圆的最值问题归纳-与圆有关的最值问题

圆的最值问题归纳-与圆有关的最值问题
圆的最值问题归纳-与圆有关的最值问题

圆的问题探究

安阳市龙安高级中学段可贺

高中数学中,研究最多的一种曲线是圆。在研究圆的相关问题时,最值问题又是研究的重点和热点,现把常见的与圆相关的最值问题,总结如下。希望对读者有些启发。

类型一、“圆上一点到直线距离的最值”问题

分析:求圆上一点到直线距离的最值问题,总是转化成求圆心到定直线的距离问题来解决。

1、求圆C: (x-2)2+(y+3)2=4上的点到直线l :x-y+2=0的最大、最小距离. 解析:作CH l ⊥交于H ,与圆C 交于A ,反向延长与圆交于点B 。

所以max min 2; 2.222

CH BH AH d d d d d ===+==-

2、求圆C: (x-1)2+(y+1)2=2上的点与直线l : x-y+4=0距离的最大值和最小值. 解析:方法同第一题

,max min BH d d d ===== 3、圆222=+y x 上的点到直线l :02543=++y x 的距离的最小值为________________.

解析:方法同第一题

,min 5d =

类型二、“圆上一点到定点距离的最值”问题

分析:本质是两点间距离。涉及与圆相关的两点的距离,总是转化为圆心与定点距离问题来解决。

1.已知点P (x,y )是圆C : x 2+y 2-2x-4y+4=0上一点,求P 到原点的最大最小距离.

解析:连接OC 与圆交于A ,延长OC 交于B

.

max min 1;1.

OC OC d d r d d r =+==-=

2.已知圆C :04514422=+--+y x y x 及点()3,2-Q ,若M 是圆C 上任一点,求

MQ 最大值和最小值. 解析:方法同第一题

,

max Q min Q C C d d r d d r =+===-==

3 .已知x,y 满足条件 x 2+y 2-2x-4y+4=0,求22y x +范围.

解析:方程看作是圆C ,表达式几何意义是圆C 上点(,)x y 与(0,0)距离的范围,求

max min ,d d 即可,与第一题答案相同.

4.已知x,y 满足圆C : x 2+y 2-2x-4y+4=0,求22)2()2(+++y x 范围. 解析: 表达式几何意义是圆C 上点(,)x y 与P (-2,-2)距离的最值的平方.

max min 22max

min

5,6, 4.36,16.[16,36].

CP d d d

d

=====所以范围是

5.已知x,y 满足圆C : x 2+y 2-2x-4y+4=0,求z=x 2+y 2+2x+2y 范围.

解析:22(1)(1)2z x y =+++-表达式几何意义是圆C 上点(,)x y 与P (-1,-1)距离的最值的平方减去

2.

max min 22max min 2121)212[12CP d d z z ====-=+=-=--+所以范围是 6.已知圆()()143:22=-+-y x C ,点A (-1,0),B (1,0),点P 为圆上一动点,求2

2

PB PA d +=的最大值和最小值及对应的P 点坐标. 解析:

2

2

2222max min 2()2,.2(51)274;2(51)234.[34,74].

d PA PB x y d d =+=++=++==-+=几何意义是点P 与原点O 距离的平方2倍加2|OC|=5,

所以答案

类型三、“过定点的弦长”问题

1:已知直线:2830l mx y m ---=和圆22:612200C x y x y +-++=;

(1)m R ∈时,证明l 与C 总相交。 (2)m 取何值时,l 被C 截得弦长最短,求此弦长。 解析:

(28)30,280,4, 3.,.

,.

1

k =3,=-.:350.3

||x m y x x y P k x y AB ---=-===-++===直径所求直线整理得到所以进而易判断在圆内所以直线总是与圆相交是直径时弦长最长垂直直径时弦长最短此时直线为弦长 2、已知C :(x -1)2+(y -2)2=25,直线l :(2m +1)x +(m +1)y -7m -4=0(m ∈R).

(1)求证:不论m 取什么实数时,直线l 与圆恒交于两点;

(2)求直线l 被圆C 截得的线段的最短长度以及这时直线l 的方程. 解析:方法同第一题.(1)恒过点(3,1)P (2)垂直直径的直线

250,||x y AB --==弦长

类型四、“切线长”问题

分析:切线长问题总是转化为圆心到直线距离问题

1、在直线2x +y +3=0上求一点P ,使由P 向圆C :x 2+y 2-4x =0引得的切线长长度为最小.

解析:直线与圆相离,假设切点为Q ,组成直角三角形PQC ,切线长

22||||r CP PQ -=,那么当||CP 最小时||PQ 最小。进而计算圆心C 到直线的距

离.51454549||,5

7min =-==

PQ d

2.一束光线从点A (-1,1)出发经x 轴反射到圆C :(x -2)2+(y -3)2=1的最短路程是________________. 解析:根据光学的对称原理,A 点关于x 轴的对称点是),(1-1-'A ,求

.415||,5||'min '=-=-==r CA d CA 所以

3.已知P 是直线0843=++y x 上的动点,PA ,PB 是圆0122:22=+--+y x y x C 的两条切线,A ,B 是切点,求四边形PACB 的面积的最小值

解析:四边形APBC 中连接CP ,两个三角形,PAC PBC 全等

min min 1

2(||)||2

||||3

||APBC APBC S r PA PA CP CP S PA =???======最小值为O 到直线距离所以

4. 如图,已知圆1:22=+y x O 和定点A (2,1),由圆

O

外一点P (a ,b )向圆O 引切线PQ ,切点为Q ,且满足PA PQ =,

(1)求实数a ,b 间满足的等量关系。 (2)求线段PQ 长的最小值。

(3)若以P 为圆心所做的圆P 与圆O 有公共点,试求半径取最小值时圆P 的方程。 解析:(1)做出切线,

222222222|PQ |=|P ||P |,1(2)(1),230.

A r A a b a b a b -=+-=-+-+-=进而得到|OP|得到化简得到(2)

22222222min |PQ |=|P ||PQ |=|P |(2)(1)64|PQ |=(2)(3-2a 1)5(),

55

6|PQ |5A A a b a a a -+--+-=-+=因为,所以=,

由(1)知道b=3-2a 代入以上表达式,当时, (3) 相切

时半径最小,假设半径为r

222min r 116631 1.()1).

555r y =====-+-=-所以所以,

当a=时,此时圆P 方程为(x-)

类型五、利用“数形结合方法”解决直线与圆的问题

(1)利用表达式的几何意义“斜率”解决问题

1.若实数x ,y 满足()3222=+-y x ,则x

y

的最大值是

解析

:

max 0

:(,)(0,0)0

y x y x k --==表达式的几何意义是k=即圆上的点和原点的斜率,在第一象限相切时,斜率最大。设直线斜率为k ,直线方程是y=kx,所以圆心到直线距离所以

2.已知实数x 、y 满足,求的最大值与最小值。 解析:

1)1()2(2

2=-+-y x x

y z 1

+=

圆中的最值问题

圆中的最值问题 Prepared on 24 November 2020

圆中的最值问题 【考题展示】 题1 (2012年武汉中考)在坐标系中,点A的坐标为(3,0),点B为y轴正半轴上的一点,点C 是第一象限内一点,且AC=2.设tan∠BOC=m,则m的取值范围是_________. 题2 (2013年武汉元调)如图,在边长为1的等边△OAB中,以边AB为直径作⊙D,以O为圆心OA长为半径作⊙O,C为半圆弧AB上的一个动点(不与A、B两点重合),射线AC交⊙O于点E,BC=a,AC=b,求a b +的最大值.(有修改) 题3 (2013年武汉四调)如图,∠BAC=60°,半径长为1的圆O与∠BAC的两边相切,P为圆O上一动点,以P为圆心,PA长为半径的圆P交射线AB、AC于D、E两点,连接DE,则线段DE长度的最大值为_________. 题4 (2013年武汉五模)在△ABC中,120 A BC=.若△ABC的内切圆半径为r,则r的最 ∠=?,6 大值为_________.(有修改) 题5 (2013年武汉中考)如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF 交BD于点G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是 _________. 题1图题2 图题3 图

题4图题5图 【典题讲练】 类型1(相关题:题5) 如图,边长为a的等边△ABC的顶点A,B分别在x轴正半轴和y轴正半轴上运动,则动点C到原点O的距离的最大值是_________. 在直角坐标系中,△ABC满足,∠C=90°,AC=8,BC=6,点A,B分别在x轴、y轴上,当A点从原点开始在正x轴上运动时,点B随着在正y轴上运动(下图),求原点O到点C的距离OC的最大值,并确定此时图形应满足什么条件. 如图,在平面直角坐标系中,已知等腰直角三角形ABC,∠C=90°,AC=BC=2,点A、C分别在x轴、y轴上,当点A从原点开始在x轴的正半轴上运动时,点C在y轴正半轴上运动. (1)当A在原点时,求点B的坐标; (2)当OA=OC时,求原点O到点B的距离OB; (3)在运动的过程中,求原点O到点B的距离OB的最大值,并说明理由.

与椭圆有关的最值问题

与椭圆有关的最值问题 圆锥曲线在高考中占很重要的地位,每年必考。对椭圆、双曲线、抛物线的研究方法基本相同,椭圆 为三曲线之首,对椭圆的学习就更为重要了。而椭圆中的最值问题是比较重要的课题,它主要体现了转化 思想及数形结合的应用,涉及到的知识有椭圆定义、标准方程、参数方程、三角函数、二次函数、不等式 等内容。能够考查学生的分析能力、理解能力、知识迁移能力、解决问题的能力等等。下面介绍几种常见 的与椭圆有关的最值问题的解决方法。 1 ?定义法 2 2 例1。P(-2, 3 ),F2为椭圆——=1的右焦点,点M 在椭圆上移动,求丨MP| + | MF 2 |的最大值 25 16 和最小值。 分析:欲求丨MP| + | MF 丨的最大值和最小值 可转化为距离差再求。由此想到椭圆第一定义 | MF | =2a- | MF | , F 1为椭圆的左焦点。 解:| MP| + | MF | = | MP| +2a- | MF | 连接 PR 延长 PF 1 交椭圆于点M 1,延长F 1P 交椭圆于点M 2由三角形三边关系知 -| PF |兰| MP| - | MF |兰| PR |当且仅当M 与M 1重合时取右等号、M 与M 2重合时取左等号。因为 2a=10, | PF 1 | =2所以(| MP| + | MF |) ma>=12, (| MP | + | MF | ) min =8 2 2 X y 结论1:设椭圆二 2 =1的左右焦点分别为F 1、F 2, P(x o ,y o )为椭圆内一点,M(x,y)为椭圆上任意 a b 一点,则| MP | + | MF |的最大值为 2a+ | PF 1 |,最小值为2a - | PR |。 2 2 例 2: P(-2,6),F 2为椭圆— -L 25 16 M ,此点使| MP| + | MF |值最小,求最大值方法同例 1。 MF |连接PF 1并延长交椭圆于点 皿仆则M 在M 1处时| MP | - | MF I 取最大值| PF 1 |。二| MP | + | MF |最大值是10+ , 37,最小值是,41 2 2 x y 结论2:设椭圆一2 - =1的左右焦点分别为F 1、F 2, P(x o ,y o )为椭圆外一点,M(x,y)为椭圆上任意一点, a b 则| MP | + | MF |的最大值为 2a+ | PF 1 |,最小值为 PF ?。 2. 二次函数法 2 2 例3?求定点A(a,0)到椭圆务'£ =1上的点之间的最短距离。 a b 分析:在椭圆上任取一点,由两点间距离公式表示| PA |,转化为x,y 的函数,求最小值。 1 1 解:设 P(x,y)为椭圆上任意一点,| PA | 2=(x-a) 2+y 2 =(x-a) 2+1- x 2 = (x_ 2a)2+1d 由椭圆方 =1的右焦点,点 M 在椭圆上移动,求| MP | + | MF |的最大值和 最小值。 分析:点P 在椭圆外,PF 2交椭圆于 解:| MP | + | MH | = | MP | +2a- | M 1 M 2

(完整版)圆最值问题题型归纳

x 圆中最值问题 类型一 圆上一点到直线距离的最值问题 例1 已知P 为直线y=x +1上任一点,Q 为圆C : 22(3)1x y -+=上任一点,则PQ 的最小值为 . 变题1:已知A (0,1),B (2,3),Q 为圆C 22 (3)1x y -+=上任一点,则QAB S V 的最小值为 . 变题2:由直线y=x +1上一点向圆C :22 (3)1x y -+=引切线,则切线长的最小值为 变题3:已知P 为直线y=x +1上一动点,过P 作圆C :22(3)1x y -+=的切线PA ,PB,A 、B 为切点,则当PC= 时,APB ∠最大. 变题4:已知P 为直线y=x +1上一动点,过P 作圆C :22(3)1x y -+=的切线PA ,PB,A 、B 为切点,则四边形PACB 面积的最小值为 . 例2已知圆C :222430x y x y ++-+=,从圆C 外一点11(,)P x y 向该圆引一条切线,切点为M ,O 为坐标原点,且有PM=PO ,求使得PM 取得最小 值的点P 坐标. 类型二 利用圆的参数方程求最值(或几何意义) 例3若实数x 、y 满足22240x y x y ++-=,求x-2y 的最大值. 如在上例中,改为求 12 y x --,22(2)(1)x y -+-,1x y --的取值范围,该怎么求解? 类型三:转化成函数或不等式求最值 例4已知圆O :22 1x y +=,PA 、PB 为该圆的两条切线,A 、B 为两切点,则PA PB ?u u u r u u u r 的最小值为

例5已知圆C : 22+24x y +=(), 过点(1,0)A -做两条互相垂直的直线12l l 、,1l 交圆C 与E 、F 两点,2l 交圆C 与G 、H 两点, (1)EF +GH 的最大值.(2) 求四边形EGFH 面积的最大值. 6、已知e C 过点)1,1(P ,且与e M :222(2)(2)(0)x y r r +++=>关于直线20x y ++=对称. (Ⅰ)求e C 的方程; (Ⅱ)设Q 为e C 上的一个动点,求PQ MQ ?u u u r u u u u r 的最小值; (Ⅲ)过点P 作两条相异直线分别与e C 相交于B A ,,且直线PA 和直线PB 的倾斜角互补,O 为坐标原点,试判断直线OP 和AB 是否平行?请说明理由. 7、如图,在矩形ABCD 中,3,1AB BC ==,以A 为圆 心1为半径的圆与AB 交于E (圆弧DE 为圆在矩形内的部 分) (Ⅰ)在圆弧DE 上确定P 点的位置,使过P 的切线l 平分 矩形ABCD 的面积; (Ⅱ)若动圆M 与满足题(Ⅰ)的切线l 及边DC 都相切, 试确定M 的位置,使圆M 为矩形内部面积最大的圆. l P E C M

圆中有关最值问题一.doc

圆中有关最值问题(1)教学设计 一、设计思路: 圆中有关最值问题是中考数学中的重要内容,是综合性较强的问题,它贯穿初中数学的 始终,是中考的热点问题。其运用性质有:圆中直径是最长的弦、垂线段最短、三边关系定 理、对称法等。本节课以例题入手来研究圆中的有关最值问题。 二、学情分析 学生知识技能基础:学生在前面几节课已经认识了圆,学习了圆的有关知识,以及数学 的基本结论:圆中直径是最长的弦、垂线段最短、三角形三边关系等基本知识,这些为本节 课的学习奠定了良好的知识技能基础。 学生活动经验基础:通过以往的数学学习,学生已经具有了一些数学活动经验的基础; 另一方面,在以往的数学活动中,学生已经经历了很多合作交流的学习过程,具有了一定的 合作学习的经验,具备了一定的合作交流的能力。 三、教学目标 知识与技能: 1、会利用直径是圆中最长的弦这一基本结论解决有关最值问题; 2、会利用圆外一点与圆上各点的连线中最短与最近距离这一基本事实,解决圆中有关最值问题。 方法与途径: 通过观察、操作、想象、推理、交流等活动,发展空间观念,培养学生动手动脑、发现 问题及解决问题的能力,以及推理能力和有条理的表达能力。 情感与评价: 通过实际操作、画图等活动,培养学生的动手能力,提高学生的识图技能,使学生的思 维变得更加灵活。 现代教学手段: 多媒体和几何画板的合理应用,增加了课时内容,激发了学生学习的积极性,突破了教 学重点、难点的同时,更重要的是使复杂问题更加简单化,通过清楚的动画演示,使学生进 一步感受何时取得最大值问题。 四、教学重点与难点 教学重点:将试题转化为最值中的有关模型 教学难点:将试题转化为最值中的有关模型的方法

“隐圆”最值问题习题

B M C D A E F D C B A B E D C F A “隐圆”最值问题 重难点:分析题目条件发现题目中的隐藏圆,并利用一般的几何最值求解方法来解决问题 【例1】在平面直角坐标系中,直线y = - x + 6分别与x 轴、y 轴交于点A 、B 两点,点C 在y 轴的左边,且∠ACB = 90°,则点C 的横坐标x C 的取值范围是__________. 分析:在构造圆的前提下 考虑90°如何使用。直角对直径所以以AB 为直径画圆。使用垂径定理即可得到3-20c x ≤<3 【练】(2013-2014·六中周练·16)如图,已知Rt △ABC 中,∠ACB = 90°,AC = 3,BC = 4,点D 是AB 的中点,E 、F 分别是直线AC 、BC 上的动点,∠EDF = 90°,则EF 长度的最小值是__________. 分析:过D 点作DE 垂直AB 交AC 于点M 可证△FBD ∽△ECD 即可 求出最小值 【例2】如图,在Rt △ABC 中,∠ACB = 90°,D 是AC 的中点, M 是BD 的中点,将线段AD 绕A 点任意旋转(旋转过程中始 终保持点M 是BD 的中点),若AC = 4,BC = 3,那么在旋转 过程中,线段CM 长度的取值范围是_______________. 分析:将线段AD 绕A 点任意旋转隐藏着以A 为圆心AD 为半径的圆构造 出来。接下来考虑重点M 的用途即可。中点的用法可尝试下倍长和中位线。 此题使用中位线。答案是 3722 c x ≤≤ 【练】已知△ABC 和△ADE 都是等腰直角三角形,∠ACB =∠ADE = 90°,AC = 22,AD = 1,F 是BE 的中点,若将△ADE 绕点A 旋转一周,则线段AF 长度的取值范围是 4242 22 AC -+≤≤. 分析:同例题 【例3】如图,已知边长为2的等边△ABC ,两顶点A 、B 分别在平面直角

2019中考数学压轴题突破解析圆的双动点最值问题

第 1 页 共 6 页 2019中考数学压轴题突破 圆的双动点最值问题 1.如图,在Rt △ABC 中,∠C =90°,AC =6, BC =8,点F 在边AC 上,并且CF =2,点E 为边BC 上的动点,将△CEF 沿直线EF 翻折,点C 落在点P 处,则点P 到边AB 距离的最小值是_____. 分析:本题中,要求点P 到边AB 距离的最小值,先要确定点P 的运动轨迹.因为FP =FC =2,所以点P 的运动轨迹是以点F 为圆心,2为半径的圆弧(如图),过点F 作FQ ⊥AB ,以F 为圆心的弧与FQ 的交点为满足条件的点P . 答案: 6/5 这是动点轨迹为圆弧的一种类型,动点满足到定点的距离等于定长,确定动点的运动轨迹为以定点为圆心,定长为半径的圆(或一段弧). 2. 如图,点P 是正方形ABCD 的对角线BD 上的一个动点(不与B 、D 重合),连结AP ,过点B 作直线AP 的垂线,垂足为H ,连结DH ,若正方形的 边长为4,则线段DH 长度的最小值是 _______.

分析:要求线段DH长度的最小值,先要确定动点H的运动轨迹。在点P的运动过程中,∠AHB=90°,点H的运动轨迹是以AB为直径的半圆,题目转化为圆外一点到圆上一点之间的最小距离的问题(如图),连结点D和AB中点O,与半圆O交于点H,此时DH长度最小. 答案: 这一类动点满足与定线段构成一个直角三角形,且为直角顶点,则这个动点的轨迹是以定线段为直径的圆(或圆弧)。由特殊到一般,如果动点与定线段构成的三角形中,以动点为顶点的角度确定,这个动点的运动轨迹是以定线段为弦的圆(或圆弧). 3. 如图,正方形OABC的边长为4,以O为圆心,EF为直径的半圆经过点A,连接AE,CF 相交于点P,将正方形OABC从OA与OF重合的位置开始,绕着点O逆时针旋转90°,交点P运动的路径长是() 第 2 页共6 页

圆中的最值问题

圆中的最值问题公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

圆中的最值问题 【考题展示】 题1 (2012年武汉中考)在坐标系中,点A的坐标为(3,0),点B为y轴正半轴上的一点,点C是第一象限内一点,且AC=2.设tan∠BOC=m,则m的取值范围是 _________. 题2 (2013年武汉元调)如图,在边长为1的等边△OAB中,以边AB为直径作⊙D,以O 为圆心OA长为半径作⊙O,C为半圆弧AB上的一个动点(不与A、B两点重 合),射线AC交⊙O于点E,BC=a,AC=b,求a b +的最大值.(有修改) 题3 (2013年武汉四调)如图,∠BAC=60°,半径长为1的圆O与∠BAC的两边相切,P 为圆O上一动点,以P为圆心,PA长为半径的圆P交射线AB、AC于D、E两 点,连接DE,则线段DE长度的最大值为_________. 题4 (2013年武汉五模)在△ABC中,120 BC=.若△ABC的内切圆半径为r,则 ∠=?,6 A r的最大值为_________.(有修改) 题5 (2013年武汉中考)如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于点G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是_________.

题1图题2 图题3 图 题4图题5图 【典题讲练】 类型1(相关题:题5) 如图,边长为a的等边△ABC的顶点A,B分别在x轴正半轴和y轴正半轴上运动,则动点C到原点O的距离的最大值是_________. 在直角坐标系中,△ABC满足,∠C=90°,AC=8,BC=6,点A,B分别在x轴、y轴上,当A点从原点开始在正x轴上运动时,点B随着在正y轴上运动(下图),求原点O到点C的距离OC的最大值,并确定此时图形应满足什么条件.

“与圆有关的最值问题”教案(最新)

“与圆有关的最值问题”教学案例 余浩平 教学背景: 本节课是与圆有关的一节复习课,由于在初中学习中接触过圆的一些基本知识,因而课前安排了两道有关圆的最值问题让学生练,为后面的教学奠定了基础。在随后的教学中,采取变式教学、一题多解、自主探索的教学方式,培养学生研究性学习。 教学目标: 从学生的实际出发,依据数学思维规律,提出恰当的富于启发性的问题,去启迪和引导学生积极思维,同时采用多种方法,引导学生通过观察、试验、分析、猜想、归纳、类比、联想等思想方法,主动地发现问题和提出问题。 重点与难点: 学生通过观察、分析、猜想、类比等思想方法主动地发现问题和解决问题。 教学过程: 一、 引入新课 练习: 已知圆0122822=+--+y x y x 内一点)0,3(A ,求经过点A 的最长弦和最短弦所在的直线方程。 二、 新课 例: 已知圆的方程222=+y x 及一点P(2,4),求圆上的动点与点P 连线斜率 的最值? 题变: 将上面例题中的点P(2,4)改为)4,0(P ,则圆上的动点与点P 连线斜率的 最值是否存在?若存在求出最值,若不存在,请说明理由。 讨论问题1: 已知圆的方程222=+y x 及一点P(2,4) 试试看: 根据以上条件,你还能设计出哪些与圆有关的最值问题? 讨论问题2: 已知圆的方程422=+y x 及一条直线05=--y x 试试看: 根据以上条件,你能设计出哪些与圆有关的最值问题? 三、 练习 1、 从直线y=3上找一点,向圆1)2()2(22=+++y x 作切线,切线长度的最 小的值是多少?

2、 实数满足01422=+-+y y x ,求(1)x y 的取值范围。 (2)x y 2-的取值范围 四、 小结 最值问题常见的解法有两种:几何法和代数法. 若题目的条件和结论能明显体现几何特征及意义, 则考虑利用图形来解决,这就是几何法——数形结合的方法; 若题目的条件和结论能体现一种明确的函数关系, 则可首先建立目标函数,再求这个函数的最值. 五、 思考题 过点M (3,0)作直线l 与圆1622=+y x ,交于A,B 两点, 求: 直线l 的倾斜角θ,使△AOB 面积最大,并求此最大值(O 为坐标原点)。

与圆有关的最值问题,附详细答案

与圆有关的最值(取值范围)问题,附详细答案 姓名 1.在坐标系中,点A的坐标为(3,0),点B为y轴正半轴上的一点,点C是第一象限内一 点,且AC=2.设tan∠BOC=m,则m的取值范围是____ _____. 2.如图,在边长为1的等边△OAB中,以边AB为直径作⊙D,以O为圆心OA长为半径作圆 O,C为半圆AB上不与A、B重合的一动点,射线AC交⊙O于点E,BC=a,AC=b. (1)求证:AE=b+a; (2)求a+b的最大值; (3)若m是关于x的方程:x2+ax=b2+ab的一个根,求m的取值范围. 3.如图,∠BAC=60°,半径长为1的圆O与∠BAC的两边相切, P为圆O上一动点,以P为圆心,PA长为半径的圆P交射线AB、AC于D、E两点,连接DE, D. 则线段DE长度的最大值为( ). A.3 B.6 C. 2

4.如图,A点的坐标为(﹣2,1),以A为圆心的⊙A切x轴于点B,P(m,n)为⊙A上的一个动点,请探索n+m的最大值. 5.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,点D是平面内的一个动点,且AD=2,M 为BD的中点,在D点运动过程中,线段CM长度的取值范围是 . 6.如图是某种圆形装置的示意图,圆形装置中,⊙O的直径AB=5,AB的不同侧有定点C和动点P,tan∠CAB=.其运动过程是:点P在弧AB上滑动,过点C作CP的垂线,与PB的延长线交于点Q. (1)当PC= 时,CQ与⊙O相切;此时CQ= . (2)当点P运动到与点C关于AB对称时,求CQ的长; (3)当点P运动到弧AB的中点时,求CQ的长. (4)在点P的运动过程中,线段CQ长度的取值范围为。 7.如图,△ABC中,∠BAC=60°,∠ABC=45°,AB=D是线段BC上的一个动点,以AD 为直径作⊙O分别交AB,AC于E,F两点,连接EF,则线段EF长度的最小值为.

圆中的最值问题

圆中的最值问题 【考题展示】 题1 (2012年武汉中考)在坐标系中,点A的坐标为(3,0),点B为y轴正半轴上的一点,点C是第一象限内一点,且AC=2.设tan∠BOC=m,则m的取值范围是_________. 题2 (2013年武汉元调)如图,在边长为1的等边△OAB中,以边AB为直径作⊙D,以O为圆心OA长为半径作⊙O,C为半圆弧AB上的一个动点(不与A、B两点重合),射线AC交⊙O于点E,BC=a,AC=b,求 +的最大值.(有修改) a b 题3 (2013年武汉四调)如图,∠BAC=60°,半径长为1的圆O与∠BAC的两边相切,P为圆O上一动点,以P 为圆心,PA长为半径的圆P交射线AB、AC于D、E两点,连接DE,则线段DE长度的最大值为_________.题4 (2013年武汉五模)在△ABC中,120 BC=.若△ABC的内切圆半径为r,则r的最大值为 A ∠=?,6 _________.(有修改) 题5 (2013年武汉中考)如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于点G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是_________. 题1图题2 图题3 图

【典题讲练】 类型1(相关题:题5) 1.1 如图,边长为a的等边△ABC的顶点A,B分别在x轴正半轴和y轴正半轴上运动,则动点C到原点O 的距离的最大值是_________. 1。2在直角坐标系中,△ABC满足,∠C=90°,AC=8,BC=6,点A,B分别在x轴、y轴上,当A点从原点开始在正x轴上运动时,点B随着在正y轴上运动(下图),求原点O到点C的距离OC的最大值,并确定此时图形应满足什么条件. 1。3如图,在平面直角坐标系中,已知等腰直角三角形ABC,∠C=90°,AC=BC=2,点A、C分别在x轴、y轴上,当点A从原点开始在x轴的正半轴上运动时,点C在y轴正半轴上运动. (1)当A在原点时,求点B的坐标; (2)当OA=OC时,求原点O到点B的距离OB; (3)在运动的过程中,求原点O到点B的距离OB的最大值,并说明理由.

(完整word版)专题:阿氏圆与线段和最值问题(含答案),推荐文档

专题:阿氏圆与线段和最值问题 以阿氏圆(阿波罗尼斯圆)为背景的几何问题近年来在中考数学中经常出现,对于此类问题的归纳和剖析显得非常重要. 具体内容如下: 阿氏圆定理(全称:阿波罗尼斯圆定理),具体的描述:一动点P 到两定点A 、 B 的距离之比等于定比n m (≠1),则P 点的轨迹,是以定比n m 内分和外分定线段 AB 的两个分点的连线为直径的圆.这个轨迹最先由古希腊数学家阿波罗尼斯发现,该圆称为阿波罗尼斯圆,简称阿氏圆. 定理读起来和理解起来比较枯燥,阿氏圆题型也就是大家经常见到的PA+kPB ,(k ≠1)P 点的运动轨迹是圆或者圆弧的题型. PA+kPB,(k ≠1)P 点的运动轨迹是圆或圆弧的题型 阿氏圆基本解法:构造母子三角形相似 例题1、问题提出:如图1,在Rt △ABC 中,∠ACB =90°,CB =4,CA =6,⊙C 半径为2,P 为圆上一动点,连结AP 、BP ,求AP +BP 的最小值. (1)尝试解决:为了解决这个问题,下面给出一种解题思路:如图2,连接CP ,在CB 上取点D ,使CD =1,则有 = =,又∵∠PCD =∠BCP ,∴△PCD ∽△BCP .∴ =,∴PD =BP ,∴AP +BP =AP +PD . 请你完成余下的思考,并直接写出答案:AP +BP 的最小值为 . (2)自主探索:在“问题提出”的条件不变的情况下,AP +BP 的最小值为 . (3)拓展延伸:已知扇形COD 中,∠COD =90°,OC =6,OA =3,OB =5,点P 是上一点,求2P A +PB 的最小值. 【分析】(1)利用勾股定理即可求出,最小值为AD = ;

与圆有关的最值问题.doc

与圆有关的最值问题 共线且P 和Q 在点O 的同侧(异侧)时,PQ 长度最小(大).(通过定点与圆心连线与圆的 交点求出定点到圆上动点距离之最值) 3.过圆内一点的最短弦为过这点且与过该点的直径垂 直的弦; 4.通过切切点求有关角度之最值;5;通过弧的中点求弧上动点到弧所对弦距离最 短 例 1 (2014?无锡)如图,菱形ABCD 中,∠A =60°,AB=3,⊙A、⊙B 的半径分别为 2 和1,P、E、F 分别是边CD、⊙A 和⊙B 上的动点,则PE+PF 的最小值是3 . (固定点P,则PE+PF 的最小值可转化为PA+PB-3 再结合“饮马问题”确定PA+PB 的最 小值) 例2(2014?成都)如图,在边长为 2 的菱形ABCD 中,∠ A =60°,M 是AD 边的中点,N 是AB 边上的一动点,将△AMN 沿MN 所在直线翻折得到△A′M,N 连接A′C,则A′C长度的最小值是﹣1 . (点A'在以M 为圆心,MA 为半径的圆上) 例3(2014·烟台)在正方形ABCD 中,动点E、F 分别从D、C 两点同时出发,以相同的速 度在直线DC、CB 上移动. (1)如图①,当点 E 自 D 向C,点 F 自 C 向 B 移动时,连接AE 和DF 交于点P,请你写 出AE 与DF 的位置关系,并说明理由; (2)如图②,当E、F 分别移动到边DC、CB 的延长线上时,连接AE 和DF ,(1)中的结 论还成立吗?(请你直接回答“是”或“否”,不需证明) (3)如图③,当E、F 分别在边CD、BC 的延长线上移动时,连接AE 和DF ,(1)中的结 论还成立吗?请说明理由; (4)如图④,当E、F 分别在边DC、CB 上移动时,连接AE 和DF 交于点P,由于点E, F 的移动,使得点P 也随之运动,请你画出点P 运动路径的草图.若AD =2,试求出线段 CP 的最小值.

2016年中考压轴题专题:与圆有关的最值问题(附答案)

与圆有关的最值(取值范围)问题 引例1:在坐标系中,点A的坐标为(3,0),点B为y轴正半轴上的一点,点C是第一象限内一点,且AC=2.设tan∠BOC=m,则m的取值范围是_________. 引例2:如图,在边长为1的等边△OAB中,以边AB为直径作⊙D,以O为圆心OA长为半径作⊙O,C为半圆弧上的一个动点(不与A、B两点重合),射线AC交⊙O于点E, ?AB BC=,AC=,求的最大值. a b a b 引例3:如图,∠BAC=60°,半径长为1的圆O与∠BAC的两边相切,P为圆O上一动点,以P为圆心,PA长为半径的圆P交射线AB、AC于D、E两点,连接DE,则线段DE 长度的最大值为( ). A.3 B.6 C D. 一、题目分析: 此题是一个圆中的动点问题,也是圆中的最值问题,主要考察了圆内的基础知识、基本技能和基本思维方法,注重了初、高中知识的衔接 1.引例1:通过隐藏圆(高中轨迹的定义),寻找动点C与两个定点O、A构成夹角的变化规律,转化为特殊位置(相切)进行线段、角度有关计算,同时对三角函数值的变化(增减性)进行了延伸考查,其实质是高中“直线斜率”的直接运用; 2.引例2:通过圆的基本性质,寻找动点C与两个定点A、B构成三角形的不变条件,结合不等式的性质进行转化,其实质是高中“柯西不等式”的直接运用; 3.引例3:本例动点的个数由引例1、引例2中的一个动点,增加为三个动点,从性质运用、构图形式、动点关联上增加了题目的难度,解答中还是注意动点D、E与一个定点A 构成三角形的不变条件(∠DAE=60°),构造弦DE、直径所在的直角三角形,从而转化为弦DE与半径AP之间的数量关系,其实质是高中“正弦定理”的直接运用; 综合比较、回顾这三个问题,知识本身的难度并不大,但其难点在于学生不知道转化的套路,只能凭直观感觉去寻找、猜想关键位置来求解,但对其真正的几何原理却无法通透. 二、解题策略 1.直观感觉,画出图形; 2.特殊位置,比较结果; 3.理性分析动点过程中所维系的不变条件,通过几何构建,寻找动量与定量(常量)之间的关系,建立等式,进行转化.

苏科版九年级数学上册《圆有关的最值问题》专题(解析版)

圆有关的最值问题 一、求解方法: 1.根据“三角形三边关系”求解: -≤≤+ a b c a b 2.动中有静,抓住不变量求解. 3.旋转必产生圆,很多情况在相切位置产生最值. 4.四点共圆(补充). 五个基本判断方法: (1)若四个点到一个定点的距离相等,则这四个点共圆. (2)若一个四边形的一组对角互补(和为180。),则这个四边形的四个点共圆. (3)若一个四边形的外角等于它的内对角,则这个四边形的四个点共圆. (4)若两个点在一条线段的同旁,并且和这条线段的两端连线所夹的角相等,那么这两个点和这条线的两个端点共圆. (5)同斜边的直角三角形的顶点共圆, 二、解题策略 1.直观感觉,画出图形; 2.特殊位置,比较结果; 3.理性分析动点过程中所维系的不变条件,通过几何构建,寻找动量与定量(常量)之间的关系,建立等式,进行转化.

三、中考展望与题型训练 例一、圆外一点与圆的最近点、最远点 1.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,点D是平面内的一个动点,且AD=2,M为BD的中点,在D点运动过程中,线段CM长度的取值范围是. 例二、正弦定理 2.如图,△ABC中,∠BAC=60°,∠ABC=45°,AB=4,D是线段BC上的一个动点,以AD为直径作⊙O分别交AB、AC于E、F,连结EF,则线段EF长度的最小值为. 3.如图,定长弦CD在以AB为直径的⊙O上滑动(点C、D与点A、B不重合),M是CD 的中点,过点C作CP⊥AB于点P,若CD=3,AB=8,PM=l,则l的最大值是.例三、不等式、配方法 4.如图,已知半径为2的⊙O与直线l相切于点A,点P是直径AB左侧半圆上的动点,过点P作直线l的垂线,垂足为C,PC与⊙O交于点D,连接P A、PB,设PC的长为x(2<x<4).当x为何值时,PD?CD的值最大?最大值是多少?

九年级上册数学圆中的最值问题

拔高专题 圆中的最值问题 图(1) 探究点一:点与圆上的点的距离的最值问题 例1:如图,A 点是⊙O 上直径MN 所分的半圆的一个三等分点,B 点是弧AN 的中点,P 点是MN 上一动点,⊙O 的半径为3,求AP+BP 的最小值。 解:作点A 关于MN 的对称点A ′,连接A ′B ,交MN 于点P ,连接OA ′,AA ′. ∵点A 与A ′关于MN 对称,点A 是半圆上的一个三等分点, ∴∠A ′ON=∠AON=60°,PA=PA ′,∵点B 是弧AN 的中点, ∴∠BON=30°,∴∠A ′OB=∠A ′ON+∠BON=90°,又∵OA=OA ′=3, ∴A ′.∵两点之间线段最短,∴PA+PB=PA ′+PB=A ′. 【教师总结】解决此题的关键是确定点P 的位置.根据轴对称和两点之间线段最短的知识,把两条线段的和转化为一条线段,即可计算。

探究点二:直线与圆上点的距离的最值问题 例2:如图,在Rt△AOB中, ,⊙O的半径为1,点P是AB边上的动点, 过点P作⊙O的一条切线PQ(点Q为切点),求切线PQ的最小值 解:连接OP、OQ.∵PQ是⊙O的切线,∴OQ⊥PQ;根据勾股定理知PQ2=OP2-OQ2, ∴当PO⊥AB时,线段PQ最短,∵在Rt△AOB中, OA=OB=3 , ∴ OA=6,∴OP= ? OA OB AB =3,∴ . 【变式训练】如图,在平面直角坐标系中,以坐标原点O为圆心,2为半径画⊙O,P是⊙O是一动点且P在第一象限内,过P作⊙O切线与x轴相交于点A,与y轴相交于点B.求线段AB的最小值. 解:(1)线段AB长度的最小值为4, 理由如下: 连接OP, ∵AB切⊙O于P, ∴OP⊥AB, 取AB的中点C, ∴AB=2OC; 当OC=OP时,OC最短, 即AB最短, 此时AB=4.

圆最值问题题型归纳

x y O C 圆中最值问题 类型一 圆上一点到直线距离的最值问题 例1 已知P 为直线y=x +1上任一点,Q 为圆C : 22(3)1x y -+=上任一点,则PQ 的最小值为 . 变题1:已知A (0,1),B (2,3),Q 为圆C 22(3)1x y -+=上任一点,则QAB S V 的最小值为 . 变题2:由直线y=x +1上一点向圆C :22(3)1x y -+=引切线,则切线长的最小值为 变题3:已知P 为直线y=x +1上一动点,过P 作圆C :22(3)1x y -+=的切线PA ,PB,A 、B 为切点,则当PC= 时,APB ∠最大. 变题4:已知P 为直线y=x +1上一动点,过P 作圆C :22(3)1x y -+=的切线PA ,PB,A 、B 为切点,则四边形PACB 面积的最小值为 . 例2已知圆C :222430x y x y ++-+=,从圆C 外一点11(,)P x y 向该圆 引一条切线,切点为M ,O 为坐标原点,且有PM=PO ,求使得PM 取得最小 值的点P 坐标. 类型二 利用圆的参数方程求最值(或几何意义) 例3若实数x 、y 满足22240x y x y ++-=,求x-2y 的最大值. 如在上例中,改为求 12 y x --,22(2)(1)x y -+-,1x y --的取值范围,该怎么求解? 类型三:转化成函数或不等式求最值 例4已知圆O :22 1x y +=,PA 、PB 为该圆的两条切线,A 、B 为两切点,则PA PB ? 的最小值为

例5已知圆C :22+24x y +=(), 过点(1,0)A -做两条互相垂直的直线12l l 、,1l 交圆C 与E 、F 两点,2l 交圆C 与G 、H 两点, (1)EF +GH 的最大值.(2) 求四边形EGFH 面积的最大值. 6、已知 C 过点)1,1(P ,且与 M :222(2)(2)(0)x y r r +++=>关于直线20x y ++=对称. (Ⅰ)求 C 的方程; (Ⅱ)设Q 为 C 上的一个动点,求PQ MQ ? 的最小值; (Ⅲ)过点P 作两条相异直线分别与 C 相交于B A ,,且直线PA 和直线PB 的倾斜角互补,O 为坐标原点,试判断直线OP 和AB 是否平行?请说明理由. 7、如图,在矩形ABCD 中,3,1AB BC ==,以A 为圆 心1为半径的圆与AB 交于E (圆弧DE 为圆在矩形内的部 分) (Ⅰ)在圆弧DE 上确定P 点的位置,使过P 的切线l 平分 矩形ABCD 的面积; (Ⅱ)若动圆M 与满足题(Ⅰ)的切线l 及边DC 都相切, 试确定M 的位置,使圆M 为矩形内部面积最大的圆. l P E C A B M D

圆中的最值问题

拔高专题圆中的最值问题 一、基本模型构建 常见模型 图(1) 图 (2) 思考图(1)两点之间线段最短; 图(2)垂线段最短。 .在直线L上的同侧有两个 点A、B,在直线L上有到A、B 的距离之和最短的点存在,可 以通过轴对称来确定,即作出 其中一点关于直线L的对称 点,对称点与另一点的连线与 直线L的交点就是所要找的点. 二、拔高精讲精练 探究点一:点与圆上的点的距离的最值问题 例1:如图,A点是⊙O上直径MN所分的半圆的一个三等分点,B点是弧AN的中点,P点是MN上一动点,⊙O的半径为3,求AP+BP的最小值。 解:作点A关于MN的对称点A′,连接A′B,交MN于点P,连接OA′,AA′. ∵点A与A′关于MN对称,点A是半圆上的一个三等分点, ∴∠A′ON=∠AON=60°,PA=PA′,∵点B是弧AN的中点, ∴∠BON=30°,∴∠A′OB=∠A′ON+∠BON=90°,又∵OA=OA′=3, ∴A′B=32.∵两点之间线段最短,∴PA+PB=PA′+PB=A′B=32. 【教师总结】解决此题的关键是确定点P的位置.根据轴对称和两点之间线段最短的知识,把两条线段的和转化为一条线段,即可计算。

探究点二:直线与圆上点的距离的最值问题 例2:如图,在Rt△AOB中,OA=OB=32,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ(点Q为切点),求切线PQ的最小值 解:连接OP、OQ.∵PQ是⊙O的切线,∴OQ⊥PQ;根据勾股定理知PQ2=OP2-OQ2, ∴当PO⊥AB时,线段PQ最短,∵在Rt△AOB中,OA=OB=3 2, ∴AB=2OA=6,∴OP= ? OA OB AB =3,∴PQ=22 OP OQ =22. 【变式训练】如图,在平面直角坐标系中,以坐标原点O为圆心,2为半径画⊙O,P是⊙O是一动点且P在第一象限内,过P作⊙O切线与x轴相交于点A,与y轴相交于点B.求线段AB的最小值. 解:(1)线段AB长度的最小值为4, 理由如下: 连接OP, ∵AB切⊙O于P, ∴OP⊥AB, 取AB的中点C, ∴AB=2OC; 当OC=OP时,OC最短, 即AB最短, 此时AB=4.

1、与直线和圆有关的最值问题理(解析版)详解

圆锥曲线专题突破一:与直线和圆有关的最值问题 题型一 有关定直线、定圆的最值问题 例1 已知x ,y 满足x +2y -5=0,则(x -1)2 +(y -1)2 的最小值为________. 破题切入点 直接用几何意义——距离的平方来解决,另外还可以将x +2y -5=0改写成x =5-2y ,利用二次函数法来解决. 解析 方法一 (x -1)2+(y -1)2 表示点P (x ,y )到点Q (1,1)的距离的平方. 由已知可知点P 在直线l :x +2y -5=0上,所以PQ 的最小值为点Q 到直线l 的距离, 即d =|1+2×1-5|1+22 =255,所以(x -1)2+(y -1)2的最小值为d 2 =45. 方法二 由x +2y -5=0,得x =5-2y ,代入(x -1)2 +(y -1)2 并整理可得 (5-2y -1)2+(y -1)2=4(y -2)2+(y -1)2=5y 2 -18y +17=5(y -95)2+45,所以可得最小值为45. 题型二 有关动点、动直线、动圆的最值问题 例2 直线l 过点P (1,4),分别交x 轴的正方向和y 轴的正方向于A 、B 两点.当OA +OB 最小时,O 为坐标原点,求l 的方程. 破题切入点 设出直线方程,将OA +OB 表示出来,利用基本不等式求最值. 解 依题意,l 的斜率存在,且斜率为负,设直线l 的斜率为k ,则y -4=k (x -1)(k <0). 令y =0,可得A (1-4 k ,0);令x =0,可得B (0,4-k ). OA +OB =(1-4k )+(4-k )=5-(k +4k )=5+(-k +4 -k )≥5+4=9. 所以,当且仅当-k =4 -k 且k <0,即k =-2时,OA +OB 取最小值.这时l 的方程为2x +y -6=0. 题型三 综合性问题 (1)圆中有关元素的最值问题 例3 由直线y =x +2上的点P 向圆C :(x -4)2 +(y +2)2 =1引切线PT (T 为切点),当PT 的长最小时,点P 的坐标是________. 破题切入点 将PT 的长表示出来,结合圆的几何性质进行转化. 解析 根据切线段长、圆的半径和圆心到点P 的距离的关系,可知PT =PC 2 -1,故PT 最小时,即PC 最小,此时PC 垂直于直线y =x +2,则直线PC 的方程为y +2=-(x -4),即y =-x +2,联立方程? ?? ?? y =x +2, y =-x +2,解得点P 的坐标 为(0,2). (2)与其他知识相结合的范围问题 例4 已知直线x +y -k =0(k >0)与圆x 2+y 2 =4交于不同的两点A ,B ,O 是坐标原点,且有|OA →+OB →|≥33 |AB →|,那么 k 的取值范围是________. 破题切入点 结合图形分类讨论.

中考数学专题复习 圆的最值问题模型汇总

圆的最值问题 知识储备 最值问题的必要条件是至少有一个动点,因为是动态问题,所以才会有最值.在将军饮马问题中,折点P就是那个必须存在的动点.并且它的运动轨迹是一条直线,解题策略就是作端点关于折点所在直线的对称即可. 当然,动点的运动轨迹是可以变的,比如P点轨迹也可以是一个圆,就有了第二类最值问题——辅助圆. 在这类题目中,题目很少直接告诉我们动点轨迹是个圆,也很少把这个圆画出来,因此,结合题目给的条件,分析出动点的轨迹图形,将是我们面临的最大的问题. 若已经确定了动点的轨迹圆,接下来求最值的问题就会变得简单了,比如:如右图,A为圆外一点,在圆上找一点P使得PA最小. 类型一已知圆轨迹类 典例分析 【例1.1】如图,已知圆C的半径为3,圆外一定点O满足OC=5,点P为圆C上一动点,经过点O的直线L上有两点A、B,且OA=OB,∠APB=90°,直线L不经过点C,则AB的最小值为. 【例1.2】如图,⊙O的半径为2,点O到直线l的距离为3,点P是直线l上的一个动点,PQ切⊙O于点Q,则PQ的最小值为() A. B. C.3 D.2

【练习】 1.如图,在Rt △ABC 中,∠C=90°,AC=8,BC=6,经过点C 且与边AB 相切的动圆与CA 、CB 分别相交于点P 、Q ,则线段PQ 长度的最小值是( ). A .19 4 B . 245 C . 5 D . 2.如图,在等腰Rt △ABC 中,∠C=90°,AC=BC=4,D 是AB 的中点,点E 在AB 边上运动(点E 不与点A 重合),过A 、D 、E 三点作⊙O ,⊙O 交AC 于另一点F ,在此运动变化的过程中, 线段EF 长度的最小值为 . 3. 如图,AB 是⊙O 的弦,AB =5 ,点C 是⊙O 上的一个动点,且∠ACB =45°,点M ,N 分别是AB ,AC 的中点,则线段MN 长的最大值为( )

圆与确定圆的条件常见题型归纳

圆与确定圆的条件常见题型归纳 (一).确定圆的条件: 1、小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与原来大小一样的圆形玻璃,小明带到商 店去的一块玻璃碎片应该是() A.第①块 B.第②块 C.第③块 D.第④块 2、下列命题中,正确的命题是() A.三点确定一个圆 B.经过四点不能作一个圆 C.三角形有一个且只有一个外接圆 D.三角形外心在三角形的外面 3、(确定圆心)如图,△ABC的外接圆的圆心坐标为. 4、(确定半径/直径) (1)、一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽0.8米,最深处水深0.2米,则此输水管道的直径是() A.0.4米B.0.5米 C.0.8米D.1米 (2)、如图所示的工件槽的两个底角均为90°,尺寸如图(单位cm),将形状规则的铁球放入槽内,若同时具有A,B,E三个接触点,则该球的半径是()cm. A.10 B.18 C.20 D.22 (3)、工程上常用钢珠来测量零件上小孔的直径,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小孔的直径AB是________mm. (4)、如图所示,某窗户由矩形和弓形组成,已知弓形的跨度AB=3 m,弓形的高EF=1 m,现计划安装玻璃,则出弧AB所在的⊙O的半径为 m.

(二).三角形外接圆与圆的内接三角形: 1、在下列三角形中,外心在它一边上的三角形是() A.三角形的边长分别是2cm,2cm,3cm B.三角形的边长都等于5cm C.三边长分别为5cm,12cm,13cm D.三边长分别为4cm,6cm,8cm 2、下列说法正确的有(填序号) ①经过三点一定可以作圆;②任意一个三角形一定有一个外接圆,并且只有一个外接圆; ③任意一个圆一定有一个内接三角形,并且只有一个内接三角形; ④三角形的外心是三角形三边中线的交点;⑤三角形的外心到三角形各项点距离相等。 (三).利用圆的半径特点解题: 1、如图,点A,D,G,M在半圆上,四边形ABOC, DEOF,HMNO均为矩形,设BC=a,EF=b, NH=C,则下列各式中 正确的是( ) A.a>b>c B.a=b=c C.c>a>b D.b>c>a 2、如图,AB是半圆O的直径,点P从点O出发,沿OA-弧AB-BO的路径运动一周。设OP为s,运动时间为t, 则下列图形能大致地刻画s与t之间关系的是() A. B. C. D. 3、如图,以△ABC的边BC为直径的圆O分别交AB,AC于点D、E,连接OD、OE,若∠DOE=50°, 则∠A 的度数为() A.65° B.60° C.50° D.45° 4、如图,DE为⊙O的直径,A为ED的延长线上一点,过点A的一条直线交⊙O于B,C两点,已知AB=OC,∠COE

相关文档
最新文档