输电线路除冰技术与装置

输电线路除冰技术与装置
输电线路除冰技术与装置

李培国1,高继法2,李永军2,王钰1

(1.中国电力科学研究院,北京 100085 2.大庆石油管理局电力总公司,黑

龙江大庆 163453)

摘要:介绍了用于输电线路除冰的技术及相应设备,重点介绍了美国在电脉冲除冰方面的研究情况及俄罗斯利用可控硅整流技术研制的融冰与无功静补

双用途综合装置的情况。

关键词:输电线路;除冰;技术;装置

0 引言

高寒地区输电线路冬季因受冰雪危害引起的供电中断事故通常都是较严

重的,其修复工作难度大,周期长,停电影响面积广,因此一直是全世界范围内需要解决的难点问题。各国的研究人员设计出不少方案,用以提前将导线上的积雪、覆冰去除,避免引起击穿、断线舞动等事故。目前常用的方法仍然是采用增加线路电流使之发热将冰雪融化防患于未然[1]。另外,也有研究者提出了电脉冲除冰的方法[2],并做了许多试验工作,虽然最终未获成功,却也积累了许多宝贵经验。

冰害对电力系统来讲是个季节性危害,为除冰而配置的变电站设备,其使用也是季节性的;而且,即使是在冬季,除冰装置也不是一直在使用,而是短时使用。如果在非除冰时间将其闲置不用也是一种比较大的浪费,因而有些研究者提出的将加热融冰设备与无功静止补偿装置合二为一的方案[1],从技术经济比较上应具有较大优势,并且获得了一定的运行经验,是值得推广的。

1 电脉冲除冰的尝试

据文献[2]介绍,电脉冲除冰(Electro-Impulse De-Icing,简称EIDI)技术出现于第二次世界大战之前,其基本原理即是采用电容器组向线圈放电,由线圈产生强磁场,在置于线圈附近的导电板(即目标物)上产生一个幅值高、持续时间短的机械力,从而使冰破裂而脱落。此方法在飞机除冰方面有成功的经验[2],在此情况下,导电极即是飞机机翼或其它部位的铝质表面。当施加此脉冲时,电动力引起铝质表面轻微的收缩和扩张,使得附着在上面的冰滑落,从而达到除冰的目的。

EIDI装置的电气原理如图1所示。

图1 EIDI 装置电气原理

图1中的目标物可以是待除冰物体(比如飞机机翼),或者是铝板(此铝板与待除冰物体相连接),或者是另一个线圈(此线圈与待除冰物体相连)。对输电线路除冰,目标物可以是后两种形式。

美国堪萨斯州的Wichita州立大学提出的输电线路EIDI装置示意图如图2所示。

图2 输电线路EIDI装置安装示意

每根电线杆上安装1个EIDI单元,其中包括了贮能电容器,可控硅及相应的电子线路。每个柱上单元可以带6组EIDI执行器,每一个执行器包括脉冲线圈和目标物,目标物是与导线直接相连的线圈。贮能电容器及EIDI单元中其它部件直接由线路上的电流互感器或电压互感器供电。EIDI单元可以遥控,并且可以通过几种形式的冰探测器来自动控制其动作:当探测器给出指示覆冰情况的信号后,EIDI单元动作,向执行器中的脉冲线圈发出脉冲电流,执行器由此获得的冲击力将使冰雪从导线脱落。在对所设计的EIDI装置进行改进并用于实际线路除冰之前,研究者成功地将一段3m长,477MCM ACSR型导线上12.5mm厚的覆冰去除,说明此方法有可能在实际线路上取得成功。此试验中贮能电容器为600μF,充电电压为1.75kV,估算的冲击力约4.5kN,模拟线路档距张力约2kN。

但是,当将此装置(仍使用600μF,1.75kV)用于专门建设的100m长档距的试验线段上时,它仅能去除约3~5m长的一段上的覆冰,脉冲振动虽然能继续沿导线向档距中部传播,但空间陡度已不足以使覆冰脱落。试验中覆冰厚度从0~18mm变化,并不影响有效去除覆冰段的长度。将充电电压增加至2.2kV 可以明显改善除冰能力,但由于此时导线运动过分剧烈,因此试验没有继续往下进行。

文献[2]的作者们停止了他们的研究工作,一方面是因为技术上还不成熟,

试验没有达到预期的目的,另一方面是考虑到每根杆上都装设EIDI设备,费用过高。不过此技术的优点也是明显的,主要是没有运动部件,安全可靠。

2 加热融冰技术--用于加热融冰与无功静补的双用途可控硅整流装置

目前技术上较成熟的高压输电线路自动除冰技术是采用增加导线中的电流,使之超过工作电流,引起导线发热,从而使附着在导线上的冰、雪、雾凇等融化脱落,达到去除它们的目的。加热融冰技术既可采用交流电流,也可采用直流电流。冰害较严重的前苏联自1972年开始使用二极管整流装置融冰,现在则采用可控硅整流装置[1]。

可控硅技术发展到今天,建造融冰用的各种电压、电流可控整流装置已不成问题,主要还是对具体工程而言其技术经济比较上是否满足要求。考虑到融冰装置每年只工作有限的天数,在其余时间就可以将其整流部分用于其它的功能,比如其可控硅整流器用作无功静止补偿。这样,从综合的技术经济比较上采用可控硅整流融冰就是合算的了。

根据这种思路,俄罗斯直流研究院(НИИПТ)研制成功了两个电压等级的可控硅整流融冰装置[1]:14kV(由11kV交流母线供电)和50kV(由38.5kV 交流母线供电)。14kV装置的额定功率为14MW(型号ВУПГ-1000-14),50kV装置的额定功率为50MW(型号ВУПГ-1000-50)。50MW装置于1994

年在变电站投运,用于一条315km长的110kV输电线路的除冰。

这种融冰装置包括1台型号为ТДТН-40000/40000/40000的三绕组(115/38.5/11.0kV)变压器、具有典型保护的高低压侧开关和刀闸、可控硅整流器ВУПГ-1000-50(包括控制系统、调节系统、保护系统、自动化系统、整流阀强迫空冷系统等)、连接110kV线路和融冰装置的母线及开关装置。

通过计算选定采用板状可控硅(型号Т153-630)。每个阀包含40个串联的单元(预留10﹪裕度),每个单元都具有分压和阻尼回路、控制脉冲形成回路和可控硅阳极保护回路。可控硅的控制采用电缆--变压器系统。可控硅单元如图3 所示:

整流器置于配电装置区专门的小间内,此小间的墙壁为发泡聚胺酯制作,其中安装有三相交流和直流正、负极绝缘子(套管)。循环冷却空气由位于零电位的风扇供给。为了保证在长期闲置后的安全投运,专门设计了空气加热器,用于对可控硅阀的元件进行预热干燥。

可控硅整流融冰装置工作时要在电网中产生电流和电压谐波,应该在交、直流两侧安装滤波器。考虑到滤波装置造价较高,用户同意不安装滤波器装置[1]。

实践中采用的融冰方式为:退出运行的线路,其中一相导线接正极(或负极),另外两相导线并联接负极(或正极)。融冰时间为(包括开关倒闸操作时间在内)2~2.5h。

在上述融冰装置的基础上,很容易通过增加一些元件构成无功静止补偿装置,从而提高整个装置的综合技术经济性能。文献[1]介绍的这种组合装置是在可控硅整流融冰装置的基础上增加了L-C滤波支路、电抗器和无功调整结点(如图4所示)。

收稿日期:2002-02-05

作者简介:李培国(1962-),男,博士,高级工程师,从事高电压技术方面的研究工作。

高继法(1953-),男,工程师,从事电网管理工作。

李永军(1965-),男,硕士,工程师,从事供电管理工作。

王钰(1971-),男,博士,工程师,从事高电压技术方面的研究工作。

输电线路除冰技术与装置

浅谈输电线路冰害事故及原因

浅谈输电线路冰害事故及原因 【摘要】近年来,由于输电线路上覆冰引起的线路断线频繁发生,对电力系统的安全运行以及经济损失造成了巨大的影响。本文主要从输电线路发生覆冰的原因以及影响覆冰的不同因素等角度出发,提出了些许防止冰害事故的技术措施。 【关键词】输电线路;事故;覆冰;防治 1.引言 据统计,2003年电网有500kV的输电线路是因覆冰导致的线路跳闸有12次,因覆冰产生的事故有7次,其主要发生在我国的西北、华东、东北地区。2005年全网220kV及以上的输电线路因覆冰舞动而引起的跳闸有98起。覆冰事故引起的输电线路故障已经严重影响到了电力系统的安全运行,电网供电的可靠性也被冰害事故严重威胁着 2.冰害事故的主要类型以及原因分析 2008年我省由于受到雨雪冰冻灾害使得110kV输电线路有83处倒杆,18处倒塔。60处杆塔偏斜受到损坏,49处杆塔横担的部件弯曲折断,421处地、导线发生断线;35kV电路中受损的线路长度约为273千米;10kV线路中16935处杆塔受损,受损的线路长度约3615千米,0.4kV受损的台区约2551个,损坏的配变台区约680台,8992处电杆基受损,线路受损的总长度约2300千米。 2.1冰害事故的成因分析 通过长期对覆冰的分析和观测,我国输电线路的覆冰事故发生原因可以归纳成以下几点: ①对输电线路的覆冰规律在认识方面不足,设计线路时,线路选择的路径不合理,缺乏抗冰害经验,使得冰害的事故时常发生; ②有些设计的输电线路抗冰厚度比实际的覆冰值要低,当遭遇严重的覆冰时,就会发生覆冰事故; ③某些输电线路在重冰区,虽然具有一定抗冰的能力,但因为气候十分恶劣,某些环节依然较薄弱,当遇到恶劣的气候条件,输电线路的电气和机械性能降低,导致覆冰事故。 2.2冰害事故的类型 输电线路形成覆冰通常是在初春或严冬的季节,当气温下降到-5摄氏度到0摄氏度,且风速在3到15米每秒时,若遇到了雨夹雪或大雾,首先在输电线的路上将会形成雨淞,这个时候若是天气突然变冷,出现了雨雪天气时,雪和冻雨就在粘结强度比较高的雨淞上面开始迅速地增长,最后形成了较为厚的冰层。2008年我省的轻冰区主要多为110kV的线路,据统计,该区110kV输电线按照5毫米冰区所设计的,但实际的覆冰厚度约达60毫米左右,局部地区覆冰80毫米以上。巡视110kV线路的跳闸故障时,测得地、导线覆冰的直径约200毫米左右,通过观察拉线覆冰的情况,覆冰的结构以雾凇夹雪为主,相对的密度是0.4到0.6覆冰的厚度折算为40到60毫米。之后通过对其的运行与观察,发现该区110kV每年都会发生覆冰,其厚度为50毫米左右。但是该区最大的设计覆冰厚度约20毫米,因此输电线路覆冰所导致的事故主要有以下几种: 2.2.1覆冰导线舞动事故 导致输电线路跳闸以及停电,甚至发生断线倒塔等严重的事故。舞动时有可能会导致相间闪络,对导线、地线以及金具等一些部件造成损坏。 2.2.2绝缘子冰闪事故 当冰中所参杂的污秽等一些导电的杂质更容易导致冰闪事故的发生,而且覆冰还会改变绝缘子电场的分布,就是能够将覆冰可看作为是一种比较特殊的参杂物。

输电线路安全技术隐患处理实用版

YF-ED-J2668 可按资料类型定义编号 输电线路安全技术隐患处 理实用版 In Order To Ensure The Effective And Safe Operation Of The Department Work Or Production, Relevant Personnel Shall Follow The Procedures In Handling Business Or Operating Equipment. (示范文稿) 二零XX年XX月XX日

输电线路安全技术隐患处理实用 版 提示:该操作规程文档适合使用于工作中为保证本部门的工作或生产能够有效、安全、稳定地运转而制定的,相关人员在办理业务或操作设备时必须遵循的程序或步骤。下载后可以对文件进行定制修改,请根据实际需要调整使用。 线路是输电网的重要组成部分,随着厂网 分开的实施,其在电网中的地位更突出,成为 输网安全、经济、可靠运行的关键。送电线路 担负着将强电流长距离输送的任务。它的健康 状况,直接影响着用户的供电可靠性、自身安 全性、供电单位的经济效益。架空送电线路大 多运行在荒山野外,它覆盖面广,生态环境又 变化无常、无疑要受到自然灾害的影响、人为 的损坏和动物危害等许多难以预见的破坏,经 常引起线路单相接地短路故障。因此,分析引

起故障的原因,采取防治措施,是提高送电线路安全运行的关键。 1 鸟害的防治措施 近年来,随着我国生态环境的不断改善,鸟类的繁衍逐渐加快。鸟类对于人类的益处是众所周知的,但是鸟类对于输电线路的安全运行,却带来了一定的危害。鸟害是经常发生的事故之一,占事故总数的45%。 (1)鸟害特点。经过对鸟害跳闸分析,发现鸟害有以下特点:一是季节性,就山东地区而言春天为鸟害故障的频发期;二是时间性,鸟害跳闸大多发生在夜晚,尤其集中在晚11h至凌晨3h;三是区城性,鸟害活动频策的地段大多人员稀少,杆塔下有茂密的树林,附近有水

输电线路防冰除冰技术

输电线路防冰除冰技术综述 一、除冰技术 目前国内外除冰方法有30余种,大致可分为热力除冰法、机械除冰法、被动除冰法和其他除冰法四类。 热力除冰方法利用附加热源或导线自身发热,使冰雪在导线上无法积覆,或是使已经积覆的冰雪熔化。目前应用较多的是低居里铁磁材料,这种材料在温度0C时,不需要熔冰.损耗很小。这种方法除冰的效果较明显,低居里热敏防冰套筒和低居里磁热线已投入工程实用。采用人力和动力绕线机除冰能耗成本较高。 机械除冰方法最早采用有“ad hoe”法、滑轮铲刮法和强力振动法,其中滑轮铲刮法较为实用,它耗能小,价格低廉,但操作困难,安全性能亦需完善。采用电磁力或电脉冲使导线产生强烈的而又在控制范围内振动来除冰,对雾淞有一定效果,对雨淞效果有限,除冰效果不佳。 被动除冰方法在导线上安装阻雪环、平衡锤等装置可使导线上的覆冰堆积到一定程度时,由风或其它自然力的作用自行脱落。该法简单易行,但可能因不均匀或不同期脱冰产生的导线跳跃的线路事故。 除上述方法外,电子冻结、电晕放电和碰撞前颗粒冻结、加热等方法也正在国内外研究。总之,目前除防冰技术普遍能耗大、安全性低,尚无安全、有效、简单的方法。 1、热力融冰 (1)三相短路融冰是指将线路的一端三相短路,另一端供给融冰电源,用较低电压提供较大短电路电流加热导线的方法

使导线上的覆冰融化。 根据短路电流大小来选取合适的短路电压是短路融冰的重要环节。对融冰线路施加融冰电流有两种方法:即发电机零起升压和全电压冲击合闸。零起升压对系统影响不是很大,但冲击合闸在系统电压较低、无功备用不足时有可能造成系统稳定破坏事故。短路融冰时需将包括融冰线路在内的所有融冰回路中架空输电线停下来,对于大截面、双分裂导线因无法选取融冰电源而难以做到,对500 kV线路而言则几乎不可能。 (2)工程应用中针对输电线路最方便、有效、适用的除冰方法有增大线路传输负荷电流。相同气候条件下,重负载线路覆冰较轻或不覆冰,轻载线路覆冰较重,而避雷线与架空地线相对于导线覆冰更多,这一现象与导线通过电流时的焦耳效应有关,当负荷电流足够大时,导线自身的温度超过冰点,则落在导体表明的雨雪就不会结冰。 为防止导线覆冰,对220 kV及以上轻载线路,主要依靠科学的调度,提前改变电网潮流分配,使线路电流达到临界电流以上;110 kV及以下变电所间的联络线,可通过调度让其带负荷运行,并达临界电流以上;其它类型的重要轻载线路,可采用在线路末端变电所母线上装设足够容量的并联电容器或电抗器以增大无功电流的办法,达到导线不覆冰的目的。 提升负荷电流防止覆冰优点为无需中断供电提高电网可靠性,避免非典型运行方式,简便易行;不足为避雷线和架空地线上的覆冰无法预防。 (3)AREVA输配电2005年在加拿大魁北克省的国有电力公司Hydro—Quebec建设世界首个以高压直流(HVDC)技术为基础的防覆冰电力质量系统。这个系统将覆盖约600km输电线,预计能于2006年秋天投入运行。

输电线路除冰技术

英文翻译 2008 届电气工程及其自动化专业班级 姓名学号 指导教师职称 二ОО年月日

在冬季,暴风雪是一个导致高功率传输线路中断以及花费数以百万计美元用以线路维修的大麻烦。用约8 - 200千赫的高频率震动法融化冰已经被提出来了(文献1-2)。这种方法需要两个相结合的机械驱动。在这种高频率下,冰是一种有耗介质,直接吸收热量加热冰。另外,电线的集肤效应导致电流只有在薄冰层才导通,由此造成电阻损耗,产生热量。 在这篇文章中,我们在长达1,000公里长的线路上描述该系统设计的实施方法。我们还利用一个适用于33-KV,100-千赫动力的标准系统测试报告了单位长度冻线的损耗的除冰模拟实验。 整个系统见图1。它可以以两种不同的方式部署。由于电线有慢性结冰的问题,或者那些有可能结冰和高可靠性需求的地方,这个系统可以永久的安装连接到部分线路的两端,用以设限控制励磁区域。另外,它也可以安装在汽车上,用以紧急“营救”结冰线路。三辆卡车可以携带一组电源和两套设备。 高频高压下输电线路的除冰系统图 冰介质加热原理 由于冰被视为是有损介质材料,等效电路进行了短暂的一段输电线路涂冰如图2。该组件值赖斯和西塞可以通过文献3给的冰的导电特性模型计算出来。在频率低至12赫兹,介电损耗成为产生热量的主要途径。

随着频率的增加,电压会产生大的压降。虽然较低频率是可行的,但通常采用20-150kHz范围的频率,以避免管制频率(下一章节会详细介绍)。 冰冻输电线路的等效电路图 实现均匀加热 高频下的励磁传输线路会产生驻波,除非在线路远端有相匹配的阻抗来终止。由于驻波,冰介质损耗或者集肤效应单独生热,导致加热不均。一种可能的办法是终止线路的运行,而不是驻波的问题。然而,运动波产生的能量流通常比冰上损耗要大。这种能量需要电源的一端来处理,另一端来吸收并终止。因此,电源的功率容量需要增加到远远超过所需的。终止端必须有能力驱散或者是回收这些损耗功率。因此,如果不循环利用的话,无论是在设备的成本,还是终端损耗,这都是一个昂贵的解决方案。 一个更好的解决方案是使用适用于两个热效应原理的驻波以达到相 辅相成的效果。在驻波模式中,冰介质加热时发生最强烈是在电压波腹,而集肤效应生热最为强烈是在电流波腹。因此,两者是相辅相成的。而且,如果幅度在适当的比例内,总热量就可以在线路上均匀分布了。

高压输电线路除冰技术

高压输电线路除冰技术 摘要:近些年来我国高压输电线路受冰灾的次数高达数千次,由于高压输电线路物布置地理位置,很容易受天气气候的影响,尤其是在大风天气下,高压输电线路由于覆冰的影响会引发电线的舞动,从而造成断线,杆塔倒塌等恶劣事故的发生,所以高压输电线路除冰成为了每个电力工作人员工作的一大重点。 关键词:高压输电线路除冰技术要点 0 前言 高压输电线路的防除覆冰成为电力工作者工作的一个重点,应该加强对高压输电线路覆冰的研究工作。电力工作者应该提高对高压输电线路除冰工作的重视,深刻理解高压输电线路覆冰的危害,掌握高压输电线路除冰的基本技术,做好高压输电线路的除冰工作,在实践的基础上总结高压输电线路除冰经验,对高压输电线路除冰技术进行合理的展望,完成对高压输电线路的保护,用技术的手段确保高压输电线路的问题,进而提升供电的稳定。电力从产生到应用一般要经历高压输电线路的输送,随着经济和社会的发展,各界对电力需求越来越高,电力生产能力也相应提高,高压输电线路的长度正在逐步增加,以完成电力和各界的需求。高压输电线路布设于田野、山脉和水系,容易受到天气因素的影响,据不完全统计,进50 年我国高压输电线路遭受冰灾的次数高达1000 次,高压输电线路覆冰会引发电线的舞动,在风力较大的情况下会导致断线和杆塔倒塌,成为影响我国北方高压输电网络安全的重要因素。 1.高压输电线路机械除冰法 使用机械外力迫使高压输电线路导线上的覆冰脱落,分为的方法。“ad hoc”法、滑轮铲刮法、电磁力除冰法和机器人除冰法。 1.1“ad hoc”法 “ad hoc”法,被告称之为外力敲打法,就是由工作人员在现场利用工具敲击输电线路,以此来达到除冰的目地,这个方法简便易行,但只能用于以10KV为主的近距离线路除冰,效率低,工作量大,只能在紧急情况下使用,应用范围极小。 1.2滑轮铲刮法 它是由在地面上的工作人员通过控制输电线路上的滑轮移动,利用力的作用,使导线弯曲,然后使覆冰破裂,这个方法效率高、操作简便、能耗小,并且价格低廉,是目前输电线路穝有效的除冰方法之一,但是此种方法受地形限制,安全性能还不太完善。 1.3电磁力除冰法

浅析高压输电线路施工的安全技术

浅析高压输电线路施工的安全技术 发表时间:2018-06-08T10:17:10.840Z 来源:《电力设备》2018年第1期作者:保国存范建伟 [导读] 摘要:高压输电线路施工是一项系统化工程,具有工程量大、专业性强、技术要求高、施工跨地域广等特点,施工过程中影响施工质量的因素主要有施工组织、施工技术、施工人员综合素质、施工环境等。 (青海送变电工程有限公司青海西宁 810000) 摘要:高压输电线路施工是一项系统化工程,具有工程量大、专业性强、技术要求高、施工跨地域广等特点,施工过程中影响施工质量的因素主要有施工组织、施工技术、施工人员综合素质、施工环境等。想要优质高效地做好超高压输电线路施工工作就需要对施工的各个环节以及客观存在影响因素进行分析与探讨,本文就对其展开综合论述。 关键词:高压输电线路;施工;安全技术;措施 一、高压输电线路施工管理的原则和要求 1.原则 高压输电线路施工管理要始终坚持科学施工、依法施工的基本原则,并在实际施工中以人为本,建立安全生产责任制和安全施工管理机制。 2.要求 高压输电线路施工过程中,要坚持依法施工和安全管理相结合的基本要求,注重施工安全、施工进度、施工质量以及施工效益的合理关系,避免施工安全事故的发生。对施工人员安全生产,要保证电网和机械设备始终处于安全的状态。同时建立对项目负责人的管理考核机制,切实落实安全生产责任制,确保各项安全管理工作的顺利开展。 二、高压输电线路施工的安全技术措施分析 1.基础工程安全措施 在进行人工开挖土石方时,施工人员不得在坑内或陡坡上休息用餐,在掏挖坑时需设立监护人以监视坑壁是否出现脱落、有无变形或裂缝,同时在挖掘过程中随时检查地质情况是否与设计提供的地质资料一致,避免土石塌陷而造成人员损伤;如挖掘泥水坑或流沙坑,应根据地下水位情况安装挡土板,并随时检查其是否出现变形、断裂现象。而在进行土石方爆破作业时,必须指定熟悉爆破材料性能的技工专门负责爆破作业,并设立监护人以保证相邻基坑不得同时点炮,爆破危险区域无人,引爆后仔细判断有无盲炮,若有盲炮或没有数清的情况,需等待至少 20min后才能进入爆破区进行检查,避免不必要的炸伤。 在安装混凝土三盘时,必须对吊装用的工器具进行严格的检查,施工人员需根据当地土质情况将抱杆根和坑口的距离保持在半米以上,并埋土固定防止其受力滑移,同时需特别注意在吊起三盘时应避免碰到抱杆且要保证坑内三盘位置与设计要求相符。在进行混凝土基础的安全施工时有一定的要求:施工中需明确负责人,对现场人员进行明确分工,各司其职;根据当地自然状况选择合适的路线进行材料和机械搬运;施工前全面检查机电设备,保证其装置完整、绝缘良好、接地可靠以便投入使用;根据现场环境设置工作范围警戒线,减少甚至避免非工作人员进入施工现场。 2.接地装置施工安全 接地装置施工一般有两种方式:在材料站集中焊接,每基接地装置为一组,分组运往桩位;现场焊接接头,即根据设计要求量出接地体长度,分基运往桩位。这两种施工方式都需进行开挖接地槽、敷设接地体、回填土和测量接地电阻。 根据设计图纸要求以及现场自然条件进行接地槽放样,划出接地槽开挖线后再进行开挖,施工中允许同一基接地体在不同地貌条件下采用不同的埋设深度,但需保证其深度满足设计要求,一般实际挖深值需比设计值深50mm。如果是材料站集中加工的接地装置,必须在杆塔组立前敷设完毕,敷设时必须确定接地引下线方向并检查引下线长度是否满足要求;若现场连接接地体,需根据设计图纸要求在现场截割接地线,然后将接头焊接再敷设接地槽内,接地装置敷设后应及时在施工技术记录表上绘制敷设示意图以便复查。 杆塔组立后应及时将接地引下线与杆塔连接,根据设计要求布置接地引下线并于基础紧密贴合。目前,施工人员经常采用焊接连接法进行接地线连接,在进行接地线连接前,应清除接地体表面的铁锈等污物,根据不同的接地体连接(包括接地体延长的连接、接地引下线与水平接地网的连接和水平接地网与垂直接地极的连接)确定搭接长度。施工人员应检查焊接焊缝无气孔、砂眼和裂纹等缺陷,以保证连接可靠,并记录接地装置的接头位置以备查验。同时根据设计要求。在保证接地体清洁干燥的前提下对其进行防腐处理,以延长其使用寿命。 3.架线施工安全措施 由于架线施工战线长,联络不方便且高空作业较多,使得架线施工存在不小的安全风险,加之其线路交叉跨越很多,为施工安全增加了不少的难度。参加架线的施工人员及技术人员都必须严格执行已制定的安全规程和架线施工安全措施,以保证人身安全和设备安全及架线工作顺利完成。 在跨越架施工前应根据跨越架的用途编写其搭设方案,并进行专门的技术交底,是施工人员完成掌握跨越架的技术参数及搭设要求等,当使用带电跨越架时,需根据《电业安全工作规程》检验其绝缘工具,以保证其在工作状体无明显变形和损伤。就张力放线而言,牵引场和张力场需有专人指挥以保证通信畅通,牵引设备及张力设备的锚固必须可靠,具有良好的接地性,其导引线和牵引绳的安全系数不得小于3,根据有关安全规程的要求,展放的导引线不能从带电线路下方穿过。 在进行架线施工过程中,需要特别注意的是要进行电击预防。各种设备及作业人员需装设接地装置,其保安接地线应采用编织软铜线,使用专门夹具以保证连接可靠,其截面均需大于16mm 2。进行挂拆接地线时应有专门负责人员进行监督,保证操作人员按规程用绝缘棒或戴绝缘手套等绝缘器具进行挂拆。张力架线前,必须保证放线施工段内的杆塔均与接地体良好连接,牵引设备及张力设备接地可靠,同时必须在牵引机及张力机出线端的牵引线及导线上安装接地滑车,以便在源头上避免电击发生;在进行张力架线操作时,操作人员应站在干燥的绝缘垫上并不得与未站在绝缘垫上的人员接触。地线附件安装前,也必须采取接地措施,附件(包括跳线)全部安装完毕后,应保留部分接地线并做好记录,竣工验收后方可拆除。 4.铁塔组立安全技术措施 高空作业人员作业(含组装高度超过两米的地面组装作业)前,必须系好安全带,并拴在牢固的构件上。吊装方案、吊重和现场布置应符合施工技术措施的规定,不得擅自更改,遇特殊情况,工作负责人和安全技术人员可以补充相应的加固安全措施。施工工器具必须按

常见输电线路覆冰类型及防控措施分析

常见输电线路覆冰类型及防控措施分析 【摘要】本文就覆冰形成的原因及类型作简要介绍,并对其危害进行深入剖析,在此基础上将应对输电线路覆冰的技术措施进行了分析,供专业人员参考。 【关键词】输电线路覆冰抗冰措施 前言 在现代化社会高速发展的今天,随着电力需求的不断上升和增加,输电线路中的故障问题也越来越复杂,越来越明显。就一般情况而言,在工程项目中需要针对各种常见问题和隐患进行全面的分析和总结,使得这些现象能够得到及时有效的预防和处理,进而为社会发展做出应有的贡献。由于天气的影响而造成输电线路冰闪跳闸现象、导线舞动和线路中断的事故不断涌现,不但造成了严重的输电设备损坏,更是影响了区域经济的正常发展。因此在目前的输电线路管理工作中,做好冰害事故管理和预防已成为一项不容忽视的工作流程,是提高电网抗击自然灾害能力中不可忽视的一环。 一、覆冰的形成 覆冰是一种物理现象,是由多种气象因素综合决定的,其中包括气温、湿度、空气流速以及大气环流等。当气温在冰点以下时,雪或雨等水性物质与输电线表面接触产生冻结并层层裹覆,此时覆冰现象就产生了。 1、五种覆冰类型 白霜——当气温处于冰点以下且湿度较高时,空气中的水分与低温物体接触,粘着在其表面即形成白霜。一般来说白霜不会对输电线路的安全构成威胁,这主要是因为这种覆冰与输电线的粘连强度不高,低幅度的振动就可使其脱离线路表面。 湿雪——当空气湿度较低时雪花不容易与输电线表面粘着,但如果空气湿度较高,雪花飘落过程中聚结了未形成晶体的水分,就很容易附着在输电线表面,层层包裹形成积雪。即使出现积雪也不一定会出现覆雪危情,因为此种覆冰受风力强度影响较大,强风很容易就把积覆的雪吹散了。常发生覆雪危情的地方,往往是海拔不高风强较低的区域。 雨凇——当气温在零度以下风力较强时,在海拔相对较低的区域,覆冰常常呈现高密度、强附着力、高透光性等特点,一般在冻雨期较常见但持续时间较短。随着时间的推移此种覆冰会向另一种覆冰类型( 混合凇) 发展,所以输电线覆冰为单一雨凇的情况较为罕见。 软雾凇——在高海拔山区气温极低的条件下,环境湿度较大,如果风力不强则会形成此种覆冰。其特征恰好与雨凇相反,呈现低密度、弱附着力、低透光性

输电线路冬季防冰害运行管理

2008年3月第9卷第3期 电 力 设 备 Electric al Equi p ment Mar 2008 Vo.l9No.3输电线路冬季防冰害运行管理 李荣宇 (贵州电网公司,贵州省贵阳市550005) 摘 要:2008年初,我国南方省份输电线路遭受了罕见的因冰害引发的倒塔、停电事故,因此做好输电线路冬季防冰害运行管理工作十分必要。文章指出在输电线路冬季防冰害运行管理工作中除了要做好线路重冰区的划分及修订工作外,还应在夏、秋季作好相应的防冰害准备工作,同时要加强输电线路冬季的运行与监测。作者还总结了各种输电线路冰害处置方法,以供读者参考。 关键词:电网;输电线路;冬季;防冰害;除冰;运行管理 中图分类号:TM726 0 引言 2008年1月初至2月中旬,贵州遭受了有气象历史记录以来最严重的长时间、大范围十分罕见的凝冻灾害。截至2月8日,贵州电网500kV线路共倒塔233基,220kV线路共倒塔293基,110kV线路共倒杆、倒塔258基,电网遭受了严重创伤。在此次灾害中,贵州全省有52个县市停电,部分县市停电时间甚至长达16天。 冰害是冬季输电线路运行的典型事故诱因,主导了冬季运行工作重心,因此做好输电线路冬季防冰害运行管理工作十分必要。此次特大冰灾警示了线路运行管理单位必须做好防冰害基础管理工作,只有这样,才能在出现冰害等紧急情况时做到运行监测重点突出、处置方案操作强、备品备件类型适宜,以便尽快恢复供电。 目前,冰害引发的输电线路机械和电气故障主要有以下6种: 杆塔变形、倾倒;导线或地线断线; !地线或导线掉线、坠地;?绝缘子串冰闪;#导线对地、对跨越物、风偏建筑(树、崖)限距不足而放电;?不均匀脱冰时相间短路。 输电线路冬季防冰害运行管理,首先是划分及修订线路重冰区,并做好技术分析与建档管理以便有针对性地开展防冰、防雪技术改造(如将普通地线更换为铝包钢绞线、铁塔补强、线路改道等);其次是在夏秋季做好冬季防冰害准备工作;最后是在冬季做好运行与监测工作,并及时处置冰害故障。 1 重冰区的划分、修订与分析管理 设计规程规定,覆冰设计值在20mm及以上的线路区段属于重冰区。 (1)重冰区的划分及修订。每年例行修订重冰区的区段划分时,应将新投运线路、更改工程区段纳入修订范围,除依据覆冰设计厚度外,重点应结合历史运行经验特别是上年运行情况来进行综合判断,实际地形地貌对重冰区的划分具有重要参加价值,必须注意河谷垭口、峡谷垭口、暖湿气流通道、冬季迎风面等小地形。 (2)重冰区建档管理。对重冰区内线路区段单独建档管理,主要包括杆塔塔型、区段内的垂直档距、水平档距、所用金具串组合、运行记录、检修记录、覆冰观测记录、施工运行交通图、群众覆冰观测员名录及联系方式、线路覆冰厚度危险等级评估。 (3)通过计算作好技术分析。线路覆冰厚度危险等级评估对象为重冰区区段和区段内每基杆塔,分析判断其危险程度时要分别填写线路覆冰危险等级表和杆塔覆冰危险等级表。重冰区以1个耐张段为基本设计单元,实际运行中常在大垂直档距、大转角、大高差、大档距差的杆塔与导地线上出现问题。通过计算绘制出重冰区区段中的大转角线路(转角大于60%)、大高差( h/l>15%)线路在覆冰厚度在20~ 60mm区间变化时的荷载、不平衡张力的曲线,并以此校核杆塔在多大覆冰厚度情况下达到失稳倒塌极限值。以极限值由低到高排序,将杆塔划分为特高危、高危、危险、一般等杆塔。根据线路电压等级系数、负荷重要系数、负荷率系数、覆冰危险度、互供系数计算出综合危险系数,依据得分的多少划分为特高危、高危、危险重冰区等区段。将特高危区段作为冬季大雪、低温凝冻天气的观测重点;将特高危杆塔塔型,特高危区段导线、地线作为抢修备品备件的准备重点。 2 电力系统防冰害原则性要求 电力系统防冰害原则性要求是: (1)设计时尽量避开可能引起导线、地线严重覆

架空输电线路覆冰危害及防冰除冰的措施

架空输电线路覆冰危害及防冰除冰的措施 摘要:架空输电线路覆冰是一种广泛分布的自然现象。导线结冰问题已成为世 界各国的共同关注和有待解决的问题。冰灾会影响维护的安全,造成大面积的冰 闪跳闸和倒塔,造成严重的经济损失,影响交通运输和人民的生活安全。 关键词:架空输电线路;履冰;防冰除冰 前言 为了适应中国经济的发展,国内传输电压与负荷在不断提高,地区的架空输电线路越来 越密集,范围也越来越大,因此跨越的区域和环境比较复杂。而一旦遇到低温、冰雪等恶劣 天气,架空线路就会造成覆冰问题的出现,这对稳定国家电力输送带来了巨大的威胁,一旦 出现状况就会对社会经济造成不可弥补的损失。 1架空线路覆冰的成因与对电网的影响 1.1架空线路覆冰的成因 架空导线覆冰的形成原因是由多种条件决定的,主要有气象条件、地理条件、海拔高度、导线悬挂高度、导线直径、风向和风速、电场强度等。气象条件对架空线路覆冰的影响主要 是由线路经过地的环境温度、空气湿度以及风向风速等因素综合造成的。架空线路覆冰问题 并非偶然事件,在我国很多地方每年冬天都会发生架空线路覆冰问题。但是不同地区、地形 上架空线路覆冰的类型不太相同,具体来说可分为雨凇、雾凇、混合凇、湿雪4种。 1.2覆冰对电网的影响 架空线路覆冰对电网的影响主要有过负载、绝缘子冰闪、覆冰的导线舞动、脱冰闪络等。过载会导致架空线路出现机械和电气方面的故障,即会出现倒塔、金具的损坏和由弧垂增大 而导致的闪络烧线等。当绝缘子上覆冰时,可以看作绝缘子上出现了污秽而改变了绝缘子上 的电场分布,特别是冰中往往会含有污秽,这就更易造成冰闪。在风力的作用下,架空线路 上的覆冰是不对称的,这就造成线路极易发生舞动,且舞动幅度较大、持续时间长。对线路 轻则引起相间闪络、线路跳闸,重则引起断线或倒塔。 2防冰与除冰技术 2.1常见的防冰技术 路径选择:应充分考虑规划路径沿线微气象、微地形因素和运行经验,尽量避开微地形、 微气象区域。实在无法避开的,应根据规程规定的重现期确定设计冰厚与验算冰厚,对重冰 区及中重冰区过渡区段进行差异化设计,适当缩小档距,降低杆塔高度,提高线路抗冰能力。 覆冰观测:应合理规划、建设覆冰观测气象站点,气象站址选择应尽量靠近线路具有代表 性的覆冰段,并将积累的覆冰气象数据作为今后线路设计和技改的依据,有条件的地区可配 置微气象或覆冰在线监测装置。 导、地线设计:重覆冰区宜采用少分裂、大截面导线以抑制不均匀覆冰时导线的扭转和舞动,并采用预绞丝护线条保护导线。对于山区线路,设计时应校验导、地线悬挂点应力,悬 挂点的设计安全系数不应小于2.25。中、重冰区还应校验导线间和导、地线间在不均匀覆冰 和脱冰跳跃时的电气间隙。 挂点设计:对于重要交叉跨越直线杆塔,应采用双悬垂绝缘子串结构,且宜采用双独立挂点,无法设置双挂点的杆塔可采用单挂点双联绝缘子串结构。 连接金具选型:与横担连接的第1个金具应转动灵活且受力合理,选型应从强度、材料、 型式3方面综合考虑,其强度应比串内其他金具强度高一个等级,不应采用可锻铸铁制造的 产品; 绝缘子串设计:易覆冰地区或曾发生过冰害跳闸的线路故障点附近区域的新建或改建线路,应采用加强绝缘设计,增加绝缘子片数、采取V型串、大小伞间插布置方式或防冰闪复合绝 缘子等防冰闪措施。 重冰、重污叠加区域绝缘子选型:重冰区与重污区叠加区域线路外绝缘配置宜采用复合化 瓷质或玻璃绝缘子,并遵循微气象区域加强外绝缘抗冰设计原则。复合化的瓷质或玻璃绝缘 子兼有盘型绝缘子和复合绝缘子的优点,运用在重冰和重污叠加区域的线路上,不仅能有效

输电线路除冰机器人除冰机构设计

第一章绪言 1.1引言 2008年1月,郴州市出现了连续近一个月的低温雨雪冰冻天气,遭受了历史罕见的冰雪灾害。国家减灾委员会专家已定性为:“郴州发生的这次冰雪灾害,是世界上一次大面积、极端性气候事件,是江南地区持续时间最长的一次雨雪冰冻过程,影响地区的人口之多是世界罕见的”。这次郴州冰灾造成中心城区正值春节期间停电、停水10多天,个别地方达到20多天,交通、通讯、电视均出现不同程度的中断,成为了一座与外界隔绝的“孤城”。郴州成为我国南方冰雪灾害最严重的地区之一。 特别是电力系统遭受毁灭性重创,冰灾引起了倒塔,现场调查了2008年湖南冰灾期间≥220kV输电线路的受损情况,发现倒塔线路覆冰厚度主要集中在20~60mm,同时微地形和微气象造成覆冰加重和覆冰的不均匀性,档距、塔形等对线路倒塔也存在影响。分析倒杆断线的形式认为覆冰太厚超过设计值、垂直荷载压垮和不平衡张力拉垮是造成线路倒塔。专家解说,高压线高高的钢塔在下雪天时,可以承受2-3倍的重量。但如果下雨凇,可能会承受10-20倍的电线重量。电线结冰,遇冷收缩,风吹引起震荡,就使电线不胜重荷而断裂。 随着我国经济的高速发展,超高压大容量输电线路越建越多,线路走廊穿越的地理环境更加复杂,如经过大面积的水库、湖泊和崇山峻岭,给线路维护带来很多困难.而且在严冬及初春季节,我国云贵高原、川陕一带及两湖地区常出现雾凇和雨凇现象,造成架空输电线路覆冰,使线路舞动、闪络、烧伤,甚至断线倒杆,使电网结构遭到破坏,安全运行受到严重威胁.在紧急情况下,寻道员用带电操作杆或其它类似的绝缘棒只能为很少的一部分覆冰线路除冰,人工除冰有很高的危险性。 在国外,一些国家的地理与气候情况与我国相似,甚至一些国家的情况更加恶劣,为了保证电力系统的可靠性,提高高压输电线除冰的效率,减少损失,维护工人的安全,开发一种可以替代或部分替代工人进行除冰作业的新型设备一直是国内外相关研究的热点.因此,研制安全有效的除冰机械以代替人进行导线除冰具有较好的应用前景和实用意义。

输电线路除冰技术与装置

李培国1,高继法2,李永军2,王钰1 (1.中国电力科学研究院,北京 100085 2.大庆石油管理局电力总公司,黑 龙江大庆 163453) 摘要:介绍了用于输电线路除冰的技术及相应设备,重点介绍了美国在电脉冲除冰方面的研究情况及俄罗斯利用可控硅整流技术研制的融冰与无功静补 双用途综合装置的情况。 关键词:输电线路;除冰;技术;装置 0 引言 高寒地区输电线路冬季因受冰雪危害引起的供电中断事故通常都是较严 重的,其修复工作难度大,周期长,停电影响面积广,因此一直是全世界范围内需要解决的难点问题。各国的研究人员设计出不少方案,用以提前将导线上的积雪、覆冰去除,避免引起击穿、断线舞动等事故。目前常用的方法仍然是采用增加线路电流使之发热将冰雪融化防患于未然[1]。另外,也有研究者提出了电脉冲除冰的方法[2],并做了许多试验工作,虽然最终未获成功,却也积累了许多宝贵经验。 冰害对电力系统来讲是个季节性危害,为除冰而配置的变电站设备,其使用也是季节性的;而且,即使是在冬季,除冰装置也不是一直在使用,而是短时使用。如果在非除冰时间将其闲置不用也是一种比较大的浪费,因而有些研究者提出的将加热融冰设备与无功静止补偿装置合二为一的方案[1],从技术经济比较上应具有较大优势,并且获得了一定的运行经验,是值得推广的。 1 电脉冲除冰的尝试 据文献[2]介绍,电脉冲除冰(Electro-Impulse De-Icing,简称EIDI)技术出现于第二次世界大战之前,其基本原理即是采用电容器组向线圈放电,由线圈产生强磁场,在置于线圈附近的导电板(即目标物)上产生一个幅值高、持续时间短的机械力,从而使冰破裂而脱落。此方法在飞机除冰方面有成功的经验[2],在此情况下,导电极即是飞机机翼或其它部位的铝质表面。当施加此脉冲时,电动力引起铝质表面轻微的收缩和扩张,使得附着在上面的冰滑落,从而达到除冰的目的。 EIDI装置的电气原理如图1所示。

架空输电线路防冰冻的技术探讨

人穿屏蔽服后,人体与屏蔽服相当于并联电路,人体电阻较大(1000欧姆以上),屏蔽服电阻较小(10欧姆以下),则绝大部分电流通过屏蔽服流过,流过人体的电流很微小。因此,要求屏蔽服布料的电阻不超过一定数值,是屏蔽服的另一项主要技术指标。屏蔽服的第三个作用是均压作用。等电位作业人员如不穿屏蔽服,由于人体有电阻,人体接触带电体的部位(如手)与未接触部位(如脚)的电位就会不一样,使作业人员产生电击感。穿上屏蔽服后,人体各个部位的电位可视为相同,起到了均压作用。因此,屏蔽服的衣、裤、帽、鞋等在作业时必须可靠地连成一体。 六、结论 人工带电作业,为了确保作业人员的安全必须满足1.流经人体的电流不超过人体的感知水平; 2.人体体表的局部场强不超过人体的感知水平; 3.与带电体保持规定的安全距离。 即人工带电作业安全可靠的技术措施是电气绝缘和电场屏蔽。 在带电作业的实际操作中,要保证带电作业 人员的生命安全,除了上述技术措施作为保证外,还要求带电作业人员具有高度的安全意识,严格按带电作业的规章制度办事。如遇雷、雨、雪、雾不得进行带电作业;风力大于5级时也不宜;严格按《安全规程》办事,确保带电作业工具的管理与试验的落实;坚持执行安全工作的组织措施(工作票制度,工作许可制度,工作监护制度,工作间断、转移和终结制度);并具有过硬的操作技术。 然而,人工带电作业的安全性的问题是始终存在。要想完全解决这一问题,最好是从带电作业的工器具上着手。如果能研制出作业方便、灵活、安全可靠的带电作业工器具,则可很好地解决这一问题。就目前技术情况来看,使用带电作业机器人进行带电作业是解决这一问题的切实可行的方法。【参考文献】 [1]鲁守银.张宗尧.厉秉强.带电作业自动化技 术:电气时代,2002[7] [2.]周南星.电工基础:1998 寒冷季节中,特别是在初冬和初春,由于气候的变化、寒潮的浸袭,雨雪可使导线、绝缘子、杆塔覆冰,加大机械荷载,造成绝缘子冰闪、 混线、倒杆断线等事故,因而我们电力系统的防冻融冰工作是一项政策性、技术性、群众性、战斗性很强的工作,必须从思想上、组织上、技术上和物质上做好防冻融冰的准备工作。 一、湖南电网2008年冰灾实况 2008年1月11日~2月7日,湖南遭遇了有 气象记录以来最严重的冰冻灾害。受冰灾影响,湖 南电网遭受了毁灭性重创,电力设施大面积覆冰,大范围倒杆、倒塔、断线,多个区域电网与主网解列,衡阳、 郴州等城市大面积停电,严重的时候湖南电网负荷由冰灾前正常负荷1220万千瓦下降到450万千瓦,只有正常负荷的36%,电网安全面临了严峻考验。冰灾共导致500千伏线路倒塔182基、变形82基、断线481处,220千伏线路倒塔633基、 变形203基、断线673处,110千伏线路倒塔(杆)1427基、变形421基、断线1663处。累计20条500千伏线路、6座500千伏变电站,93条 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 架空输电线路防冰冻的技术探讨 电力工程系黄立新 【内容提要】本文根据湖南电网2008年遭受冰灾的统计资料,分析了线路覆冰的原因、影响因素及危害,并提出了架空输电线路防冰冻的措施。 【关键词】线路冰冻技术探讨

输电线路工程施工中技术问题及处理措施 李全泉

输电线路工程施工中技术问题及处理措施李全泉 发表时间:2019-10-18T13:26:03.400Z 来源:《基层建设》2019年第18期作者:李全泉 [导读] 摘要:输电线路在实施的过程中仍然会出现许多的问题,但是只要把控好有关于安全以及稳定,也能够解决大部分的问题。 国网晋中供电公司山西晋中 030600 摘要:输电线路在实施的过程中仍然会出现许多的问题,但是只要把控好有关于安全以及稳定,也能够解决大部分的问题。输电线路在实施前期仍然是以理论作为依据,导致施工的过程中出现了许多难以预料的情况出现,这也要求各位设计者在前期准备时,应当切实的负责,并根据当地的具体情况进行设计,以防止出现意外情况的过程中能够更好的进行解决,以防止出现了令人手足无措的情况出现,这样才能更好完善输电线路。 关键词:输电线路;施工技术;存在问题;处理措施 引言 输电线路施工技术在电力建设项目中发挥着重要作用,对电力建设项目的进度和质量有着重要影响。随着人民用电量的增加和国家电网建设的加强,相关企业应积极改进输电线路的施工技术,确保电力建设项目的顺利进行。 1输电线路施工过程中所面临的问题 1.1准备工作十分繁琐 我们都知道输电线路对于我们中国的重要性,想要真正使得输电线路变得安全放心,肯定也是需要一些努力。想要输电线路完美的出现在大众眼中,除了在实施的过程中信心以外,前期的准备工作也是同样的重要。首先,想要建立完善的输电线路,最为重要的就是要有技术的支撑,只有自己掌握了技术,才能做到元所畏惧,现在我国的输电线路的专家已经做好了准备,随时可以投入工程中去,这也为建设输电线路提供了最为坚实的基础;接下来重要的则是组织的批准以及资金的准备,建设输电线路是一项非常重大的工程,不是任何一个人或者一个企业就可以的,这需要国家的鼎力支持,除了政策的支持一样,建立输电线路仍然是需要投入巨大的资金,到目前为止,国家也是大力支持输电线路的完善,这些问题早就迎刃而解。 1.2施工过程中对技术要求十分严格 想要建立完善的输电线路最为重要的是要保证线路的安全性,首先是杆塔的问题,如果在建设的过程中没有注意到这些问题,相信在输电线路投入使用以后,也会出现各种各样的问题。杆塔的作用有很多,这也导致设计者在设计杆塔的过程中需要考虑到一些综合的因素,要根据当地的具体情况,选取建立杆塔的材质,以及建立的形状,这些都是值得重视的问题。除了杆塔以外,还需要重视架线的问题,线路是整个工程的核心,关系到工程的成败,这也导致在建立架线的过程中一定要注意安全性,当然在保证质量的同时也希望能够尽量的降低成本,并且架线在通过连接物的过程中,一定保持拥有最为舒适的距离,这样才能更好的维护架线的安全性。在整个建立输电线路的过程中,对于实施者最重要的要求就是技术,只有拥有能够学以致用的技术,才能够在建设的过程中投入更多的一些热情,并且将自己所学的所有知识,学以致用,更好的为工程服务,为国家服务,这也是每位建设者心中的最为高尚的信念,将自己心中的信念以及自己所掌握的各种才能只要结合起来,相信一定能够建设出更好的工程。 2输电线路工程施工中技术问题及处理措施 2.1输电线路工程施工测量 输电线路测量是工程施工中特别关键的专业工序,是保证工程施工质量的重要手段。它的特点是“点多、面广、路径长、复杂、严格和要求高”。测量人员除应熟知输电线路工程勘测和施工操作基本技术要求外,还应了解交通、电力、水利、城市建筑、铁路、高速公路、环境保护等各部门各专业的特殊要求和国家政策。(1)输电线路平断面图测量沿线路中线两边方向或线路垂直方向测出各地形变化点的高差和距离,并沿着线路中心线两侧一定宽度的走廊上测出主要底线、地貌及各建筑的位置。针对施工局部改线或复测的平断面图,一般采用视距法施测。(2)由于线路在设计勘测定位后至开始施工这段期间内,往往受到自然环境或外界因素影响,使杆塔桩偏移或丢失,所以在开工之前,要求会同设计部门对线路上各杆塔桩及档距进行一次全面复测,复测主要内容包括杆塔桩复测、档距及危险点标高的校检、交叉跨越的复测、补桩和设计规定的位移等。(3)校核相邻杆塔间的档距和地形凸起点的标高是线路复测的主要工作内容,复测方法一般采用视距法。(4)线路与电力线、弱电线、铁路、公路等交叉跨越时,为复核线路与被跨越物的安全净空距离,施工前应复测被跨越物的标高,以便从断面图中计算出净空距离。 2.2输电线路工程基础施工技术问题与处理 在输电线路工程中,基础施工往往占据十分重要的地位,良好的基础能防止杆塔发生倾斜与沉降。目前电网工程常用基础类型包括桩基础、锚杆基础与掏挖基础。(1)对于常规的岩石基础,当岩石基础和设计技术完全相符时,即可钻孔与灌浆,但对钻孔有着很高的要求,应在钻孔时避免岩石发生破坏,使其始终具有良好整体性。(2)对于掏挖基础,施工中应根据实际情况制定具体技术方法。当对具有良好稳定性的碎石及黏土进行掏挖时,一般可直接使用;掏挖时,完成对混凝土的浇筑施工后,很难进行检查与修补,所以必须保证混凝土强度及密实性。对混凝土进行振捣时,应保证均匀性和密实性,以免发生质量问题。(3)对于桩基础,它是最简单且常用的方法,由于问题发生几率很低,所以在当前有十分广泛的应用。当出现偏斜时,采用钻头进行扫孔即可纠正。(4)对于大板基础,它直接承受杆塔自重,底板很薄,施工中为避免铁塔发生倾斜,应进行双向配筋。因此,它对钢筋的需求量往往较大,并且还要保证所用钢筋的韧性及强度。除此之外,这种基础还会产生不均匀沉降,在施工中必须及时清理通过掏挖产生的浮土,避免对地基的稳定性造成不利影响。另外,为保证垫层强度,可通过块石灌浆来加固垫层。针对转角塔和直线塔等实际负荷相对较大的部位,应在开工前采用计算机进行模拟,对沉降量和形变量进行准确计算。(5)对于阶梯型基础,其施工和大板基础完全不同,不仅不用配筋,而且由于开挖面积相对较大,且埋深很深,所以要用到很多混凝土。该基础在施工中应采用现浇的方法对开挖处予以回填,同时底板刚度在很大程度上决定了杆塔整体牢固性。对此,如果地质结构较差,或软基段,则不建议采用这种基础类型。 2.3输电线路工程杆塔施工技术问题与处理 塔杆是输电线路的承载体,因此它的架设对于整个电力工程都有着非常重要的意义,可以说输电线路能否保障电力安全供应,有一半的因素要取决于塔杆的顺利架设了。在架设塔杆之时,施工人员需要注意两点:第一点,塔杆的本身质量必须合格,质地要坚硬牢固,要能够完全承受输电线路的压力,不因为外界压力就发生断裂或者是偏移。当然除了塔杆的质量问题,它的地基铺设也相当重要,否则再好

输电线路除冰技术的研究

第10卷第3期 防 灾 科 技 学 院 学 报 V ol.10 No.3 2008年9月 J.of Institute of Disaster-Prevention Science and Technology Sep. 2008 收稿日期:2008-4-28 作者简介:李 宁(1985-),男,硕士研究生,主要从事高电压技术方面的研究。 基金项目:湖南省自然科学基金项目(07JJ3101),湖南省科技计划项目(2007FJ3008)。 输电线路除冰技术的研究 李 宁,周羽生,邝江华,彭 琢 (长沙理工大学电气与信息工程学院,湖南长沙 410076) 摘 要:目前,如何对覆冰输电线路进行融冰、除冰以降低冰灾损失仍是世界性的技术难题,通常的融冰措施可分为热融冰、机械除冰及自然脱冰。该文分别简要阐述了这三类措施,并对每一类方法中具有代表性的或较新颖的融冰方法进行了介绍,同时分析了各方案的利弊及应用范围,并介绍了国际上在此领域的一些新的研究成果。 关键词:输电线路;除冰措施;融冰机理 中图分类号:TM755 文献标识码:A 文章编号:1673-8047(2008) 03-0033-05 Research on De-icing Methods for Transmission Lines Li Ning,Zhou Yusheng,Kuang Jianghua,Peng Zhuo (College of Electrical Engineering and Information, Changsha University of Science and Technology, Changsha 410076, China) Abstract: At present, how to melt the icing transmission lines to reduce the losses is still a worldwide technical problem. Common melting ice methods can be divided into three kinds: ice-melting, mechanical de-icing and natural de-icing. This paper describes each of these measures briefly, and introduces a typical and advanced method of each kind. At the same time, the advantages and disadvantages of various measures and their applications are analyzed. In addition, some of the new research results in this field have been introduced. Keywords: transmission lines; de-icing; melting mechanism 前言 电网输电线路覆冰是一种分布广泛的自然现 象,每年冬天,在山区及高寒山区,地形复杂,气候多变,在个别特殊地段形成的微地形、微气象点,因严重覆冰及大风而造成的输电线路倒杆、断线事故很多,对电力系统的安全运行构成了严重的威胁。我国最早有记录的输电线路冰害事故出现于1954年。2008年元月,我国南方地区遭受了50多年来最大的一次冰灾事故,据报道截至2008年2月4日,湖南省500kv 线路停运14条,220kv 线路停运56条,110kv 线路停运139条。全省最大可供电力负荷仅为475万千瓦,其中湖南郴州成为电力 孤岛,全城停水停电达12天,给人民生活、生产 和国民经济运行构成极大的威胁。 覆冰现象对电网输电线路的危害主要体现在四个方面:过负载事故;不均匀覆冰或不同期脱冰引起的机械和电气方面的事故;绝缘子串覆冰过多或被冰凌桥接,绝缘子串电气性能降低;不均匀覆冰引起的导线舞动事故。目前国内外除冰方法有30余种,大致可分为热力除冰法、机械除冰法和自然脱冰法三类[1-6]。 2 热力除冰方法 https://www.360docs.net/doc/c06367531.html,forte 列举了4种关于输电线路的热力 除冰方法,如表1所示:

相关文档
最新文档