微观粒子的某些物理量(如位置和动量,或方位角与动量矩,还有时间和能量等),不可能同时具有确定的数值,其中一个量越确定,另一个量的不确定程度就越大。测量一对共轭量的误差(标准差)的乘积必然大于常数h/4π(h是普朗克常数)是海森堡在1927年首先提出的,它反映了微观粒子运动的基本规律——以共轭量为自变量的概率幅函数(波函数)构成傅立叶变换对;以及量子力学的基本关系(E=h/2π*ω,p=h/2π*k),是物理学中又一条重要原理。【1】 3:不确定性原理的发现: 1927年,海森堡在经过长期的探索后提出了不确定性原理。他对此原理的解释是:设想一个电子,要观测到它在某个时刻的位置,则须用波长较短、分辨性好的光子照射它,但光子有动量,它与波长成正比,故光子波长越短,光子动量越大,对电子动量的影响也越大;反之若提高对动量的测量精度,则须用波长较长的光子,而这又会引起位置不确定度的增加。因而不可能同时准确地测量一个微观粒子的动量和位置,原因是被测物体与测量仪器之间不可避免的发生了相互作用。 人们习惯于对物体运动轨迹的准确描述,大到天体如何运行,小到微尘如何飞扬。这种认识必须基于对物体能够准确定位。为了预测一个物体的运动状态,必须准确测量它的位置和速度。测定必须施加一个物理作用于作为被测对象的物体之上,这在任何一种测量中都无法幸免。显然,对在微观粒子尺度空间的测量方法用光照最合适。然而,光照是无法把粒子的位置确定到比光的波长更小的程度的。为了测定的准确,必须用更短波长的光,这意味着光子的能量更高,这样测定对粒子速度的扰动将很厉害。因此,不能同时准确的测定粒子的位置和速度。事实上,宏观世界和微观世界都受到不确定性原理的制约,只不过对宏观物体的测量,一定波长的光已经足够精确,且扰动对其速度的影响小到远远无法计较。

人工智能原理教案03章不确定性推理方法33主观Bayes方法

3.3 主观Bayes方法 R.O.Duda等人于1976年提出了一种不确定性推理模型。在这个模型中,他们称推理方法为主观Bayes方法,并成功的将这种方法应用于地矿勘探系统PROSPECTOR中。在这种方法中,引入了两个数值(LS,LN),前者体现规则成立的充分性,后者则表现了规则成立的必要性,这种表示既考虑了事件A的出现对其结果B的支持,又考虑了A的不出现对B的影响。 在上一节的CF方法中,CF(A)<0.2就认为规则不可使用,实际上是忽视了A不出现的影响,而主观Bayes方法则考虑了A 不出现的影响。 t3-B方法_swf.htm Bayes定理: 设事件A1,A2 ,A3 ,…,An中任意两个事件都不相容,则对任何事件B有下式成立: 该定理就叫Bayes定理,上式称为Bayes公式。

全概率公式: 可写成: 这是Bayes定理的另一种形式。 Bayes定理给出了一种用先验概率P(B|A),求后验概率P (A|B)的方法。例如用B代表发烧,A代表感冒,显然,求发烧的人中有多少人是感冒了的概率P(A|B)要比求因感冒而发烧的概率P(B|A)困难得多。 3.3.1 规则的不确定性 为了描述规则的不确定性,引入不确定性描述因子LS, LN:对规则A→B的不确定性度量f(B,A)以因子(LS,LN)来描述:

表示A真时对B的影响,即规则成立的充分性 表示A假时对B的影响,即规则成立的必要性 实际应用中概率值不可能求出,所以采用的都是专家给定的LS, LN值。从LS,LN的数学公式不难看出,LS表征的是A的发生对B发生的影响程度,而LN表征的是A的不发生对B发生的影响程度。 几率函数O(X):

不确定性原理的推导

(1) 不确定性原理的推导 、(普遍的)不确定性原理推导: 对于任意一个可观测量 A ,有(见(12)式): 2 A ((A (A 网(A (A ))q (f |f ) 式中:f (A (A )) 同样地,对于另外一个可观测量 B ,有: (g |g ) 式中:g (E? (B )) 由施瓦茨不等式(见(16)式),有: 2 A 对于一个复数Z (见(17)式): 2 [Re(z)]2 [lm(z)]2 [lm(z)]2 [-(z z)]2 令z 〈f |g ),(2)式: (f |g ) M (A 〉)|(E ? 何(R 〈A )(E ? & (A? A (B ) 何A E ?巧(屮A 巧(A 仕 訓)〈A )(B 〉〈屮屈 俺) ⑻)) 臥 A (A )(B ))) ⑻〈A )〈A )⑻(A )⑻ 类似有: (f

(9) (f |g } (g |f ) (A?)〈B?) ( A,B ) 把(5)代入(4),得(普遍的)不确定性原理: 二、位置与动量的不确定性 去掉测试函数,则: 由于标准差是正值,所以位置与动量的不确定性: 所以 式中对易式: A,B AB BA (6) 设测试函数f (x ),有(见(23) 式) : X, P f(x) X 屿(f) i£(xf) i dX i dX X 迪 i dX 施if i dX i dX (7) X, P =巾 (8) 令A X, B p ,把(8)代入 (6):

三、时间与能量的不确定性 由(见(24) 式): (10) 可得: 所以时间与能量的不确定性: (11)

附: 1、数学符号及常量 x的平均值 矢量(函数)a和B的点积(内积) j的不确定程度,即j的标准差 It:—,其中h=6.6260693(11) W-34J s 为普朗克常量i2 2、有关公式推导 (1)式: (屮Q?(Q} 式: 对于〈I )|2和(I )( (X i,X2,X3,…,X n) ( Q (12) ?,(y1,y2, y3,…,y n) L 2 )(X』畑2X3y3 …\2 X n V n)(13) ()=(X122X22X3 …X n) (14) ()=(Vi y;v2…y n) (15)

不确定性原理共11页

不确定性原理 示意图 又名“测不准原理”、“不确定关系”,英文"Uncertainty principle",是量子力学的一个基本原理,由德国物理学家海森堡于1927年提出。本身为傅立叶变换导出的基本关系:若复函数f(x)与F(k)构成傅立叶变换对,且已由其幅度的平方归一化(即f*(x)f(x)相当于x的概率密度; F*(k)F(k)/2π相当于k的概率密度,*表示复共轭),则无论f(x)的形式如何,x与k标准差的乘积ΔxΔk不会小于某个常数(该常数的具体形式与f(x)的形式有关)。 目录 意义 理论背景 霍金谈不确定性原理 赵宁谈不确定原理 意义 理论背景 霍金谈不确定性原理 赵宁谈不确定原理 展开

编辑本段意义 该原理表明:一个微观粒子的某些物理量(如位置和动量,或方位角与动量矩,还有时间和能量等),不可能同时具有确定的数值,其中一个量越确定,另一个量的不确定程度就越大。测量一对共轭量的误差(标准差)的乘积必然大于常数h/4π (h是普朗克常数)是海森堡在1927年首先提出的,它反映了微观粒子运动的基本规律——以共轭量为自变量的概率幅函数(波函数)构成傅立叶变换对;以及量子力学的基本关系(E=h/2π*ω,p=h/2π*k),是物理学中又一条重要原理。 编辑本段理论背景 海森伯 海森伯在创立矩阵力学时,对形象化的图象采取否定态度。但他在表述中仍然需要使用“坐标”、“速 不确定性支持向量机原理及应用 度”之类的词汇,当然这些词汇已经不再等同于经典理论中的那些词汇。可是,究竟应该怎样理解这些词汇新的物理意义呢?海森伯抓住云室实验中观察电子径迹的问题进行思考。他试图用矩阵力学为电子径迹作出数学表述,可是没有成功。这使海森伯陷入困境。他反复考虑,意识到关键在于电子轨道的提法本身有问题。人们看到的径迹并不是电子的真正轨道,而是水滴串形成的雾迹,水滴远比电子大,所

玻尔和海森堡关于不确定性原理看法的哲学思辨

玻尔和海森堡在不确定性原理上看法差异的哲学思辨 一、投掷硬币实验 投掷硬币的实验,我曾认真思考过,在理论的情况下正反面出现的概率均为50%。很多人都做过这个实验,在大量的重复实验后,所得的结果都基本趋向于一个接近0.5的稳定值,但还没有谁做出过理想的50%来。 在实际的实验中,考虑的因素无疑要更多一些。如果硬币正反面不对称,那么结果显然不会是理想值,于是我们需要对硬币本身的进行刻画,包括它的几何刻画和密度函数。其次在人抛硬币的动作中,所使用的力也需要数学描述。而在硬币的运动过程中,气流、重力对其运动轨迹会产生影响,因此也需要数学描述这些量。当然,硬币所处的空间,尤其是地面、抛掷者的几何形状无疑也要作出描述。 当仅考虑到这些变量之后,我们发现投掷硬币问题变的非常复杂了,不亚于火箭飞行的流体力学问题。而进一步考虑这些变量之间的制约因素,问题将会更加复杂。 更为可怕的是,当我更为细致的考虑硬币本身的数学描述时,才发现这里面的困难度丝毫不逊于前面。当考察密度时,无疑要考虑到质量,而实际中质量都是由一个标准质量得到的,所以实际中的质量是离散的,而不是连续的,无疑在实际描述硬币的过程中会出现误差。 这种困难表明,在实验中,我们无疑要考虑更多具体因素及其之间的关联,而对于这些因素的具体描述又会让我们陷入更复杂的代数陷阱中,更有可能丧失对问题本身整体几何性质的把握。换句话说,在我们用实验研究理论问题的过程中,具体条件的考察很可能是片面的,并且不为我们所察觉,在不知不觉中我们偏离了理论。 二、量子态的打靶 “中校,我现在要问你一个问题,在这个距离上你们发射的球状闪电对目标的命中率是多少?” “几乎是百分之百,教授。因为不受气流的影响,加速后的轨迹很稳定。” “很好,那么开始吧。记住,瞄准后所有人都闭上眼睛。” “好了,大家可以睁开眼睛了。”丁仪说。 对讲机中听到报靶员的声音:“发射10发,命中:1,脱靶:9。”接着听到他小声说:“邪门了!” “检查武器!” “不用了,武器和射手的操作没问题。”丁仪一摆手说,“不要忘了,球状闪电是一个电子。” “你是说,它呈现量子效应?”我问。 丁仪肯定地点点头:“确实如此!当观察者的时候,它们的状态塌缩为一个确定值,这个值与我们在宏观世界的经验相符,所以它们击中了目标;但没有观察者的情况下,它们呈量子状态,它的一切都是不确定的,其位置只能用概率来描述,在这种情况下,这一排球状闪电实际上是以一团电子云的形态存在的,这是一团概率云,击中目标的位置只占很小的概率。” “您是说,雷球打不中目标是因为我们没看它?”中校难以置信地问。

不确定性推理知识要点

不确定性推理 1/4/2004 ● 对每个模型需要把握的重点: (1) 知识不确定性的表示方法 (2) 证据不确定性的表示方法 (3) 组合证据不确定性的计算方法 (4) 不确定性的传递算法,亦即如何由证据的不确定性以及知识的不确定性求出结论的 不确定性 (5) 结论不确定性的合成算法,即如果有多条知识推出相同的结论,应该怎样计算出最 终的结论不确定性 ● 学过的模型: 一. 概率方法 二. 主观Bayes 方法 ◆ 实质:根据证据E 的概率P(E)以及LS ,LN 的值,将H 的先验概率P(H)更新为后验概率P(H/E)。其中,LS ,LN ,P(H)都由领域专家给出,P(E)则是由用户的具体观察得到的。 ◆ 模型: (1) 知识不确定性的表示:使用充分性量度LS 和必要性量度LN ,并且这两者都是由领 域专家给出的(P163) (2) 证据不确定的表示:用概率P(E/S)来表示,其中S 表示一次观察,E 为证据。一般 的该值是根据用户给出的可信度C(E/S)计算出来的,具体计算方法参见课本P163-164 (3) 组合证据不确定性的计算:极大极小法(P164) (4) 不确定性的传递算法:引入几率函数来辅助推理过程。几率函数定义为: ()()1() P x x P x Θ=- 根据知识对应的证据的确定性不同分成三种情况,即 1)证据肯定存在的情况: (/)()H E LS H Θ=?Θ 或 ()()(/)(1)()11()LS P H LS H P H E LS P H LS H ??Θ==-?++?Θ 2)证据肯定不存在的情况: (/)()H E LN H Θ?=?Θ 或

相关文档
最新文档