五种非线性滤波

五种非线性滤波
五种非线性滤波

五种非线性滤波

转载

今天主要实现了五种常见的非线性滤波算子,这五种滤波算子对不同的图像都会有不同的作用,最常用的是中值滤波,因为它的效果最好且信息损失的最少。

1.极大值滤波

极大值滤波就是选取像素点领域的最大值作为改点的像素值,有效率去了灰度值比较低的噪声,也可作为形态学里面的膨胀操作。

极大值滤波可以表示为: Maximum(A)=max[A(x+i,y+j)] (x,y)属于M

注:(x+i,y+j)是定义在图像上的坐标,(i,j)是定义在模板M上的坐标。M即为运算的模板。

2.极小值滤波(与极大值滤波相反)

3.中点滤波

中点滤波常用于去除图像中的短尾噪声,例如高斯噪声和均匀分布噪声。终点滤波器的输出时给定窗口内灰度的极大值和极小值的平均值;

Midpoint(A)=(max[A(x+i,y+j)]+min[A(x+i,y+j)])/2 (x,y)属于M

注:(x+i,y+j)是定义在图像上的坐标,(i,j)是定义在模板M上的坐标。M即为运算的模板。

4.中值滤波

中值滤波可以消除图像中的长尾噪声,例如负指数噪声和椒盐噪声。在消除噪声时,中值滤波对图像噪声的模糊极小(受模板大小的影响),中值滤波实质上是用模板内所包括像素灰度的中值来取代模板中心像素的灰度。中值滤波在消除图像内椒盐噪声和保持图像的空域细节方面,其性能优于均值滤波。

Median(A)=Median[A(x+i,y+j)] (x,y)属于M

注:(x+i,y+j)是定义在图像上的坐标,(i,j)是定义在模板M上的坐标。M即为运算的模板。

5.加权中值滤波(中值滤波的改进)

加权中值滤波是在中值滤波的基础上加以改进,其性能在一定程度上优于中值滤波。

下面是自己在算法上的改进:以例子说明

若说选模板的大小为5,那么这个模板就唯一确定为:

1 1 5 1 1

1 1 5 1 1

5 5 5 5 5

1 1 5 1 1

1 1 5 1 1

上图中的数字表式改点像素在序列中出现的次数。然后根据模板平滑图像。实验证明该方法好于传统中值滤波。当然还有其他方法;

语音信号滤波去噪——使用双线性变换法设计的切比雪夫II型滤波器

课程设计任务书

语音信号滤波去噪——使用脉冲响应不变法设计的巴特沃斯滤波器 摘要本课程设计主要运用麦克风采集一段语音信号,绘制波形并观察其频谱,给定相应技术指标,用脉冲响应不变法设计的一个满足指标的巴特沃斯IIR滤波器,对该语音信号进行滤波去噪处理,比较滤波前后的波形和频谱并进行分析,根据结果和学过的理论得出合理的结论。 关键词课程设计;滤波去噪;巴特沃斯滤波器;脉冲响应不变法;MATLAB 1 引言 本课程设计主要利用麦克风采集一段8000Hz,8k的单声道语音信号,并绘制波形观察其频谱,再用MATLAB利用脉冲响应不变法设计一个巴特沃斯滤波器,将该语音信号进行滤波去噪处理。 1.1 课程设计目的 《数字信号处理》课程设计是在学生完成数字信号处理和MATLAB的结合后的基本实验以后开设的。本课程设计的目的是为了让学生综合数字信号处理和MATLAB并实现一个较为完整的小型滤波系统。这一点与验证性的基本实验有本质性的区别。开设课程设计环节的主要目的是通过系统设计、软件仿真、程序安排与调试、写实习报告等步骤,使学生初步掌握工程设计的具体步骤和方法,提高分析问题和解决问题的能力,提高实际应用水平。 1.2课程设计的要求 (1)滤波器指标必须符合工程设计。 (2)设计完后应检查其频率响应曲线是否满足指标。

(3)处理结果和分析结论应该一致,而且应符合理论。 (4)独立完成课程设计并按要求编写课程设计报告。 2 设计原理 用麦克风采集一段语音信号,绘制波形并观察其频谱,给定相应技术指标,用脉冲响应不变法设计的一个满足指标的巴特沃斯IIR滤波器,对该语音信号进行滤波去噪处理,比较滤波前后的波形和频谱并进行分析。 2.1 IIR滤波器 I IR滤波器设计方法有间接法和直接法,间接法是借助于模拟滤波器的设计方法进行的。其设计步骤是:先设计过渡模拟滤波器得到系统函数H(s),然后将H(s)按某种方法转换成数字滤波器的系统函数H(z)。FIR滤波器比鞥采用间接法,常用的方法有窗函数法、频率采样发和切比雪夫等波纹逼近法。对于线性相位滤波器,经常采用FIR 滤波器。 对于数字高通、带通滤波器的设计,通用方法为双线性变换法。可以借助于模拟滤波器的频率转换设计一个所需类型的过渡模拟滤波器,再经过双线性变换将其转换策划那个所需的数字滤波器。具体设计步骤如下: (1)确定所需类型数字滤波器的技术指标。 (2)将所需类型数字滤波器的边界频率转换成相应的模拟滤波器的边界频率,转换公式为Ω=2/T tan(0.5ω) (3)将相应类型的模拟滤波器技术指标转换成模拟低通滤波器技术指标。 (4)设计模拟低通滤波器。 (5)通过频率变换将模拟低通转换成相应类型的过渡模拟滤波器。 (6)采用双线性变换法将相应类型的过渡模拟滤波器转换成所需类型的数字滤波器。 我们知道,脉冲响应不变法的主要缺点是会产生频谱混叠现象,使数字滤波器的频响偏离模拟滤波器的频响特性。为了克服之一缺点,可以采用双线性变换法。 下面我们总结一下利用模拟滤波器设计IIR数字低通滤波器的步骤: (1)确定数字低通滤波器的技术指标:通带边界频率、通带最大衰减,阻带截止频率、阻带最小衰减。

几种非线性滤波算法的研究-内附程序

2017 年秋季学期研究生课程考核 (读书报告、研究报告) 考核科目:雷达系统导论 学生所在(系):电子与信息工程学院 学生所在学科:电子与同学工程 学生姓名: 学号: 学生类别: 考核结果阅卷人 第 1 页(共页)

几种非线性滤波算法的介绍与性能分析 作者姓名:学号: 专业院系:电信学院电子工程系 电子邮件: 摘要—非线性滤波算法在雷达目标跟踪中有着重要的应用,对雷达的跟踪性能有着至关重要的影响。好的滤波算法有利于目标航迹的建立及保持,能够得到较精确的目标位置,为发现目标后的后续工作提供可靠的数据依据。本文重点介绍了雷达数据处理中的几种非线性滤波算法:扩展卡尔曼滤波(EKF)、不敏卡尔曼滤波(UKF)、粒子滤波(PF),并且给出了一个利用这三种算法进行数据处理的一个实例,通过这个实例对比分析了这三种算法的性能以及优劣。 关键字—非线性滤波算法;扩展卡尔曼滤波;不敏卡尔曼滤波;粒子滤波; I.概述(一级表题格式) 在雷达对目标进行跟踪前要先对目标进行检测。对于满足检测条件的目标就需要进行跟踪,在跟踪的过程中可以利用新获得的数据完成对目标的进一步检测比如去除虚假目标等,同时利用跟踪获得数据可以进一步完成对目标动态特性的检测和识别。因此对目标进行准确的跟踪是雷达性能的一个重要指标。在检测到满足条件的目标后,根据目标运动状态建立目标运动模型,然后对目标跟踪算法进行设计,这是雷达目标跟踪中的核心部分。 目前主要的跟踪算法包括线性自回归滤波,两点外推滤波、维纳滤波、- αβ滤波、加权最小二乘滤波、维纳滤波和卡尔曼滤波[1]。对于线性系统而言最优滤波的方法就是卡尔曼滤波,卡尔曼滤波是线性高斯模型下的最优状态估计算法。但是实际问题中目标的运动模型往往不是线性的,因此卡尔曼滤波具有很大的局限性。目前主要用的非线性滤波算法可以分为高斯滤波和粒子滤波[2]。不敏卡尔曼滤波和扩展卡尔曼滤波就是高斯滤波中的典型代表,也是应用相对较为广泛的。粒子滤波的应用范围比高斯滤波的适用范围要广,对于系统状态非线性,观测模型非高斯等问题都有很好的适用性。本文具体分析阐述了扩展卡尔曼滤波算法,不敏卡尔曼滤波算法,粒子滤波算法,并且通过一个实例利用仿真的方法分析了这三种算法在滤波性能上的优劣,最后对这三种算法做了一定的总结。 我本科毕业设计题目为《基于历史数据的路径生成算法研究》,由于我是跨专业保研到电信学院,该课题所研究内容不属于雷达系统研究范围,是一种城市路网最快路径生成算法。 II.几种非线性滤波算法 A.扩展卡尔曼滤波 扩展卡尔曼滤波是将非线性系统转换为近似的线性系统的一种方法,其核心思想是围绕滤波值将非线性函数展开成泰勒级数并略去二阶及以上的项,得到一个近似的线性化模型,然后应用卡尔曼滤波完成状态估计。 扩展卡尔曼滤波状态空间模型: k k k w x f+ = + ) ( x 1 状态方程 k k k v x h+ =) ( z观测方程 其中(.) f和(.) h为非线性函数 在扩展卡尔曼滤波中,状态的预测以及观测值的预测由非线性函数计算得出,线性卡尔曼滤波中的状态转移矩阵A阵和观测矩阵H阵由f和h函数的雅克比矩阵代替。 对 (.) f和(.) h Taylor展开,只保留一次项有: ) ? ( ) ?( ) ( k k k k k x x A x f x f- + ≈ ) ? ( ) ?( ) ( k k k k k x x H x h x h- + ≈ 其中: k k x x k k dx df A ?= =为f对 1- k x求导的雅克比矩阵 k k x x k k dx dh H ?= =为h对 1- k x求导的雅克比矩阵 ) ?( ? 1-k k x f x=,于是可以得出: k k k k k k k w x A x f x A x+ - + ≈ + ) ? ) ?( ( 1 k k k k k k k v x H x h x H z+ - + ≈ + ) ? ) ?( ( 1 通过以上变换,将非线性问题线性化。接下来EKF 滤波过程同线性卡尔曼滤波相同,公式如下: )) | (?( ) |1 ( X?k k X f k k= + ) ( ) ( ) | ( ) ( ) |1 (P k Q k k k P k k k+ Φ' Φ = + )1 ( )1 ( ) |1 ( )1 ( )1 (S+ + + ' + + = +k R k H k k P k H k )1 ( )1 ( ) |1 ( )1 ( K1+ + ' + = +-k S k H k k P k

常用的8种数字滤波算法

常用的8种数字滤波算法 摘要:分析了采用数字滤波消除随机干扰的优点,详细论述了微机控制系统中常用的8种数字滤波算法,并讨论了各种数字滤波算法的适用范围。 关键词:数字滤波;控制系统;随机干扰;数字滤波算法 1 引言 在微机控制系统的模拟输入信号中,一般均含有各种噪声和干扰,他们来自被测信号源本身、传感器、外界干扰等。为了进行准确测量和控制,必须消除被测信号中的噪声和干扰。噪声有2大类:一类为周期性的,其典型代表为50 Hz 的工频干扰,对于这类信号,采用积分时间等于20 ms整倍数的双积分A/D转换器,可有效地消除其影响;另一类为非周期的不规则随机信号,对于随机干扰,可以用数字滤波方法予以削弱或滤除。所谓数字滤波,就是通过一定的计算或判断程序减少干扰信号在有用信号中的比重,因此他实际上是一个程序滤波。 数字滤波器克服了模拟滤波器的许多不足,他与模拟滤波器相比有以下优点: (1)数字滤波器是用软件实现的,不需要增加硬设备,因而可靠性高、稳定性好,不存在阻抗匹配问题。 (2)模拟滤波器通常是各通道专用,而数字滤波器则可多通道共享,从而降低了成本。 (3)数字滤波器可以对频率很低(如0.01 Hz)的信号进行滤波,而模拟滤波器由于受电容容量的限制,频率不可能太低。 (4)数字滤波器可以根据信号的不同,采用不同的滤波方法或滤波参数,具有灵活、方便、功能强的特点。 2 常用数字滤波算法 数字滤波器是将一组输入数字序列进行一定的运算而转换成另一组输出数字序列的装置。设数字滤波器的输入为X(n),输出为Y(n),则输入序列和输出序列之间的关系可用差分方程式表示为: 其中:输入信号X(n)可以是模拟信号经采样和A/D变换后得到的数字序列,也

介质滤波器技术总结

TE01δ模式介质谐振滤波器技术总结 一、前言 由于通信技术的发展,低费用、更有效、更好品质的无线通信系统而需要高性能,小体积和低损耗滤波器。所以介质滤波器,腔体介质谐振滤波器的研究与开发,是今后滤波器发展的重点所在。 介质谐振器的工作原理 电磁壁理论 理想的导体壁(电磁率为零)在电磁理论中称为电壁,在电壁上,电场的切向分量为零,磁场的法向分量为零。电磁波入射到电壁上,将会完全反射回来,没有透射波穿透电壁。因此,用电壁围成一个封闭腔,一旦有适当频率的电磁波馈入,波将在腔的电壁上来回反射,在腔内形成电磁驻波,发生电磁谐振。此时即使外部停止向腔内馈送能量,已建立起来的电磁振荡仍将无衰减维持下去。可见电壁空腔是一种谐振器,电磁能量按一定频率在其中振荡。当然,非理想导体壁构成的空腔,也具有电壁空腔的类似特性,只不过外部停止馈送能量后,起内部已建立起来的电磁振荡,不会长期地维持下去,将随时间而逐渐衰减,终于消逝,成为阻尼振荡。谐振器中电磁振荡维持的时间的长短(时间常数)是其Q 值高低的一种度量。 高介电常数的介质的界面能使电磁波发生完全的或者近似完全的反射。当然,这两类的界面性质不同,其对电磁波的反射特性也不尽相同。电磁波在导体壁上的电场切向分量为零,故入射波与反射波的电场切向分量相消,仅有法向分量,因为合成场的电力线垂直导体表面,亦即垂直电壁;而在高介电常数的介质界面上,磁场的切向分量近似为零,入射波与反射波的磁场切向分量近似相消,合成场的磁力线近似垂直于介质界面。在电磁场理论中,垂直于磁力线的壁称为磁壁,故高介电常数的介质表面可以近似看为磁壁,只有时,才是真正的磁壁。在磁壁上,磁场切向分量为零,电场法向分量为零,它与电壁对偶。既然

滤波是信号处理中的一项基本而重要的技术

滤波是信号处理中的一项基本而重要的技术 信号在它的产生、转换、传输的每一个环节都可能由于环境和干扰的存在而畸变,甚至是在相当多的情况下,这种畸变还很严重,以致于信号及其所携带的信息被深深地埋在噪声当中了,所以滤波是信号处理中的一项基本而重要的技术。 滤波 滤波是将信号中特定波段频率滤除的操作,是抑制和防止干扰的一项重要措施。是根据观察某一随机过程的结果,对另一与之有关的随机过程进行估计的概率理论与方法。 滤波一词起源于通信理论,它是从含有干扰的接收信号中提取有用信号的一种技术。“接收信号”相当于被观测的随机过程,“有用信号”相当于被估计的随机过程。 这类问题在电子技术、航天科学、控制工程及其他科学技术部门中都是大量存在的。历史上最早考虑的是维纳滤波,后来R.E.卡尔曼和R.S.布西于20世纪60年代提出了卡尔曼滤波。现对一般的非线性滤波问题的研究相当活跃。 滤波技术的分类 信号分两类:连续的模拟信号和离散的数字信号。 所以,按所处理的信号来分类,滤波技术便分为两类:模拟滤波技术和数字滤波技术。数字滤波技术的核心是算法,但也并不是完全脱离硬件的。比如数字信号处理器(DSP)就是常见的数字滤波设备,除了滤波,DSP还会对数字信号进行变换、检测、谱分析、估计、压缩、识别等一系列的加工处理。 1、模拟滤波技术 一般都是通过硬件电路实现的。举个例子,比如——车身蓄电池提供的12V直流电源,它其实并不纯洁。除了纯净的12V恒压电源外,还掺杂着一些交流杂波。所以我们需要用电容、电感、电阻来组成硬件滤波电路,以频率为标识符来滤除这些杂波。硬件滤波的基本原理就是电容、电感的容抗和感抗与频率有关。 模拟滤波技术(硬件滤波技术)分为两类:无源滤波和有源滤波。

10种常用滤波方法

1、限幅滤波法(又称程序判断滤波法) A、方法: 根据经验判断,确定两次采样允许的最大偏差值(设为A) 每次检测到新值时判断: 如果本次值与上次值之差<=A,则本次值有效 如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值B、优点: 能有效克服因偶然因素引起的脉冲干扰 C、缺点 无法抑制那种周期性的干扰 平滑度差 2、中位值滤波法 A、方法: 连续采样N次(N取奇数) 把N次采样值按大小排列 取中间值为本次有效值 B、优点: 能有效克服因偶然因素引起的波动干扰 对温度、液位的变化缓慢的被测参数有良好的滤波效果 C、缺点: 对流量、速度等快速变化的参数不宜 3、算术平均滤波法 A、方法: 连续取N个采样值进行算术平均运算 N值较大时:信号平滑度较高,但灵敏度较低 N值较小时:信号平滑度较低,但灵敏度较高 N值的选取:一般流量,N=12;压力:N=4 B、优点: 适用于对一般具有随机干扰的信号进行滤波 这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动 C、缺点: 对于测量速度较慢或要求数据计算速度较快的实时控制不适用 比较浪费RAM 4、递推平均滤波法(又称滑动平均滤波法) A、方法: 把连续取N个采样值看成一个队列 队列的长度固定为N 每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则) 把队列中的N个数据进行算术平均运算,就可获得新的滤波结果 N值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~4 B、优点:

对周期性干扰有良好的抑制作用,平滑度高 适用于高频振荡的系统 C、缺点: 灵敏度低 对偶然出现的脉冲性干扰的抑制作用较差 不易消除由于脉冲干扰所引起的采样值偏差 不适用于脉冲干扰比较严重的场合 比较浪费RAM 5、中位值平均滤波法(又称防脉冲干扰平均滤波法) A、方法: 相当于“中位值滤波法”+“算术平均滤波法” 连续采样N个数据,去掉一个最大值和一个最小值 然后计算N-2个数据的算术平均值 N值的选取:3~14 B、优点: 融合了两种滤波法的优点 对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差C、缺点: 测量速度较慢,和算术平均滤波法一样 比较浪费RAM 6、限幅平均滤波法 A、方法: 相当于“限幅滤波法”+“递推平均滤波法” 每次采样到的新数据先进行限幅处理, 再送入队列进行递推平均滤波处理 B、优点: 融合了两种滤波法的优点 对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差C、缺点: 比较浪费RAM 7、一阶滞后滤波法 A、方法: 取a=0~1 本次滤波结果=(1-a)*本次采样值+a*上次滤波结果 B、优点: 对周期性干扰具有良好的抑制作用 适用于波动频率较高的场合 C、缺点: 相位滞后,灵敏度低 滞后程度取决于a值大小

解决信号线滤波的方法

解决信号线滤波的方法  ☆ 在电磁干扰抑制中,信号线滤波器起什么作用?   ☆ 信号线滤波器有那些种类?   ☆ 低通滤波器有许多电路结构,如单电容型、电感型、Γ型、π型、T型等种类,在实际中如何选择?   ☆ 直接将低通滤波器安装在线路板上电缆接口处可以吗?   ☆ 选用滤波器时,主要考虑哪些参数?   ☆ 选用滤波器时,怎样确定滤波器的截止频率?   ☆ 使用滤波连接器或滤波阵列板时要注意什么问题?  问:在电磁干扰抑制中,信号线滤波器起什么作用? 答:许多人感到不可理解的一个问题是为什么一台屏蔽十分严密的设备还是不能满足电磁兼容指标的要求。这 是忽略了电磁干扰泄漏的另一个主要途径电缆,如图1所示。  机箱内的干扰通过空间感应到电缆上,在电缆上产生了电流,这个电流流到机箱外部,并产生二次辐射, 导致设备产生超标辐射发射。同样,机箱外部的电磁波干扰感应到电缆上,在电缆上产生的电流流进机箱,产 生二次辐射,对机箱内的电路造成干扰。  图1 电缆电磁能量泄漏的主要途径  因为电缆是一根高效的电磁波接收和发射天线,因此在实际中,电缆通过以上机理产生的干扰是十分严重 的。解决这个问题的最有效方法是在电缆的端口上安装滤波器,这就是信号滤波器。安装了信号滤波器的情况 如图2所示,这时已经没有了干扰。  图2 安装了信号滤波器的设备不再有干扰  实际在任何屏蔽体上,导线进出屏蔽体的部位都要使用适当的信号滤波器。否则,再完善的屏蔽也会受到 破坏。这个原则也适用于电路之间的隔离,如图3所示。如果两部分之间的隔离板上没有滤波器,则即使有了 隔离板,电路之间也不能保证良好的隔离。  因此所有的屏蔽、隔离都必须与滤波配合起来使用才能奏效。

非线性滤波算法

SINS/CNS组合导航技术 众所周知,SINS和CNS具有很强的互补性。将CNS与SINS组合,构成SINS/CNS自主组合导航系统,既能有效弥补SINS误差随时间积累的缺陷,又能弥补CNS平台结构设计难度大、结构复杂、成本高的缺陷。显然,SINS/CNS 自主组合系统兼备了SINS、CNS两者的优点,相互取长补短,不但抗干扰能力强、而且自主性能好,定位精度高,非常适合飞机对导航系统性能的要求。SINS/CNS组合导航的技术难点 1. 需要设计一套具有实时性和可行性的SINS/CNS自主组合导航系统方案,具体化各子传感器技术指标,使得各子传感器指标可考核;各传感器信息既互相兼容、互补和辅助,又能有效地进行信息交换。 2. 在某些特定情况下,系统的线性化数学模型的确能够反映出实际系统或过程的实际性能和特点。但是,任何实际系统总是存在不同程度的非线性,其中有些系统可以近似看成线性系统,而大多系统则不能仅用线性数学模型来描述,存在于这些系统中的非线性因素不能忽略。 3.SINS/CNS组合导航系统利用CNS输出的位置信息对SINS进行修正,能够克服SINS导航误差随时间积累的缺点,提高导航系统的定位精度。然而,由于CNS导航系统星图匹配及定位时需要耗用的不等的匹配计算时间,导航数据输出存在时延现象,导致其输出的位置及航向信息具有滞后效应,这将严重影响组合导航的解算精度。 本项目为了贴近实际工程系统,建立的自主组合导航系统模型为非线性数学模型。显然,卡尔曼滤波不能满足项目需求,必须建立与之相适应的非线性滤波系统。 扩展卡尔曼滤波(Extended KalmanFilter,EKF)在组合导航系统非线性滤波中得到了广泛应用,但它仍然具有理论局限性,具体表现在:(1)当系统非线性度较严重时,忽略Taylor展开式的高阶项将引起线性化误差增大,导致EKF的滤波误差增大甚至发散;(2)雅可比矩阵的求取复杂、计算量大,在实际应用中很难实施,有时甚至很难得到非线性函数的雅可比矩阵;(3)EKF将状态方程中的模型误差作为过程噪声来处理,且假设为高斯白噪声,这与组合导航系统的实际噪声情况并不相符;同时,EKF是以KF为基础推导得到的,其对系统初始状态的统计特性要求严格。因此EKF关于系统模型不确定性的鲁棒性很差。 模型预测滤波器(Models Predictive Filter,MPF)是基于最小模型误差(Minimum Model Error,MME)准则对系统状态进行估计,模型误差在估计过程中被确定并用于修正系统的动态模型。这种滤波器能够有效地解决存在显著动态模型误差情况下的非线性系统状态估计问题。EKF将模型误差作为过程白噪声

数字图像处理实验报告:灰度变换与空间滤波(附带程序,不看后悔)

1.灰度变换与空间滤波 一种成熟的医学技术被用于检测电子显微镜生成的某类图像。为简化检测任务,技术决定采用数字图像处理技术。发现了如下问题:(1)明亮且孤立的点是不感兴趣的点;(2)清晰度不够,特别是边缘区域不明显;(3)一些图像的对比度不够;(4)技术人员发现某些关键的信息只在灰度值为I1-I2 的范围,因此,技术人员想保留I1-I2 区间范围的图像,将其余灰度值显示为黑色。(5)将处理后的I1-I2 范围内的图像,线性扩展到0-255 灰度,以适应于液晶显示器的显示。请结合本章的数字图像处理处理,帮助技术人员解决这些问题。 1.1 问题分析及多种方法提出 (1)明亮且孤立的点是不够感兴趣的点 对于明亮且孤立的点,其应为脉冲且灰度值为255(uint8)噪声,即盐噪声,为此,首先对下载的细胞图像增加盐噪声,再选择不同滤波方式进行滤除。 均值滤波:均值滤波是典型的线性滤波算法,它是指在图像上对目标像素给一个模板,该模板包括了其周围的临近像素(以目标像素为中心的周围8 个像素,构成一个滤波模板,即去掉目标像素本身),再用模板中的全体像素的平均值来代替原来像素值。 优点:速度快,实现简单; 缺点:均值滤波本身存在着固有的缺陷,即它不能很好地保护图像细节,在图像去噪的同时也破坏了图像的细节部分,从而使图像变得模糊,不能很好地去除噪声点。 其公式如下: 使用矩阵表示该滤波器则为: 中值滤波:

滤除盐噪声首选的方法应为中值滤波,中值滤波法是一种非线性平滑技术,它将每一像素点的灰度值设置为该点某邻域窗口内的所有像素点灰度值的中值。 其过程为: a、存储像素1,像素2 ....... 像素9 的值; b、对像素值进行排序操作; c、像素5 的值即为数组排序后的中值。优点:由于中值滤波本身为一种利用统计排序方法进行的非线性滤波方法,故可以滤除在排列矩阵两边分布的脉冲噪声,并较好的保留图像的细节信息。 缺点:当噪声密度较大时,使用中值滤波后,仍然会有较多的噪声点出现。自适应中值滤波: 自适应的中值滤波器也需要一个矩形的窗口S xy ,和常规中值滤波器不同的是这个窗口的大小会在滤波处理的过程中进行改变(增大)。需要注意的是,滤波器的输出是一个像素值,该值用来替换点(x, y)处的像素值,点(x, y)是滤波窗口的中心位置。 其涉及到以下几个参数: 其计算过程如下:

10种简单的数值滤波方法

单片机利用软件抗干扰的几种滤波方法 1、限幅滤波法(又称程序判断滤波法) A、方法: 根据经验判断,确定两次采样允许的最大偏差值(设为A),每次检测到新值时判断: 如果本次值与上次值之差<=A,则本次值有效; 如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值。 B、优点: 能有效克服因偶然因素引起的脉冲干扰。 C、缺点 无法抑制那种周期性的干扰,平滑度差。 2、中位值滤波法 A、方法: 连续采样N次(N取奇数),把N次采样值按大小排列,取中间值为本次有效值。 B、优点: 能有效克服因偶然因素引起的波动干扰,对温度、液位的变化缓慢的被测参数有良好的滤波效果。 C、缺点: 对流量、速度等快速变化的参数不宜。 3、算术平均滤波法 A、方法: 连续取N个采样值进行算术平均运算,N值较大时:信号平滑度较高,但灵敏度较低;N值较小时:信号平滑度较低,但灵敏度较高;N值的选取:一般流量,N=12;压力:N=4。 B、优点: 适用于对一般具有随机干扰的信号进行滤波,这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动。 C、缺点: 对于测量速度较慢或要求数据计算速度较快的实时控制不适用,比较浪费RAM。 4、递推平均滤波法(又称滑动平均滤波法)。 A、方法: 把连续取N个采样值看成一个队列,队列的长度固定为N,每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则),把队列中的N个数据进行算术平均运算,就可获得新的滤波结果。N值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~4。 B、优点: 对周期性干扰有良好的抑制作用,平滑度高,适用于高频振荡的系统 C、缺点: 灵敏度低,对偶然出现的脉冲性干扰的抑制作用较差,不易消除由于脉冲干扰所引起的采样值偏差,不适用于脉冲干扰比较严重的场合,比较浪费RAM。 5、中位值平均滤波法(又称防脉冲干扰平均滤波法) A、方法: 相当于“中位值滤波法”+“算术平均滤波法”,连续采样N个数据,去掉一个最大值和一个最小值,然后计算N-2个数据的算术平均值,N值的选取:3~14, B、优点: 融合了两种滤波法的优点,对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差。 C、缺点: 测量速度较慢,和算术平均滤波法一样,比较浪费RAM。 6、限幅平均滤波法

常用的软件滤波方法(工程师必备).

软件滤波在嵌入式的数据采集和处理中有着很重要的作用,这10种方法各有优劣,根据自己的需要选择。同时提供了C语言的参考代码,希望对各位能有帮助。 1、限幅滤波法(又称程序判断滤波法) A、方法: 根据经验判断,确定两次采样允许的最大偏差值(设为A) 每次检测到新值时判断: 如果本次值与上次值之差<=A,则本次值有效 如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值 B、优点: 能有效克服因偶然因素引起的脉冲干扰 C、缺点 无法抑制那种周期性的干扰 平滑度差 /* A值可根据实际情况调整 value为有效值,new_value为当前采样值 滤波程序返回有效的实际值 */ #define A 10 char value; char filter()

char new_value; new_value = get_ad(); if ( ( new_value - value > A ) || ( value - new_value > A ) return value; return new_value; } 2、中位值滤波法 A、方法: 连续采样N次(N取奇数) 把N次采样值按大小排列 取中间值为本次有效值 B、优点: 能有效克服因偶然因素引起的波动干扰 对温度、液位的变化缓慢的被测参数有良好的滤波效果 C、缺点: 对流量、速度等快速变化的参数不宜 /* N值可根据实际情况调整 排序采用冒泡法*/ #define N 11

char filter() { char value_buf[N]; char count,i,j,temp; for ( count=0;countvalue_buf[i+1] ) { temp = value_buf[i]; value_buf[i] = value_buf[i+1]; value_buf[i+1] = temp; } } }

实时数字滤波器模式选择以及作用和原理

用来实时地过滤被测量的信号的实时数字滤波器,用户可以自定义;滤波器特性以满足特殊的应用的需求。实时数字滤波器应用于数据调节阶段。滤波器模式选择是通过图形化的设计工具来进行设置的,然后上传到设备以供实时计算。在这个图形化设计工具中,滤波器纵轴以dB为单位,横轴为相应频率。 例如,用户可能需要查看一个特定频率带宽内的能量分布,而不是整个频谱。这可以通过创建带通滤波器然后将RMS算子应用于滤波器的输出来完成。 下图显示了用于在EDM软件中定义实时过滤器的流程图。左侧的图标CH1表示需要被测量的原始时域信号。它连接到一个IIR滤波器,IIR滤波器计算一个名为iirfilter(ch1)的信号,该信号再连接到RMS算子。RMS算子的输出rms(iirfilter(ch1))的信号。 实时数字滤波器包括三种类型的数字滤波器:有限脉冲响应滤波器(FIR),无限脉冲响应滤波器(IIR),抽取滤波器。对于FIR和IIR滤波器,你可通过多种方式指定为:低通,高通,带通或者带阻滤波器。 本章首先解释了一些滤波器的设计理论,然后介绍EDM软件和Spider设备中的滤波器操作。滤波器设计的目标是根据用户指定的标准计算一系列滤波器系数。这些标准通常由以下变量描述: 滤波器系数的数量:这也被称为过滤器的阶次。过滤器的阶次决定了需要用多少系数是来定义滤波器。滤波器阶次越低,包含的系数越少。但是它的响应却比高阶次的快,因此滤波器的输入和输出之间的时间滞后更少。 截止频率:对于低通或者高通滤波器,只需要一个截止频率。带通或者带阻

滤波器则需要两个截止频率来定义滤波器。图2显示了典型的带通滤波器设置,其中两个截止频率设置为约0.1和0.4Hz。 阻带衰减:这个规范定义了多少输入信号在阻断的频率范围内会被截断。理论上来说,衰减越高,过滤得效果越好。在图2中,低于0.25Hz的最大带阻衰减大于40dB。 通带波纹:这是数字滤波器中一个不可避免的特性。它指的是过渡频率外的滤波形状的波动。如果需要一个非常平坦的滤波器,那就可以选择一个比较低的带通波纹。图2中,在带阻的区域可以看到波纹,但是在带通的区域看不到波纹。理想情况下,通带应该是非常平坦的,在阻带的地方可以有波纹。 过渡频带宽度:这指的是通带和阻带区域之间的过滤器波形。理想情况下,这个过渡频带应该是非常小的。但是,一个很窄的过渡频带需要一个更高阶的过滤器,它影响了过滤器的响应时间,也可能会影响波纹。在图2中,过滤频带是0.05至0.1和0.4至0.45。 大多数情况下,不同滤波器作用是不同,滤波器设计包括最小化滤波器的阶数,波纹,过渡频带宽度,和响应时间之间作出权衡。不是所有条件都可以同时满足。过滤器设计可以是一个反复的过程,不同滤波器模式的选择经验是有

基于matlab的语音信号滤波处理

指导教师: 日期: 《数字信号处理》课程设计 题目:基于matlab的语音信号滤波处理 姓名: 院系:电子信息工程系 专业:电子信息工程专业 班级: 092 学号: 指导教师: 2012年6 月

基于matlab的语音信号滤波处理 Xxx (电子信息工程学系指导教师:xxx) 摘要:语音信号处理是研究用数字信号处理技术和语音学知识对语音信号进行处理的新兴的学科,是目前发展最为迅速的信息科学研究领域的核心技术之一。文章中对录制的语音信号进行采样,分析其时域波形和频谱图。再此基础加入高斯白噪声和正弦噪声,根据其频谱特性,给定数字滤波器的性能指标,并设计巴特沃斯低通滤波器,对语音信号进行滤波,得到滤波前后的信号幅频响应,对比滤波前后的语音波形和频谱。 关键词:Matlab;语音信号;傅里叶变换;信号处理;滤波器 一、引言 1.1、MATLAB简介 Matlab是一套高性能的数值计算和可视化软件,它集数值分析、矩阵计算、信号处理和图形显示于一体,构成了方便、友好的用户界面环境。MATLAB提供的信号处理(signal processing)工具箱函数, 为数字滤波器的设计和语音信号的处理提供了强有力的工具。Matlab语言是一种数据分析和处理功能十分强大的计算机应用软件,它可以将声音文件变换为离散的数据文件,然后利用其强大的矩阵运算能力处理数据,如数字滤波、傅里叶变换、时域和频域分析、声音回放以及各种图的呈现等,它的信号处理与分析工具箱为语音信号分析提供了十分丰富的功能函数,利用这些功能函数可以快捷而又方便地完成语音信号的处理和分析以及信号的可视化,使人机交互更加便捷。信号处理是Matlab重要应用的领域之一。 1.2、背景及意义 语音信号处理是一门比较实用的电子工程的专业课程,语音是人类获取信息的重要来源和利用信息的重要手段。通过语言相互传递信息是人类最重要的基本功能之一。语言是人类特有的功能,它是创造和记载几千年人类文明史的根本手段,没有语言就没有今天的人类文明。语音是语言的声学表现,是相互传递信息的最重要的手段,是人类最重要、最有效、最常用和最方便的交换信息的形式。 语音信号处理是研究用数字信号处理技术对语音信号进行处理的一门学科,它是一门新兴的学科,同时又是综合性的多学科领域和涉及面很广的交叉学科。 二、设计的目的及内容 2.1、设计目的 1、了解语音信号的产生、采集,能绘制语音信号的频率响应曲线及频谱图; 2、学会用matlab对语音信号进行分析和处理; 3、掌握用滤波器去除语音噪声的方法,观察去噪前后的语音信号。 2.2、研究内容 本论文主要介绍的是的语音信号的简单处理。本论文针对以上问题,运用数字信号学基本原理实现语音信号的处理,在matlab7.1环境下综合运用信号提取,幅频变换以及傅里叶变换、滤波等技术来

非线性滤波除噪技术综述

非线性滤波除噪技术综述 马义德张祥光 兰州大学信息科学与工程学院,兰州 730000 (Email: ydma@https://www.360docs.net/doc/c016425013.html, ) 【摘要】本文阐述了以中值滤波为代表的传统非线性滤波方法以及以形态滤波为代表的新型非线性滤波方法的发展现状,指明自然图像的多样性和噪声本身的复杂性是实现图像滤除噪声的难点,只有将自适应机制、自组织能力、自学习能力与传统的成熟滤波算法相结合,才能使非线性滤波算法彻底摆脱图像多样性和噪声复杂性的困扰。 【关键词】图像复原中值滤波形态滤波遗传算法模糊数学神经网络 1、引言 在不同的应用场合中,存在着不同类型的噪声影响。按噪声对信号的影响可分为加性噪声和乘性噪声两大类[1]。在计算机视觉和数字图像处理中,噪声的消除一直是人们关注的重点。在一些应用领域,例如基于计算图像导数的算子中,图像中的任何一点噪声都会导致严重的错误。噪声与要研究的对象不相关,它以无用的信息形式出现,扰乱图像的可观测信息。噪声可被译成或多或少的极值,这些极值通过加减作用于一些象素的真实灰度级上,在图像上造成黑白亮暗点干扰,极大降低了图像质量,影响图像复原、分割、特征提取、图像识别等后继工作的进行。因而对其抑制处理是图像处理中非常重要的一项工作。 在数字信号处理和数字图像处理的早期研究中,线性滤波器是噪声抑制处理的主要手段。线性滤波器简单的数学表达形式以及某些理想特性使其很容易设计和实现。然而,当信号频谱与噪声频谱混叠时或者当信号中含有非叠加性噪声时(例如由系统非线性引起的噪声或存在非高斯噪声等),线性滤波器的处理结果就很难令人满意。在处理图像时,传统的线性滤波器在滤除噪声的同时,往往会严重模糊图像细节(如边缘等),而且不能有效滤除椒盐噪声。就是说,线性滤波器在信号与噪声彼此相关情况下不能很好工作。虽然人类视觉的确切特性目前还未完全揭示出来,但许多实验表明,人类视觉系统的第一处理级是非线性的。基于上述原因,早在1958年维纳(Wiener)就提出了非线性滤波理论。非线性滤波器在一定程度上克服了线性滤波器的这一缺点。由于它能够在滤除噪声的同时,最大限度地保持了图像信号的高频细节,使图像清晰、逼真,从而得到广泛应用和研究。目前已有很多比较经典的非线性滤波算法,如:中值滤波[2]、形态滤波[3]、层叠滤波[4]以及基于中值滤波的一些改进滤波算法等。 一般图像处理过程如图1-1图像处理链状图所示,包含以下五项不同的工作: ①图像预处理:具体又分为噪声去除、图像增强、边缘检测以及去模糊等。 ②数据简化:具体又分为图像压缩和特征提取等。 ③分割:具体包括纹理分割、颜色识别和分类等。 ④目标识别:具体包括模板匹配以及基于特征的识别等。 1

(整理)11种滤波方法+范例代码.

软件滤波算法(转载) 这几天做一个流量检测的东西,其中用到了对数据的处理部分,试了很多种方法,从网上找到这些个滤波算法,贴出来记下 需要注意的是如果用到求平均值的话,注意总和变量是否有溢出,程序没必要照搬,主要学习这些方法,相信做东西的时候都能用得上 1、限幅滤波法(又称程序判断滤波法) A、方法: 根据经验判断,确定两次采样允许的最大偏差值(设为A) 每次检测到新值时判断: 如果本次值与上次值之差<=A,则本次值有效 如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值 B、优点: 能有效克服因偶然因素引起的脉冲干扰 C、缺点 无法抑制那种周期性的干扰 平滑度差 2、中位值滤波法 A、方法: 连续采样N次(N取奇数) 把N次采样值按大小排列 取中间值为本次有效值 B、优点: 能有效克服因偶然因素引起的波动干扰 对温度、液位的变化缓慢的被测参数有良好的滤波效果 C、缺点: 对流量、速度等快速变化的参数不宜 3、算术平均滤波法 A、方法: 连续取N个采样值进行算术平均运算 N值较大时:信号平滑度较高,但灵敏度较低 N值较小时:信号平滑度较低,但灵敏度较高 N值的选取:一般流量,N=12;压力:N=4 B、优点:

适用于对一般具有随机干扰的信号进行滤波 这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动 C、缺点: 对于测量速度较慢或要求数据计算速度较快的实时控制不适用 比较浪费RAM 4、递推平均滤波法(又称滑动平均滤波法) A、方法: 把连续取N个采样值看成一个队列 队列的长度固定为N 每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则) 把队列中的N个数据进行算术平均运算,就可获得新的滤波结果 N值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~4 B、优点: 对周期性干扰有良好的抑制作用,平滑度高 适用于高频振荡的系统 C、缺点: 灵敏度低 对偶然出现的脉冲性干扰的抑制作用较差 不易消除由于脉冲干扰所引起的采样值偏差 不适用于脉冲干扰比较严重的场合 比较浪费RAM 5、中位值平均滤波法(又称防脉冲干扰平均滤波法) A、方法: 相当于“中位值滤波法”+“算术平均滤波法” 连续采样N个数据,去掉一个最大值和一个最小值 然后计算N-2个数据的算术平均值 N值的选取:3~14 B、优点: 融合了两种滤波法的优点 对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差 C、缺点: 测量速度较慢,和算术平均滤波法一样 比较浪费RAM

十种数字滤波方法

1、限幅滤波法(又称程序判断滤波法) A、方法: 根据经验判断,确定两次采样允许的最大偏差值(设为A) 每次检测到新值时判断: 如果本次值与上次值之差<=A,则本次值有效 如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值 B、优点: 能有效克服因偶然因素引起的脉冲干扰 C、缺点 无法抑制那种周期性的干扰 平滑度差 2、中位值滤波法 A、方法: 连续采样N次(N取奇数) 把N次采样值按大小排列 取中间值为本次有效值 B、优点: 能有效克服因偶然因素引起的波动干扰 对温度、液位的变化缓慢的被测参数有良好的滤波效果 自动化科协 C、缺点: 对流量、速度等快速变化的参数不宜 3、算术平均滤波法 A、方法: 连续取N个采样值进行算术平均运算 N值较大时:信号平滑度较高,但灵敏度较低 N值较小时:信号平滑度较低,但灵敏度较高 N值的选取:一般流量,N=12;压力:N=4 B、优点: 适用于对一般具有随机干扰的信号进行滤波 这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动 C、缺点: 对于测量速度较慢或要求数据计算速度较快的实时控制不适用 比较浪费RAM 4、递推平均滤波法(又称滑动平均滤波法) A、方法: 把连续取N个采样值看成一个队列 队列的长度固定为N 每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则) 把队列中的N个数据进行算术平均运算,就可获得新的滤波结果

N值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~4 B、优点: 对周期性干扰有良好的抑制作用,平滑度高 适用于高频振荡的系统 C、缺点: 灵敏度低 对偶然出现的脉冲性干扰的抑制作用较差 不易消除由于脉冲干扰所引起的采样值偏差 不适用于脉冲干扰比较严重的场合 比较浪费RAM 5、中位值平均滤波法(又称防脉冲干扰平均滤波法) A、方法: 相当于“中位值滤波法”+“算术平均滤波法” 连续采样N个数据,去掉一个最大值和一个最小值 然后计算N-2个数据的算术平均值 N值的选取:3~14 B、优点: 融合了两种滤波法的优点 对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差 C、缺点: 自动化科协 测量速度较慢,和算术平均滤波法一样 比较浪费RAM 6、限幅平均滤波法 A、方法: 相当于“限幅滤波法”+“递推平均滤波法” 每次采样到的新数据先进行限幅处理, 再送入队列进行递推平均滤波处理 B、优点: 融合了两种滤波法的优点 对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差 C、缺点: 比较浪费RAM 7、一阶滞后滤波法 A、方法: 取a=0~1 本次滤波结果=(1-a)*本次采样值+a*上次滤波结果 B、优点: 对周期性干扰具有良好的抑制作用 适用于波动频率较高的场合 C、缺点:

形态滤波技术及其在继电保护中的应用

形态滤波技术及其在继电保护中的应用 发表时间:2018-07-06T10:57:40.857Z 来源:《电力设备》2018年第9期作者:陈昊明1 彭友华2 陈飞2 刘洋2 [导读] 摘要:众所周知,小波变换是近年来被采用的较为广泛地积分变换工具,与之同样频繁采用的是傅里叶变换积分工具。 (1国网安徽省电力有限公司池州市贵池区供电公司安徽池州 247000;2国网安徽省电力有限公司池州供电公司安徽池州 247000) 摘要:众所周知,小波变换是近年来被采用的较为广泛地积分变换工具,与之同样频繁采用的是傅里叶变换积分工具。工程技术人员在计算电力系统电压电流的基波分量提取与谐波的暂态突变量提取中广泛应用该积分工具。形态滤波技术主要应用到的数学形态学运算方法主要有多分辨形态学梯度,还有数学形态学信号分解方法。两种形态学算法在很大程度上促进了心态滤波技术在继电保护工作中的应 用。 关键词:形态滤波技术;继电保护;应用 形态滤波技术的概念源于数学形态学,因此对形态滤波技术进行分析时,则要先对数学形态学概念有所了解。数学形态学概念是建立在集合论和几何微积分两大概念基础之上的,能够进行形态提取和分解。通过形态滤波技术的使用,能够分解一维信号,还能对二维图形进行分解,而一维信号和二维图形的分解过程中往往需要使用大量计算公式,而通过形态滤波技术的使用,能简化计算过程,对滤波形态特征反映也较为清晰。 1形态学基本论述 1.1形态学的运算方式 数学形态学是一门以严格数学理论基础建立的运算学科,它的基本思想和数据处理方法对于图像处理方向上的理论和技术都产生了相当重大的影响。同时因为它具有完备的数学理论基础,使形态学在图像分析与处理、形态滤波特性分析和统计上奠定了坚实的基础。形态学运算主要由腐蚀和扩张两种基本运算有效结合组成,这种数学形态学图像处理方式能够有效的对图形形状和结构分析处理。数学形态学是通过一组形态学代数运算子组成,这种结构很好的完成图像分割、边缘检测和特征抽取等工作。同时数学形态学图像处理方法对于形态滤波特性的分析十分重要。形态滤波技术就是由此诞生。 1.2形态滤波的概念 形态滤波是基于数学形态学理论基础建立的一种波形处理分析方式。不仅能用于探测部分对目标图像进行波形分析,同时也是一种非线性变化形式。形态滤波利用二值形态学运算方法进行数据处理,其中包括一维输入信号和结构元素。形态滤波将两个特定字符表示成两个函数,一个函数用来表示腐蚀与扩张函数的本影,通过相关联量得出新的函数本影。通过运用二值形态学运算方式,以一个函数本影推论出腐蚀和扩张函数的计算公式。 1.3本影与函数关系 一维与二维信号之间存在本质区别,一维信号主要是以集合的方式变现的。通过图像表现出空白的背景和主要的阴影区域。而两者通常采用不一样的数学符号来表示。函数本影描述的主要是函数由二值形态演变而来的过程。 2关于多分辨形态学梯度技术 形态学梯度技术主要是用来处理图像和信号,结构函数的元素以及位置对形态学梯度运算模式产生影响,同时部分极大值和极小值也会对运算结果产生很大的影响。形态学的梯度结果直接受到结构函数中极大值和极小值差关系的影响。在运用多分辨形态学梯度技术时,不仅要重视暂态信号的处理过程,还要合理控制有效信号中的稳态分量。因为考虑到原点所在位置不同而设计出来的多变结构元素,在处理电力系统中暂存信号时可以参考。对形态学梯度技术中突出波形的特征展开观察分析,可以使形态学梯度技术在保护暂态中使用功能更加强大。在形态学梯度技术中,将较为合理的梯度级数设计,将设计结构元素保留一定宽度,都会对暂态信号在电力系统的研究探讨提供重要作用。在测量电力系统中电压分量波形时,要将和地面有接触的输电系统故障设置好,然后再通过其信号分量来进行信号基波分量测试。通过测试明显可以看出故障产生主要是因为行波自性故障的出现以及电弧产生的故障分量这两种原因。因此要有效保护电力系统中的暂态,就必须有效识别和提取暂态的波头,电力系统的故障测试以及暂态保护结果都会因此受到很大影响。在暂态保护中使用多分辨形态学,就需要使用多分辨形态学梯度级数对暂态信号和波形来采样和分析,此外还有将电压信号对电力系统运行稳定性影响充分考虑。多种结构元素存在形态学梯度中,在对扁平结构元素进行设计时,要将初始宽度先进行设置,从而再将多分辨形态学梯度级数合理设置,这时的梯度对暂态波头运行时间影响较大,同时对波头来源分析也有重要作用。除此之外,研究人员通过更换数据窗和使用中心频率小波来实现对应信号的更换。因为中心频率小波具有延时性长特点,因此显示更具有规律性,接受范围较广。现目前,形态学运算只涉及简单加减法,并没有专门针对复杂积分变化过程展开运算,因而计算量小操作也相对方便。 3形态学分解的应用 3.1定义 形态学信号分解主要是通过对时域信号中存在的复杂信息进行分析处理,从而能够得到定性定量的分析结果。在实际运行分析处理时,它主要是利用空间的转化来完成的。也就是将复杂时域信号通过特殊方式变化到新的空间当中去,然后通过运用应用形态学的原理,以众多简单的信号分量作参考利用函数进行数据信息分析,主要用到的函数由复指数函数和三角函数等。了解了二值的基本运算方法后,通常我们就可以将二值运算运用到新的领域中形态学运算过程里去。从而得到更多的处理信号波形技术,并结合形态学分解应用,将形态学滤波技术合理运用到继电保护应用当中去。 3.2识别励磁涌流时形态学信号分解技术的应用 通过使用形态学信号分解技术来识别变压器中存在的励磁涌流。变压器励磁涌流中的输入电流信号通常同时包含正波形和负波形,所以要想提高其中的信号分解精准度,就必须要把每一个信号都进行二次分解处理。通过这种方式,可以先把正信号进行一次分解,然后在第二次分解时,将反信号也分解出来。所以,形态学信号分解技术在变压器励磁涌流识别中的作用非常巨大。结构函数在应用过程中,形态学信号分解的目标主要是对滤波信号进行多次分解,从而揭示出励磁涌流存在所具有的独特意义。通常使用形态学信号分解技术对变压器励磁涌流分析结果时,如果结构函数中的第一级宽度中具有两个采样点,然后再以三个采样点增加,那么形态学信号分解级数就变成了两级。所以我们可以得出这样的结论:比间断角还小的部分通常被分解了出去,而比间断角大的或者与其相等的部分则都会保存下来。分解中的故障电流通常会产生不定向偏移。所以我恩可以从形态学信号分解出图形中查看到继电设备励磁涌流的波形状态。

相关文档
最新文档